Radiative Corrections and Degenerate Neutrinos Loop-induced Neutrino Mixing

Wolfgang Gregor Hollik

Institut für Theoretische Teilchenphysik (TTP) Karlsruher Institut für Technologie (KIT)

Karlsruhe Center for Particle and Astroparticle Physics Karlsruhe School for Particle and Astroparticle Physics

July 1st, 2015 | Flasy 2015 (Manzanillo)

[mascot of the 1997 World Championships of Athletics, Athens]

Quark and Neutrino Mixing

$$|V_{\rm CKM}| = \left(\begin{array}{ccc} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{array}\right)$$

- small mixing angles
- close to unit matrix
- remnants of new Physics?
- get mixings from loops?

 $|U_{\rm PMNS}| = \left(\begin{array}{ccc} \bullet & \bullet & \cdot \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right)$

- large mixing angles
- no hierarchy
- not close to trivial mixing?
- tree-level symmetries?

Quark and Neutrino Mixing

$$|V_{\rm CKM}| = \left(\begin{array}{ccc} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{array}\right)$$

- small mixing angles
- close to unit matrix
- remnants of new Physics?
- get mixings from loops?

$$|U_{\rm PMNS}| = \left(\begin{array}{ccc} \bullet & \bullet & \cdot \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right)$$

- large mixing angles
- no hierarchy
- not close to trivial mixing?
- tree-level symmetries?

different or similar?

Let's see. . .

Quark and Neutrino Mixing

$$|V_{\rm CKM}| = \left(\begin{array}{ccc} \bullet & \cdot & \cdot \\ \cdot & \bullet & \cdot \\ \cdot & \cdot & \bullet \end{array}\right)$$

- small mixing angles
- close to unit matrix
- remnants of new Physics?
- get mixings from loops!

$$|U_{\rm PMNS}| = \left(\begin{array}{ccc} \bullet & \bullet & \cdot \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right)$$

- large mixing angles
- no hierarchy
- not close to trivial mixing?
- tree-level symmetries?

different or similar?

Let's see. . .

Task: Find out whether radiative corrections can change any tree-level mixing pattern in the PMNS case.

Radiative Flavor Violation

mixing matrix renormalization

$$i\frac{g}{\sqrt{2}}\gamma^{\mu}P_{L}U_{\mathsf{PMNS}}^{\dagger} \to i\frac{g}{\sqrt{2}}\gamma^{\mu}P_{L}\left(U^{(0)\dagger} + \Delta U^{e}U^{(0)\dagger} + \Delta U^{\nu}U^{(0)\dagger}\right),$$

sensitivity to neutrino mass

$$\Delta U_{fi}^{\nu} \sim \frac{m_{\nu_f} \Sigma_{fi}}{\Delta m_{fi}^2}$$

Enhanced corrections for quasi-degenerate neutrinos

[WGH, arxiv: 1411.2946]

enhancement by degeneracy of neutrino mass spectrum

$$\Delta U_{fi}^{\nu} \sim \frac{m_{
u_f} \Sigma_{fi}}{\Delta m_{
u}^2} \sim \frac{m_{
u_f} m_{
u_i}}{\Delta m_{fi}^2} \leq 5 \times 10^3$$

for $m_{
u}^{(0)} \sim 0.35$ eV and $f, i = 1, 2$

Enhanced corrections for quasi-degenerate neutrinos

[WGH, arxiv: 1411.2946]

enhancement by degeneracy of neutrino mass spectrum

$$\Delta U_{fi}^{\nu} \sim \frac{m_{\nu_f} \Sigma_{fi}}{\Delta m_{\nu}^2} \sim \frac{m_{\nu_f} m_{\nu_i}}{\Delta m_{fi}^2} \le 5 \times 10^3$$

for $m_{\nu}^{(0)} \sim 0.35$ eV and f, i = 1, 2

$$m_1 = m_0$$
, $m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}$

• Oscillations:

[*v*fit: www.nu-fit.org]

•
$$\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \times 10^{-5} \text{ eV}^2$$

• $\Delta m_{31}^2 = 2.457 \pm 0.047 \times 10^{-3} \text{ eV}^2$

$$m_1 = m_0$$
, $m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}$

Oscillations:

[*v*fit: www.nu-fit.org]

•
$$\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \times 10^{-5} \,\mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = 2.457 \pm 0.047 \times 10^{-3} \,\mathrm{eV}^2$$

• Unknown: Absolute neutrino mass scale

$$m_1 = m_0$$
, $m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}$

• Oscillations:

[*v*fit: www.nu-fit.org]

•
$$\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \times 10^{-5} \,\mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = 2.457 \pm 0.047 \times 10^{-3} \,\mathrm{eV}^2$$

 $\bullet\,$ Unknown: Absolute neutrino mass scale $\rightarrow\,$ Katrin ?

• new limit (2017 + x?): **0.2 eV**, discovery (5σ) : **0.35 eV**

$$m_1 = m_0$$
, $m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}$

Oscillations:

[*v*fit: www.nu-fit.org]

•
$$\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \times 10^{-5} \,\mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = 2.457 \pm 0.047 \times 10^{-3} \,\mathrm{eV}^2$$

 $\bullet\,$ Unknown: Absolute neutrino mass scale $\rightarrow\,$ Katrin ?

- new limit (2017 + x?): 0.2 eV, discovery (5σ) : 0.35 eV
- Planck: $\sum m_{\nu} < 0.23 \,\mathrm{eV}$

$$m_1 = m_0$$
, $m_2 = \sqrt{m_0^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_0^2 + \Delta m_{31}^2}$

• Oscillations:

[*v*fit: www.nu-fit.org]

•
$$\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \times 10^{-5} \,\mathrm{eV}^2$$

•
$$\Delta m_{31}^2 = 2.457 \pm 0.047 \times 10^{-3} \,\mathrm{eV}^2$$

• Unknown: Absolute neutrino mass scale \rightarrow Katrin ?

- new limit (2017 + x?): 0.2 eV, discovery (5σ) : 0.35 eV
- Planck: $\sum m_{\nu} < 0.23 \,\mathrm{eV}$ ACDM...

Quasi-Degeneration

Quasi-Degeneration

Resummation of enhanced Corrections

Resummation of enhanced Corrections

Dyson resummed propagator

- Matrix in Dirac and Flavor space [Kniehl et al. 2012-2014]
- complicated expression, especially when renormalized

Symbolically

$$\mathbf{i} \mathbf{S}(p) = \frac{\mathbf{i}}{\not p - \boldsymbol{m}^{(0)} - \boldsymbol{\Sigma}}$$

Renormalized mass matrix

$$oldsymbol{m} = oldsymbol{m}^{(0)} + oldsymbol{\Sigma}$$

Resummation of enhanced Corrections

Dyson resummed propagator

• Matrix in Dirac and Flavor space

[Kniehl et al. 2012-2014]

• complicated expression, especially when renormalized

Symbolically

$$\mathbf{i} \mathbf{S}(p) = \frac{\mathbf{i}}{\not p - \boldsymbol{m}^{(0)} - \boldsymbol{\Sigma}}$$

Renormalized mixing matrix

$$\boldsymbol{U}^{(0)\mathsf{T}}\boldsymbol{m}^{(0)}\boldsymbol{U}^{(0)}
ightarrow \boldsymbol{U}\boldsymbol{m}\boldsymbol{U}$$

$$m_{AB}^{\nu} = m_{AB}^{(0)} + m_{AC}^{(0)} I_{CB} + I_{AC} m_{CB}^{(0)}$$

I: threshold correction $I \sim rac{y^2}{16\pi^2} f\left(\ln(M^2/Q^2)
ight)$ (in the SM diagonal)

$$m_{AB}^{\nu} = m_{AB}^{(0)} + m_{AC}^{(0)} I_{CB} + I_{AC} m_{CB}^{(0)}$$

I: threshold correction $I \sim rac{y^2}{16\pi^2} f\left(\ln(M^2/Q^2)
ight)$ (in the SM diagonal)

• tree-level rotation matrix $oldsymbol{U}^{(0)} \colon oldsymbol{U}^{(0)}^{\mathsf{T}} oldsymbol{m}^{(0)} oldsymbol{U}^{(0)} = \mathsf{diagonal}$

$$m_{AB}^{\nu} = m_{AB}^{(0)} + m_{AC}^{(0)} I_{CB} + I_{AC} m_{CB}^{(0)}$$

I: threshold correction $I \sim rac{y^2}{16\pi^2} f\left(\ln(M^2/Q^2)
ight)$ (in the SM diagonal)

• tree-level rotation matrix $oldsymbol{U}^{(0)} \colon oldsymbol{U}^{(0)}^{\mathsf{T}} oldsymbol{m}^{(0)} oldsymbol{U}^{(0)} = \mathsf{diagonal}$

Mass basis

$$m_{ab}^{\nu} = m_a^{(0)} \delta_{ab} + \left(m_a^{(0)} + m_b^{(0)} \right) I_{ab}$$

 $I_{ab} = \sum_{AB} I_{AB} U_{Aa}^{(0)} U_{Bb}^{(0)}$

$$m_{AB}^{\nu} = m_{AB}^{(0)} + m_{AC}^{(0)} I_{CB} + I_{AC} m_{CB}^{(0)}$$

I: threshold correction $I\sim \frac{y^2}{16\pi^2}f\left(\ln(M^2/Q^2)\right)$ (in the SM diagonal)

• tree-level rotation matrix $oldsymbol{U}^{(0)} \colon oldsymbol{U}^{(0)}^{\mathsf{T}} oldsymbol{m}^{(0)} oldsymbol{U}^{(0)} = \mathsf{diagonal}$

Mass basis

$$m_{ab}^{\nu} = m_a^{(0)} \delta_{ab} + \left(m_a^{(0)} + m_b^{(0)} \right) I_{ab}$$

 $I_{ab} = \sum_{AB} I_{AB} U_{Aa}^{(0)} U_{Bb}^{(0)}$

- assumption: degenerate tree-level masses, $|m_1^{(0)}| = |m_2^{(0)}| = |m_3^{(0)}|$

Trivial mixing @ tree-level

$$\boldsymbol{m}^{\nu} = m_0 \,\mathbb{1} + m_0 \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{12} & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Trivial mixing @ tree-level

$$\boldsymbol{m}^{\nu} = m_0 \,\mathbb{1} + m_0 \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{12} & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Generate e.g. tri-bimaximal mixing:

• requirements for I_{ij} :

Trivial mixing @ tree-level

$$\boldsymbol{m}^{\nu} = m_0 \,\mathbb{1} + m_0 \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{12} & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Generate e.g. tri-bimaximal mixing:

• requirements for I_{ij} :

Ω

$$\begin{array}{c} \theta_{23}\approx\pi/4\\ & U_{23}=\begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}\end{array}$$

Trivial mixing @ tree-level

$$oldsymbol{m}^{
u} = m_0 \, \mathbbm{1} + m_0 egin{pmatrix} I_{11} & I_{12} & I_{13} \ I_{12} & I_{22} & I_{23} \ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Generate e.g. tri-bimaximal mixing:

- requirements for I_{ij} :
 - $\bullet \quad \theta_{23} \approx \pi/4$

$$\mathbf{I}' = \mathbf{U}_{23}^T \mathbf{I} \mathbf{U}_{23} = \begin{pmatrix} I_{11} & \frac{I_{12} + I_{13}}{\sqrt{2}} & -\frac{I_{12} - I_{13}}{\sqrt{2}} \\ \frac{I_{12} + I_{13}}{\sqrt{2}} & 2I_{22} & 0 \\ -\frac{I_{12} - I_{13}}{\sqrt{2}} & 0 & 0 \end{pmatrix}$$

 $I_{12} = I_{13} \hookrightarrow \theta_{13} = 0$

Trivial mixing @ tree-level

$$\boldsymbol{m}^{\nu} = m_0 \,\mathbb{1} + m_0 \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{12} & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Generate e.g. tri-bimaximal mixing:

- requirements for I_{ij} :
 - $\textcircled{1} \ \theta_{23} \approx \pi/4$

$$\mathbf{I}' = \mathbf{U}_{23}^T \mathbf{I} \mathbf{U}_{23} = \begin{pmatrix} I_{11} & \frac{I_{12} + I_{13}}{\sqrt{2}} & -\frac{I_{12} - I_{13}}{\sqrt{2}} \\ \frac{I_{12} + I_{13}}{\sqrt{2}} & 2I_{22} & 0 \\ -\frac{I_{12} - I_{13}}{\sqrt{2}} & 0 & 0 \end{pmatrix}$$

2
$$I_{12} = I_{13} \hookrightarrow \theta_{13} = 0$$

3 $\theta_{12} = \frac{1}{2} \arctan\left(\frac{2\sqrt{2}I_{12}}{2I_{22} - I_{11}}\right)$

Trivial mixing @ tree-level

$$\boldsymbol{m}^{\nu} = m_0 \,\mathbb{1} + m_0 \begin{pmatrix} I_{11} & I_{12} & I_{13} \\ I_{12} & I_{22} & I_{23} \\ I_{13} & I_{23} & I_{33} \end{pmatrix}$$

Generate e.g. tri-bimaximal mixing:

- requirements for I_{ij} :
 - $\textcircled{1} \ \theta_{23} \approx \pi/4$

$$\mathbf{I}' = \mathbf{U}_{23}^T \mathbf{I} \mathbf{U}_{23} = \begin{pmatrix} I_{11} & \frac{I_{12} + I_{13}}{\sqrt{2}} & -\frac{I_{12} - I_{13}}{\sqrt{2}} \\ \frac{I_{12} + I_{13}}{\sqrt{2}} & 2I_{22} & 0 \\ -\frac{I_{12} - I_{13}}{\sqrt{2}} & 0 & 0 \end{pmatrix}$$

$$\begin{array}{ll} \textcircled{2} & I_{12} = I_{13} \hookrightarrow \theta_{13} = 0 \\ \textcircled{3} & \theta_{12} = \frac{1}{2} \arctan\left(\frac{2\sqrt{2}I_{12}}{2I_{22} - I_{11}}\right) \\ \textcircled{9} & \text{get } m_{1,2} \text{ in terms of } I_{ij}, \ m_3 = m_0 \end{array}$$

Deviations

•
$$\theta_{13} \neq 0 \qquad \hookrightarrow I_{13} \neq I_{12}$$

• $\theta_{23} \lesssim \frac{\pi}{4}$
 $I_{33} = I_{22} + \varepsilon$
 $I_{13} = I_{12} + \delta$

$$\begin{pmatrix} m_0 & \\ & \sqrt{m_0^2 + \Delta m_{21}^2} & \\ & & \sqrt{m_0^2 + \Delta m_{31}^2} \end{pmatrix}$$
$$= m \, \boldsymbol{U}(\theta_{12}, \theta_{13}, \theta_{23})^T \begin{pmatrix} 1 + I_{11} & I_{12} & I_{12} + \delta \\ I_{12} & 1 + I_{22} & I_{22} \\ I_{12} + \delta & I_{22} & 1 + I_{22} + \varepsilon \end{pmatrix} \boldsymbol{U}(\theta_{12}, \theta_{13}, \theta_{23})$$

[WGH: PRD 91, 033001(2015)]

Inputs (central values),

 $\overline{m_0}=0.35\,\mathrm{eV}$ @

$$\theta_{12} \approx 31.8^{\circ}$$
, $\theta_{13} \approx 8.5^{\circ}$, $\theta_{23} \approx 39.2^{\circ}$,
 $\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \,\mathrm{eV}^2$, $\Delta m_{31}^2 \approx 2.458 \times 10^{-3} \,\mathrm{eV}^2$

Outputs

$$\begin{split} I_{11} &\approx 3.00 \times 10^{-4} , \quad I_{22} &\approx 4.01 \times 10^{-3} , \quad I_{12} &\approx 1.02 \times 10^{-3} , \\ \delta &\approx 1.56 \times 10^{-5} , \quad \varepsilon &\approx 1.96 \times 10^{-3} \end{split}$$

$$\boldsymbol{I} = \begin{pmatrix} 0.30 & 1.02 & 1.03 \\ 1.02 & 4.01 & 4.67 \\ 1.03 & 4.67 & 5.97 \end{pmatrix} \times 10^{-3}$$

[WGH: PRD 91, 033001(2015)]

Dependency on neutrino mass

WGH degenerate neutrinos

Dependency on neutrino mass

WGH degenerate neutrinos

$$\mathcal{W} \supset \mu H_{\mathrm{d}} \cdot H_{\mathrm{u}} + Y_{ij}^{\nu} H_{\mathrm{u}} \cdot L_{L,i} N_{R,j} - Y_{ij}^{\ell} H_{\mathrm{d}} \cdot L_{L,i} E_{R,j} + \frac{1}{2} M_{ij}^R N_{R,i} N_{R,j}$$

$$\mathcal{W} \supset \mu H_{\mathrm{d}} \cdot H_{\mathrm{u}} + Y_{ij}^{\nu} H_{\mathrm{u}} \cdot L_{L,i} N_{R,j} - Y_{ij}^{\ell} H_{\mathrm{d}} \cdot L_{L,i} E_{R,j} + \frac{1}{2} M_{ij}^{R} N_{R,i} N_{R,j}$$

New soft SUSY breaking terms

$$\begin{split} V_{\text{soft}}^{\tilde{\nu}} &= \left(\boldsymbol{m}_{\tilde{L}}^{2}\right)_{ij} \tilde{\nu}_{L,i}^{*} \tilde{\nu}_{L,j} + \left(\boldsymbol{m}_{\tilde{R}}^{2}\right)_{ij} \tilde{\nu}_{R,i} \tilde{\nu}_{R,j}^{*} \\ &+ \left(A_{ij}^{\nu} \ h_{\text{u}}^{0} \tilde{\nu}_{L,i} \tilde{\nu}_{R,j}^{*} + \left(\boldsymbol{B}^{2}\right)_{ij} \tilde{\nu}_{R,i}^{*} \tilde{\nu}_{R,j}^{*} + \text{h.c.}\right) \end{split}$$

$$\mathcal{W} \supset \mu H_{\mathrm{d}} \cdot H_{\mathrm{u}} + Y_{ij}^{\nu} H_{\mathrm{u}} \cdot L_{L,i} N_{R,j} - Y_{ij}^{\ell} H_{\mathrm{d}} \cdot L_{L,i} E_{R,j} + \frac{1}{2} M_{ij}^{R} N_{R,i} N_{R,j}$$

New soft SUSY breaking terms

$$\begin{split} V_{\text{soft}}^{\tilde{\nu}} &= \left(\boldsymbol{m}_{\tilde{L}}^{2}\right)_{ij} \tilde{\nu}_{L,i}^{*} \tilde{\nu}_{L,j} + \left(\boldsymbol{m}_{\tilde{R}}^{2}\right)_{ij} \tilde{\nu}_{R,i} \tilde{\nu}_{R,j}^{*} \\ &+ \left(A_{ij}^{\nu} h_{u}^{0} \tilde{\nu}_{L,i} \tilde{\nu}_{R,j}^{*} + \left(\boldsymbol{B}^{2}\right)_{ij} \tilde{\nu}_{R,i}^{*} \tilde{\nu}_{R,j}^{*} + \text{h.c.}\right) \end{split}$$

• seesaw type I:

$$\boldsymbol{m}_{\nu}^{(0)} = -v_{\mathrm{u}}^{2} \boldsymbol{Y}_{\nu}^{T} \boldsymbol{M}_{\mathrm{R}}^{-1} \boldsymbol{Y}_{\nu} + \mathcal{O}(v_{\mathrm{u}}^{4}/M_{\mathrm{R}}^{3})$$

$$\left(\boldsymbol{m}_{\nu}^{1-\text{loop}}\right)_{ij} = \left(\boldsymbol{m}_{\nu}\right)_{ij} + \text{Re}\left[\boldsymbol{\Sigma}_{ij}^{(\nu),S} + \frac{m_{\nu_i}}{2}\boldsymbol{\Sigma}_{ij}^{(\nu),V} + \frac{m_{\nu_j}}{2}\boldsymbol{\Sigma}_{ji}^{(\nu),V}\right]$$

$$\mathcal{W} \supset \mu H_{\mathrm{d}} \cdot H_{\mathrm{u}} + Y_{ij}^{\nu} H_{\mathrm{u}} \cdot L_{L,i} N_{R,j} - Y_{ij}^{\ell} H_{\mathrm{d}} \cdot L_{L,i} E_{R,j} + \frac{1}{2} M_{ij}^{R} N_{R,i} N_{R,j}$$

New soft SUSY breaking terms

$$\begin{split} V_{\text{soft}}^{\tilde{\nu}} &= \left(\boldsymbol{m}_{\tilde{L}}^{2}\right)_{ij} \tilde{\nu}_{L,i}^{*} \tilde{\nu}_{L,j} + \left(\boldsymbol{m}_{\tilde{R}}^{2}\right)_{ij} \tilde{\nu}_{R,i} \tilde{\nu}_{R,j}^{*} \\ &+ \left(A_{ij}^{\nu} h_{\text{u}}^{0} \tilde{\nu}_{L,i} \tilde{\nu}_{R,j}^{*} + \left(\boldsymbol{B}^{2}\right)_{ij} \tilde{\nu}_{R,i}^{*} \tilde{\nu}_{R,j}^{*} + \text{h.c.}\right) \end{split}$$

• seesaw type I:

$$\boldsymbol{m}_{\nu}^{(0)} = -v_{\mathrm{u}}^{2} \boldsymbol{Y}_{\nu}^{T} \boldsymbol{M}_{\mathrm{R}}^{-1} \boldsymbol{Y}_{\nu} + \mathcal{O}(v_{\mathrm{u}}^{4}/M_{\mathrm{R}}^{3})$$

$$\Sigma_{ij}^{(\nu)}(p) = \Sigma_{ij}^{(\nu),S}(p^2)P_{\rm L} + \Sigma_{ij}^{(\nu),S^*}(p^2)P_{\rm R} + p\left[\Sigma_{ij}^{(\nu),V}(p^2)P_{\rm L} + \Sigma_{ij}^{(\nu),V^*}(p^2)P_{\rm R}\right].$$

Neutrino self-energies with SUSY: neutrino A-term

[WGH, arXiv:1505.07764]

$$oldsymbol{\Sigma} \sim oldsymbol{A}^{
u} rac{1}{M_{
m R}^2} oldsymbol{M}_{
m R} oldsymbol{Y}^{
u}$$

Neutrino self-energies with SUSY: neutrino A-term

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim \boldsymbol{A}^{\mathrm{v}} \frac{1}{M_{\mathrm{R}}^2} \boldsymbol{M}_{\mathrm{R}} \boldsymbol{Y}^{\mathrm{v}} = y_{\mathrm{v}} \boldsymbol{A}^{\mathrm{v}} / M_{\mathrm{R}}$$

 $oldsymbol{Y}^{oldsymbol{
u}}=y_{oldsymbol{
u}}oldsymbol{1}$, $oldsymbol{M}_{\mathrm{R}}=M_{\mathrm{R}}oldsymbol{1}$,

Neutrino self-energies with SUSY: neutrino B-term 1

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\boldsymbol{\gamma}})^{\mathsf{T}} \boldsymbol{M}_{\mathrm{R}} \frac{1}{M_{\mathrm{R}}^2} \boldsymbol{B}_{\boldsymbol{\gamma}}^2 \frac{1}{M_{\mathrm{R}}^2} \boldsymbol{M}_{\mathrm{R}} \boldsymbol{Y}^{\boldsymbol{\gamma}}$$

Neutrino self-energies with SUSY: neutrino B-term 1

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\boldsymbol{\nu}})^{\mathsf{T}} \boldsymbol{M}_{\mathrm{R}} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{B}_{\boldsymbol{\nu}}^{2} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{M}_{\mathrm{R}} \boldsymbol{Y}^{\boldsymbol{\nu}} = y_{\boldsymbol{\nu}}^{2} \boldsymbol{B}_{\boldsymbol{\nu}}^{2} / M_{\mathrm{R}}^{2}$$

 $oldsymbol{Y}^{oldsymbol{
u}}=y_{oldsymbol{
u}}oldsymbol{1}$, $oldsymbol{M}_{\mathrm{R}}=M_{\mathrm{R}}oldsymbol{1}$,

Neutrino self-energies with SUSY: neutrino B-term 1

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\nu})^{\mathsf{T}} \boldsymbol{M}_{\mathrm{R}} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{B}_{\nu}^{2} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{M}_{\mathrm{R}} \boldsymbol{Y}^{\nu} = y_{\nu}^{2} \boldsymbol{B}_{\nu}^{2} / M_{\mathrm{R}}^{2} = y_{\nu}^{2} \boldsymbol{b}_{\nu} / M_{\mathrm{R}}$$
$$\boldsymbol{Y}^{\nu} = y_{\nu} \mathbf{1}, \ \boldsymbol{M}_{\mathrm{R}} = M_{\mathrm{R}} \mathbf{1}, \ \boldsymbol{B}_{\nu}^{2} = \boldsymbol{b}_{\nu} M_{\mathrm{R}}$$

Neutrino self-energies with SUSY: neutrino B-term II

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\nu})^{\mathsf{T}} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu} (\boldsymbol{Y}^{\nu})^{\dagger} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{B}_{\nu}^{2} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu}$$

Neutrino self-energies with SUSY: neutrino B-term II

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\nu})^{\mathsf{T}} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu} (\boldsymbol{Y}^{\nu})^{\dagger} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{B}_{\nu}^{2} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu} = \frac{y_{\nu}^{4} \boldsymbol{B}_{\nu}^{2}}{M_{\mathrm{R}}^{6}}$$

 $oldsymbol{Y}^{oldsymbol{
u}}=y_{oldsymbol{
u}}oldsymbol{1}$, $oldsymbol{M}_{\mathrm{R}}=M_{\mathrm{R}}oldsymbol{1}$,

Neutrino self-energies with SUSY: neutrino B-term II

[WGH, arXiv:1505.07764]

$$\boldsymbol{\Sigma} \sim (\boldsymbol{Y}^{\nu})^{\mathsf{T}} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu} (\boldsymbol{Y}^{\nu})^{\dagger} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{B}_{\nu}^{2} \frac{1}{M_{\mathrm{R}}^{2}} \boldsymbol{Y}^{\nu} = \frac{y_{\nu}^{4} \boldsymbol{B}_{\nu}^{2}}{M_{\mathrm{R}}^{6}} = \frac{y_{\nu}^{4} \boldsymbol{b}_{\nu}}{M_{\mathrm{R}}^{5}}$$
$$\boldsymbol{Y}^{\nu} = y_{\nu} \mathbf{1}, \ \boldsymbol{M}_{\mathrm{R}} = M_{\mathrm{R}} \mathbf{1}, \ \boldsymbol{B}_{\nu}^{2} = \boldsymbol{b}_{\nu} M_{\mathrm{R}}$$

A non-decoupling contribution

A non-decoupling contribution

WGH degenerate neutrinos

A non-decoupling contribution

WGH degenerate neutrinos

A non-decoupling contribution

WGH degenerate neutrinos

Altering the mixing pattern without A- or B-terms

- requires hierarchical right-handed neutrinos
- changes tree-level mixing pattern

Side Remark

Altering the mixing pattern without A- or B-terms

- requires hierarchical right-handed neutrinos
- changes tree-level mixing pattern

[WGH, arXiv:1505.07764]

Side Remark

Altering the mixing pattern without A- or B-terms

- requires hierarchical right-handed neutrinos
- changes tree-level mixing pattern

$$\begin{split} \boldsymbol{n}_{\nu} &= v_{\mathrm{u}}^{2}(\boldsymbol{\kappa}_{\nu} + \Delta \boldsymbol{\kappa}_{\nu}) \\ &= v_{\mathrm{u}}^{2} \boldsymbol{Y}_{\nu} \operatorname{diag} \left(\frac{1}{m_{\tilde{\nu}_{\mathrm{R}_{k}}}} + \frac{g_{1}^{2}}{64\pi^{2}} \frac{\log\left(m_{\mathrm{S}}^{2}/m_{\tilde{\nu}_{\mathrm{R},k}}^{2}\right)}{m_{\tilde{\nu}_{\mathrm{R}_{k}}}} \right) \boldsymbol{Y}_{\nu}^{\mathsf{T}} \end{split}$$

• rediagonalization of the seesaw operator:

$$oldsymbol{U}^*oldsymbol{m}_{\mathbf{v}}oldsymbol{U}^\dagger\simoldsymbol{U}^*\left(oldsymbol{\kappa}_{\mathbf{v}}+\Deltaoldsymbol{\kappa}_{\mathbf{v}}
ight)oldsymbol{U}^\dagger$$

•
$$oldsymbol{U}
eq oldsymbol{U}^{(0)}$$
 also for $oldsymbol{M}_{ ext{R}} = \mathsf{diagonal}$

similar phenomenon in type-I SM: $\Delta \kappa_{\nu}^{SM} \sim \log(M_W/M_R)$ [Grimus, Lavoura 2002; Aristizabal Sierra, Yaguna 2011] Influence on previously set mixing angles, e.g. TBM

WGH d

degenerate neutrinos

Influence on previously set mixing angles, e.g. TBM

WGH degenerate neutrinos

- Radiative Flavour Violation in the lepton sector: loop-induced mixing from SUSY breaking terms
- large contribution, if neutrino mass spectrum is quasi-degenerate ($m_{
 m v}^0>0.1\,{\rm eV}$)
- \bullet exact degeneracy: $\mathrm{SO}(3)$ or $\mathrm{SU}(3)$ @ tree-level
- radiative breaking via (SUSY) threshold corrections
- ullet trilinear coupling matrix $A^{
 u}$ carries flavor information
- neutrino mixing via SUSY breaking: potential flavor symmetries in the soft breaking sector

- Radiative Flavour Violation in the lepton sector: loop-induced mixing from SUSY breaking terms
- large contribution, if neutrino mass spectrum is quasi-degenerate ($m_{
 m v}^0>0.1\,{\rm eV}$)
- exact degeneracy: SO(3) or SU(3) @ tree-level
- radiative breaking via (SUSY) threshold corrections
- ullet trilinear coupling matrix $A^
 u$ carries flavor information
- neutrino mixing via SUSY breaking: potential flavor symmetries in the soft breaking sector

Backup

Slides

WGH degenerate neutrinos

Renormalization Group Equation for ν masses and mixing

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{C} &= -K\boldsymbol{C} - \kappa \left[\left(\boldsymbol{Y}_{e}^{\dagger}\boldsymbol{Y}_{e} \right)^{T}\boldsymbol{C} + \boldsymbol{C} \left(\boldsymbol{Y}_{e}^{\dagger}\boldsymbol{Y}_{e} \right) \right] \\ & t = \frac{1}{16\pi^{2}} \ln \left(\frac{Q}{M_{Z}} \right) \\ \mathrm{SM:} \ \kappa &= -\frac{3}{2} \ \mathrm{and} \ K = -3g_{2}^{2} + 2 \operatorname{Tr} \left(3\boldsymbol{Y}_{u}^{\dagger}\boldsymbol{Y}_{u} + 3\boldsymbol{Y}_{d}^{\dagger}\boldsymbol{Y}_{d} + \boldsymbol{Y}_{e}^{\dagger}\boldsymbol{Y}_{e} \right) + 2\lambda \\ \mathrm{MSSM:} \ \kappa &= +1 \ \mathrm{and} \ K = -6g_{2}^{2} - 2g_{Y}^{2} + 2 \operatorname{Tr} \left(3\boldsymbol{Y}_{u}^{\dagger}\boldsymbol{Y}_{u} \right) \end{split}$$

Solving the RGE

M

$$\begin{split} \boldsymbol{C}(t) &= I_K \mathcal{I} \boldsymbol{C}(0) \mathcal{I}, \qquad \text{where } \mathcal{I} = \text{diag}(I_e, I_\mu, I_\tau) \text{ and} \\ I_K &= \exp\left(-\int_0^t K(t') \mathrm{d}t'\right), \quad I_{e_A} = \exp\left(-\kappa \int_0^t y_{e_A}^2(t') \mathrm{d}t'\right). \end{split}$$

• if
$$m^{(0)} = m_0 \mathbb{1}$$
: $U^{(0)T} m^{(0)} U^{(0)} = m_0 \mathbb{1}$ for any (real) $U^{(0)}$

• if e.g. $oldsymbol{m}^{(0)}=\mathrm{diag}(1,-1,1)$ this is not true

- in general: Majorana phases!
 - phase matrix $U^{(0)}_{-}
 ightarrow U^{(0)} P$ with $P = {
 m diag}(e^{i lpha_1}, e^{i lpha_2}, 1)$

•
$$\boldsymbol{m}^{(0)}_{0} \to \boldsymbol{P}^T \boldsymbol{U}^{(0)T} \boldsymbol{m}^{(0)} \boldsymbol{U}^{(0)} \boldsymbol{P} = m_0 \operatorname{diag}(e^{2i\alpha_1} e^{2i\alpha_2}, 1)$$

redefine masses

•
$$m_1 = e^{2i\alpha_1}m_0$$
,

•
$$m_2 = e^{2i\alpha_2}m_0$$
,

•
$$m_3 = m_0$$
.

• taking CP as good symmetry: $\alpha_{1,2} \in \{0, \pm \frac{\pi}{2}\}$

• choice:
$$m_1 = -m_2 = m_3$$
:

$$\boldsymbol{m}^{\nu} = m_0 \begin{pmatrix} 1 + 2U_{\alpha 1}U_{\beta 1}I_{\alpha\beta} & 0 & 2U_{\alpha 1}U_{\beta 3}I_{\alpha\beta} \\ 0 & -1 - 2U_{\alpha 2}U_{\beta 2}I_{\alpha\beta} & 0 \\ 2U_{\alpha 1}U_{\beta 3}I_{\alpha\beta} & 0 & 1 + 2U_{\alpha 3}U_{\beta 3}I_{\alpha\beta} \end{pmatrix}$$

update of [Chankowski, Pokorski 2002]

Brief review of [Chankowski, Pokorski 2002]

• degeneracy leaves freedom of rotation $U^{(0)} \rightarrow U^{(0)} R_{13}$

$$\sum_{\alpha\beta} U_{\alpha1}^{(0)} U_{\beta3}^{(0)} I_{\alpha\beta} = 0$$

- flavour diagonal corrections: $I_{\alpha\beta}=I_\alpha\delta_{\alpha\beta}$
- explain deviation from (tri-)bi-maximal mixing: $s_{13} = \sin \theta_{13} \approx 0$

$$s_{13} = -\frac{s_{12}}{c_{12}}s_{23}c_{23}\frac{I_{\tau}}{I_e},$$

where $I_{\mu} = 0$ and $I_e \gg I_{\tau}$

Brief review of [Chankowski, Pokorski 2002]

• degeneracy leaves freedom of rotation $U^{(0)} \rightarrow U^{(0)} R_{13}$

$$\sum_{\alpha\beta} U_{\alpha1}^{(0)} U_{\beta3}^{(0)} I_{\alpha\beta} = 0$$

- flavour diagonal corrections: $I_{\alpha\beta} = I_{\alpha}\delta_{\alpha\beta}$
- explain deviation from (tri-)bi-maximal mixing: $s_{13} = \sin \theta_{13} \approx 0$

$$s_{13} = -\frac{s_{12}}{c_{12}}s_{23}c_{23}\frac{I_{\tau}}{I_e},$$

where
$$I_{\mu}=0$$
 and $I_{e}\gg I_{\tau}$

$I_{\mu} \neq 0$

try to accommodate $s_{13} \approx 0.15$ and $\Delta m^2_{31}/\Delta m^2_{21} \approx 33$

$$s_{13} = c_{23}s_{23}\frac{s_{12}}{c_{12}}\frac{I_{\mu} - I_{\tau}}{I_e - s_{23}^2I_{\mu} - c_{23}^2I_{\tau}}$$

Update on the + - + scenario (cont'd)

$$\Delta m_{ab}^2 = m^2 \left([1 + 2U_{\alpha a}^2 I_{\alpha}]^2 - [1 + 2U_{\alpha b}^2 I_{\alpha}]^2 \right)$$

- m^2 overall scale
- use relation for s_{13} to get correlation between I_e and I_μ, I_τ try to fit

$$\Delta m_{31}^2 / \Delta_{m21}^2 = \frac{\left([1 + 2U_{\alpha 3}^2 I_{\alpha}]^2 - [1 + 2U_{\alpha 1}^2 I_{\alpha}]^2 \right)}{\left([1 + 2U_{\alpha 2}^2 I_{\alpha}]^2 - [1 + 2U_{\alpha 1}^2 I_{\alpha}]^2 \right)}$$

Side Note

the same follows from a special tree-level mass matrix

$$\begin{split} \boldsymbol{m}_{\text{tree}}^{\nu} &= x \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + y \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \\ &= \begin{pmatrix} x & y & y \\ y & x+z & z \\ y & z & x+z \end{pmatrix}, \end{split}$$

which can be diagonalized by

$$\boldsymbol{U}_{\text{tree}} = \begin{pmatrix} c_{12} & s_{12} & 0\\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad \text{with } s_{12} = \sin \theta_{12}, c_{12} = \cos \theta_{12}, \\ \tan 2\theta_{12} = \sqrt{2} \frac{y}{z}$$

can be inverted

v

$$\begin{split} \mathbf{m}_{\text{tree}}^{*} &= \\ \begin{pmatrix} m_{1} & \pm \frac{\mathrm{i}}{\sqrt{2}} \sqrt{\frac{\Delta m_{31}^{2}}{m1 + m3} \frac{\Delta m_{21}^{2}}{m1 + m3}} & \pm \frac{\mathrm{i}}{\sqrt{2}} \sqrt{\frac{\Delta m_{31}^{2}}{m1 + m3} \frac{\Delta m_{21}^{2}}{m1 + m3}} \\ \pm \frac{\mathrm{i}}{\sqrt{2}} \sqrt{\frac{\Delta m_{31}^{2}}{m1 + m3} \frac{\Delta m_{21}^{2}}{m1 + m2}} & \frac{m_{2} + m_{3}}{2} & \pm \frac{\mathrm{i}}{\sqrt{2}} \sqrt{\frac{\Delta m_{31}^{2}}{m1 + m3} \frac{\Delta m_{21}^{2}}{m1 + m2}} \\ \pm \frac{\mathrm{i}}{\sqrt{2}} \sqrt{\frac{\Delta m_{31}^{2}}{m1 + m3} \frac{\Delta m_{21}^{2}}{m1 + m2}} & \frac{\mathrm{i}}{2} \left(\sum_{i} m_{i} - 3m_{1}\right) & \frac{m_{2} + m_{3}}{2} \end{pmatrix}$$

The philosophy behind threshold corrections

• exact degeneracy @ tree-level: trivial mass matrix

•
$$m^{(1)} = m^{(0)} + m^{(0)}I$$
, $I \sim \frac{1}{16\pi^2} \approx \frac{1}{100}$

• small perturbation