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“Physics thrives on crisis. [. . . ] Unfortunately, we have run short on crisis lately.”

(Steven Weinberg, 1989 [1])

1 Introduction: the Cosmological Constant

Besides the fact, that we are still running short on severe crises in physics also about 30 years

after Weinberg’s statement, there is still yet no solution to what is called the “Cosmological

Constant problem”. Neither is there any clue what the Cosmological Constant (CC) is made

of and if the problem is indeed an outstanding problem.

Weinberg defines and proves in his review on the Cosmological Constant [1] a “no-go”

theorem. This no-go theorem is actually not a theorem on the smallness of the CC in the sense

of a Vacuum Energy,1 it is rather a theorem prohibiting any kind of adjustment mechanisms

that lead effectively to a universe with a flat and static (i. e. Minkowski) space-time metric in

the presence of a CC. In other words: with a CC there is no Minkowski universe possible.

An old crisis When Einstein first formulated his field equations for General Relativity, he

was neither aware of a possible Cosmological Constant nor of an expanding universe solution

to them. Originally, the proposed equations are

Rµν −
1

2
gµν R= −8πG Tµν, (1)

using Weinberg’s (−+ ++)-metric. The matter content is given by the energy-stress tensor

Tµν, where the geometry of space-time is encoded in the Ricci tensor Rµν and the scalar

curvature R = gµνRµν of the metric gµν. The gravitational coupling strength is given by

Newton’s constant G. Solutions to this set of equations published in 1915 were found to

have continuously expanding space-times. Applying this result to the whole universe worried

Einstein, who believed (for observational reasons2) in a static solution.

1Weinberg does not argue the Vacuum Energy to be small, which is rather what we would expect today;

instead, he focuses on flat and static solutions for the Einstein equations with a spatially constant set of matter

fields corresponding to an isotropically and homogeneously filled universe.
2“The most important fact that we draw from experience is that the relative velocities of the stars are very

small as compared with the velocity of light.” [1]
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A static solution, however, was easily obtained by a slight modification of the initial set

of equations with a new constant parameter λ > 0, known as the Cosmological Constant:3

Rµν −
1

2
gµν R−λ gµν = −8πG Tµν . (2)

For a static universe filled with pressureless dust, the mass density can be found to be

ρ =
λ

8πG
. (3)

Even the mass and size of the universe can be then determined from the fundamental pa-

rameters of the theory. The radius of the S3 sphere universe is given by

r =
1
p

8πρG
and the mass M = 2π2r3ρ =

π

4

1p
λG

.

This solution was based on a simple and well-motivated assumption: a homogeneous

and isotropic universe. However, besides the discovery of the expansion of the universe by

Hubble in 1929, which lead Einstein call his Cosmological Constant his biggest folly (“größte

Eselei”), de Sitter proposed in 1917 another static solution with no matter at all! (One may

ask if this is a valid approximation for the universe, although we know that it is mainly

empty.) This solution can explain redshift which increases with distance; and although the

metric is time-independent, testbodies in it are not at rest. The line element is given by the

expression

dτ2 =
1

cosh2 Hr

�

d t2 − dr2 −H−2 tanh2 Hr
�

dθ 2 + sin2 θdϕ2
��

, (4)

with the constant H =
p

λ/3 and ρ = p = 0.

Also de Sitter’s solution needs a CC term for the static solution; an expanding universe,

however, can live without and this is described by the Friedmann–Lemaître–Robertson–Walker

metric

dτ2 = d t2 − R2(t)

�

dr2

1− kr2
+ r2
�

dθ 2 + sin2 θdϕ2
�

�

, (5)

defining comoving coordinates with a cosmic scale factor R(t). Its time-evolution is given by

�

dR

d t

�2

= −k+
1

3
R2 (8πGρ +λ) , (6)

3Weinberg, however, shows in his review [1] that such a solution does not exist (under certain assumptions).
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which is an energy-conservation equation. The de Sitter model can be found with k = 0 and

ρ = 0; there are also expanding solutions with λ= 0 and ρ > 0.

Weinberg [1] cites Pais (1982) quoting Einstein in a letter to Weyl 1923 after the discovery

of the universe expansion: “If there is no quasi-static world, then away with the cosmological

term!”. Weinberg himself provides now no-go theorem that even states the contrary: the

presence of such a cosmological term forbids a quasi-static world!

2 The Problem

A modern formulation of the CC problem is quite different from just being another fine-tuning

problem. It is a problem of radiative stability, as outlined in the lecture notes by Padilla [2].

Especially quantum corrections might generate a vacuum energy that is not present at the

classical level and every energy density of the vacuum acts as cosmological constant. Because

of Lorentz invariance, the equation

〈Tµν〉 = −〈ρ〉gµν

holds and redefines the cosmological constant as λeff = λ + 8πG〈ρ〉. Correspondingly, the

total vacuum energy is given by ρV = 〈ρ〉+ λ
8πG
≡ λeff

8πG
.

Now, we can estimate λeff from the redshift of an expanding universe,

�

1

R

dR

d t

�

today

≡ H0 ≃ 50 . . . 100km/sMpc ≃
�

1

2
. . .1

�

× 10−10/yr. (7)

The universe is known to be rather flat, so |k|/R2
today
® H2

0
, and thus, in comparison with the

critical density,

|ρ − 〈ρ〉|® 3H2
0
/8πG, (8)

the effective CC can be estimated to be |λeff|® H2
0
, and the total vacuum energy

|ρV |® 10−29g/cm3 ≈ 10−47 GeV4 . (9)

This potentially crude estimate results in a rather small number, taking possible contributions

from High Energy physics into account. Actually, any quantum field theory supplies in general

a much larger vacuum energy. For any field with mass m, the summation of the zero-point

energies for all normal modes (i. e. the one-loop vacuum bubbles) up to a given cut-offΛ≫ m
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results in

〈ρ〉=
∫ λ

0

4πk2dk

(2π)3
1

2

p

k2 +m2 ≃ Λ4

16π2
. (10)

That means, with a cut-off at the Planck-scale, Λ≃ 1/
p

8πG, we estimate

〈ρ〉 ≈ 2−10π−4G−2 = 2× 1071 GeV4. (11)

Apparently, the two terms of Eqs. (9) and (11) have to cancel to more than 118 digits! It

does not help to consider the QCD-scale as probable cut-off, such that 〈ρ〉 ∼ Λ4
QCD
/16π2 ≈

10−6 GeV4, which still needs a cancellation up to 41 digits. Other estimates have been per-

formed e. g. by Zeldovich, who “for no clear reasons” [1] took Λ = 1GeV. This leads, of

course, to a much smaller vacuum energy if the one-loop terms are canceled by λ/8πG and

the other only contribute as higher-order effect. Thus, for Λ3 particles of energy Λ per unit

volume gives with Λ = 1GeV

〈ρ〉 ≈
�

GΛ2

Λ−1

�

Λ3 = GΛ6 ≈ 10−38 GeV.

The “real [. . . ] serious worry” [1], however, begins when one tries to take spontaneous

symmetry breaking in the electroweak sector into account. The scalar field potential

V = V0 −µ2Φ†Φ+ g
�

Φ†Φ
�2

(12)

with µ2 > 0 and g > 0 takes a value at its minimum which corresponds to a vacuum energy

〈ρ〉 = Vmin = V0 −
µ4

4g
. (13)

If we assume the potential to vanish at the origin, V (Φ = 0) = V0 = 0, the energy density is

found to be

〈ρ〉 ≃ −g(300GeV)4 ≃ 106 GeV4, (14)

for g ≈ α2, which is still too large by a factor of 1053. However, neither V0 nor λmust vanish,

so a cancellation is still possible.

Things may get more complicated when the thermal history of the universe is taken into

account. At early times, temperature effects drive the minimum to be in the symmetric phase,

so Φ= 0, because of a positive temperature coefficient∼ Φ†Φ. Now, compared with the value

of the potential at the minimum today, if this has to be zero because of zero CC today, formerly
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V (Φ= 0) = V0 and thus an enormous CC before the electroweak phase transition. This large

early CC can drive inflation and is not necessarily seen to be bad. The issue is nevertheless,

why is the CC small today.

In summary, we can be assured that there is a CC around because any reasonable theory

produces it—and during the cosmological evolution it changed its value. So even if there is

some magic cancellation happening today or even if it is just a small number, the cosmological

term is there in Einstein’s equations. Weinberg argues briefly, before preparing the ground

for the proof of this no-go theorem, why there are no constant flat-space solutions to the

equations in the presence of such a term.4

“That is, the original symmetry of general covariance, which is always broken by the appear-

ance of any given metric gµν, cannot, without fine-tuning, be broken in such a way as to preserve

the subgroup of space-time translations.” [1]

In mathematics, that means we are looking for solutions of General Relativity with all

fields constant over the full space in order to have translational invariance. The field equa-

tions are
∂L

∂ψi

= 0 ,
∂L

∂ gµν
= 0 . (15)

There are N generic fields ψ around and the metric is symmetric, so there are N + 6

equations for N + 6 unknowns. The first set of equations can be easily satisfied; a GL(4)

symmetry survives. That means under the transformations

gµν→ AρµAσν gρσ and ψi→ Di j(A)ψ j , (16)

the Lagrangian density transforms as

L→ det(A)L . (17)

With the ψ fields constant, Eqs. (15) have a unique solution

L= c
Æ

det(g), (18)

with a constant c independent of gµν. The second part of Eqs. (15) can only be satisfied for

a vanishing c.

4The crucial point is, that there are no static solutions without! Einstein introduced the CC term in order to

balance the expansion; the solution, however, is a tuned one.
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3 A No-go Theorem

“No-go theorems are a way of relying on apparently technical assumptions that later turn out

to have exceptions of great physical interest.” [1]5

Adjustment mechanism We relax the translational invariance condition posed in Eqs. (15)

and do not impose the two sets of equations to hold independently but

gλν
∂ L(g,ψ)

∂ gλν
=

N
∑

n

∂L(g,ψ)

∂ψn

fn(ψ) , (19)

with some coefficient functions fn(ψ) and constant fields gµν and ψi. This describes an

equilibrium solution in which gµν and all the fields ψi adjust in such a way that they are

constant in space-time.

This can be rephrased in a symmetry-condition:

δgλν = 2ǫgλν , δψn = −ǫ fn(ψ) . (20)

Once again, we want to have constant fields over space-time, so there is a solutionψ(0), such

that
∂ L

∂ψn

= 0 at ψn =ψ
(0)
n

. (21)

Apparently, ∂L/∂ gµν = 0 is then trivially fulfilled, imposing Eq. (19).

However, the solution ψ(0) does not exist (“without fine-tuning L” [1]). As a proof, we

decompose the set of N fields ψn by N − 1 fields σa that do not have to be scalars and one

scalar φ. For a particular choice of fn(ψ), we find out of Eq. (20)

δgλν = 2ǫgλν , δσa = 0 , δφ = −ǫ . (22)

Under these symmetry transformations, the Lagrangian can only depend on gλν and φ in the

combination e2φ gλν. The Lagrangian satisfying ∂L/∂ σa = 0 thus takes the form

L= e4φ
Æ

det(g)L0(σ) . (23)

5One of the most famous no-go theorems and its exception is the Coleman–Mandula theorem and Super-

symmetry as proposed by Haag, Łopuszański and Sohnius.
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The source of the field φ is then found to be the trace of the energy-momentum tensor Tµν

∂L

∂ φ
= Tµµ

Æ

det(g) , where Tµν = gµν e4φ
L0(σ) . (24)

We now can redefine the metric as L depends only on φ and gµν in the combination ĝµν ≡
e2φL0 and individual derivatives. The field φ then only appears with derivative couplings

and cannot take the role of a dynamical field in the adjustment mechanism (especially its

contribution in the Lagrangian is then always zero for a constant φ to preserve translational

invariance).

This is the easiest approach to the no-go theorem provided by Weinberg [1]. However, one

has to be aware of the “technical” assumptions: all fields are taken constant in the flat space

solutions although they may only preserve some combination of translational and gauge

invariance. Another assumption is the decomposition of the ψn into the σa and phi for

which it is not a priori clear that it works in the full field space.

Conformal Anomalies Another approach (“one example of many failed attempts” [1]) was

given by Peccei, Solà and Wetterich [3], where they break the corresponding symmetry (20)

by conformal anomalies. There is an effective Lagrangian density6 including the conformal

anomaly Θµµ

Leff =
Æ

det(g)
�

e4φ
L0(σ) +φΘ

µ
µ

�

. (25)

Now, Eq. (24) gets modified by the anomalous term

∂ L

∂ φ
=
�

Tµµ +Θ
µ
ν

�
Æ

det(g), (26)

with Tµν unchanged. The equilibrium solution solution for the field φ at the constant value

φ0 is found to be determined by the equation

4e4φ0L0 +Θ
µ
ν = 0 . (27)

This again cannot provide a flat and constant metric which would be determined in contrast

by the equation

0=
∂ Leff

∂ gµν
∝ e4φ

L0 +φΘ
µ
ν . (28)

6Weinberg traces back the appearance and disappearance of equivalences to this expressions in the preprint

and published version of [3] and a paper by Ellis, Tsamis and Voloshin in the same year.
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Changing Gravity We have seen that is impossible to define a proper adjustment mech-

anism where there is an equilibrium solution of all involved fields (“matter” fields as well

as the metric field). A modification of the laws of gravity without changing the observable

phenomenology may allow to calculate the CC as constant of integration and thus unrelated

to the fundamental parameters. The most promising approach maintains general covariance

but the determinant of the metric is not a dynamical field anymore. Let us consider the action

for matter and gravity

I[ψ, g] =
−1

16πG

∫

d4 x
p

gR+ IM[ψ, g], (29)

where IM represents the matter action for the generic matter fields ψ, including a possible

cosmological term −λ
∫

d4 x
p

g/8πG since λ can be treated as the vacuum energy caused

by the fields ψ.

The variation gives the set of Einstein equations

δI

δgµν
=

1

8πG

�

Rµν − 1

2
gµνR

�

+ Tµν, (30)

where Tµν = δIM/δgµν. These equations hold for all µ and ν. Although keeping the general

covariant formalism, one can treat parts of the metric not as dynamical fields.7 In a kind

of minimal approach, we consider the determinant g of the metric not as such a dynamical

field, so the variations keep the determinant fixed, gµνδgµν = 0. Only the traceless part then

determines the field equations

Rµν − 1

4
gµνR= −8πG

�

Tµν − 1

4
gµνTλλ

�

, (31)

which are the traceless part of the usual Einstein equations. The conservation laws still hold,

so energy-momentum conservation Tµν;µ = 0, as well as the Bianchi identities

�

Rµν − 1

2
gµνR

�

;µ

= 0 .

7“For instance, we all learn in childhood how to write the equations of Newtonian mechanics in general curvi-

linear spatial coordinate systems, without supposing that the 3-metric has to obey any field equations at all.” [1]
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The covariant derivative with respect to the coordinate xµ then gives

1

4
∂µR= 8πG

1

4
∂µTλλ , (32)

and thus R− 8πGTλλ = −4Λ= const; finally

Rµν − 1

2
gµνR−Λgµν = −8πGTµν, (33)

resembling the Einstein field equation with a CC that is not related to a corresponding term

in the action! There is actually no CC but merely a constant of integration and thus no

peculiar cancellation between vacuum fluctuations and the CC is needed. The fluctuations

automatically cancel in Eq. (31) and indeed there are flat-space solutions in the absence

of matter and radiation. “The remaining problem is: why should we choose the flat-space

solutions?” [1]8

This collection of failures to get rid of the CC shows that there is no feasible way to deal

with the CC problem. The problem can be either phrased why the observed CC is much

much smaller than the expected one or how to preserve radiative stability of this quantity

that seems not to be protected by a symmetry. At the end, the CC problem shows up as a fine-

tuning problem. The no-go theorem stated by Weinberg in this review on the CC [1] deals

with a very peculiar assumption, namely the request for a translational invariant theory that

results in a flat and constant space-time metric. The question is, however, why should we

rely on this assumption, especially since we know about the cosmological expansion which

appears to be even accelerated. Such constant static solutions do not coincide with current

observations of the universe.

Besides those rather irregular attempts to deal with the problem, we shortly motivate two

more promising approaches in the following: a symmetry argument to keep the CC small

(Supersymmetry) and a probabilistic argument which sets us in one of the most probable

states of the universe with vanishing CC (Quantum Gravity). Furthermore, Weinberg devotes

a whole section in his review on anthropic considerations which will not be covered here.

8A very good question that rather has to be put at the very beginning of the whole discussion.
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4 Solution: Supersymmetry (SUSY)

It is known at least since Zumino [4] that supersymmetric field theories have (as long as SUSY

is unbroken) a vanishing vacuum energy. The argument is very simple, based on the SUSY

algebra: the SUSY generators Qα, fermionic operators, obey the anticommutation relations

{Qα,Q†

β
}= (σµ)αβ Pµ (34)

with the Pauli matricesσ1,2,3 and σ0 = 1; Pµ being the 4-momentum operator and α,β = 1, 2

spinor indices. Unbroken SUSY is characterised by

Qα |0〉 =Q†
α
|0〉 = 0 , (35)

where the ground state |0〉 is both annihilated by the creation and annihilation operators.

Combining Eqs. (34) and (35), it is easy to find that the vacuum has zero energy and

momentum:

〈0| Pµ |0〉 = 0 . (36)

The scalar potential V (φ,φ∗) is given by the superpotential W(φ) in terms of its derivatives:

V (φ,φ∗) =
∑

i

�

�

�

�

∂W(φ)

∂ φ i

�

�

�

�

2

. (37)

The condition for unbroken SUSY, that W is stationary in φ, apparently yields

〈ρ〉= Vmin = 0 . (38)

Quantum effects obviously have no effect on this result since fermionic and bosonic loops

cancel. Unfortunately, SUSY is broken in the real world. The story gets even more intricate

once gravity is taken into account. Any global SUSY including gravity is a locally supersym-

metric supergravity, where the CC is given by the expectation value of the scalar potential,

which in turn is determined by the superpotential and the Kähler potential K(φ,φ∗).

One realisation of broken SUSY (DiW 6= 0) and V = 0 can be found with a Kähler poten-

tial of the type

K = −3 ln |T + T ∗− h(C a, C a∗)|/(8πG) + K̃(Sn, Sn∗) (39)

and a superpotential W =W1(C
a) +W2(S

n), where T , C a and Sn are chiral superfields.
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5 Solution: Quantum Gravity and Quantum Cosmology

The proposed “solution” of the CC problem (i. e. Why is it small?) dealing with a quantum

universe relies on the fact that the cosmological term can arise as constant of integration in a

modification of gravity. In that way, the observed CC appears as a superposition of all possible

choices and either anthropic or probabilistic (or both) arguments take over. The main idea

behind the quantum cosmological approach is to provide a theory whose probability density

peaks at λeff = 0 as proposed by Hawking [5].

Conceptually, one has to deal with the wave function of the universe satisfying the Wheeler–

DeWitt equation in three dimensions (on the spacelike surface)

�

1

2
p

h

δ

δhi j

p

hGi j,kl

δ

δhkl

−(3) R− 2λ+ 8πGT00

�

Ψ[h,φ] = 0 , (40)

with matter fields φ, the 3-metric hi j and Gi j,kl ≡ hikh jl + hilh jk − hi jhkl.

The solution of Eq. (40) can be expressed as “Euclidean path integral”

Ψ∝
∫

Dg DΦ exp (−S[g,Φ]) , (41)

where the 3-metric hi j and the matter fields φ appear as boundary of the usual 4-metric gµν

and fields Φ on the 3-manifold M3[h,φ]. The Euclidean action S is given by

S =
1

16πG

∫

M4

p
g(R+ 2λ) + matter terms + surface terms . (42)

The argument now is the following: Eq. (40) is a differential equation in an infinite-

dimensional space; it thus has infinitely many solutions that are determined via the boundary

conditions. However, the main result shall not crucially depend on those initial conditions.

There are some technical problems adherent to the formulation above which we are not

going to discuss here for brevity. Weinberg’s interpretation [1] now takes |Ψ[h,φ]|2 as prob-

ability density. Furthermore, the CC is treated as a dynamical variable (a field) by taking the

constant of integration c = c(x). The probability distribution for this scalar field at any point
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c = x1 in presence of 3-form gauge field Aµνλ tracking its origin9

P(c) = 〈δ (c(x1)− c)〉 ∝
∫

DADg DΦ δ (c(x)− c)exp(−S[A, g,Φ]) ; (43)

at the stationary point

P(c)∝ exp(−Γ [Ac, gc,Φc]) , (44)

with the field values Ac, gc and Φc that leave c(x1) = c fixed at a point where the total action

Γ is stationary. Setting all other fields to their A- and g-dependent stationary values results

in an effective action relevant to large 4-manifolds

Γeff[A, g] =
λ

8πG

∫

p
g d4 x +

1

16πG

∫

p
gR d4 x +

1

48

∫

d4 x
p

gFµνλρFµνλρ + . . . , (45)

where there are all terms with more than two derivatives of g and/or A omitted. The sta-

tionary condition for Aµνλ requires Fµνλρ to have vanishing covariant divergence and c being

constant, which gives

Γeff =
λ(c)

8πG

∫

p
g d4 x +

1

16πG

∫

p
gR d4 x + . . . , (46)

with λ(c) = c2

2
+ λ. The stationary solution satisfies Einstein’s field equations for gµν with a

CC λ(c), thus R= −4λ(c) and

Γeff = −
λ(c)

8πG

∫

p
g d4 x . (47)

The solution describes a 4-sphere for λ(c) > 0 with proper circumference 2πr with r =
p

3/λ(c) and the probability density ∝ exp(−Γeff) = exp[3π/Gλ(c)]. For λ(c) < 0, in

contrast, solutions can be made compact with periodicity conditions; in any case they have

Γeff ≥ 0. The conclusion drawn by Hawking is thus that the probability density peaks towards

infinity at λ(c)→ 0+, which means

P(c) = δ(c − c0) , (48)

where c0 is the value for which λ(c = c0) = 0. The quantity λ(c) is supposed to be the “true

9The exterior derivative of Aνρσ is given by the totally antisymmetric combination Fµνρσ = ∂[µAνρσ which

can be written as Fµνρσ = c ǫµνρσ/
p

g with g ≡ −det(gµν) and ǫµνρσ the Levi-Cività tensor with ǫ0123 ≡ 1.
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effective cosmological constant” λeff, covering all quantum fluctuations.

This closes the discussion on a quantum approach to the CC problem in this notes: “Hence

the result (48), if valid, really does solve the cosmological constant problem.” [1] It might be

discussed whether or not this is a valid approach, since the derivation outlined above de-

pends on many assumptions which hardly can be proven. On the other hand, the quantum

cosmology described in an effective way in Weinberg’s review [1] suggests that the infinite

peak of any probability density for λ= 0 arises very naturally.

However, after all, we stay far away from a true solution of the CC problem. There are

still open and unanswered questions besides the fact that there are neglected terms in the

effective action which might be of relevance:

1. Does Euclidean quantum cosmology have anything to do with the real world?10

2. What are the boundary conditions?11

3. Are wormholes real?12
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