

Enhanced corrections to neutrino mixing for quasi-degenerate neutrinos

in collaboration with Ulrich Nierste

Wolfgang Gregor Hollik | Dec 3, 2013

INSTITUT FOR THEORETICAL PARTICLE PHYSICS - KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

Why not?

Wolfgang Gregor Hollik - Terascale Workshop

Dec 3, 2013 2/11

Why not?

Oscillations:

•
$$\Delta m^2_{21} = 7.54^{+0.26}_{-0.22} \times 10^{-5} \,\mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = 2.45^{+0.06}_{-0.10} \times 10^{-3} \,\mathrm{eV}^2$$

[global fit by Fogli et al. 2012]

Why not?

Oscillations:

- $\Delta m^2_{21} = 7.54^{+0.26}_{-0.22} \times 10^{-5} \,\mathrm{eV}^2$
- $\Delta m_{31}^2 = 2.45^{+0.06}_{-0.10} \times 10^{-3} \,\mathrm{eV}^2$

[global fit by Fogli et al. 2012]

Unknown: Absolute neutrino mass scale

Why not?

- Oscillations:
 - $\Delta m_{21}^2 = 7.54^{+0.26}_{-0.22} \times 10^{-5} \,\mathrm{eV}^2$
 - $\Delta m_{31}^2 = 2.45^{+0.06}_{-0.10} \times 10^{-3} \,\mathrm{eV}^2$

[global fit by Fogli et al. 2012]

• Unknown: Absolute neutrino mass scale \rightarrow KATRIN

possible upper limit: 0.2 eV, discovery: 0.35 eV

Quasi-Degeneration

Quasi-Degeneration

Quark and Neutrino Mixing

$$V_{\mathsf{CKM}} = \begin{pmatrix} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \bullet & \bullet \end{pmatrix}$$

- small mixing angles
- close to unit matrix
- get mixings from loops?

- large mixing angles
- no hierarchy
- get mixings from symmetries?

Quark and Neutrino Mixing

$$V_{\mathsf{CKM}} = \begin{pmatrix} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{pmatrix}$$

- small mixing angles
- close to unit matrix

different or similar?

get mixings from loops?

 $U_{\mathsf{PMNS}} = \left(\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right)$

- large mixing angles
- no hierarchy
- get mixings from symmetries?

Let's see...

Quark and Neutrino Mixing

$$V_{\mathsf{CKM}} = \begin{pmatrix} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \bullet & \bullet \end{pmatrix}$$

- small mixing angles
- close to unit matrix

different or similar?

get mixings from loops!

- large mixing angles
- no hierarchy
- get mixings from symmetries?

Let's see. . .

Theories with Additional Sources of Flavour Violation

Wolfgang Gregor Hollik - Terascale Workshop

Theories with Additional Sources of Flavour Violation

- e.g. non-minimal flavour violating MSSM
- arbitrary flavour structure in the soft breaking terms?

$$\mathcal{M}^2_{\tilde{\mathcal{Q}}}, \mathcal{M}^2_{\tilde{u}}, \mathcal{M}^2_{\tilde{d}}, \mathcal{M}^2_{\tilde{\ell}}, \mathcal{M}^2_{\tilde{e}}, \qquad A^u, A^d, A^e$$

- additional flavour mixing in fermion-sfermion-gaugino interaction
- especially non-CKM-like: e.g. quark–squark–gluino and lepton–slepton–neutralino

[Crivellin, Nierste 2009]

Theories with Additional Sources of Flavour Violation

- e.g. non-minimal flavour violating MSSM
- arbitrary flavour structure in the soft breaking terms?

$$\mathcal{M}^2_{\tilde{\mathcal{Q}}}, \mathcal{M}^2_{\tilde{u}}, \mathcal{M}^2_{\tilde{d}}, \mathcal{M}^2_{\tilde{\ell}}, \mathcal{M}^2_{\tilde{e}}, \qquad A^u, A^d, A^e$$

- additional flavour mixing in fermion-sfermion-gaugino interaction
- especially non-CKM-like: e.g. quark–squark–gluino and lepton–slepton–neutralino

Do the same for sleptons and sneutrinos!

mixing matrix renormalization

$$i \frac{g}{\sqrt{2}} \gamma^{\mu} P_L U_{\mathsf{PMNS}}^{\dagger} \rightarrow i \frac{g}{\sqrt{2}} \gamma^{\mu} P_L \left(U^{(0)\dagger} + \Delta U^e U^{(0)\dagger} + \Delta U^{\nu} U^{(0)\dagger} \right),$$

sensitivity to neutrino mass

$$\Delta U_{fi}^{
u} \sim rac{m_{
u_f} \Sigma_{fi}}{\Delta m_{fi}^2}$$

enhanced corrections

enhancement by degeneracy of neutrino mass spectrum

How To?

The MSSM with righthanded neutrinos

Superpotential of the $\nu MSSM$

$$\mathcal{W}^{\ell} = \mu H_d \cdot H_u - Y^{IJ}_{\ell} H_d \cdot L^I_L E^J_R + Y^{IJ}_{\nu} H_u \cdot L^I_L N^J_R + \frac{1}{2} m^{IJ}_R N^I_R N^J_R,$$

with
$$L_L = (\ell_L, \tilde{\ell}_L) \in SU(2)_L$$
 and $E_R = (e_L^c, \tilde{e}_R^*)$, $N_R = (\nu_L^c, \tilde{\nu}_R^*)$.

Soft-breaking terms

$$\begin{aligned} \mathcal{V}_{\text{soft}} = & \left(\mathcal{M}_{\tilde{\ell}}^{2}\right)^{IJ} \tilde{\mathcal{L}}_{L}^{I*} \tilde{\mathcal{L}}_{L}^{J} + \left(\mathcal{M}_{\tilde{e}}^{2}\right)^{IJ} \tilde{e}_{R}^{I} \tilde{e}_{R}^{J*} + \left(\mathcal{M}_{\tilde{\nu}}^{2}\right)^{IJ} \tilde{\nu}_{R}^{I} \tilde{\nu}_{R}^{J*} \\ & - \left[(B_{\nu})^{IJ} \tilde{\nu}_{R}^{I*} \tilde{\nu}_{R}^{J*} + A_{e}^{IJ} H_{1} \cdot \tilde{\mathcal{L}}_{L}^{I} \tilde{e}_{R}^{J*} - A_{\nu}^{IJ} H_{2} \cdot \tilde{\mathcal{L}}_{L}^{I} \tilde{\nu}_{R}^{J*} + \text{h.c.} \right]. \end{aligned}$$

Interlude: Seesaw

Standard Model + righthanded Neutrinos = Seesaw Type I

$$-\mathcal{L}_{\nu,\text{mass}} = \underbrace{\overline{\nu}_L m_D \nu_R}_{\text{Dirac mass}} + \frac{1}{2} \underbrace{\overline{\nu}_L^c m_R \nu_R}_{\text{Majorana mass}} + \text{h. c}$$

Interlude: Seesaw

Standard Model + righthanded Neutrinos = Seesaw Type I

$$-\mathcal{L}_{\nu,\text{mass}} = \underbrace{\overline{\nu}_L m_D \nu_R}_{\text{Dirac mass}} + \frac{1}{2} \underbrace{\overline{\nu}_L^c m_R \nu_R}_{\text{Majorana mass}} + \text{h. c.}$$

$$\mathcal{M}_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ m_D^T & m_R \end{array}\right)$$

[Minkowski 1977]

What about m_R ?

• ν_R SM singlet \rightarrow no constraint for mass

• assumption: Dirac mass of order EW scale ($\mathcal{O}(10...100 \text{ GeV})$): $m_R \sim \mathcal{O}(10^{13...14} \text{ GeV})$

$$\Delta U^{\nu} = \Delta U^{\nu} (\mathcal{M}^2_{\tilde{\ell}}, \mathcal{M}^2_{\tilde{\nu}}, A_{\nu})$$

Assumptions:

•
$$\mathcal{M}_{\tilde{\ell}}^2 = \mathcal{M}_{\tilde{e}}^2 = \mathcal{M}_{\tilde{\nu}}^2 \equiv m_{\text{soft}}^2 \mathbb{1}$$

• $m_{\nu}^{(0)} = 0.35 \text{ eV} \text{ (possible } \overset{\mathsf{TR}}{\overset{\mathsf{TR}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}}} \text{-discovery})$
• only source of FV: A_{ν}^{ij} with $i \neq j$

$$\Rightarrow \Delta U^{
u}_{ij} \propto A^{ij}_{
u}$$

Wolfgang Gregor Hollik - Terascale Workshop

non-decoupling effect

- basically no dependence on $m_{\nu}^{(0)}$ for "heavy" neutrinos
- basically no dependence on gaugino mass parameters M_1, M_2

• safe: contributions to $\mathcal{BR}(\ell_j \to \ell_i \gamma)$ negligible

Conclusion

- enhancement for quasi-degenerate neutrinos
- general for generic Σ_{ii}^{ν}
- \bullet non-decoupling effect in νMSSM and general SUSY theories
- new flavour structure in sneutrino sector: no large $\mathcal{BR}(\ell_j \to \ell_i \gamma)$

Conclusion

- enhancement for quasi-degenerate neutrinos
- general for generic Σ_{ii}^{ν}
- non-decoupling effect in $\nu MSSM$ and general SUSY theories
- new flavour structure in sneutrino sector: no large $\mathcal{BR}(\ell_j \to \ell_i \gamma)$

