Vacuum instabilities around the corner destabilizing the vacuum at the SUSY scale

Wolfgang Gregor Hollik

Institut für Theoretische Teilchenphysik (TTP) Karlsruher Institut für Technologie (KIT)

Karlsruhe Center for Particle and Astroparticle Physics Karlsruhe School for Particle and Astroparticle Physics

June 26, 2015 | CINVESTAV México City

"I think, we have it!" Rolf Heuer

Motivation and Outline

"Eureka!" Archimedes

What do we have?

W. G. H. MSSM vacuum

Having pinned down the missing piece ...

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

The SM phase diagram

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

•
$$SU(2)$$
 doublet: $\Phi = (\phi^+, \phi^0)$ Hypercharge $Y_{\Phi} = \frac{1}{2}$

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

- SU(2) doublet: $\Phi = (\phi^+, \phi^0)$ Hypercharge $Y_{\Phi} = \frac{1}{2}$
- V develops non-trivial minimum if $m^2 < 0, \, v/\sqrt{2} = \mu/\sqrt{2\lambda}$

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

- SU(2) doublet: $\Phi = (\phi^+, \phi^0)$ Hypercharge $Y_{\Phi} = \frac{1}{2}$
- V develops non-trivial minimum if $m^2 < 0$, $v/\sqrt{2} = \mu/\sqrt{2\lambda}$
- spontaneous symmetry breaking, Higgs mechanism, coupling to weak bosons,...

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

- SU(2) doublet: $\Phi = (\phi^+, \phi^0)$ Hypercharge $Y_{\Phi} = \frac{1}{2}$
- V develops non-trivial minimum if $m^2 < 0$, $v/\sqrt{2} = \mu/\sqrt{2\lambda}$
- spontaneous symmetry breaking, Higgs mechanism, coupling to weak bosons,...

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

- SU(2) doublet: $\Phi = (\phi^+, \phi^0)$ Hypercharge $Y_{\Phi} = \frac{1}{2}$
- V develops non-trivial minimum if $m^2 < 0$, $v/\sqrt{2} = \mu/\sqrt{2\lambda}$
- spontaneous symmetry breaking, Higgs mechanism, coupling to weak bosons,...

www.nobelprize.org

Back again

[Hambye, Riesselmann: Phys.Rev. D55 (1997) 7255]

Theoretical considerations

- $\lambda < 4\pi \quad \hookrightarrow \text{ perturbativity}$
- $\lambda > 0 \quad \hookrightarrow$ unbounded from below, aka vacuum stability

Theoretical considerations

- $\lambda < 4\pi \quad \hookrightarrow \text{ perturbativity}$
- $\lambda > 0 \quad \hookrightarrow$ unbounded from below, aka vacuum stability

trivial at the classical (i.e. tree) level

$$V(\Phi) = m^2 \Phi^{\dagger} \Phi + \lambda \left(\Phi^{\dagger} \Phi \right)^2$$

- dominant contribution: top quark $(y_t \sim 1)$
- dependence on the energy scale: β function!

Energy scale dependence

Scale-independent loop-corrected effective potential

$$Q\frac{\mathrm{d}}{\mathrm{d}\,Q}V_{\mathsf{loop}}(\lambda_i,\phi,Q)=0$$

Approximation for large field values

$$V_{\mathsf{loop}}(\phi) = \lambda(\phi)\phi^4,$$

evaluated at $Q=\phi$

β function for coupling λ_i

$$\beta_i(\lambda_i) = Q \frac{\mathrm{d}\,\lambda_i(Q)}{\mathrm{d}\,Q}$$

- $\bullet\,$ running of λ determines stability of the loop potential
- upper bound: Landau pole; lower bound: $\lambda > 0$

W. G. H. MSSM vacuum

[[]Zoller 2014]

[Zoller 2014]

- $m_h = 125 \,\mathrm{GeV}$: metastable electroweak vacuum
- metastability: decay time of false vacuum large
- instability scale around $10^{10...12} \, \mathrm{GeV}$
- SM sufficiently stable
- neutrino masses missing

- $m_h = 125 \,\mathrm{GeV}$: metastable electroweak vacuum
- metastability: decay time of false vacuum large
- instability scale around $10^{10...12} \, \mathrm{GeV}$
- SM sufficiently stable
- neutrino masses missing

Why New Physics?

- $m_h = 125 \,\mathrm{GeV}$: metastable electroweak vacuum
- metastability: decay time of false vacuum large
- instability scale around $10^{10...12} \, \mathrm{GeV}$
- SM sufficiently stable
- neutrino masses missing

Why New Physics?

Why Supersymmetry?

- $m_h = 125 \,\mathrm{GeV}$: perfectly within the range
- ullet metastability o absolute stability

Task: Do not introduce further instabilities!

- $m_h = 125 \,\mathrm{GeV}$: metastable electroweak vacuum
- metastability: decay time of false vacuum large
- instability scale around $10^{10...12} \, \mathrm{GeV}$
- SM sufficiently stable
- neutrino masses missing

Why New Physics?

Why Supersymmetry?

- $m_h = 125 \,\mathrm{GeV}$: perfectly within the range
- ullet metastability o absolute stability

Task: Do not introduce further instabilities! (generically difficult)

Supersymmetry

- relates bosonic and fermionic degrees of freedom: absolute zero
- the only non-trivial extension of Poincaré symmetry

Supersymmetry

- relates bosonic and fermionic degrees of freedom: absolute zero
- the only non-trivial extension of Poincaré symmetry

Supersymmetry

- relates bosonic and fermionic degrees of freedom: absolute zero
- the only non-trivial extension of Poincaré symmetry

 $\mathcal{W}_{\mathsf{MSSM}} = -Y_{ij}^e H_d \cdot L_{L,i} \bar{E}_{R,j} + Y_{ij}^u H_u \cdot Q_{L,i} \bar{U}_{R,j} - Y_{ij}^d H_d \cdot Q_{L,i} \bar{D}_{R,j}$

$$\begin{split} -\mathcal{L}_{\text{SHSY}}^{\text{YMSSM}} &= \tilde{q}_{\text{L},i}^{*} \left(\tilde{m}_{Q}^{2} \right)_{ij} \tilde{q}_{\text{L},j} + \tilde{u}_{\text{R},i}^{*} \left(\tilde{m}_{u}^{2} \right)_{ij} \tilde{u}_{\text{R},j} + \tilde{d}_{\text{R},i}^{*} \left(\tilde{m}_{d}^{2} \right)_{ij} \tilde{d}_{\text{R},j} \\ &+ \left[\tilde{\ell}_{\text{L},i}^{*} \left(\tilde{m}_{\ell}^{2} \right)_{ij} \tilde{\ell}_{\text{L},j} + \tilde{e}_{\text{R},i}^{*} \left(\tilde{m}_{e}^{2} \right)_{ij} \tilde{e}_{\text{R},j} \right. \\ &+ \left[h_{\text{d}} \cdot \tilde{q}_{\text{L},i} A_{ij}^{\text{d}} \tilde{d}_{\text{R},j}^{*} + \tilde{q}_{\text{L},i} \cdot h_{\text{u}} A_{ij}^{\text{u}} \tilde{u}_{\text{R},j}^{*} + \right. \\ &\left. h_{\text{d}} \cdot \tilde{\ell}_{\text{L},i} A_{ij}^{\text{e}} \tilde{e}_{\text{R},j}^{*} + \text{h.c.} \right] \\ &+ \left. m_{h_{\text{d}}}^{2} |h_{\text{d}}|^{2} + m_{h_{\text{u}}}^{2} |h_{\text{u}}|^{2} + \left(B_{\mu} h_{\text{d}} \cdot h_{\text{u}} + \text{h.c.} \right) \end{split}$$

Higgs potential of 2HDM type II

$$\begin{split} V &= m_{11}^2 H_d^{\dagger} H_d + m_{22}^2 H_u^{\dagger} H_u + \left(m_{12}^2 H_u \cdot H_d + \text{h.c.} \right) \\ &+ \frac{\lambda_1}{2} \left(H_d^{\dagger} H_d \right)^2 + \frac{\lambda_2}{2} \left(H_u^{\dagger} H_u \right)^2 \\ &+ \lambda_3 \left(H_u^{\dagger} H_u \right) \left(H_d^{\dagger} H_d \right) + \lambda_4 \left(H_u^{\dagger} H_d \right) \left(H_d^{\dagger} H_u \right) + \{ \lambda_5, \lambda_6, \lambda_7 \} \end{split}$$

In the MSSM: tree potential calculated from D-terms and $\mathcal{L}_{\mathrm{soft}}$

$$m_{11}^{2 \text{ tree}} = |\mu|^2 + m_{H_d}^2, \qquad \lambda_1^{\text{tree}} = \lambda_2^{\text{tree}} = -\lambda_3^{\text{tree}} = \frac{g^2 + g'^2}{4},$$

$$m_{22}^{2 \text{ tree}} = |\mu|^2 + m_{H_u}^2, \qquad \lambda_4^{\text{tree}} = \frac{g^2}{2},$$

$$m_{12}^{2 \text{ tree}} = B_{\mu}, \qquad \lambda_5^{\text{tree}} = \lambda_6^{\text{tree}} = \lambda_7^{\text{tree}} = 0.$$

Higgs potential of 2HDM type II

$$V = m_{11}^2 H_d^{\dagger} H_d + m_{22}^2 H_u^{\dagger} H_u + (m_{12}^2 H_u \cdot H_d + \text{h.c.}) + \frac{\lambda_1}{2} (H_d^{\dagger} H_d)^2 + \frac{\lambda_2}{2} (H_u^{\dagger} H_u)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) + \{\lambda_5, \lambda_6, \lambda_7\}$$

In the MSSM: tree potential calculated from D-terms and $\mathcal{L}_{\mathrm{soft}}$

$$\begin{split} m_{11}^{2\,\text{tree}} &= |\mu|^2 + m_{H_d}^2, \qquad \lambda_1^{\text{tree}} = \lambda_2^{\text{tree}} = -\lambda_3^{\text{tree}} = \frac{g^2 + g'^2}{4}, \\ m_{22}^{2\,\text{tree}} &= |\mu|^2 + m_{H_u}^2, \qquad \lambda_4^{\text{tree}} = \frac{g^2}{2}, \\ m_{12}^{2\,\text{tree}} &= B_{\mu}, \qquad \lambda_5^{\text{tree}} = \lambda_6^{\text{tree}} = \lambda_7^{\text{tree}} = 0. \end{split}$$

Higgs potential of 2HDM type II

$$V = m_{11}^{2} H_{d}^{\dagger} H_{d} + m_{22}^{2} H_{u}^{\dagger} H_{u} + (m_{12}^{2} H_{u} \cdot H_{d} + \text{h.c.}) + \frac{\lambda_{1}}{2} (H_{d}^{\dagger} H_{d})^{2} + \frac{\lambda_{2}}{2} (H_{u}^{\dagger} H_{u})^{2} + \lambda_{3} (H_{u}^{\dagger} H_{u}) (H_{d}^{\dagger} H_{d}) + \lambda_{4} (H_{u}^{\dagger} H_{d}) (H_{d}^{\dagger} H_{u}) + \{\lambda_{5}, \lambda_{6}, \lambda_{7}\}$$

Unbounded from below requirements

$$\lambda_1 > 0, \qquad \lambda_2 > 0, \qquad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}$$

and others. . .

[Gunion, Haber 2003]

• always fulfilled in the MSSM @ tree

Extending the tree	
loop corrections?	[Gorbahn, Jäger, Nierste, Trine 2011]

- integrating out heavy SUSY particles
- requirement of large SUSY scale $M_{\rm SUSY} \gg M_A \sim v_{\rm ew}$
- effective theory: generic 2HDM, λ_i calculated from SUSY loops

- integrating out heavy SUSY particles
- requirement of large SUSY scale $M_{\rm SUSY} \gg M_A \sim v_{\rm ew}$
- effective theory: generic 2HDM, λ_i calculated from SUSY loops

collecting all SUSY contributions:

 $\lambda_i = \lambda_i (\tan\beta, \mu, M_1, M_2, \tilde{m}_Q^2, \tilde{m}_u^2, \tilde{m}_d^2, \tilde{m}_L^2, \tilde{m}_e^2, A_{\mathsf{u}}, A_{\mathsf{d}}, A_{\mathsf{e}}).$

simple check:

$$\lambda_1 > 0, \qquad \lambda_2 > 0, \qquad \lambda_3 > -\sqrt{\lambda_1 \lambda_2},$$

where now

$$\lambda_i = \lambda_i^{\text{tree}} + \frac{\lambda_i^{\text{ino}} + \lambda_i^{\text{sferm}}}{16\pi^2}.$$

Severe UFB limits

Bounds on $\lambda_{1,2,3}$ transfer into bounds on m_0 , A_t , μ , ...

Recovery from unbounded from below???

Recovery from unbounded from below???

Recovery from unbounded from below???

Calculating the 1-100p effective potential

- dominant contribution from third generation squarks
- quadrilinear couplings ($\sim |Y_{\rm t}|^2$)
- trilinear coupling to a linear combination $(\mu^* Y_t h_d^{\dagger} A_t h_u^0)$
- series summable to an infinite number of external legs

Calculating the 1-100p effective potential

- dominant contribution from third generation squarks
- quadrilinear couplings ($\sim |Y_{\rm t}|^2$)
- trilinear coupling to a linear combination $(\mu^* Y_t h_d^{\dagger} A_t h_u^0)$
- series summable to an infinite number of external legs
- Do not stop after renormalizable / dim 4 terms!

• 1-loop effective potential

[Coleman, Weinberg 1973]

$$V_1(h_u, h_d) = \frac{1}{64\pi^2} \operatorname{STr} \mathcal{M}^4(h_u, h_d) \left[\ln\left(\frac{\mathcal{M}^2(h_u, h_d)}{Q^2}\right) - \frac{3}{2} \right]$$

- field dependent mass $\mathcal{M}(h_u, h_d)$
- $\bullet~\mathrm{STr}$ accounts for spin degrees of freedom
- same result can be obtained by the tadpole method

$$T \sim \frac{\partial}{\partial h} V_1(h) \quad \hookrightarrow \quad V_1(h) \sim \int \mathrm{d}h \ T(h)$$

[Lee, Sciaccaluga 1975]

• functional methods: effective potential for arbitrary number of scalars: $V_1(\phi_1, \phi_2, \dots \phi_n)$ [Jackiw 1973]

 $V_{\rm eff}(\phi)$: average energy density

 $V_{\text{eff}}(\phi)$: average energy density

The ground state of the theory

 V_{eff} minimized:

$$\left. \frac{\mathrm{d} \, V_{\mathsf{eff}}}{\mathrm{d} \, \phi} \right|_{\phi=v} = 0$$

 $V_{\rm eff}(\phi)$: average energy density

The ground state of the theory

 V_{eff} minimized:

$$\left. \frac{\mathrm{d} \, V_{\mathsf{eff}}}{\mathrm{d} \, \phi} \right|_{\phi=v} = 0$$

Technically:

generating function for 1PI *n*-point Green's functions:

$$V_{\text{eff}}(\phi) = -\sum_{n=2}^{\infty} \tilde{G}^{(n)}(p_i = 0)\phi^n$$

 $V_{\rm eff}(\phi)$: average energy density

The ground state of the theory

 V_{eff} minimized:

$$\left. \frac{\mathrm{d} \, V_{\mathsf{eff}}}{\mathrm{d} \, \phi} \right|_{\phi=v} = 0$$

Technically:

generating function for 1PI *n*-point Green's functions:

$$V_{\text{eff}}(\phi) = -\sum_{n=2}^{\infty} \tilde{G}^{(n)}(p_i = 0)\phi^n$$

conversely: calculate all 1PI $\mathit{n}\text{-point}$ functions $\rightarrow~V_{\rm eff}$

 $V_{\text{eff}}(\phi)$: average energy density

The ground state of the theory

 V_{eff} minimized:

$$\left. \frac{\mathrm{d} \, V_{\mathsf{eff}}}{\mathrm{d} \, \phi} \right|_{\phi=v} = 0$$

Technically:

generating function for 1PI *n*-point Green's functions:

$$V_{\text{eff}}(\phi) = -\sum_{n=2}^{\infty} \tilde{G}^{(n)}(p_i = 0)\phi^n$$

conversely: calculate all 1PI $n\text{-point functions} \rightarrow \ V_{\rm eff}$

(with subleties)

- most dominant contribution from top Yukawa y_t and A_t
- can be easily summed for $m_{\tilde{t}_R} = m_{\tilde{t}_L} \equiv M$
- 1-PI potential as generating function for 1-PI Green's functions

$$-V_{1-\text{PI}}(\phi) = \Gamma_{1-\text{PI}}(\phi) = \sum_{n} \frac{1}{n!} G_n(p_{\text{ext}} = 0) \phi^n$$

• "classical" field value $\phi \rightarrow \langle 0 | \phi | 0 \rangle$ • $\frac{dV(\phi)}{d\phi} = 0$ determines ground state of the theory

$$V_1 = \frac{N_c M^4}{32\pi^2} \left[(1+x)^2 \log(1+x) + (1-x)^2 \log(1-x) - 3x^2 \right]$$

 $Q^2=M^2$ $x^2=|\mu Y_t|^2h^\dagger h/M^4,\ m_{\tilde{t}_L}^2=m_{\tilde{t}_R}^2=M^2$ W. G. H. MSSM vacuum

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

- $\bullet\,$ trilinear $\sim h(h_d^0,h_u^0)$, quadrilinear $\sim |h_u^0|^2$
- diagrams with mixed contributions

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

- trilinear $\sim h(h_d^0,h_u^0)$, quadrilinear $\sim |h_u^0|^2$
- diagrams with mixed contributions

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

- $\bullet\,$ trilinear $\sim h(h_d^0,h_u^0)$, quadrilinear $\sim |h_u^0|^2$
- diagrams with mixed contributions

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

- $\bullet\,$ trilinear $\sim h(h_d^0,h_u^0)$, quadrilinear $\sim |h_u^0|^2$
- diagrams with mixed contributions

W. G. H. MSSM vacuum

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} m_{\tilde{t}_{L}}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & m_{\tilde{t}_{R}}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$

$$V_1 \sim \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} a_{kn} x^{2n} y^k , \qquad x^2 = \frac{|\mu Y_t|^2 h^{\dagger} h}{M^4}, y = \frac{|Y_t h_u^0|^2}{M^2}$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{n(2n+k-1)(2n+k-2)} \frac{(2n+k-1)!}{k!(2n-1)!} x^{2n} y^k$$
$$= \left[(1+u+x)^2 \log(1+u+x) \right]$$

$$= \left[(1+y+x)^2 \log(1+y+x) + (1+y-x)^2 \log(1+y-x) - 3(x^2+y^2+2y) \right]$$

Features of the resummed series

$$V_1(h_u^0, h_d^0) = \frac{N_c M^4}{32\pi^2} \left[(1+y+x)^2 \log(1+y+x) + (1+y-x)^2 \log(1+y-x) - 3(x^2+y^2+2y) \right]$$

$$x^{2} = \frac{|\mu Y_{t}|^{2}h^{\dagger}h}{M^{4}}, \ h = h_{d}^{0*} - \frac{A_{t}}{\mu^{*}Y_{t}}h_{u}^{0}, \qquad y = \frac{|Y_{t}h_{u}^{0}|^{2}}{M^{2}}$$

- branch cut at x y = 1: take real part (analytic continuation)
- ignore imaginary part: $\log(1+y-x) = \frac{1}{2}\log((1+y-x)^2)$
- always bounded from below
- minimum independent of Higgs parameters from tree potential
- minimum determined by SUSY scale parameters

W. G. H. MSSM vacuum

W. G. H. MSSM vacuum

Cooking up phenomenologically viable parameters

$$\begin{split} & \text{Minimum at the electroweak scale } v = 246 \text{ GeV} \\ & m_{11}^{2 \text{ tree}} = m_{12}^{2 \text{ tree}} \, \tan\beta - \frac{v^2}{2} \cos(2\beta) \lambda_1^{\text{tree}} - \frac{1}{v \cos\beta} \left. \frac{\delta}{\delta \phi_d} V_1 \right|_{\substack{\phi_{u,d} \to 0 \\ \chi_{u,d} \to 0}}, \\ & m_{22}^{2 \text{ tree}} = m_{12}^{2 \text{ tree}} \, \cot\beta + \frac{v^2}{2} \cos(2\beta) \lambda_1^{\text{tree}} - \frac{1}{v \sin\beta} \left. \frac{\delta}{\delta \phi_u} V_1 \right|_{\substack{\phi_{u,d} \to 0 \\ \chi_{u,d} \to 0}}. \end{split}$$

$m_h = 126 \,\mathrm{GeV}$

- using FeynHiggs 2.10.0 to determine light Higgs mass by adjusting A_t (several solutions: sign $A_t = -\text{sign }\mu$)
- connection to potential: m_A
- pseudoscalar mass m_A less dependent on higher loops
- decoupling limit: $m_A, m_{H^{\pm}}, m_H \gg m_h$

• include sbottom (drives minimum), take $A_b = 0$

$\tan\beta$ resummation for bottom yukawa coupling

Yukawa coupling not given directly by the mass

$$y_b = \frac{m_b}{v_d(1 + \Delta_b)}$$

$$\begin{split} \Delta_b^{\text{gluino}} &= \frac{2\alpha_s}{3\pi} \mu M_{\tilde{G}} \tan \beta C_0(\tilde{m}_{\tilde{b}_1}, \tilde{m}_{\tilde{b}_2}, M_{\tilde{G}}), \\ \Delta_b^{\text{higgsino}} &= \frac{Y_t^2}{16\pi^2} \mu A_t \tan \beta C_0(\tilde{m}_{\tilde{t}_1}, \tilde{m}_{\tilde{t}_2}, \mu). \end{split}$$

W. G. H. MSSM vacuum

Discussion of stability

Discussion of stability

www.bbcamerica.com

Naive exclusions: Constraint in μ -tan β

New interpretation

Access to Charge and Color breaking minima

W. G. H. MSSM vacuum

Access to Charge and Color breaking minima

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & \tilde{m}_{t}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$
$$\mathcal{M}_{\tilde{b}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{b}h_{d}^{0}|^{2} & A_{b}h_{d}^{0} - \mu^{*}Y_{b}h_{u}^{0*} \\ A_{b}^{*}h_{d}^{0*} - \mu Y_{b}^{*}h_{u}^{0} & \tilde{m}_{b}^{2} + |Y_{b}h_{d}^{0}|^{2} \end{pmatrix}$$

• non-trivial behaviour of sfermions masses with Higgs vev

Access to Charge and Color breaking minima

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & \tilde{m}_{t}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$
$$\mathcal{M}_{\tilde{b}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{b}h_{d}^{0}|^{2} & A_{b}h_{d}^{0} - \mu^{*}Y_{b}h_{u}^{0*} \\ A_{b}^{*}h_{d}^{0*} - \mu Y_{b}^{*}h_{u}^{0} & \tilde{m}_{b}^{2} + |Y_{b}h_{d}^{0}|^{2} \end{pmatrix}$$

• non-trivial behaviour of sfermions masses with Higgs vev:

$$m_{\tilde{b}_{1,2}}^2(h_u^0, h_d^0) = \frac{\tilde{m}_Q^2 + \tilde{m}_b^2}{2} + |Y_b h_d^0|^2 \\ \pm \frac{1}{2} \sqrt{(\tilde{m}_Q^2 - \tilde{m}_b^2)^2 + 4|A_b h_d^0 - \mu^* Y_b h_u^{0*}|^2}$$

 $\bullet\,$ expand theory around new minimum: $m^2_{\tilde{b}_2} < 0$

Access to Charge and Color breaking minima

$$\mathcal{M}_{\tilde{t}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{t}h_{u}^{0}|^{2} & A_{t}h_{u}^{0} - \mu^{*}Y_{t}h_{d}^{0*} \\ A_{t}^{*}h_{u}^{0*} - \mu Y_{t}^{*}h_{d}^{0} & \tilde{m}_{t}^{2} + |Y_{t}h_{u}^{0}|^{2} \end{pmatrix}$$
$$\mathcal{M}_{\tilde{b}}^{2}(h_{u}^{0},h_{d}^{0}) = \begin{pmatrix} \tilde{m}_{Q}^{2} + |Y_{b}h_{d}^{0}|^{2} & A_{b}h_{d}^{0} - \mu^{*}Y_{b}h_{u}^{0*} \\ A_{b}^{*}h_{d}^{0*} - \mu Y_{b}^{*}h_{u}^{0} & \tilde{m}_{b}^{2} + |Y_{b}h_{d}^{0}|^{2} \end{pmatrix}$$

• non-trivial behaviour of sfermions masses with Higgs vev:

$$m_{\tilde{b}_{1,2}}^2(h_u^0, h_d^0) = \frac{\tilde{m}_Q^2 + \tilde{m}_b^2}{2} + |Y_b h_d^0|^2 \\ \pm \frac{1}{2} \sqrt{(\tilde{m}_Q^2 - \tilde{m}_b^2)^2 + 4|A_b h_d^0 - \mu^* Y_b h_u^{0*}|^2}$$

- expand theory around new minimum: $m_{\tilde{h}_2}^2 < 0$
- tachyonic squark mass!

[commons.wikimedia.org]

W. G. H. MSSM vacuum

What does a tachyonic mass mean?

- $\bullet\,$ mass \Leftrightarrow second derivative: $m_{\phi}^2=\partial^2 V/\partial \phi^2$
- $m_{\phi}^2 < 0 \quad \Leftrightarrow \quad {\rm negative \ curvature}$
- non-convex potential: imaginary part
- $\log(1+y-x) \sim \log(m_{\phi}^2)$

What does a tachyonic mass mean?

- $\bullet\,$ mass \Leftrightarrow second derivative: $m_{\phi}^2=\partial^2 V/\partial \phi^2$
- $\bullet \ m_{\phi}^2 < 0 \quad \Leftrightarrow \quad {\rm negative \ curvature}$
- non-convex potential: imaginary part

•
$$\log(1+y-x) \sim \log(m_{\phi}^2)$$

W. G. H. MSSM vacuum
What does a tachyonic mass mean?

- mass \Leftrightarrow second derivative: $m_{\phi}^2=\partial^2 V/\partial \phi^2$
- $m_{\phi}^2 < 0 \quad \Leftrightarrow \quad {\rm negative \ curvature}$
- non-convex potential: imaginary part

•
$$\log(1+y-x) \sim \log(m_{\phi}^2)$$

Including colored directions

$$\begin{split} V_{\tilde{b}}^{\mathsf{tree}} &= \tilde{b}_{\mathrm{L}}^{*} (M_{\tilde{Q}}^{2} + |Y_{\mathrm{b}}v_{\mathrm{d}}|^{2}) \tilde{b}_{\mathrm{L}} + \tilde{b}_{\mathrm{R}}^{*} (M_{\tilde{b}}^{2} + |Y_{\mathrm{b}}v_{\mathrm{d}}|^{2}) \tilde{b}_{\mathrm{R}} \\ &- \left[\tilde{b}_{\mathrm{L}}^{*} (\mu^{*}Y_{\mathrm{b}} h_{\mathrm{u}}^{0\dagger} - A_{\mathrm{b}}v_{\mathrm{d}}) \tilde{b}_{\mathrm{R}} + \mathsf{h.\,c.} \right] + |Y_{\mathrm{b}}|^{2} |\tilde{b}_{\mathrm{L}}|^{2} |\tilde{b}_{\mathrm{R}}|^{2} \\ &+ D\text{-terms.} \end{split}$$

Including colored directions

$$\begin{split} V_{\tilde{b}}^{\text{tree}} &= \tilde{b}_{\mathrm{L}}^{*} (M_{\tilde{Q}}^{2} + |Y_{\mathrm{b}}v_{\mathrm{d}}|^{2}) \tilde{b}_{\mathrm{L}} + \tilde{b}_{\mathrm{R}}^{*} (M_{\tilde{b}}^{2} + |Y_{\mathrm{b}}v_{\mathrm{d}}|^{2}) \tilde{b}_{\mathrm{R}} \\ &- \left[\tilde{b}_{\mathrm{L}}^{*} (\mu^{*}Y_{\mathrm{b}} h_{\mathrm{u}}^{0\dagger} - A_{\mathrm{b}}v_{\mathrm{d}}) \tilde{b}_{\mathrm{R}} + \text{h. c. } \right] + |Y_{\mathrm{b}}|^{2} |\tilde{b}_{\mathrm{L}}|^{2} |\tilde{b}_{\mathrm{R}}|^{2} \\ &+ D\text{-terms.} \end{split}$$

D-flat direction

•
$$D$$
-terms: $g^2\phi^4$

$$\begin{split} V_D &= \frac{g_1^2}{8} \big(|h_{\rm u}^0|^2 - |h_{\rm d}^0|^2 + \frac{1}{3} |\tilde{b}_L|^2 + \frac{2}{3} |\tilde{b}_R|^2 \big)^2 \\ &+ \frac{g_2^2}{8} \big(|h_{\rm u}^0|^2 - |h_{\rm d}^0|^2 - |\tilde{b}_L|^2 \big)^2 + \frac{g_3^2}{6} \big(|\tilde{b}_L|^2 - |\tilde{b}_R|^2 \big)^2. \end{split}$$

• will always take over

• take e.g.
$$ilde{b}_L = ilde{b}_R = h_{
m u}^0$$
 and $h_{
m d}^0 pprox 0$

Preliminary results

• previously "safe" false but CCB conserving minima turn into to deep global minima with $\langle \tilde{b}_L \rangle = \langle \tilde{b}_R \rangle \neq 0$ and $\langle h^0_u \rangle \neq v_u$

- the Higgs potential in the SM is (un/meta)stable
- MSSM: multi-scalar theory, has several unwanted minima
- formation of new CCB conserving minima at the 1-loop level
- $\bullet\,$ stability of the electroweak vacuum: bounds on $\mu\text{-}{tan}\,\beta\,$
- instability of electroweak vacuum by second minimum in "standard model direction" $\sim v_u$: global CCB minimum
- global analysis shows more severe bounds (preliminary)
- squark contribution to the effective Higgs potential:
 - only third generation squarks light
 - A_t fixed by m_h , $A_b \equiv 0$ (for simplicity)
 - $\operatorname{sign}(A_t) = -\operatorname{sign} \mu$ for CCB conserving minimum
 - free parameters: $M_{\rm SUSY}=m_{\tilde{t}}=m_{\tilde{b}}$, $\tan\beta$, μ
 - no new insights if $m_{\tilde{t}_L,\tilde{b}_L} \neq m_{\tilde{t}_R,\tilde{b}_R}$
 - gluino and electroweak gauginos heavy
- FeynHiggs: determines right light Higgs mass
- new CCB bounds exist for all μ - A_t sign combinations

Finally...

Señor Higgs

Greetings from Señor Higgs (courtesy of Jens Hoff)

Backup

Slides

W. G. H. MSSM vacuum