Finding hints of New Physics in Tritium molecular spectra?

Wolfgang Gregor Hollik

IKP & TTP @ KIT KIT-Centrum für Elementarteilchen- und Astroteilchenphysik (KCETA)

26 September 2019 | DESY Theory Workshop 2019 | Hamburg

New ways of New Physics

No New Physics at high energies?

High Energy vs. Precision Frontier

- New machines, higher collider energies, more luminosity
- Lower energies, more precision, cheaper experiments

Room for New Physics in T ₂ ?								
Fundamental vibrational splittings: $Q(J)$ in T ₂ [cm ⁻¹]								
:	Line	experiment	theory (nonrel)	diff	-			
	Q(0)	2464.5052(4)	2464.5021	0.0031(4)	-			
	Q(1)	2463.3494(3)	2463.3463	0.0031(3)				
	Q(2)	2 461.0388 (4)	2461.0372	0.0016(4)				
	Q(3)	2 457.5803 (4)	2457.5795	0.0008(4)				
	Q(4)	2 452.9817 (4)	2452.9803	0.0014(4)				
	Q(5)	2 447.2510 (4)	2447.2492	0.0017(4)	.			
exp.:	[Trivikram, Schlösser, Ubachs, Salumbides: PRL 120 , 163002 (2018)]							
theo.:		[Pachucki, Komasa: JCP 143 , 034111 (2015)]						
"Interpretation" by the experimentalists [PRL120,163002]								
• missing QED and relativistic corrections for T ₂								
• "measured" contribs. larger than known ones for H_2 and D_2								

Light particles and ultraweak forces

- absence of New Physics in High Energy Physics experiments
- quest for open problems and issues in the Standard Model
 - A possible solution to the strong CP problem: Axions?
 - A hidden sector: dark photons and kinetic mixing?
 - Small neutrino masses and sterile neutrinos?
- ultralight and ultraweakly coupled particles still weakly constrained
- e.g. modification of coulomb interaction by a light scalar φ (axion)

$$V_{AB}(\vec{r}) = -g_A g_B \frac{e^{-m_{\phi}r}}{4\pi r}$$

- length scale–mass relation: 1Å≈1 keV, where molecular bond lengths are O(Å)
- sensitivity up to several keV massive particles possible with large couplings
- Neutrino pair exchange: Dirac vs. Majorana?
- Modification of Coulomb force by Dark Photons?

Why Tritium!?

Tritium spectroscopy

KIT KATRIN

We are pleased to inform you about the results of our first neutrino mass measurement. The KATRIN experiment and its collaborators provide high quality data of beta decay electrons from molecular tritium. The first neutrino mass measurement campaign, which took place this year in spring, made a significant scientific contribution by setting a new upper limit for the absolute mass scale of neutrinos.

We derive a upper limit of **1.1 eV (90% confidence level**) on the absolute neutrino mass scale from our first 28 data days. In the coming years we will collect more data on the decay of molecular tritium and further reduce this limit.

13th / 16th September 2019 Toyama / Eggenstein-Leopoldshafen (*near Karlsruhe*)

[arXiv:1909.06048]

Tritium Laboratory Karlsruhe

- world's largest amount of civil tritium
- 25 g of gaseous tritium (T₂)
- research on nuclear fusion (discontinued) and β -decay

Hydrogen spectroscopy

- very precise measurements
- Laser-Raman spectroscopy
- H₂ molecule and variants: clean theoretical prediction (?)

New Physics in molecules?

- test of different length and mass (energy) scales than atoms
- isotopic effects: T₂, D₂, H₂, DT, HT, HD

Schematic molecular energy level diagram (not to scale)

Atomic Units (atomic and molecular physics)

Hartree:
$$e = m_e = \hbar = k_e = k_B = 1$$
 $c = \frac{1}{\alpha}$ (speed of light)
Coulomb's constant: $k_e = \frac{1}{4\pi\varepsilon_0}$

length
$$\ell_A = \frac{\hbar^2 4\pi\varepsilon_0}{m_e e^2} \approx 5.292 \cdot 10^{-11} \text{m} \approx 0.5 \text{ Å}$$
 (Bohr radius)

Natural Units (particle physics)

$$\hbar = c = 1$$
 e.g. $m_e = 511$ keV, $m_P \sim 1$ GeV

typical bond length $H_2 \sim 0.75 \text{ Å}$

 $1 \text{ Å} = 10^{-10} \text{ m}$

Mass-energy-length relation: keV!

$$1 \underbrace{eV^{-1}}_{10^{3} \text{ keV}} = 1.97 \cdot \underbrace{10^{-7} \text{m}}_{10^{3} \text{ Å}} \equiv \frac{\hbar c}{eV}$$

Coherent Anti-Stokes Raman Scattering

"CARS is a nonlinear variant of normal Raman vibrational spectroscopy that allows labelfree chemical imaging at (sub)micron resolution. Owing to the inherently small CARS volume, depth profiling of a sample is possible without the need for a confocal set-up. The high sensitivity of the technique due to coherence effects overcomes the difficulty of low Raman scattering cross sections, making CARS three to eight orders of magnitude more sensitive than normal Raman scattering. Thus, vibrational fingerprints of the sample are acquired extremely fast with typical integration times between 20 and 100 ms per voxel."

[Max-Planck-Institut für Polymerforschung, Mainz]

CARS principle and advantage

• quantum mechanical (an)harmonic oscillator:

$$\omega_{\rm vib}, \nu = 0 \rightarrow 1$$

- two laser beams:
 - pump ω_{pump}
 - Stokes ω_{Stokes}
- difference frequency

 $\omega_{\text{pump}} - \omega_{\text{Stokes}} \rightarrow \omega_{\text{vib}}$ resonance

• coherent superposition of $|0\rangle$ and $|1\rangle$

Measurements with Tritium (T2, DT, HT) done by the molecular physics
group and LaserLaB, Vrije Universiteit Amsterdam[W. Ubachs et al.]Tritium source by KIT-TLK[M. Schlösser at al.]

Collaboration and Goal

Is it feasible to search for New Physics effects in molecules?

Theory:

constrain New Physics models

- Matthias Linster, KIT-TTP
- Mustafa Tabet, KIT-TTP
- Sonia Rani, IIT Bombay
- Aman Sardwal, IIT Bombay
- Wolfgang G. Hollik, KIT-IKP/TTP
- Ulrich Nierste, TTP-KIT
- Ight new particles: ALPs, dark photons, sterile neutrinos?

Experiment:	measure precise spectra					
 Magnus Schlösser, KIT-TLK 						
• Edcel Salumbides, VU Amsterdam						
• Wim Ubachs, VU Amsterdam						
W. G. H. NP T	10					

Rotational Energies

- q.m. rotator: two masses $m_{1,2}$, distance $r = r_1 + r_2$
- center or mass: $m_1 r_1 = m_2 r_2$
- moment of inertia: $I = m_1 r_1^2 + m_2 r_2^2 = \frac{m_1 + m_2}{m_1 m_2} (r_1^2 + r_2^2) = \mu r^2$

angular momentum $\vec{L} = I\vec{\omega}/\hbar$ energy $E = I\omega^2/2$ $|\vec{L}| = \hbar\sqrt{J(J+1)}$, spinless masses: J = 0, 1, 2, ...

- quantized energy: $E_J = J(J+1) \hbar^2/(2I) \equiv B J(J+1)$
- energy separation between rotational levels $\sim 10^{-3} \, \text{eV} (\text{mw})$

Vibrational Modes:

level separation $\sim 0.1 \, \text{eV}$ (IR)

anharmonic oscillator: $E_v = (v + \frac{1}{2}) \hbar \omega - (v + \frac{1}{2})^2 x_e \hbar \omega$

Q-band spectroscopy: $\Delta J = 0, v = 0 \rightarrow 1$

CARS technique

Diatomic molecules and internuclear potentials

Hydrogen-like molecules: 2 nuclei A and B, 2 electrons

$$H = \underbrace{\frac{\vec{P}_1^2}{2m} + \frac{\vec{P}_2^2}{2m}}_{\text{electrons}} + \underbrace{\frac{\vec{P}_A^2}{2M_A} + \frac{\vec{P}_B^2}{2M_B}}_{\text{nuclei } A + B} + \alpha \left\{ -\frac{1}{r_{1A}} - \frac{1}{r_{2B}} + \left(\frac{1}{r_{12}} + \frac{1}{R_{AB}} - \frac{1}{r_{1B}} - \frac{1}{r_{2A}}\right) \right\}$$

coulombic terms:

- attractive: electron_{1/2,2/1} at nucleus_{A/B,B/A} ~ $\frac{1}{r_{1A/2B \mid B \mid 2A}}$
- repulsive: electron-electron $\sim \frac{1}{r_{12}}$, nucleus-nucleus $\sim \frac{1}{R_{AB}}$

Heitler–London approach

Heitler/London 1927; Born/Oppenheimer 1927]

- neglection motion of nuclei (heavy wrt electrons)
- calculate electronic wave function
 - \hookrightarrow effective potential between nuclei

Electronic wave functions, nuclei at fixed positions

 ψ_X(r
_j): electron *j* at nucleus *X*; two solutions: gerade, ungerade

$$\Phi_{\pm}(\vec{r}_1, \vec{r}_2) = \frac{\psi_A(\vec{r}_1)\psi_B(\vec{r}_2) \pm \psi_B(\vec{r}_1)\psi_A(\vec{r}_2)}{\sqrt{2(1 \pm |S_{AB}|^2)}}$$

• overlap
$$S_{AB} = \int d^3 r_1 \psi_A^*(\vec{r}_1) \psi_B(\vec{r}_1)$$

Perturbation: "wrong" Hamiltonian → energy shift

$$\begin{split} E_{11} &= \int \mathrm{d}r_1 \, \mathrm{d}r_2 \Big\{ \bigg(\frac{\alpha}{r_{12}} + \frac{\alpha}{R} \bigg) \frac{u_A(r_1)^2 u_B(r_2)^2 + u_A(r_2)^2 u_B(r_1)^2}{2} \\ &- \bigg(\frac{\alpha}{r_{1A}} + \frac{\alpha}{r_{2B}} \bigg) \frac{u_A(r_2)^2 u_B(r_1)^2}{2} - \bigg(\frac{\alpha}{r_{2A}} + \frac{\alpha}{r_{1B}} \bigg) \frac{u_A(r_1)^2 u_B(r_2)^2}{2} \Big\} \\ E_{12} &= \int \mathrm{d}r_1 \, \mathrm{d}r_2 \bigg(\frac{2\alpha}{r_{12}} + \frac{2\alpha}{R} - \sum_{x=1A,2A,1B,2B} \frac{\alpha}{r_x} \bigg) \frac{u_A(r_1) u_A(r_2) u_B(r_1) u_A(r_2)}{2} \end{split}$$

Electronic wave functions, nuclei at fixed positions

 ψ_X(r
_j): electron *j* at nucleus *X*; two solutions: gerade, ungerade

$$\Phi_{\pm}(\vec{r}_1, \vec{r}_2) = \frac{\psi_A(\vec{r}_1)\psi_B(\vec{r}_2) \pm \psi_B(\vec{r}_1)\psi_A(\vec{r}_2)}{\sqrt{2(1 \pm |S_{AB}|^2)}}$$

• overlap
$$S_{AB} = \int d^3 r_1 \psi_A^*(\vec{r}_1) \psi_B(\vec{r}_1)$$

Perturbation: "wrong" Hamiltonian ↔ energy shift

$$E_{\pm} = \frac{E_{11} \pm E_{12}}{1 \pm S_{AB}}$$

- Coulomb integral: E_{11}
- exchange integral: *E*₁₂
- potential energy curve: Morse potential $V(r) = D_0 (1 e^{-\alpha(r-r_0)})^2$

Electronic wave functions, nuclei at fixed positions

 ψ_X(r
_j): electron *j* at nucleus *X*; two solutions: gerade, ungerade

$$\Phi_{\pm}(\vec{r}_1, \vec{r}_2) = \frac{\psi_A(\vec{r}_1)\psi_B(\vec{r}_2) \pm \psi_B(\vec{r}_1)\psi_A(\vec{r}_2)}{\sqrt{2(1 \pm |S_{AB}|^2)}}$$

• overlap
$$S_{AB} = \int d^3 r_1 \psi_A^*(\vec{r}_1) \psi_B(\vec{r}_1)$$

Perturbation: "wrong" Hamiltonian ↔ energy shift

$$E_{\pm} = \frac{E_{11} \pm E_{12}}{1 \pm S_{AB}}$$

- Coulomb integral: E_{11}
- exchange integral: *E*₁₂
- potential energy curve: Morse potential $V(r) = D_0 (1 e^{-\alpha(r-r_0)})^2$

Full Hamiltonian

$$H = \sum_{k=1}^{2} \frac{P_k^2}{2M_k} + \frac{1}{2} \sum_{i=1}^{2} \frac{p_i^2}{2m} + V_C(r, R) = \sum_{k=1}^{2} \frac{P_k^2}{2M_k} + H^0$$

- electronic problem solved
- eigenvalues $E_n^0(R)$ and eigenstates $\varphi_n(r, R)$ known:

$$\left(H^0 - E_n^0(R)\right)\varphi_n(r,R) = 0$$

Nuclear wave function

semi-separation ansatz: nuclear wavefunction $\psi_n(R)$

$$\Psi(r,R) = \sum_{n} \psi_n(R)\varphi_n(r,R)$$

solve

$$(H-E)\Psi(r,R)=0$$

W. G. H. NP T₂

[Born 1951]

Adiabatic corrections, ctd.

Integrating electronic coordinates $\int dr \varphi_{n'}^*(r,R)(H-E)\Psi(r,R)$

$$\int \mathrm{d}r \,\varphi_{n'}^*(r,R) \left(\sum_{k=1}^2 \frac{P_k^2}{2M_k} + H^0 - E \right) \sum_n \psi_n(R) \varphi_n(r,R) = 0 \,,$$

$$\int \mathrm{d}r \,\varphi_{n'}^*(r,R) \left(\sum_{k=1}^2 \frac{P_k^2}{2M_k} + E_n^0(R) - E \right) \sum_n \psi_n(R) \varphi_n(r,R) = 0 \,,$$

$$\left(\sum_{k=1}^2 \frac{P_k^2}{2M_k} + E_{n'}^0(R) - E \right) \psi_{n'}(R) - \sum_n C_{n'n} \psi_n(R) = 0 \,,$$

Nuclear distance R not constant anymore

$$A_{n'n}^{(k)} = \int dr \,\varphi_{n'}^{*}(r,R) P_{k} \,\varphi_{n}(r,R) \qquad B_{n'n}^{(k)} = \frac{1}{2} \int dr \,\varphi_{n'}^{*}(r,R) P_{k}^{2} \,\varphi_{n}(r,R)$$

Schrödinger equation for the nuclei $\psi(R) \qquad C_{n'n} = \sum_{k} \frac{1}{M_{k}} \left(A_{n'n}^{(k)} P_{k} + B_{n'n}^{(k)} \right) \\ \left(\sum_{k=1}^{2} \frac{P_{k}^{2}}{2M_{k}} + U_{n}(X) - E \right) \psi_{n} + \sum_{n' \neq n} C_{nn'} \psi_{n'}(R) = 0$

Tackling the hydrogen molecule $H = H_0 + H_1 + H_2 + H_3$

Separating electronic and nuclear motion

$$\begin{split} H_{0} &= -\frac{1}{2} \left(\Delta_{r_{1}} + \Delta_{r_{2}} \right) + V, \\ H_{1} &= -\frac{m}{8\mu} \left(\vec{\nabla}_{r_{1}} + \vec{\nabla}_{r_{2}} \right)^{2}, \\ H_{2} &= -\frac{m}{2\mu} \left\langle 0 | \Delta_{R} | 0 \right\rangle, \\ H_{3} &= -\frac{m}{2\tilde{\mu}} \left\langle 0 | \vec{\nabla}_{R} \left(\vec{\nabla}_{r_{1}} + \vec{\nabla}_{r_{2}} \right) | 0 \right\rangle \end{split}$$

• reduced mass $\mu = M_a M_b / (M_a + M_b)$ and $\tilde{\mu} = M_a M_b / (M_a - M_b)$ • electronic ground state $|0\rangle$ i.e. two 1s H atoms elliptic coordinates [Hylleraas 1931]

,

$$\Psi = \frac{1}{2\pi} \sum_{i,n} c_{i,n} \psi_i(\xi_1, \eta_1, \xi_2, \eta_2, \phi) h_n(R)$$

with

$$\xi_i = \frac{r_{ai} + r_{bi}}{R}$$
 and $\eta_i = \frac{r_{ai} - r_{bi}}{R}$
W. G. H. NP T₂

Tackling the hydrogen molecule $H = H_0 + H_1 + H_2 + H_3$

Separating electronic and nuclear motion

$$\begin{split} H_0 &= -\frac{1}{2} \left(\Delta_{r_1} + \Delta_{r_2} \right) + V, \\ H_1 &= -\frac{m}{8\mu} \left(\vec{\nabla}_{r_1} + \vec{\nabla}_{r_2} \right)^2, \\ H_2 &= -\frac{m}{2\mu} \left\langle 0 \right| \Delta_R \left| 0 \right\rangle, \\ H_3 &= -\frac{m}{2\tilde{\mu}} \left\langle 0 \right| \vec{\nabla}_R \left(\vec{\nabla}_{r_1} + \vec{\nabla}_{r_2} \right) \left| 0 \right\rangle \end{split}$$

• reduced mass $\mu = M_a M_b / (M_a + M_b)$ and $\tilde{\mu} = M_a M_b / (M_a - M_b)$ • electronic ground state $|0\rangle$ i. e. two 1s H atoms non-adiabatic theory: dissociation energy [Kołos, Wolniewicz 1963 ff] variational method: $\delta \int d\tau_1 d\tau_2 d^3 R \Psi^* H \Psi = 0$ "trial" wave functions

,

$$\psi_{i} = \exp\left[-\alpha\left(\xi_{1}+\xi_{2}\right)\right]\left(\xi_{1}^{p_{i}}\eta_{1}^{q_{i}}\xi_{2}^{r_{i}}\eta_{2}^{s_{i}}+\xi_{1}^{r_{i}}\eta_{1}^{s_{i}}\xi_{2}^{p_{i}}\eta_{2}^{q_{i}}\right)\left(\frac{2r_{12}}{R}\right)^{m_{i}}$$

A short wrap-up [source: Paweł Czachorowski PhD 2019 Warsaw]

- ab initio calculations
- large sets of trial wave functions: higher precision, more CPU
- non-relativistic QED

[Pachucki 2004, 2005]

 $E(\alpha) = \alpha^2 E^{(2)} + \alpha^4 E^{(4)} + \alpha^5 E^{(5)} + \alpha^6 E^{(6)} + \alpha^7 E^{(7)} + \dots$

- leading relativistic correction: Breit–Pauli [Puchalski et al. 2018]
- non-adiabatic perturbation theory
- nuclear nuclear size correction: accuracy of charge radii
- relativistic non-adiabatic [Czarochowski et al. 2018]
- explicitly correlated exponentials vs. correlated Gaussian
- usable computer code: H2spectre [www.fuw.edu.pl/~kpl]

Total theoretical error budget $D_0^{H_2} = 36118.06945(53) \text{ cm}^{-1}$

e.g. dissociation energy $H_2:$ relative error $\simeq 1.46 \times 10^{-8}$

Dissociation energies

$\frac{D_0}{\mathrm{cm}^{-1}}$	H ₂	HD	D2
Th.	36118.069636(26)	36405.78239(19)	36748.36228(15)
E. 1	36118.06962(37)	36405.78366(36)	36748.36286(68)
$\Delta 1$	+0.00002(37)	-0.00 <mark>127</mark> (41)	-0.00058(70)
E. 2	36118.06945(31)		
$\Delta 2$	+0.00019(31)		

[Czachorowski PhD 2019 and references therein!]

- theoretical error estimates?
- missing non-adiabatic QED $E^{(5,1)}$ corrections?
- full nonadiabatic $E^{(2)}$ energies for rovibrational levels
- long-term perspective: $E^{(7)}$ and $E^{(6,1)}$ contributions
- tackling the proton charge radius puzzle: independent determination of r_p from Hydrogen-isotoper spectroscopy

[Czachorowski PhD 2019]

Constraining New Physics from molecular spectroscopy

Simplest scenario: Yukawa potential

$$V_{\rm Yuk} = \frac{g_{\rm NP}}{2\pi} \frac{e^{-mr}}{r}$$

- massive particle with mass m, New Physics coupling g_{NP}
- exponential drop-off
- e.g. dark photon
- e.g. "fifth force" ($m \rightarrow 1/\lambda$ length)
- axion-like particles (small couplings) [Jaeckel, Ringwald 2010]
- constraints on electron-electron, nucleon-nucleon, electron-nucleon generic couplings [WGH et al.]

Simple task(?)

Yukawa potential as perturbation to Coulomb potentials $\left\langle \Delta E_{\rm NP} \right\rangle = \frac{g_{\rm NP}}{2\pi} \left[\left\langle \Psi_{\nu_f, J_f} \right| \frac{e^{-mr_x}}{r_x} \left| \Psi_{\nu_f, J_f} \right\rangle - \left\langle \Psi_{\nu_i, J_i} \right| \frac{e^{-mr_x}}{r_x} \left| \Psi_{\nu_i, J_i} \right\rangle \right]$

W. G. H.

NP T₂

[Jaeckel, Roy 2010]

[Salumbides et al. 2013]

Simple task(?)

Yukawa potential as perturbation to Coulomb potentials

$$\left\langle \Delta E_{\rm NP} \right\rangle = \frac{g_{\rm NP}}{2\pi} \left[\left\langle \Psi_{\nu_f, J_f} \right| \frac{e^{-mr_x}}{r_x} \left| \Psi_{\nu_f, J_f} \right\rangle - \left\langle \Psi_{\nu_i, J_i} \right| \frac{e^{-mr_x}}{r_x} \left| \Psi_{\nu_i, J_i} \right\rangle \right]$$

wave functions from H2spectre

[Pachucki et al.]

Potential for New Physics

compare "old" and new physics with experiment

$$E_{\text{exp}} + \delta E_{\text{exp}}$$
 vs. $E_{\text{theo}} + \delta E_{\text{theo}} + \Delta E_{\text{NP}}$

constraints on mass vs. coupling

Results, exclusion limits (preliminary)

 $V_{\rm NP} = \frac{g_{\rm NP}}{2\pi} \frac{\exp(-mr)}{r}$

Comparison with similar Bounds

[Jaeckel, Roy: "Spectroscopy as a test of Coulomb's law: A probe of the hidden sector", PRD82,125020(2010)]

[Jaeckel, Roy: "Spectroscopy as a test of Coulomb's law: A probe of the hidden sector", PRD**82**,125020(2010)]

[Delaunay, Frugiuele, Fuchs, Sorea 2017]

[Delaunay, Frugiuele, Fuchs, Sorea 2017]

[Delaunay, Frugiuele, Fuchs, Sorea 2017]

[Delaunay, Frugiuele, Fuchs, Sorea 2017]

23

Rydberg states of atomic hydrogen

[Jones, Potvliege, Spannowsky arXiv: 1909.09194]

Summary and Conclusions

- rovibrational spectroscopy as a probe of New Physics
- Hydrogen isotopomers: H₂, D₂, T₂, HD, HT, DT
- first step: constrain simple New Physics as Yukawa potential

$$V_{\rm NP} = \frac{g_{\rm NP}}{2\pi} \frac{e^{-mr}}{r}$$

Outlook

isotopes for correlations

[WGH et al.]

- improvement in theoretical ab initio calculations expected
- experimental refinements
- measurement of DT and HT to be published
- test of different potential types (also with spin) [WGH et al.]