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Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Prologue : Why Quantum Correction?

I Improve the precision of the theoretical predictions and reduce the

dependency of the physical observables on unphysical renormalization scale.

I Achieved by higher order quantum corrections in the framework of

perturbation theory.
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Prologue : Perturbative Expansion of Cross Section

In perturbative QCD (pQCD) the N-particle scattering cross section :
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Prologue : Perturbative Expansion of Matrix Elements

I Necessary ingredients :

1 virtual corrections  |M(1)
N 〉 , |M(2)

N 〉, ...

2 real corrections  |M(0)
N+1〉 , |M(0)

N+2〉, ...

I We address the question : How do we calculate these?

I Therapy : calculable using perturbation theory. In pQCD

|MN 〉 = aλs ( |M(0)
N 〉+ as|M(1)

N 〉+ a2s|M
(2)
N 〉+ ...) , λ = 0, 1/2, 1, ...

I Each term =
∑

Feynman diagrams

I Diagrammatic approach to calculate multiloop amplitude.
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Prologue : Goal

GOAL

↓

Given a Lagrangian, how do we calculate the loop-amplitude
following modern technique.
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Two-Loop QCD Correction to massive spin-2 resonance → 3
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Why Beyond NLO in Extra Dimensional Model?

1 Well studied at LHC : QCD corrections play an important role to constrain

the model parameters.

 K-factors for processes like γγ, ZZ, WW, ll etc. at NLO are as large as

∼ 1.6 to 1.8.

2 QCD has a very rich infrared divergence structure! UV renormalized QCD

amplitude is not divergence free. In dimensional regularization (d = 4 + ε)

UV renorm 1-loop QCD amplitude :
a
(1)
2

ε2
+
a
(1)
1

ε
+ finite

UV renorm 2-loop QCD amplitude :
a
(2)
4

ε4
+
a
(2)
3

ε3
+
a
(2)
2

ε2
+
a
(2)
1

ε
+ finite

Predicted by Catani (1998) except a
(2)
1 . Later verfied by Sterman & Tejeda

(2003, 2006) and Becher & Neubert (2009) including a
(2)
1 .

 We address : Is the universal structure really true if spin-2 coupling is
present?
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The Effective Action

I We consider the SM with an additional massive spin-2 field hµν .

I Assumption : Spin-2 field couples to SM through minimal gravitational
coupling i.e., ∫

d4xL(η,S,V,F)→
∫
d4x
√
|ĝ|L(ĝ,S,V,F) (1)

where, S = scalar fields, V = vector fields & F = fermionic fields and ĝµν =
induced metric in 4-dimension ∼ ηµν + κhµν .

I

S = SSM + Sh −
κ

2

∫
d4x TSMµν (x) hµν(x) (2)

κ ∼M−1
P is the strength of interaction.
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Feynman Rules

I Effectively the interaction involving spin-2 field :

I Thumb rule : attach a spin-2 field to any SM propagator or vertex.
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QCD part of the Action

I QCD part :

S = SQCD + Sh −
κ

2

∫
d4x TQCDµν (x) hµν(x) (3)

I TQCDµν (x) : A big expression containing

• gauge, fermionic & ghost fields

• strong coupling constant and

• gauge fixing parameter.

I Note : Spin-2 field couples to anything and everything!
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Calculation of Loop Amplitude(COLA) : Feynman Diagrams

I Step 1 : Generate Feynman diagrams using QGRAF.

For our case h∗(Mh)→ g(p1) + g(p2) + g(p3) , the no. of diagrams

Tree : 4

1-loop : 108

2-loop : 2362 !

No spin-2 particle in loop or at intermediate propagator.

For eg.

I Nasty calculations, huge numbers and additionally, involvement of spin-2 field
demand automatization.
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COLA : Structure

I Step 2 : In-house form routines convert symbolic raw output of QGRAF to a

format usable in FORM and apply Feynman rules.

I Step 3 : Color simplification using in-house form programs.

I Structure at l-loop for h∗ → g g g :

M(l)
4 (p1, p2, p3) =

no. of FD∑
f=1

F(l)
f (p1, p2, p3) (4)

with

F(l)
f (p1, p2, p3) = εµ1 (p1) εµ2 (p2) εµ3 (p3) εν1 ν2 (q)(∫ l∏

α=1

ddkα

(2π)d
Tµ1 µ2 µ3 ν1 ν2 ({pi}, {kj})∏nprop

β=1 Dβ

)
(5)

where, nprop = no. of propagators present in the f-th l-loop FD.
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COLA : Prescriptions

I Step 4 : To do the polarization sum multiply with

(i) appropriate projectors

OR

(ii) CC of n-th loop amplitude .

n = 0⇒M(0)
4 M

(l)
4 i.e. Tree amplitude * l-th loop amplitude.

n = 1⇒M(1)
4 M

(l)
4 i.e. 1-loop amplitude * l-th loop amplitude.

I Second one has been followed in this calculation. We have computed

1 BornCC * Born

2 BornCC * 1-loop

3 BornCC * 2-loop
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COLA : Structure in Prescription 2

I So ∑
spin

M(n)
4 M

(l)
4

=

(∑
spin

εµ
′
1 (p1)εµ1 (p1)

)(∑
spin

εµ
′
2 (p2)εµ2 (p2)

)(∑
spin

εµ
′
3 (p3)εµ3 (p3)

)
(∑

spin

εν
′
1 ν

′
2 (q)εν1 ν2 (q)

)
(∫ n∏

α′=1

ddk′
α′

(2π)d

T ′
µ′
1 µ

′
2 µ

′
3 ν

′
1 ν

′
2
({pi}, {k′j})∏nprop

β′=1
D′
β′

)
(∫ l∏

α=1

ddkα

(2π)d
Tµ1 µ2 µ3 ν1 ν2 ({pi}, {kj})∏nprop

β=1 Dβ

)
(6)
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COLA : Polarization Sum

I Choice of gauge :

I Axial gauge for polarization sum of external gluons.

I Feynman gauge for internal gluons ⇒ internal ghost contributions to loop
are taken.

I Polarization sum of gluons in axial gauge in d-dimensions :

∑
spin

εµ(pj)ε
ν(pj) = −ηµν +

pµj r
ν
j + rµj p

ν
j

p · r

where, rµj is reference momentum of corresponding gluon.

I Polarization sum of spin-2 particles in d-dimensions :∑
spin

εµν(q)ερσ(q) =

(
ηµρ −

qµqρ

q.q

)(
ηνσ −

qνqσ

q.q

)
+

(
ηµσ −

qµqσ

q.q

)
(
ηνρ −

qνqρ

q.q

)
−

2

d− 1

(
ηµν −

qµqν

q.q

)(
ηρσ −

qρqσ

q.q

)
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COLA : Is Problem Solved ?!

I So,
∑

spinM
(n)
4 M

(l)
4 becomes

∫ n∏
α′=1

ddk′
α′

(2π)d

l∏
α=1

ddkα

(2π)d

∏nSP
ρ=1 S

nρ
ρ (pi · pj , pi · kj , ki · kj , k′i · k′j , ki · k′j)∏nprop

β=1 Dβ
∏nprop

β′=1
D′
β′

 Scalar integral.

I Solve the # 2362 2-loop scalar integrals  problem is solved!!

→ Not a brilliant idea!

I Alternative : exploit the symmetry, if there is any!.

• There is some symmetry!

• Also, some identities can be devised!

⇒ All of the integrals are not independent!
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COLA : Alternative Method

I Consider the terms involving loop momenta of
∑

spinM
(0)
4 M

(2)
4 :

∫
ddk1

(2π)d
ddk2

(2π)d

∏nSP
ρ=1 S

nρ
ρ (pi · kj , ki · kj)∏nprop

β=1 Dβ

I For l-loops and nileg momenta :

nSP = l· nileg +
(l
2

)
+ l = l· nileg +

l(l+1)
2

.

For l = 2 & nileg = 3 , nSP = 9

 k21 , k
2
2 , k1 · k2, k1 · p1, k1 · p2, k1 · p3, k2 · p1, k2 · p2, k2 · p3

They appear with arbitrary powers nρ .
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Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

COLA : Propagator Representation of Integrals

I Step 5 : Classify the integrals into set of independent integrals

⇒ minimize the number of integrals to be computed.

I Express every integral in terms of ONLY propagators

↓

since there are nSP = 9 independent SP, we need the same no. of

different propagators (#9) for this representation.

I 2-loop diagram has nprop no. of propagators (involving loop momenta). This

can be max 7. Introduce #( 9 - nprop ) propagators.
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COLA : Propagator Representation of Integrals

I Consider an example :

I =

∫
ddk1

(2π)d
ddk2

(2π)d
1

D1D2D3D4D5D6D7{
(k21)n1 (k22)n2 (k1 · k2)n3 (k1 · p1)n4 (k1 · p2)n5 (k1 · p3)n6 (k2 · p1)n7 (k2 · p2)n8

(k2 · p3)n9

}
Introduce D8 & D9 s.t. they form a complete basis ⇒ expressible SPs in terms of

D1, · · · , D9 :

I[a1, a2, · · · , a9] ≡
∫

ddk1

(2π)d
ddk2

(2π)d
1

Da11 Da22 · · ·D
a9
9
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COLA : Propagator Representation of Integrals
A possible choice of basis :

D1 = k21
D2 = k22
D3 = (k1 − k2)2

D4 = (k2 − p1)2

D5 = (k1 − p1 − p2)2

D6 = (k2 − p1 − p2)2

D7 = (k1 − p1 − p2 − p3)2

D8 = (k1 − p1)2

D9 = (k2 − p1 − p2 − p3)2

Indeed SPs are expressible in terms of these props and kinematical invariants:

k1.k1 = D1

k2.k2 = D2

k1.k2 = (1/2) ∗ (D1 +D2 −D3)

k1.p1 = (1/2) ∗ (D1 −D8)

k1.p2 = (1/2) ∗ (D8 −D5 + s)

k1.p3 = (1/2) ∗ (D5 −D7 + t+ u)

k2.p1 = (1/2) ∗ (D2 −D4)

k2.p2 = (1/2) ∗ (D4 −D6 + s)

k2.p3 = (1/2) ∗ (D6 −D9 + t+ u)
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Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

COLA : Basis - Topology

Basis - topology : a diagram containing ALL the propagators of a basis. For
the above example :

I For #2362 diagrams we should have #2362 basis !!?

 Fortunately the answer is NO!
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COLA : Basis - Topology

I Integrals are invariant w.r.t. shifts in loop momenta

 all the 2362 2-loop integrals can be cast to belong to only TWO

basis-topologies !

Example : Suppose a 2-loop diagram contains

{ k1, k2, k1 + k2, k2 + p1 + p2, k1 + k2 + p1 + p2 }

k1 → k1 − k2 ⇓ k2 → k2 − p1 − p2

{k1 − k2, k2 − p1 − p2, k1 − p1 − p2, k2, k1}

 {D1, D2, D3, D6, D7}

∈ above basis i.e. sub-topology of the above basis-topology.
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COLA : Basis - Topology

I The other basis-topology:

 non-planar

 k1, k2, (k1 − k2), (k1 − p1), (k2 − p1), (k1 − k2 − p3), (k1 − p1 − p2), (k2 −
p1 − p2), (k1 − p1 − p2 − p3).
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COLA : Full Set of Basis(2-loop)

I Full basis for 2-loop 4-leg processes [1 massive] :

1 k1, k2, (k1 − k2), (k1 − p1), (k2 − p1), (k1 − p1 − p2), (k2 − p1 − p2), (k1 −
p1 − p2 − p3), (k2 − p1 − p2 − p3).

2 {p1 → p2, p2 → p3, p3 → p1}

3 {p1 → p3, p2 → p1, p3 → p2}

 Planar / basis-topology 1 (2-loop).

4 k1, k2, (k1 − k2), (k1 − p1), (k2 − p1), (k1 − k2 − p3), (k1 − p1 − p2), (k2 −
p1 − p2), (k1 − p1 − p2 − p3).

5 {p1 → p2, p2 → p3, p3 → p1}

6 {p1 → p3, p2 → p1, p3 → p2}

 Non-planar / basis-topology 2 (2-loop).
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COLA : Full Set of Basis(1-loop)

I Full basis for 1-loop 4-leg processes [1 massive] :

1 k1, (k1 − p1), (k1 − p1 − p2), (k1 − p1 − p2 − p3)

2 {p1 → p2, p2 → p3, p3 → p1}

3 {p1 → p3, p2 → p1, p3 → p2}

 planar.

I One of the most crucial part of this method.

I The basis are not unique.
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COLA : Mini Summanry

I Mini Summary

1 Computation of multiloop amplitude is reduced to computation of scalar
integrals.

2 All the scalar integrals (diagrams) are organized to belong to any of the above
set of basis.

I Still large number of scalar integrals with different set of indices  
impractical to solve all!

I Identities for each topology  further reduction.

1 Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov ]

2 Lorentz invariant (LIs) identities [Gehrmann-Remiddi]

I At the end we will have

I only 2 types of 1-loop integrals!

I only 21 types of 2-loop integrals!

[Apart from permutations of external momenta]
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2 All the scalar integrals (diagrams) are organized to belong to any of the above
set of basis.

I Still large number of scalar integrals with different set of indices  
impractical to solve all!

I Identities for each topology  further reduction.

1 Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov ]

2 Lorentz invariant (LIs) identities [Gehrmann-Remiddi]

I At the end we will have

I only 2 types of 1-loop integrals!
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COLA : Integration-by-parts identities (IBPs)

I Generalization of Gauss’ divergence theorem in d-dimensions.

I Any d-dimensional integral is convergent.

I Necessary condition for convergence : surface terms vanish

∫ l∏
α=1

ddkα

(2π)d
∂

∂kj,µ
(vµfscalar) = 0 (7)

where,

fscalar =

(
1∏nsp Daii

i=1

)
and vµ is loop or external momenta.

I Integrals remain within the same topology and its sub-topologies∗ due to
differentiation

 IBP of a topology relate integrals belonging to that and/or its
sub-topologies.

I With next independent external momenta, there are l(l + next) IBP identities

for each set of indices {a1, a2, · · · }.
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COLA : IBPs

I Example: Topology  1-loop box (1-loop basis-topology)

 
∫

ddk

(2π)d
1

Da11 Da22 Da33 Da44
≡ I[a1, a2, a3, a4]

with D1 ≡ k1, D2 ≡ (k1 − p1), D3 ≡ (k1 − p1 − p2), D4 ≡ (k1 − p1 − p2 − p3)

� 4 IBP identities for each set of indices {a1, a2, a3, a4}.
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COLA : IBPs

� For vµ = p1µ, IBP  

0 =

∫
ddk

(2π)d

[
a1(−1 +

D2

D1
) + a2(1−

D1

D2
)− a3(

D1

D3
−
D2

D3
−

s

D3
)

−a4(
D1

D4
−
D2

D4
−

s

D4
−

u

D4
)

]
1

Da11 Da22 Da33 Da44

⇒ a1(−1 + 1+2−) + a2(1− 2+1−)− a3(3+1− − 3+2− − s 3+)

−a4(4+1− − 4+2− − s 4+ − u 4+) = 0

Convention: 1+2−I[a1, a2, a3, a4] = I[a1 + 1, a2 − 1, a3, a4]

Similarly for p2µ, p3µ, kµ.
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COLA : IBPs

� Clearly IBP gives recursion relations among the integrals of a
topology and/or its sub-topologies.

⇒ Only 3 independent integrals!, called master integrals (MIs).

I[1, 0, 1, 0]→ {k1, k1 − p1 − p2}

I[1, 0, 0, 1]→ {k1, k1 − p1 − p2 − p3}

I[1, 1, 1, 1] → {k1, k1 − p1, k1 − p1 − p2, k1 − p1 − p2 − p3}

� First two belong to a sub-topology (bubble)∗ :

and the last one belongs to the topology itself.

� Effectively computation of 2 integrals is needed since first two are similar.
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COLA : Lorentz invariance identities (LIs)

I Scalar loop integrals are Lorentz scalars :

pµi → pµi + δpµi = pµi + ωµνpν , with ωµν = −ωνµ

I(pi + δpi) = I(pi) + ωµν
∑
j

pj,ν
∂

∂pµj
I(pi) = I(pi)

I Anti-symmetry of ωµν gives∑
i

pi,[µ
∂

∂p
ν]
i

I(pi) = 0

I Multiply anti-symmetric combination of pµj p
ν
k to get scalar relations among

the scalar integrals:

p
[µ
j p

ν]
k

∑
i

pi,[µ
∂

∂p
ν]
i

I(pi) = 0
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COLA : LIs

I Example : 4-pt functions

p
[µ
1 p

ν]
2

3∑
i=1

pi,[µ
∂

∂p
ν]
i

I(pi) = 0

p
[µ
2 p

ν]
3

3∑
i=1

pi,[µ
∂

∂p
ν]
i

I(pi) = 0

p
[µ
1 p

ν]
3

3∑
i=1

pi,[µ
∂

∂p
ν]
i

I(pi) = 0

I The LI identities always can be represented as a linear combination of the

IBP identities. . LIs do not bring any information additional to that

contained in the IBP identities, and therefore, can be discarded! Though

they help to make the process faster.

[R. N. Lee]
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COLA : Implementation of Identities in Computer

I Implemented IBPs and LIs in computer following some algorith :

AIR

FIRE

REDUZE

LiteRed∗ - we have used this.
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COLA : IBPs + LIs

For h∗ → g(p1) g(p2) g(p3)

I 1-loop :

• No. of diag. 108

• No. of zero diag. due to color algebra & momentum dependence:
19

 non-zero 89.

• All ∈ planar basis-topology (1-loop box).

• IBPs + LIs ⇒ ONLY 2 planar topologies of master integrals!

• By permuting the external momenta of these topologies, the set of final

integrals can be obtained.
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COLA : IBPs + LIs

I 2-loop :

• No. of diag. 2362

• No. of zero diag. due to color & momentum dependence: 427

 non-zero 1935.

• 1863 ∈ planar basis-topology (basis-topology 1)

and

72 ∈ non-planar basis-topology (basis-topology 2).

• IBPs + LIs ⇒ ONLY 16 planar topologies and 5 non-planar

topologies of master integrals!

• By permuting the external momenta of these topologies, the set of final

integrals can be obtained.
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COLA : Planar Master-Topologies for h∗ → ggg (2-loop)
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COLA : Non-planar Master-Topologies for h∗ → ggg (2-loop)
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COLA : Unrenormalized Results

I The results of these MIs are taken from a paper by T. Gehrmann and E.

Remiddi which are computed using differential equation method.

I By putting the results of these MIs, we obtain the unrenormalized results.

I Results contain mandelstam variables and Harmonic Polylogarithms

(HPLs).
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Renormalization

I The loop integrals encounter singularities in 4-dimension :

1 Singularities arising from the high-momentum limit of the loop integrals

 UV divergences.

2 Singularities arising from

• the zero-momentum limit of the loop integrals (soft) :

⊕ associated with massless vector bosons : arise in gauge theories only.

⊕ present also when matter particles are massive.

• the collinearity of loop momenta to one of the massless external

particles(collinear):

⊕ present in any QFT with interaction vertices involving massless

particles only.

 IR divergences.
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Renormalization Procedure : UV

How do we remove these singularities?

I Regularization

Before renormalizing the theory, regulate the integrals in some

regularization scheme (for both UV and IR) :

1 Momentum cutoff regularization,

2 Pauli-Villars regularization,

3 Dimensional regularization (DR).

 In DR change the dimension from 4 to d = 4 + ε.

 The regularization is of course removed after the cancellation of
divergences.

I The singularities of loop integrals will show up as poles in ε.

I Removing UV divergence

redefine all the bare fields and couplings of the Lagrangian → generate
precisely those singular terms required to render the theory UV finite.

 MS scheme is followed.
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Renormalization Procedure : Soft
I Removing Soft divergence

1 a quark with virtual gluons

2 a quark accompanied by an
arbitrary no. of real soft gluons

}
indistinguishable ∈ same en-
ergy eigenstate as that of quark.

 degenerate states (soft)

 this degeneracy is the origin of the soft divergence in transition matrix
element.

 summation over these degenerate states eliminate the soft -
divergence (KLN theorem).

 ∑
Degn.st.∈final

(virtual + real) soft free

For eg.

 Partonic cross-section is soft-divergence free at every order in perturbation
theory.
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Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

I Removing Collinear divergence

1 a massless quark with virtual gluons

2 a massless quark accompanied by an
arbitrary no. of real collinear gluons

}
indistinguishable

 degenerate states (collinear)

 this degeneracy is the origin of the collinear divergence in transition matrix
element.

 summation over these degenerate states eliminate the collinear -

divergence (KLN theorem).

 This divergence doesn’t necessarily cancel out in transition matrix element

or in partonic cross-section!

 Reason : no summation is done over initial degenerate states at partonic

cross-section level.

For a+ b→ c+ d , we sum over only the states of final particles i.e. c, d.

No sum over states of initial particles at the partonic cross-section level.



Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remarks

Renormalization Procedure : Collinear

 Unlike soft in the collinear, external massless particles are involved :

collinearity of the external massless partons with massless real or virtual partons.

 ∑
Deg.sta.∈ ini, final

(virtual + real) collinear free

 This is achieved through collinear or mass factorization. Redefine the

PDFs in such a way that the collinear singularities in the bare partonic

cross-section are removed.
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Renormalization for h → ggg

I For h→ ggg

• |M〉 =

(
âs

µε0
Sε

) 1
2

|M̂(0)〉+
(
âs

µε0
Sε

) 3
2

|M̂(1)〉+
(
âs

µε0
Sε

) 5
2

|M̂(2)〉+O(â3s) ,

(8)
with

Sε = exp[ ε
2

(γE − ln 4π)] with Euler constant γE = 0.5772 . . .

|M̂(i)〉 : unrenormalized matrix element representing the ith loop amplitude.

µ0 : introduced to keep âs dimensionless in d-dimension.

• UV renormalization in MS

âs

µε0
Sε =

as

µεR
Z(µ2R)

=
as

µεR

[
1 + as

2β0

ε
+ a2s

(
4β2

0

ε2
+
β1

ε

)
+O(a3s)

]
(9)
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Renormalization for h → ggg

• |M〉 ≡ (as)
1
2

(
|M(0)〉+ as|M(1)〉+ a2s|M(2)〉+O(a3s)

)
(10)

Compairing (8) and (10) we get UV renormalized matrix elements :

|M(0)〉 =

(
1

µεR

) 1
2

|M̂(0)〉 ,

|M(1)〉 =

(
1

µεR

) 3
2 [
|M̂(1)〉+ µεR

r1

2
|M̂(0)〉

]
,

|M(2)〉 =

(
1

µεR

) 5
2 [
|M̂(2)〉+ µεR

3r1

2
|M̂(1)〉+ µ2εR

(
r2

2
−
r21
8

)
|M̂(0)〉

]
with

r1 =
2β0

ε
, r2 =

(
4β2

0

ε2
+
β1

ε

)
.

• Since spin-2 field couples to SM particles through conserved EM tensor →
no UV renormalization for κ.
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IR Structure of h → ggg

• The UV renormalized matrix elements contain divergences coming from IR

region of massless QCD (soft + collinear).

IR divergence in QCD has universal structure!  depends only on the external

partons.

|M(1)〉 = 2 I
(1)
g (ε) |M(0)〉+ |M(1)fin〉

|M(2)〉 = 2 I
(1)
g (ε) |M(1)〉+ 4 I

(2)
g (ε) |M(0)〉+ |M(2)fin〉 (11)

where

I
(1)
g (ε) =

a
(1)
2

ε2
+
a
(1)
1

ε

I
(2)
g (ε) =

a
(2)
4

ε4
+
a
(2)
3

ε3
+
a
(2)
2

ε2
+
a
(2)
1

ε
(12)

Catani predicted all a(1) and a(2) except a
(2)
1 , later verified by Sterman & Tejeda.

Becher and Neubert derived the same including a
(2)
1 .

 These poles serve as the most crucial check of any calculation.
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IR Structure of h → ggg

I Our results agree with these poles including the single pole!

I Even in the presence of spin-2 particle, QCD amplitude factorizes into

soft-collinear and hard parts in a universal way  something new!
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Conclusions and Remarks

I We have seen the power of IBPs and LIs : thousands of feynman integrals are

reducible to only few MIs!

I Crucial check : Gauge invarince and universal IR pole structure.

I Explicitly verified the universality of QCD amplitude factorization even with

the presence of spin-2 graviton.

I Renormalized finite part can’t be shown here...50 pages long!

I This finite part can be analytically continued to get the result for production

of massive spin-2 graviton with one jet in gluon gluon fusion.

I We have computed one of the most difficult parts  2-loop contribution to

graviton + jet production  important ingradients of the full NNLO

computation.

I Remaining parts involve real emisiion & phase space integration  new

developments are underway (phase space slicing, antenna subtraction etc) .

Thank you
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the presence of spin-2 graviton.

I Renormalized finite part can’t be shown here...50 pages long!

I This finite part can be analytically continued to get the result for production

of massive spin-2 graviton with one jet in gluon gluon fusion.

I We have computed one of the most difficult parts  2-loop contribution to

graviton + jet production  important ingradients of the full NNLO

computation.

I Remaining parts involve real emisiion & phase space integration  new

developments are underway (phase space slicing, antenna subtraction etc) .
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Harmonic Polylogarithms (HPLs)

I Logarithms, polylogarithms (Lin(x)) and Nielsen’s polylogarithm

(Sn,p(x)) appear naturally in the analytical expressions of radiative correction

in pQCD.

• ln(x) =

∫ x

1

dt

t

• Lin(x) ≡
∞∑
k=1

xk

kn
=

∫ x

0

dt

t
Lin−1(t) e.g. Li1(x) = −ln(1− x)

• Sn,p(x) ≡
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dt

t
[ln(t)]n−1[ln(1− xt)]p

e.g. Sn−1,1(x) = Lin(x)

I But, for higher order (2-loops and beyond) these functions are not sufficient

to evaluate all the loop integrals appearing in the Feynman graphs .

I Overcome by introducing new set of functions : Harmonic Polylogarithms

(HPLs)  generalization of NP.
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HPLs

I 1D HPLs

H(0;x) ≡ ln(x)

H(1;x) ≡
∫ x

0

dt

1− t
= − ln(1− x)

H(− 1;x) ≡
∫ x

0

dt

1 + t
= ln(1 + x)

Consequently,
d

dx
H(a;x) = f(a;x) a ∈ {−1, 0, 1}

with

f(−1;x) =
1

1 + x

f(0;x) =
1

x

f(1;x) =
1

1− x

 weight 1 HPLs
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HPLs

I HPLs of higher weight are defined recursively.

• Introduce ~mω ≡ (a, ~mω−1) . Each component ∈ {−1, 0, 1} .

e.g. ~0ω = (0, 0, · · · , 0) ω no. of 0.

• HPLs of weight ω :

H(~0ω ;x) ≡
1

ω!
lnω x

H(a, ~mω−1;x) ≡
∫ x

0
dx′f(a;x′)
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