Light Singlets and Higgs Inflation at the LHC Based on [arXiv:1808.07371]

Wolfgang Gregor Hollik

IKP & TTP @ KIT KIT-Centrum für Elementarteilchen- und Astroteilchenphysik (KCETA)

27 November 2018 | 12th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

W. G. H. INMSSM

Higgs phenomenolgy of NMSSM inflation

work done in collaboration with

arXiv:1808.07371

- Sebastian Passehr^{*a,b*}
- Stefan Liebler^{*a,c*}
- Gudrid Moortgat-Pick^{*a,d*}
- Georg Weiglein^a
- ^{*a*} DESY Hamburg, ^{*b*} LPTHE Paris,
- ^c ITP KIT. ^d II. Institut für Theoretische Physik, Uni Hamburg

Inflationary model based on

- M. B. Einhorn and D. R. T. Jones, "Inflation with Non-minimal Gravitational Couplings in Supergravity", JHEP 1003, 026 (2010) [arXiv:0912.2718]
- S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, *"Jordan Frame Supergravity and Inflation in NMSSM"*, Phys. Rev. D 82, 045003 (2010) [arXiv:1004.0712]
- S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, "Superconformal Symmetry, NMSSM, and Inflation", Phys. Rev. D 83, 025008 (2011) [arXiv:1008.2942] [FKLMvP]

Higgs inflation

- inflation is a cosmological necessity
- instead of introducing a new field:

(SM) Higgs = inflaton

- non-minimal couplings of the scalar field to gravity
- SM becomes "unnatural"
- a viable candidate might be the scale-free (Next-to) Minimal Supersymmetric Standard Model [FKLMvP]

Canonical Superconformal Supergravity (CSS)

- scale invariance of global supersymmetry \rightarrow local SUSY
- modified SUGRA Lagrangian [Einhorn, Jones] $\mathcal{L} = -6 \int d^2 \theta \mathcal{E} \left[R - \frac{1}{4} \left(\bar{\mathcal{D}}^2 - 8R \right) \Phi^{\dagger} \Phi + P(\Phi) \right] + \text{h. c. } + \dots$

[cf. Einhorn, Jones]

Higgs inflation

- inflation is a cosmological necessity
- instead of introducing a new field:

(SM) Higgs = inflaton

- non-minimal couplings of the scalar field to gravity
- SM becomes "unnatural"
 - a viable candidate might be the scale-free (Next-to) Minimal Supersymmetric Standard Model [FKLMvP]

Canonical Superconformal Supergravity (CSS)

- scale invariance of global supersymmetry \rightarrow local SUSY
- modified SUGRA Lagrangian [Einhorn, Jones] $\mathcal{L} = -6 \int d^2 \theta \mathcal{E} \left[R + X(\Phi)R - \frac{1}{4} \left(\bar{\mathcal{D}}^2 - 8R \right) \Phi^{\dagger} \Phi + P(\Phi) \right] + \text{h. c. } + \dots$

[cf. Einhorn, Jones]

Superconformal symmetry breaking

- $X(\Phi)$ either $\chi H_u \cdot H_d$ or χS^2
- dimensionless (!) coupling χ ; $\chi = 0$: minimal grav. coupling
- function of chiral superfields (Φ , not Φ^{\dagger}): $H_u \cdot H_d$, not $|H_u|^2$

Jordan frame \rightarrow Einstein frame, $M_P = 1$

- frame function $\Omega = \phi_i^* \phi_i 3$
- Kähler potential $K = -3 \log(-\Omega/3)$
- non-minimal coupling modifies Kähler potential

$$\Omega_{\chi} = \Omega - \frac{3}{2} \left(X(\phi) + \text{h.c.} \right)$$

NMSSM superconformal symmetry breaking

$$\Omega = -3 + |S|^2 + |H_u|^2 + |H_d|^2 + \frac{3}{2}\chi (H_u \cdot H_d + \text{h. c.})$$

A Brief introduction of the NMSSM

Enlarged Higgs sector

$$H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \\ H_u^0 \end{pmatrix}, \quad H_d = \begin{pmatrix} H_d^0 \\ H_d^- \\ H_d^- \end{pmatrix}, \quad S$$

Superpotential, \mathbb{Z}_3 -invariant:

$$\mathcal{W}_{\text{Higgs}} = \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} \, S^3,$$

where $H_u \cdot H_d = H_u^+ H_d^- - H_u^0 H_d^0$

The NMSSM solves the " μ -problem"

$$\mathcal{W}_{\text{MSSM}} = \mu H_u \cdot H_d + \text{Yukawa}$$

only dimensionful parameter μ has to be ~ electroweak scale

$$\mathcal{W}_{\text{NMSSM}} \supset \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} S^3$$

dynamical μ -term: $\lambda \langle S \rangle = \mu_{eff}$

 \mathbb{Z}_3 symmetry forbids dimensionful couplings (bilinear, tadpole terms)

local U(1) \mathcal{R} symmetry

• χ term breaks continuous \mathcal{R} and discrete \mathbb{Z}_3 symmetry apparant in the Kähler potential (following from frame function Ω)

$$\mathcal{K}_{\chi} = -3\log\left[1 - \frac{1}{3}\left(|S|^{2} + |H_{u}|^{2} + |H_{d}|^{2}\right) - \frac{1}{2}\chi\left(H_{u} \cdot H_{d} + \text{h.c.}\right)\right]$$

Corrected Superpotential

$$\mathcal{W}_{\text{eff}} \to \mathcal{W}e^{X(\Phi)/M_p^2} = \mathcal{W} + \frac{\langle \mathcal{W}_{\text{hid}} \rangle}{M_p^2} X(\Phi)$$

 $\simeq \mathcal{W} + m_{3/2} X(\Phi)$

The iNMSSM (same field content as the NMSSM)

$$\mathcal{W}_{\text{eff}} = \lambda \, SH_u \cdot H_d + \frac{\kappa}{3} \, S^3 + \frac{3}{2} \chi m_{3/2} H_u \cdot H_d$$

Cosmo pheno requires $|\chi/\lambda| \simeq 10^5$ and constraints on $m_{3/2}$.

W. G. H. iNMSSM

Phenomenology of the inflationary term

like the NMSSM with an extended effective μ term

$$\mu_{\rm eff}' = \lambda \langle S \rangle + \frac{3}{2} \chi m_{3/2} = \mu_{\rm eff} + \mu$$

Additional soft SUSY breaking term

$$V_{\text{soft}} = \lambda A_{\lambda} S H_u \cdot H_d + \frac{1}{3} \kappa A_{\kappa} S^3 + \frac{3}{2} B_{\mu} \chi m_{3/2} (H_u \cdot H_d + \text{h. c.})$$

Higgs potential of the iNMSSM

$$\begin{split} V &= \left[m_{H_d}^2 + (\mu + \lambda S)^2 \right] |H_d|^2 + \left[m_{H_u}^2 + (\mu + \lambda S)^2 \right] |H_u|^2 + m_S^2 S^2 \\ &+ \frac{2}{3} \kappa A_\kappa S^3 + \left[\kappa S^2 + \lambda H_u \cdot H_d \right]^2 + 2 \left(\frac{B_\mu \mu}{\mu} + \lambda A_\lambda S \right) H_u \cdot H_d \\ &+ \frac{g_1^2 + g_2^2}{8} \left(|H_d|^2 - |H_u|^2 \right)^2 + \frac{g_2^2}{2} |H_d^{\dagger} H_u|^2 \end{split}$$

The cosmological μ -term

$$\mu \simeq \frac{3}{2} m_{3/2} 10^5 \,\lambda$$

Phenomenological interesting scenarios

- small $\mu \simeq 1 \,{\rm GeV}$: e. g. small $\lambda \sim 10^{-4}$, $m_{3/2} \lesssim 1 \,{\rm GeV}$ recovers MSSM-limit
- large $\mu \gtrsim 1$ TeV and $\mu_{\text{eff}} \simeq -\mu$: cancellation in $\mu + \mu_{\text{eff}}$ possible potentially interesting neutralino phenomenology
- $\mu \gtrsim 100 \,{\rm GeV}$ and $|\mu_{\rm eff}| \lesssim 100 \,{\rm GeV}$: phenomenology different from both the MSSM and the NMSSM

Theoretical constraints

- tachyonic states, i. e. $m_{h,s}^2 < 0$
- alternative vevs: $\langle h_u \rangle \neq v_u / \sqrt{2}$, $\langle h_d \rangle \neq v_d / \sqrt{2}$, $\langle s \rangle \neq \mu_{\text{eff}} / \lambda$

Higher order Higgs masses

- full one-loop DR corrections
- include MSSM two-loop effects $\mathcal{O}(\alpha_t \alpha_s, \alpha_t^2)$ with FeynHiggs
- masses from poles of the propagator

$$\hat{\Delta}(k^2) = -i \left[k^2 \mathbf{1} - M_{\text{tree}}^2 + \hat{\Sigma}^{(1\text{L})}(k^2) + \hat{\Sigma}^{(\alpha_t \alpha_s, \alpha_t^2)}_{\text{MSSM}}(0) \right]^{-1}$$

Tree-level effects

- NMSSM-like shift to SM-like Higgs mass $\sim \lambda^2 v^2 \sin^2 2\beta$
- $\mu + \mu_{\text{eff}}$ in singlet-doublet mixing
- singlet mass $\sim \mu/\mu_{\rm eff}$ and $\mu_{\rm eff} \kappa/\lambda$

(Doublet-like) Higgsino mass: $\sim \mu + \mu_{\rm eff}$ singlino mass $\sim \mu_{\rm eff} \kappa / \lambda$

 $\mu_{\rm eff} = \{-200, -400, -1200\} \,{\rm GeV}; \, m_{H^{\pm}} = 800 \,{\rm GeV}$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

A different sector: Neutralinos!

- as in NMSSM: 5 Neutralino states
- different scaling behaviour with μ , μ_{eff}
- lightest state probably dark matter candidate
- generically heavy Singlino!

$$\mathcal{M}_{\chi} = \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{w}c_{\beta} & M_{Z}s_{w}s_{\beta} & 0 \\ \cdot & M_{2} & M_{Z}c_{w}c_{\beta} & -M_{Z}c_{w}s_{\beta} & 0 \\ \cdot & \cdot & 0 & -(\mu_{\text{eff}} + \mu) & -\lambda \nu s_{\beta} \\ \cdot & \cdot & 0 & 0 & -\lambda \nu c_{\beta} \\ \cdot & \cdot & \cdot & \cdot & 2\frac{\kappa}{\lambda}\mu_{\text{eff}} \end{pmatrix}$$

Possible distinct scenarios

- physical Higgsino mass ~ $(\mu_{eff} + \mu)$; Singlino mass $\frac{\kappa}{\lambda}\mu_{eff}$
- small $\mu_{\text{eff}} + \mu$ with large individual contributions

Fake NMSSM

$$\mathcal{M}_{\chi} = \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{w}c_{\beta} & M_{Z}s_{w}s_{\beta} & 0\\ \cdot & M_{2} & M_{Z}c_{w}c_{\beta} & -M_{Z}c_{w}s_{\beta} & 0\\ \cdot & \cdot & 0 & -(\mu_{\text{eff}} + \mu) & -\lambda \nu s_{\beta}\\ \cdot & \cdot & \cdot & 0 & -\lambda \nu c_{\beta}\\ \cdot & \cdot & \cdot & \cdot & 2\frac{\kappa}{\lambda}\mu_{\text{eff}} \end{pmatrix}$$

"Liebler" rescaling

- only 5-5 elements depends on κ
- keep $\mu_{\text{eff}} + \mu$ fixed
- rescale κ such that $(\mathcal{M}_{\chi})_{55}$ stays the same

$$\kappa \to \tilde{\kappa} = \kappa \frac{\mu + \mu_{\rm eff}}{\mu_{\rm eff}}$$

- $\tilde{\kappa} \gg \lambda$ possible (if $\mu + \mu_{\text{eff}} \gg \mu_{\text{eff}}$)
- $\tilde{\kappa} < 0$ if sign $(\mu + \mu_{\text{eff}}) \neq \text{sign}\,\mu_{\text{eff}}$

[G. Weiglein]

Boiling down the parameter space...

finding interesting scenarios

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

- additional constraints: HiggsBounds and HiggsSignals green
- LEP chargino bound: grey
- A_{κ} influences singlet pseudoscalar mass: light \rightarrow heavy with $A_{\kappa} = 0 \rightarrow 100 \,\text{GeV}$

How to distinguish from the NMSSM?

- contributions $(\mu + \mu_{eff})$ vs. μ_{eff}
- singlet sector mostly affected
- sizeable mixing effects possible, even with $\lambda \ll 1$
- look for NMSSM-like scenarios: $\mu = 0$
- identify the effect of $\mu \neq 0$

Relevant phenomenology

decays:

Ο ...

- $h^0 \rightarrow a_s a_s$: Higgs to invisible
- $s^0 \rightarrow h^0 h^0$: affects Higgs pair production
- $A \rightarrow h^0 a_s$: non-standard heavy Higgs decays

Deviating from the NMSSM

$$an \beta = 4, \lambda = 1/4, \kappa = 1/5, A_{\kappa} = 7 \,\text{GeV}$$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

Mock MSSM-limit

- small $\lambda = 0.02$, ratio $\frac{\kappa}{\lambda} = 1$ fixed
- rescale $\kappa \to \tilde{\kappa}$
- fix $\mu + \mu_{\text{eff}} = 160 \,\text{GeV}$
- scan $\mu \in [0, 240]$ GeV
- feature light singlets
- possibly large Singlet-Doublet mixing

Crucial A_{κ} behaviour

- controls singlet mass
- small $A_{\kappa} \sim \text{light singlets (together with small } |\mu_{\text{eff}}| \simeq 200 \,\text{GeV})$
- opposite sign from μ_{eff} to avoid tachyonic singlets
- rescaling changes sign of κ !

$$A_{\kappa} = -\operatorname{sign}(\mu_{\operatorname{eff}}\tilde{\kappa}) \, 1.3 \, \operatorname{GeV}$$

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

[arXiv:1808.07371—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

A Broader view, preliminary

[arXiv:1808.07371v2—WGH, Liebler, Moortgat-Pick, Paßehr, Weiglein 18]

Summary

Higgs Inflation in the NMSSM

- the MSSM is not enough (though $\chi H_u \cdot H_d$)
- Singlet direction to stabilize inflationary trajectory $\sim (S\bar{S})^2$ [without a stabilizer term: Ben-Dayan and Einhorn 2010]
- inflaton formed out of doublet Higgses

A μ term from gravity

$$\mathcal{W}_{\text{iNMSSM}} = \mathcal{W}_{\text{NMSSM}} + \mu H_u \cdot H_d$$

Caveats and features

- tachyonic Higgs directions; vacuum stability
- Higgs-to-Higgs decays phenomenologically interesting!
- Neutralino sector different from pure NMSSM
- interesting phenomenology with light singlets

Backup

Slides

motivated by certain CMS and ATLAS analyses

•		•			
Scenario	1	2	3	4	
λ	0.08	0.08	0.28	0.08	
К	0.04	0.023	0.08	0.0085	
$\tan \beta$	12	12	2.5	2	
$(\mu + \mu_{ m eff})/ m GeV$	-140	-140	-300	-400	
$\mu/{ m GeV}$	5	195	5	150	
B_{μ}/GeV	0	0	0	-300	
$m_{H^{\pm}}^{\prime}/{ m GeV}$	800	800	800	1000	
A_{κ}/GeV	130	265	250	32	
A_f/GeV	400	450	3200	4000	
m_{s^0}/GeV	97.6	95.7	97.2	97.1	
$m_{h^0}/{ m GeV}$	124.7	126.8	124.6	125.0	
$m_{a^s}/{ m GeV}$	168.2	277.0	257.2	75.6	
$\frac{\sigma(e^+e^- \rightarrow Zs^0) \cdot \text{BR}(s^0 \rightarrow b\bar{b})}{\sigma^{\text{SM}}(e^+e^- \rightarrow ZH) \cdot \text{BR}^{\text{SM}}(H \rightarrow b\bar{b})}$	0.28	0.31	0.14	0.35	
$\sigma(gg \rightarrow s^0)/pb$	25.3	28.1	14.4	31.5	
$BR(s^0 \to \gamma \gamma)$	0.0020	0.0016	0.0024	0.0005	
$\chi^2(HS)$	97	96	82	101	

W. G. H. INMSSM

Scenario 1	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^0$	$\tilde{\chi}^0_3$	$\tilde{\chi}_1^{\pm}$	
Masses / GeV	127.3	138.3	155.9	138.4	
$\sigma(e^+e^- \rightarrow \tilde{\chi}_i \tilde{\chi}_j)$ /fb for $\sqrt{s} = 350$ /GeV	$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	$ ilde{\chi}_1^+ ilde{\chi}_1^-$
Unpolarized	141	195	0.08	0.19	795
$Pol(e^+, e^-) = (+30\%, -80\%)$	208	287	0.12	0.28	1620
$Pol(e^+, e^-) = (-30\%, +80\%)$	142	196	0.08	0.19	352
$\sigma(e^+e^- \rightarrow \tilde{\chi}_i \tilde{\chi}_j)$ /fb for $\sqrt{s} = 500$ /GeV	$ ilde{\chi}_1^0 ilde{\chi}_2^0$	$ ilde{\chi}^0_1 ilde{\chi}^0_3$	${ ilde \chi}^0_2 { ilde \chi}^0_3$	${ ilde \chi}^0_2 { ilde \chi}^0_2$	$ ilde{\chi}_1^+ ilde{\chi}_1^-$
Unpolarized	74	109	0.12	0.22	459
$Pol(e^+, e^-) = (+30\%, -80\%)$	110	161	0.19	0.32	926
$Pol(e^+, e^-) = (-30\%, +80\%)$	75	110	0.13	0.22	212

A SUSY electroweak model

$$\begin{split} V &= \left[m_{H_d}^2 + (\mu + \lambda S)^2 \right] |H_d|^2 + \left[m_{H_u}^2 + (\mu + \lambda S)^2 \right] |H_u|^2 + m_S^2 S^2 \\ &+ \frac{2}{3} \kappa A_\kappa S^3 + \left[\kappa S^2 + \lambda H_u \cdot H_d \right]^2 + 2 \left(\frac{B_\mu}{\mu} + \lambda A_\lambda S \right) H_u \cdot H_d \\ &+ \frac{g_1^2 + g_2^2}{8} \left(|H_d|^2 - |H_u|^2 \right)^2 + \frac{g_2^2}{2} |H_d^\dagger H_u|^2 \\ m_{H_d}^2 &= - (\mu + \mu_{\text{eff}})^2 - \nu^2 \lambda^2 s_\beta^2 - \frac{1}{2} M_Z^2 c_{2\beta} + a_1 t_\beta , \\ m_{H_u}^2 &= - (\mu + \mu_{\text{eff}})^2 - \nu^2 \lambda^2 c_\beta^2 + \frac{1}{2} M_Z^2 c_{2\beta} + a_1 / t_\beta , \\ m_{H_u}^2 &= - (\mu + \mu_{\text{eff}})^2 - \nu^2 \lambda^2 c_\beta^2 + \frac{1}{2} M_Z^2 c_{2\beta} + a_1 / t_\beta , \end{split}$$

with $\langle h_u^0 \rangle_{\text{ew}} = v_u / \sqrt{2}$, $\langle h_d^0 \rangle_{\text{ew}} = v_d / \sqrt{2}$, $\langle s^0 \rangle_{\text{ew}} = \mu_{\text{eff}} / \lambda$. Minimisation conditions are in general misleading!

$$\frac{\frac{\partial V}{\partial h_u}}{\frac{\partial V}{\partial h_d}}|_{\rm vev} = 2m_{H_u}^2 v_u + \dots$$

$$\frac{\frac{\partial V}{\partial h_d}}{\frac{\partial V}{\partial h_u}}|_{\rm vev} = 2m_{H_d}^2 v_d + \dots$$

$$\frac{\frac{\partial V}{\partial h_u}}{\frac{\partial V}{\partial h_u}}|_{\rm vev} = 2m_S^2 v_s + \dots$$

linear equations for soft SUSY breaking masses $m_{H_u}^2$, $m_{H_d}^2$, m_S^2 , can be solved uniquely; determine numerical values for those Choosing reasonable input parameters

Avoid tachyonic charged Higgs by definition

$$\begin{split} m_{H^{\pm}}^2 &= M_W^2 - \nu^2 \,\lambda^2 + \frac{a_1}{c_\beta \,s_\beta} \\ a_1 &= B_\mu \,\mu + \mu_{\rm eff} \left(\frac{\kappa}{\lambda} \,\mu_{\rm eff} + A_\lambda\right) \\ A_\lambda &= \frac{c_\beta \,s_\beta}{\mu_{\rm eff}} \left(m_{H^{\pm}}^2 - M_W^2 + \nu^2 \,\lambda^2\right) - \frac{B_\mu \,\mu}{\mu_{\rm eff}} - \mu_{\rm eff} \,\frac{\kappa}{\lambda} \end{split}$$

- small tan β : large NMSSM-effect on light Higgs mass $(\Delta m_{h^0}^2 \sim \lambda^2 v^2 \sin^2 2\beta)$
- large $m_{H^{\pm}} = 800 \,\text{GeV}$ (although not needed for small $\tan \beta$)
- typically: $sign A_{\kappa} = -sign \mu_{eff}$
- $\mu + \mu_{\text{eff}}$ as effective higgsino mass-term
- (ignore neutralino pheno in the following)
- single $\mu_{\rm eff}$ contributions: $\sim \frac{\kappa}{\lambda}$

 $\lambda_{123} = A_{\lambda}\lambda + 2\kappa\mu_{eff}$

 $\lambda_{222} = -\frac{3}{2}(g_1^2 + g_2^2)s_\beta v$

$$\lambda_{111} = -\frac{3}{2}(g_1^2 + g_2^2)c_\beta \nu \qquad \lambda_{112} = \frac{1}{2}(g_1^2 + g_2^2)s_\beta \nu - 2\lambda^2 s_\beta \nu \qquad (1)$$

$$\lambda_{113} = -2\lambda(\mu_{\text{eff}} + \mu) \qquad \lambda_{122} = \frac{1}{2}(g_1^2 + g_2^2)c_\beta \nu - 2\lambda^2 c_\beta \nu \qquad (2)$$

$$\lambda_{122} = \frac{1}{2} (g_1^2 + g_2^2) c_\beta v - 2\lambda^2 c_\beta v \qquad (2)$$

$$\lambda_{133} = -2\lambda^2 c_\beta \nu + 2\kappa \lambda s_\beta \nu \tag{3}$$

$$\lambda_{223} = -2\lambda(\mu_{\text{eff}} + \mu) \tag{4}$$

$$\lambda_{233} = -2\lambda^2 s_\beta v + 2\kappa \lambda c_\beta v \qquad \lambda_{333} = -2A_\kappa \kappa - 12\frac{\kappa}{\lambda}\mu_{\rm eff} \tag{5}$$

$$\lambda_{144} = -\frac{1}{2}(g_1^2 + g_2^2)c_\beta \nu \qquad \qquad \lambda_{244} = \frac{1}{2}(g_1^2 + g_2^2)s_\beta \nu - 2\lambda^2 s_\beta \nu \qquad (6)$$

$$\lambda_{344} = -2\lambda(\mu_{\text{eff}} + \mu) \qquad \qquad \lambda_{345} = -\lambda A_\lambda - 2\kappa\mu_{\text{eff}} \qquad (7)$$

$$\lambda_{345} = -\lambda A_{\lambda} - 2\kappa \mu_{\rm eff} \tag{7}$$

$$\lambda_{155} = \frac{1}{2}(g_1^2 + g_2^2)c_\beta \nu - 2\lambda c_\beta \nu \qquad \lambda_{255} = -\frac{1}{2}(g_1^2 + g_2^2)s_\beta \nu \tag{8}$$

$$\lambda_{355} = -2\lambda(\mu_{\rm eff} + \mu) \tag{9}$$

Main feactures can be seen from tree-level

$$\mathcal{M}_{S}^{2} = \begin{pmatrix} M_{Z}^{2}c_{\beta}^{2} + a_{1}t_{\beta} & (2v^{2}\lambda^{2} - M_{Z}^{2})c_{\beta}s_{\beta} - a_{1} & a_{2}c_{\beta} - a_{3}s_{\beta} \\ & \cdot & M_{Z}^{2}s_{\beta}^{2} + a_{1}/t_{\beta} & a_{2}s_{\beta} - a_{3}c_{\beta} \\ & \cdot & \cdot & a_{4} + a_{5} \end{pmatrix}$$
$$\mathcal{M}_{P}^{2} = \begin{pmatrix} a_{1}t_{\beta} & a_{1} & -a_{6}s_{\beta} \\ & \cdot & a_{1}/t_{\beta} & -a_{6}c_{\beta} \\ & \cdot & \cdot & a_{4} - 3a_{5} - 2a_{7} \end{pmatrix}$$

with

$$\begin{aligned} a_{1} &= B_{\mu} \mu + \mu_{\text{eff}} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_{\lambda} \right) & a_{2} = 2 \nu \lambda (\mu + \mu_{\text{eff}}) \\ a_{3} &= \nu \lambda \left(2 \frac{\kappa}{\lambda} \mu_{\text{eff}} + A_{\lambda} \right) \\ a_{4} &= \frac{1}{\mu_{\text{eff}}} \left[\nu^{2} \lambda^{2} c_{\beta} s_{\beta} \left(\frac{\kappa}{\lambda} \mu_{\text{eff}} + A_{\lambda} \right) - \nu^{2} \lambda^{2} \mu \right] \\ a_{5} &= 4 \left(\frac{\kappa}{\lambda} \right)^{2} \mu_{\text{eff}}^{2} + \frac{\kappa}{\lambda} \left[\mu_{\text{eff}} A_{\kappa} - \nu^{2} \lambda^{2} c_{\beta} s_{\beta} \right] \\ a_{6} &= \nu \lambda \left(2 \frac{\kappa}{\lambda} \mu_{\text{eff}} - A_{\lambda} \right) & a_{7} &= -6 \left(\frac{\kappa}{\lambda} \right)^{2} \mu_{\text{eff}}^{2} \\ \hline \text{W. G. H.} & \text{INMSSM} \end{aligned}$$

Additional soft \mathbb{Z}_3 breaking leads to severe instabilities.

Stabilization of the inflationary trajectory

• only neutral components ("truncation")

$$S = se^{i\alpha}/\sqrt{2}, \quad H_u^0 = h_2 e^{i\alpha_1}/\sqrt{2}, \quad H_d^0 = h_1 e^{i\alpha_2}/\sqrt{2},$$

with $h_1 = h \cos \beta$ and $h_2 = h \sin \beta$; $\tan \beta = h_2/h_1$

• D-flat direction:

$$\beta = \pi/4$$
 $h_1^2 = h_2^2 = h^2$

- "simplest" direction: s = 0, α_{1,2} = 0
 tachyonic singlet directions
- add $-\zeta(S\bar{S})^2$ to the frame function

[FLKMvP]

[Einhorn, Jones]

Stabilization mechanism

Flat potential $V(\phi,...)$

slow roll parameters $\epsilon, \eta \gg 1$: $\epsilon = \frac{1}{2} \left(\frac{1}{V} \frac{\partial V}{\partial \phi} \right)^2$ $\eta = \frac{1}{V} \frac{\partial^2 V}{\partial \phi^2}$

inflationary NMSSM

$$\epsilon \simeq -\frac{64}{3\chi^2 h^4}, \qquad \eta \simeq -\frac{16}{3\chi h^2}$$

slow roll ends when $\epsilon, \eta \simeq 1$, thus

$$h_{\rm end} \simeq 2.2/\sqrt{\chi} \approx 0.007$$

in Planck units!

Flat potential $V(\phi,...)$

slow roll parameters $\epsilon, \eta \gg 1$: $\epsilon = \frac{1}{2} \left(\frac{1}{V} \frac{\partial V}{\partial \phi} \right)^2$ $\eta = \frac{1}{V} \frac{\partial^2 V}{\partial \phi^2}$

inflationary NMSSM

$$\epsilon \simeq -\frac{64}{3\chi^2 h^4}, \qquad \eta \simeq -\frac{16}{3\chi h^2}$$

slow roll ends when $\epsilon, \eta \simeq 1$, thus

$$h_{\rm end} \simeq 2.2/\sqrt{\chi} \approx 0.007$$

in Planck units!

0075

Gravitino dark matter

typical gravitino mass $\mathcal{O}(10 \, \text{MeV})$

Long-lived NLSP

$$\Gamma_{\tilde{\chi}^0_1 \to \gamma/Z\psi_{3/2}} \simeq \frac{1}{48\pi M_p^2} \frac{M_{\tilde{\chi}^0_1}^5}{m_{3/2}^2}$$

lifetime

$$\tau = 1/\Gamma \simeq \mathcal{O}(s)$$

bino-like NLSP: decay to photon + gravitino singlino-like NLSP: singlet Higgs + gravitino

Typical neutralino LSP signature

missing energy: decay either outside the detector or decay into invisible