SUSY Higgs Inflation at Colliders

Wolfgang Gregor Hollik, Cheng Li, Gudrid Moortgat-Pick, Steven Paasch

IKP & TTP @ KIT KIT-Centrum für Elementarteilchen- und Astroteilchenphysik (KCETA)

27 November 2019 | 13th Terascale Alliance Meeting

Higgs inflation

- inflation is a cosmological necessity
- instead of introducing a new field:

(SM) Higgs = inflaton

- non-minimal couplings of the scalar field to gravity
- SM becomes "unnatural"
- a viable candidate might be the scale-free (Next-to) Minimal Supersymmetric Standard Model [FKLMvP]

Canonical Superconformal Supergravity (CSS)

- scale invariance of global supersymmetry \rightarrow local SUSY
- modified SUGRA Lagrangian [Einhorn, Jones] $\mathcal{L} = -6 \int d^2 \theta \mathcal{E} \left[R - \frac{1}{4} \left(\bar{\mathcal{D}}^2 - 8R \right) \Phi^{\dagger} \Phi + P(\Phi) \right] + \text{h. c. } + \dots$

[cf. Einhorn, Jones]

Higgs inflation

- inflation is a cosmological necessity
- instead of introducing a new field:

(SM) Higgs = inflaton

- non-minimal couplings of the scalar field to gravity
- SM becomes "unnatural" [cf. Einhorn, Jones]
- a viable candidate might be the scale-free (Next-to) Minimal Supersymmetric Standard Model [FKLMvP]

Canonical Superconformal Supergravity (CSS)

- scale invariance of global supersymmetry \rightarrow local SUSY
- modified SUGRA Lagrangian [Einhorn, Jones] $\mathcal{L} = -6 \int d^2 \theta \mathcal{E} \left[R + X(\Phi)R - \frac{1}{4} (\bar{\mathcal{D}}^2 - 8R) \Phi^{\dagger} \Phi + P(\Phi) \right] + \text{h. c. } + \dots$

Inflationary model based on

- M. B. Einhorn and D. R. T. Jones, "Inflation with Non-minimal Gravitational Couplings in Supergravity", JHEP 1003, 026 (2010) [arXiv:0912.2718]
- S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, "Jordan Frame Supergravity and Inflation in NMSSM", Phys. Rev. D 82, 045003 (2010) [arXiv:1004.0712]
- S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, "Superconformal Symmetry, NMSSM, and Inflation", Phys. Rev. D 83, 025008 (2011) [arXiv:1008.2942] [FKLMvP]

More collider pheno?

- distinguishing scenarios: light singlet states (LEP/LHC hints? ...~ 36 and 96 GeV?)
- excl. limits using CHECKMATE; LC XS (Whizard)
- cross check with HiggsBounds and HiggsSignals

A Brief introduction of the NMSSM

Enlarged Higgs sector

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \\ H_u^0 \end{pmatrix}, \quad H_d = \begin{pmatrix} H_d^0 \\ H_d^- \\ H_d^- \end{pmatrix}, \quad S$$

Superpotential, \mathbb{Z}_3 -invariant:

$$\mathcal{W}_{\text{Higgs}} = \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} \, S^3,$$

where $H_u \cdot H_d = H_u^+ H_d^- - H_u^0 H_d^0$

The NMSSM solves the " μ -problem"

$$\mathcal{W}_{\text{MSSM}} = \mu H_u \cdot H_d + \text{Yukawa}$$

only dimensionful parameter μ has to be ~ electroweak scale

$$\mathcal{W}_{\text{NMSSM}} \supset \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} S^3$$

dynamical μ -term: $\lambda \langle S \rangle = \mu_{eff}$

 \mathbb{Z}_3 symmetry forbids dimensionful couplings (bilinear, tadpole terms)

Phenomenology of the inflationary term

 $X(\Phi) \sim \chi H_u \cdot H_d$

like the NMSSM with an extended effective μ term

$$\mu_{\rm eff}' = \lambda \langle S \rangle + \frac{3}{2} \chi m_{3/2} = \mu_{\rm eff} + \mu$$

Additional soft SUSY breaking term

$$V_{\text{soft}} = \lambda A_{\lambda} S H_u \cdot H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{3}{2} B_{\mu} \chi m_{3/2} (H_u \cdot H_d + \text{h. c.})$$

Higgs potential of the iNMSSM

$$\begin{split} V &= \left[m_{H_d}^2 + \left(\mu + \lambda S \right)^2 \right] |H_d|^2 + \left[m_{H_u}^2 + \left(\mu + \lambda S \right)^2 \right] |H_u|^2 + m_S^2 S^2 \\ &+ \frac{2}{3} \kappa A_\kappa S^3 + \left[\kappa S^2 + \lambda H_u \cdot H_d \right]^2 + 2 \left(\frac{B_\mu}{\mu} \mu + \lambda A_\lambda S \right) H_u \cdot H_d \\ &+ \frac{g_1^2 + g_2^2}{8} \left(|H_d|^2 - |H_u|^2 \right)^2 + \frac{g_2^2}{2} |H_d^{\dagger} H_u|^2 \end{split}$$

The cosmological μ -term

$$\mu \simeq \frac{3}{2}m_{3/2}10^5\,\lambda$$

Phenomenological interesting scenarios

- small $\mu \simeq 1$ GeV: e. g. small $\lambda \sim 10^{-4}$, $m_{3/2} \lesssim 1$ GeV recovers MSSM-limit of the NMSSM
- large $\mu \gtrsim 1$ TeV and $\mu_{\text{eff}} \simeq -\mu$: cancellation in $\mu + \mu_{\text{eff}}$ possible potentially interesting neutralino phenomenology
- $\mu \gtrsim 100 \,{\rm GeV}$ and $|\mu_{\rm eff}| \lesssim 100 \,{\rm GeV}$: phenomenology different from both the MSSM and the NMSSM

Theoretical constraints

- tachyonic states, i. e. $m_{h,s}^2 < 0$
- alternative vevs: $\langle h_u \rangle \neq v_u / \sqrt{2}$, $\langle h_d \rangle \neq v_d / \sqrt{2}$, $\langle s \rangle \neq \mu_{\text{eff}} / \lambda$

Boiling down the parameter space...

finding interesting scenarios

[EPJC79(2019)75: WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein]

- additional constraints: HiggsBounds and HiggsSignals green
- LEP chargino bound: grey
- A_{κ} influences singlet pseudoscalar mass: light \rightarrow heavy with $A_{\kappa} = 0 \rightarrow 100 \,\text{GeV}$

Using popular a popular tool

[NMSSMTools: Ellwanger, Gunion, Hugonie et al. 2006+]

 μ NMSSM equivalent to \mathbb{Z}_3 -noninvariant NMSSM, "General" NMSSM (GNMSSM), implemented in NMSSMTools:

$$\mathcal{W}_{\text{Higgs}} = \lambda S H_u \cdot H_d + \frac{1}{3} \kappa S^3 + \mu H_u \cdot H_d + \frac{1}{2} \nu S^2 + \xi S$$

with v = 0 and $\xi = 0$ (preserved by superconformal symmetry)

However:

There is a freedom of choice: $\mu = 0$ in NMSSMTools.

Soft SUSY breaking terms:

$$-\mathcal{L}_{\text{soft}} = -\mathcal{L}_{\text{soft}}^{\text{NMSSM}} + \left[B_{\mu} \mu H_{u} \cdot H_{d} + \frac{1}{2} B_{\nu} \nu S^{2} + C_{\xi} \xi S + \text{h.c.} \right]$$

Treat charged Higgs mass as input

[WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 2018]

$$\begin{split} A_{\lambda} &= \frac{\sin 2\beta}{2\mu_{\text{eff}}} \left(m_{H^{\pm}}^2 - m_W^2 + v^2 \,\lambda^2 \right) - \frac{1}{\mu_{\text{eff}}} \left(B_{\mu} \,\mu + \xi \,\lambda \right) - \left(\nu + \frac{\kappa}{\lambda} \,\mu_{\text{eff}} \right) \\ & \stackrel{\mathbb{Z}_3}{=} \frac{\sin 2\beta}{2\mu_{\text{eff}}} \left(m_{H^{\pm}}^2 - m_W^2 + v^2 \,\lambda^2 \right) - \frac{\kappa}{\lambda} \,\mu_{\text{eff}} \end{split}$$

Defining certain scenarios

- light singlet < 100 GeV
- small μ vs. large μ

Two scenarios $m_{H^{\pm}} = 800$							GeV
Scen	λ	к	$tan \beta$	$\mu_{ m eff}/ m GeV$	$\mu/{ m GeV}$	$A_{\kappa}/{ m GeV}$	
1	0.035	0.085	12	-40	150	277	
2	0.08	0.004	12	-1135	1020	50	

Higgs and Neutralino mass spectrum

m/GeV	m_{s^0}	m_{h^0}	$m_{a_s^0}$	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{{\widetilde \chi}_1^\pm}$
1	96.9	125.2	284.4	97.8	119.7	108.6
2	93.4	125.0	93.2	107.5	112.6	117.8

• gaugino masses: $M_1 = 239 \,\text{GeV}, M_2 = 500 \,\text{GeV}, M_3 = 2.5 \,\text{TeV}$

•
$$A_{f_3} = 1200 \,\text{GeV}$$
: adjusts m_{h^0}

Pol (e^+, e^-)	Scen 1 σ /fb	$\frac{dN}{N}$	Scen 2 σ /fb	$\frac{dN}{N}$		
Unpol	96.51	0.45%	87.49	0.48%		
(+30%, -90%)	148.0	0.37%	134.2	0.38%		
(-30%, +90%)	97.14	0.45%	88.06	0.48%		
(+60%, -90%)	180.4	0.33%	163.6	0.35%		
(-60%, +90%)	116.8	0.41%	105.9	0.43%		
Unpol	40.99	0.70%	36.43	0.74%		
(+30%, -90%	62.86	0.56%	55.87	0.60%		
(-30%, +90%)	41.26	0.70%	36.67	0.74%		
(+60%, -90%)	76.63	0.51%	68.11	0.54%		
(-60%. +90%)	49.62	0.63%	44.11	0.67%		
Unpol	16.91	1.1%	14.92	1.2%		
(+30%, -90%)	25.94	0.88%	22.88	0.93%		
(-30%, +90%)	17.02	1.1%	15.02	1.2%		
(+60%, -90%)	31.62	0.80%	27.90	0.85%		
(-60%, +90%)	20.48	0.99%	18.06	1.1%		
	$\begin{array}{c} \text{Pol} (e^+, e^-) \\ \text{Unpol} \\ (+30\%, -90\%) \\ (-30\%, +90\%) \\ (+60\%, -90\%) \\ (+60\%, -90\%) \\ (-60\%, +90\%) \\ (-30\%, +90\%) \\ (+60\%, -90\%) \\ (-60\%, +90\%) \\ (-30\%, +90\%) \\ (-30\%, +90\%) \\ (+60\%, -90\%) \\ (-60\%, +90\%) \\ (-60\%, +90\%) \\ (-60\%, +90\%) \end{array}$	NAT ($e^{-e^{-1}/20^{-1}}$ Scen 1 σ /fbPol (e^+ , e^-)Scen 1 σ /fbUnpol96.51(+30%, -90%)148.0(-30%, +90%)97.14(+60%, -90%)180.4(-60%, +90%)116.8Unpol40.99(+30%, -90%)62.86(-30%, +90%)41.26(+60%, -90%)76.63(-60%, +90%)49.62Unpol16.91(+30%, -90%)25.94(-30%, +90%)17.02(+60%, -90%)31.62(-60%, +90%)20.48	NAT (c - c - 2.3 s)Pol (e^+ , e^-)Scen 1 σ /fb $\frac{dN}{N}$ Unpol96.510.45%(+30%, -90%)148.00.37%(-30%, +90%)97.140.45%(+60%, -90%)180.40.33%(-60%, +90%)116.80.41%Unpol40.990.70%(+30%, -90%)62.860.56%(-30%, +90%)41.260.70%(+60%, -90%)76.630.51%(-60%, +90%)16.911.1%(+30%, -90%)25.940.88%(-30%, +90%)17.021.1%(+60%, -90%)31.620.80%(-60%, +90%)20.480.99%	NAT (c - c - 2.5 - y)Pol (e^+ , e^-)Scen 1 σ/fb $\frac{dN}{N}$ Scen 2 σ/fb Unpol96.510.45%87.49(+30%, -90%)148.00.37%134.2(-30%, +90%)97.140.45%88.06(+60%, -90%)180.40.33%163.6(-60%, +90%)116.80.41%105.9Unpol40.990.70%36.43(+30%, -90%)62.860.56%55.87(-30%, +90%)41.260.70%36.67(+60%, -90%)76.630.51%68.11(-60%, +90%)49.620.63%44.11Unpol16.911.1%14.92(+30%, -90%)25.940.88%22.88(-30%, +90%)17.021.1%15.02(+60%, -90%)31.620.80%27.90(-60%, +90%)20.480.99%18.06		

Cross section $(e^+e^- \rightarrow Z s^0)$

[Cheng Li, Masterthesis]

Cross sections at the LC (Whizard)

\sqrt{s}/GeV	Pol (e^+, e^-)	Scen 1 σ /fb	$\frac{dN}{N}$	Scen 2 σ /fb	$\frac{dN}{N}$		
250	Unpol	5.035	2.0%	4.780	2.0%		
250	(+30%, -90%)	11.93	1.3%	11.32	1.3%		
250	(-30%, +90%)	0.6103	5.7%	0.5796	5.9%		
250	(+60%, -90%)	14.56	1.2%	13.87	1.2%		
250	(-60%, +90%)	0.4423	6.7%	0.4213	6.9%		
350	Unpol	13.98	1.2%	12.94	1.2%		
350	(+30%, -90%	33.55	0.77%	30.59	0.81%		
350	(-30%, +90%)	1.644	3.5%	1.510	3.6%		
350	(+60%, -90%)	41.44	0.70%	38.03	0.73%		
350	(-60%. +90%)	1.204	4.1%	1.105	4.3%		
500	Unpol	29.23	0.83%	26.36	0.87%		
500	(+30%, -90%)	69.67	0.54%	62.93	0.56%		
500	(-30%, +90%)	3.291	2.5%	2.963	2.6%		
500	(+60%, -90%)	86.15	0.48%	77.85	0.51%		
500	(-60%. +90%)	2.336	2.9%	2.113	3.1%		

Cross section $(e^+e^- \rightarrow s^0 \{ \nu_e \bar{\nu}_e, e^+e^- \})$

[Cheng Li, Masterthesis]

Extending the scenario - masses

Scenario 2

 $\tan \beta = 12, \ \lambda = 0.08, \ \kappa = 0.004, \ A_{\kappa} = 10 \,\text{GeV}, \ \mu + \mu_{\text{eff}} = -115 \,\text{GeV}$

using NMSSMTools

[Ellwanger et al.]

Extending the scenario — cross sections

Scenario 2

various prod. cross sections x branching ratios @ LHC [NMSSMTools]

Summary

Higgs Inflation in the NMSSM

- the MSSM is not enough (though $\chi H_u \cdot H_d$)
- Singlet direction to stabilize inflationary trajectory $\sim (S\bar{S})^2$ [without a stabilizer term: Ben-Dayan and Einhorn 2010]
- inflaton formed out of doublet Higgses

A μ term from gravity, breaks (accidental) \mathbb{Z}_3 symmetry

$$\mathcal{W}_{\text{iNMSSM}} = \mathcal{W}_{\text{NMSSM}} + \mu H_u \cdot H_d$$

Caveats and features

- tachyonic Higgses; vacuum stability; singlet-doublet mixing
- Higgs-to-Higgs decays phenomenologically interesting!
- Neutralino sector different from pure NMSSM (DM pheno!)
- interesting phenomenology with light singlets (LHC hints?)

Backup

Slides

Superconformal symmetry breaking

- $X(\Phi)$ either $\chi H_u \cdot H_d$ or χS^2
- dimensionless (!) coupling χ ; $\chi = 0$: minimal grav. coupling
- function of chiral superfields (Φ , not Φ^{\dagger}): $H_u \cdot H_d$, not $|H_u|^2$

Jordan frame \rightarrow Einstein frame, $M_P = 1$

- frame function $\Omega = \phi_i^* \phi_i 3$
- Kähler potential $K = -3 \log(-\Omega/3)$
- non-minimal coupling modifies Kähler potential

$$\Omega_{\chi} = \Omega - \frac{3}{2} \left(X(\phi) + \text{h.c.} \right)$$

NMSSM superconformal symmetry breaking

$$\Omega = -3 + |S|^2 + |H_u|^2 + |H_d|^2 + \frac{3}{2}\chi \left(H_u \cdot H_d + \text{h. c.}\right)$$

local U(1) \mathcal{R} symmetry: Supergravity magic

χ term breaks continuous *R* and discrete Z₃ symmetry
 apparant in the Kähler potential (following from frame function Ω)

$$\mathcal{K}_{\chi} = -3\log\left[1 - \frac{1}{3}\left(|S|^2 + |H_u|^2 + |H_d|^2\right) - \frac{1}{2}\chi\left(H_u \cdot H_d + \text{h.c.}\right)\right]$$

Corrected Superpotential: Kähler transformation

$$\mathcal{W}_{\text{eff}} \rightarrow \mathcal{W}e^{X(\Phi)/M_p^2} = \mathcal{W} + \frac{\langle \mathcal{W}_{\text{hid}} \rangle}{M_p^2} X(\Phi)$$

 $\simeq \mathcal{W} + m_{3/2} X(\Phi)$

The iNMSSM (same field content as the NMSSM)

$$\mathcal{W}_{\text{eff}} = \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} \, S^3 + \frac{3}{2} \chi m_{3/2} H_u \cdot H_d$$

Cosmo pheno requires $|\chi/\lambda| \simeq 10^5$ and constraints on $m_{3/2}$.

Stabilization of the inflationary trajectory

• only neutral components ("truncation")

$$S = se^{i\alpha}/\sqrt{2}, \quad H_u^0 = h_2 e^{i\alpha_1}/\sqrt{2}, \quad H_d^0 = h_1 e^{i\alpha_2}/\sqrt{2},$$

with $h_1 = h \cos \beta$ and $h_2 = h \sin \beta$; $\tan \beta = h_2/h_1$

• D-flat direction:

$$\beta = \pi/4$$
 $h_1^2 = h_2^2 = h^2$

- "simplest" direction: s = 0, $\alpha_{1,2} = 0$ f tachyonic singlet directions [Einhorn, Jones]
- add $-\zeta(S\bar{S})^2$ to the frame function

[FLKMvP]

Stabilization mechanism

Flat potential $V(\phi,...)$

slow roll parameters $\epsilon, \eta \gg 1$: $\epsilon = \frac{1}{2} \left(\frac{1}{V} \frac{\partial V}{\partial \phi} \right)^2$ $\eta = \frac{1}{V} \frac{\partial^2 V}{\partial \phi^2}$

inflationary NMSSM

$$\epsilon \simeq -\frac{64}{3\chi^2 h^4}, \qquad \eta \simeq -\frac{16}{3\chi h^2}$$

slow roll ends when $\epsilon, \eta \simeq 1$, thus

$$h_{\rm end} \simeq 2.2/\sqrt{\chi} \approx 0.007$$

in Planck units!

Flat potential $V(\phi,...)$

slow roll parameters $\epsilon, \eta \gg 1$: $\epsilon = \frac{1}{2} \left(\frac{1}{V} \frac{\partial V}{\partial \phi} \right)^2$ $\eta = \frac{1}{V} \frac{\partial^2 V}{\partial \phi^2}$

inflationary NMSSM

$$\epsilon \simeq -\frac{64}{3\chi^2 h^4}, \qquad \eta \simeq -\frac{16}{3\chi h^2}$$

slow roll ends when $\epsilon, \eta \simeq 1$, thus

$$h_{\rm end} \simeq 2.2/\sqrt{\chi} \approx 0.007$$

in Planck units!

0075

 $\mu_{\rm eff} = \{-200, -400, -1200\} \,{\rm GeV}; \, m_{H^{\pm}} = 800 \,{\rm GeV}$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

Fake NMSSM

$$\mathcal{M}_{\chi} = \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{w}c_{\beta} & M_{Z}s_{w}s_{\beta} & 0\\ \cdot & M_{2} & M_{Z}c_{w}c_{\beta} & -M_{Z}c_{w}s_{\beta} & 0\\ \cdot & \cdot & 0 & -(\mu_{\text{eff}} + \mu) & -\lambda \nu s_{\beta}\\ \cdot & \cdot & \cdot & 0 & -\lambda \nu c_{\beta}\\ \cdot & \cdot & \cdot & \cdot & 2\frac{\kappa}{\lambda}\mu_{\text{eff}} \end{pmatrix}$$

"Liebler" rescaling

- only 5-5 elements depends on κ
- keep $\mu_{\text{eff}} + \mu$ fixed
- rescale κ such that $(\mathcal{M}_{\chi})_{55}$ stays the same

$$\kappa \to \tilde{\kappa} = \kappa \frac{\mu + \mu_{\rm eff}}{\mu_{\rm eff}}$$

- $\tilde{\kappa} \gg \lambda$ possible (if $\mu + \mu_{\text{eff}} \gg \mu_{\text{eff}}$)
- $\tilde{\kappa} < 0$ if sign $(\mu + \mu_{\text{eff}}) \neq \text{sign}\,\mu_{\text{eff}}$

[G. Weiglein]

motivated by certain CMS and ATLAS analyses

•		•		
Scenario	1	2	3	4
λ	0.08	0.08	0.28	0.08
К	0.04	0.023	0.08	0.0085
$\tan \beta$	12	12	2.5	2
$(\mu + \mu_{ m eff})/ m GeV$	-140	-140	-300	-400
$\mu/{ m GeV}$	5	195	5	150
B_{μ}/GeV	0	0	0	-300
$m_{H^{\pm}}^{\prime}/{ m GeV}$	800	800	800	1000
A_{κ}/GeV	130	265	250	32
A_f/GeV	400	450	3200	4000
m_{s^0}/GeV	97.6	95.7	97.2	97.1
$m_{h^0}/{ m GeV}$	124.7	126.8	124.6	125.0
$m_{a^s}/{ m GeV}$	168.2	277.0	257.2	75.6
$\frac{\sigma(e^+e^- \rightarrow Zs^0) \cdot \text{BR}(s^0 \rightarrow b\bar{b})}{\sigma^{\text{SM}}(e^+e^- \rightarrow ZH) \cdot \text{BR}^{\text{SM}}(H \rightarrow b\bar{b})}$	0.28	0.31	0.14	0.35
$\sigma(gg \rightarrow s^0)/pb$	25.3	28.1	14.4	31.5
$BR(s^0 \to \gamma \gamma)$	0.0020	0.0016	0.0024	0.0005
$\chi^2(HS)$	97	96	82	101

Scenario 1	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^0$	$\tilde{\chi}^0_3$	$\tilde{\chi}_1^{\pm}$	
Masses / GeV	127.3	138.3	155.9	138.4	
$\sigma(e^+e^- \rightarrow \tilde{\chi}_i \tilde{\chi}_j)$ /fb for $\sqrt{s} = 350$ /GeV	$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	$ ilde{\chi}_1^+ ilde{\chi}_1^-$
Unpolarized	141	195	0.08	0.19	795
$Pol(e^+, e^-) = (+30\%, -80\%)$	208	287	0.12	0.28	1620
$Pol(e^+, e^-) = (-30\%, +80\%)$	142	196	0.08	0.19	352
$\sigma(e^+e^- \rightarrow \tilde{\chi}_i \tilde{\chi}_j)$ /fb for $\sqrt{s} = 500$ /GeV	$ ilde{\chi}_1^0 ilde{\chi}_2^0$	$ ilde{\chi}_1^0 ilde{\chi}_3^0$	${ ilde \chi}^0_2 { ilde \chi}^0_3$	${ ilde \chi}^0_2 { ilde \chi}^0_2$	$ ilde{\chi}_1^+ ilde{\chi}_1^-$
Unpolarized	74	109	0.12	0.22	459
$Pol(e^+, e^-) = (+30\%, -80\%)$	110	161	0.19	0.32	926
$Pol(e^+, e^-) = (-30\%, +80\%)$	75	110	0.13	0.22	212

Gravitino dark matter

typical gravitino mass $\mathcal{O}(10 \, \text{MeV})$

Long-lived NLSP

$$\Gamma_{\tilde{\chi}^0_1 \to \gamma/Z\psi_{3/2}} \simeq \frac{1}{48\pi M_p^2} \frac{M_{\tilde{\chi}^0_1}^5}{m_{3/2}^2}$$

lifetime

$$\tau = 1/\Gamma \simeq \mathcal{O}(s)$$

bino-like NLSP: decay to photon + gravitino singlino-like NLSP: singlet Higgs + gravitino

Typical neutralino LSP signature

missing energy: decay either outside the detector or decay into invisible

How to distinguish from the NMSSM?

- contributions $(\mu + \mu_{eff})$ vs. μ_{eff}
- singlet sector mostly affected
- sizeable mixing effects possible, even with $\lambda \ll 1$
- look for NMSSM-like scenarios: $\mu = 0$
- identify the effect of $\mu \neq 0$

Relevant phenomenology

decays:

Ο ...

- $h^0 \rightarrow a_s a_s$: Higgs to invisible
- $s^0 \rightarrow h^0 h^0$: affects Higgs pair production
- $A \rightarrow h^0 a_s$: non-standard heavy Higgs decays

Deviating from the NMSSM

 $\tan \beta = 4, \ \lambda = 1/4, \ \kappa = 1/5, \ A_{\kappa} = 7 \, \text{GeV}$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

Mock MSSM-limit

- small $\lambda = 0.02$, ratio $\frac{\kappa}{\lambda} = 1$ fixed
- rescale $\kappa \to \tilde{\kappa}$
- fix $\mu + \mu_{\text{eff}} = 160 \,\text{GeV}$
- scan $\mu \in [0, 240]$ GeV
- feature light singlets
- possibly large Singlet-Doublet mixing

Crucial A_{κ} behaviour

- controls singlet mass
- small $A_{\kappa} \sim \text{light singlets (together with small } |\mu_{\text{eff}}| \simeq 200 \,\text{GeV})$
- opposite sign from μ_{eff} to avoid tachyonic singlets
- rescaling changes sign of κ !

$$A_{\kappa} = -\operatorname{sign}(\mu_{\operatorname{eff}}\tilde{\kappa}) \, 1.3 \, \operatorname{GeV}$$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

From the NMSSM to the UNMSSM - masses

From the NMSSM to the UNMSSM - cross sections

 $\tan \beta = 12, \ \lambda = 0.0625, \ \kappa = 0.015, \ A_{\kappa} = -9 \,\text{GeV}$

From the NMSSM to the WNMSSM - masses

From the NMSSM to the UNMSSM - cross sections

 $\tan \beta = 12, \ \lambda = 0.0675, \ \kappa = 0.015, \ A_{\kappa} = -26 \, \text{GeV}$