Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	000000000000000000000000000000000000000	00 0000 00000	0000
		00		

Two-Loop QCD Correction to Massive Spin-2 Resonance \rightarrow 3 gluons

Taushif Ahmed

in collaboration with

Maguni Mahakhud, Prakash Mathews, Narayan Rana and V. Ravindran

Harish-Chandra Research Institute

July 14, 2014

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Prologue : Why Quantum Correction?

- Improve the precision of the theoretical predictions and reduce the dependency of the physical observables on unphysical renormalization scale.
- Achieved by higher order quantum corrections in the framework of perturbation theory.

Prologue : Why Quantum Correction?

- Improve the precision of the theoretical predictions and reduce the dependency of the physical observables on unphysical renormalization scale.
- Achieved by higher order quantum corrections in the framework of perturbation theory.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	0000000000000000	00	0000
		000	00000	
		00		

Prologue : Why Quantum Correction?

- Improve the precision of the theoretical predictions and reduce the dependency of the physical observables on unphysical renormalization scale.
- Achieved by higher order quantum corrections in the framework of perturbation theory.

In perturbative QCD (pQCD) the N-particle scattering cross section :

$$\sigma_N = a_s^{\lambda} (\sigma_N^{(0)} + a_s \sigma_N^{(1)} + a_s^2 \sigma_N^{(2)} + \ldots), \qquad \lambda = 0, 1, \ldots$$

▶ LO :

$$\sigma_N^{(0)} \approx \int ||\mathcal{M}_N^{(0)}\rangle|^2 \, d\Phi_N$$

 \blacktriangleright NLO :

$$\sigma_N^{(1)} \approx \int 2\operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(1)} \rangle\right) d\Phi_N + \int | | \mathcal{M}_{N+1}^{(0)} \rangle |^2 d\Phi_{N+1}$$

► NNLO :

$$\sigma_N^{(2)} \approx \int 2 \operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(2)} \rangle\right) d\Phi_N + \int 2 \operatorname{Re}\left(\langle \mathcal{M}_{N+1}^{(0)} | \mathcal{M}_{N+1}^{(1)} \rangle\right) d\Phi_{N+1} + \int ||\mathcal{M}_{N+2}^{(0)} \rangle|^2 d\Phi_{N+2}$$

...

In perturbative QCD (pQCD) the N-particle scattering cross section :

$$\sigma_N = a_s^{\lambda} (\sigma_N^{(0)} + a_s \sigma_N^{(1)} + a_s^2 \sigma_N^{(2)} + \ldots), \qquad \lambda = 0, 1, \ldots$$

$$\sigma_N^{(0)} \approx \int ||\mathcal{M}_N^{(0)}\rangle|^2 \, d\Phi_N$$

► NLO :

$$\sigma_N^{(1)} \approx \int 2 \operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(1)} \rangle\right) d\Phi_N + \int ||\mathcal{M}_{N+1}^{(0)} \rangle|^2 d\Phi_{N+1}$$

► NNLO :

$$\begin{split} \sigma_N^{(2)} &\approx \int 2 \operatorname{Re} \left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(2)} \rangle \right) d\Phi_N + \int 2 \operatorname{Re} \left(\langle \mathcal{M}_{N+1}^{(0)} | \mathcal{M}_{N+1}^{(1)} \rangle \right) d\Phi_{N+1} \\ &+ \int | \left| \mathcal{M}_{N+2}^{(0)} \rangle \right|^2 d\Phi_{N+2} \end{split}$$

▶ ...

In perturbative QCD (pQCD) the N-particle scattering cross section :

$$\sigma_N = a_s^{\lambda} (\sigma_N^{(0)} + a_s \sigma_N^{(1)} + a_s^2 \sigma_N^{(2)} + ...), \qquad \lambda = 0, 1/2, 1, ...$$

LO :
$$\sigma_N^{(0)} \approx \int | \left| \mathcal{M}_N^{(0)} \right\rangle |^2 \, d\Phi_N$$

▶ NLO :

$$\sigma_N^{(1)} \approx \int 2 \operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(1)} \rangle\right) d\Phi_N + \int ||\mathcal{M}_{N+1}^{(0)} \rangle|^2 d\Phi_{N+1}$$

► NNLO :

$$\begin{split} \sigma_N^{(2)} &\approx \int 2\operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(2)} \rangle\right) d\Phi_N + \int 2\operatorname{Re}\left(\langle \mathcal{M}_{N+1}^{(0)} | \mathcal{M}_{N+1}^{(1)} \rangle\right) d\Phi_{N+1} \\ &+ \int ||\mathcal{M}_{N+2}^{(0)} \rangle|^2 d\Phi_{N+2} \end{split}$$

▶ ...

In perturbative QCD (pQCD) the N-particle scattering cross section :

$$\sigma_N = a_s^{\lambda} (\sigma_N^{(0)} + a_s \sigma_N^{(1)} + a_s^2 \sigma_N^{(2)} + ...), \qquad \lambda = 0, 1/2, 1, ...$$

▶ NLO :

$$\sigma_N^{(1)} \approx \int 2 \operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(1)} \rangle\right) d\Phi_N + \int ||\mathcal{M}_{N+1}^{(0)} \rangle|^2 d\Phi_{N+1}$$

 $\sigma_N^{(0)} \approx \int ||\mathcal{M}_N^{(0)}\rangle|^2 \, d\Phi_N$

► NNLO :

$$\sigma_N^{(2)} \approx \int 2\operatorname{Re}\left(\langle \mathcal{M}_N^{(0)} | \mathcal{M}_N^{(2)} \rangle\right) d\Phi_N + \int 2\operatorname{Re}\left(\langle \mathcal{M}_{N+1}^{(0)} | \mathcal{M}_{N+1}^{(1)} \rangle\right) d\Phi_{N+1} + \int ||\mathcal{M}_{N+2}^{(0)} \rangle|^2 d\Phi_{N+2}$$

▶ ...

Necessary ingredients :

- $\blacksquare \text{ virtual corrections } \rightsquigarrow |\mathcal{M}_N^{(1)}\rangle \ , \ |\mathcal{M}_N^{(2)}\rangle, \ ...$
- **2** real corrections $\rightsquigarrow |\mathcal{M}_{N+1}^{(0)}\rangle, |\mathcal{M}_{N+2}^{(0)}\rangle, \dots$
- ▶ We address the question : How do we calculate these?
- ▶ Therapy : calculable using perturbation theory. In **pQCD**

$$|\mathcal{M}_N\rangle = a_s^{\lambda}(|\mathcal{M}_N^{(0)}\rangle + a_s|\mathcal{M}_N^{(1)}\rangle + a_s^2|\mathcal{M}_N^{(2)}\rangle + ...), \qquad \lambda = 0, 1/2, 1, ...$$

- Each term = \sum Feynman diagrams
- Diagrammatic approach to calculate multiloop amplitude.

- Necessary ingredients :
 - $\blacksquare \text{ virtual corrections} \rightsquigarrow |\mathcal{M}_N^{(1)}\rangle , |\mathcal{M}_N^{(2)}\rangle, \dots$
 - **2** real corrections $\rightsquigarrow |\mathcal{M}_{N+1}^{(0)}\rangle, |\mathcal{M}_{N+2}^{(0)}\rangle, \dots$
- ▶ We address the question : How do we calculate these?
- ▶ Therapy : calculable using perturbation theory. In **pQCD**

$$|\mathcal{M}_N\rangle = a_s^{\lambda}(|\mathcal{M}_N^{(0)}\rangle + a_s|\mathcal{M}_N^{(1)}\rangle + a_s^2|\mathcal{M}_N^{(2)}\rangle + ...), \qquad \lambda = 0, 1/2, 1, ...$$

- Each term = \sum Feynman diagrams
- Diagrammatic approach to calculate multiloop amplitude.

- Necessary ingredients :
 - **I** virtual corrections $\rightsquigarrow |\mathcal{M}_N^{(1)}\rangle$, $|\mathcal{M}_N^{(2)}\rangle$, ...
 - **2** real corrections $\rightsquigarrow |\mathcal{M}_{N+1}^{(0)}\rangle, |\mathcal{M}_{N+2}^{(0)}\rangle, \dots$
- ▶ We address the question : How do we calculate these?
- ▶ Therapy : calculable using perturbation theory. In **pQCD**

$$|\mathcal{M}_N\rangle = a_s^{\lambda} (|\mathcal{M}_N^{(0)}\rangle + a_s |\mathcal{M}_N^{(1)}\rangle + a_s^2 |\mathcal{M}_N^{(2)}\rangle + \dots), \qquad \lambda = 0, 1/2, 1, \dots$$

- Each term = \sum Feynman diagrams
- Diagrammatic approach to calculate multiloop amplitude.

- Necessary ingredients :
 - $\blacksquare \text{ virtual corrections} \rightsquigarrow |\mathcal{M}_N^{(1)}\rangle , |\mathcal{M}_N^{(2)}\rangle, \dots$
 - **2** real corrections $\rightsquigarrow |\mathcal{M}_{N+1}^{(0)}\rangle, |\mathcal{M}_{N+2}^{(0)}\rangle, \dots$
- ▶ We address the question : How do we calculate these?
- ▶ Therapy : calculable using perturbation theory. In **pQCD**

$$|\mathcal{M}_N\rangle = a_s^{\lambda}(|\mathcal{M}_N^{(0)}\rangle + a_s|\mathcal{M}_N^{(1)}\rangle + a_s^2|\mathcal{M}_N^{(2)}\rangle + ...), \qquad \lambda = 0, 1/2, 1, ...$$

• Each term = \sum Feynman diagrams

Diagrammatic approach to calculate multiloop amplitude.

- Necessary ingredients :
 - $\blacksquare \text{ virtual corrections} \rightsquigarrow |\mathcal{M}_N^{(1)}\rangle , |\mathcal{M}_N^{(2)}\rangle, \dots$
 - **2** real corrections $\rightsquigarrow |\mathcal{M}_{N+1}^{(0)}\rangle, |\mathcal{M}_{N+2}^{(0)}\rangle, \dots$
- ▶ We address the question : How do we calculate these?
- ▶ Therapy : calculable using perturbation theory. In **pQCD**

$$|\mathcal{M}_N\rangle = a_s^{\lambda}(|\mathcal{M}_N^{(0)}\rangle + a_s|\mathcal{M}_N^{(1)}\rangle + a_s^2|\mathcal{M}_N^{(2)}\rangle + ...), \qquad \lambda = 0, 1/2, 1, ...$$

- Each term = \sum Feynman diagrams
- Diagrammatic approach to calculate multiloop amplitude.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		0000000000	0000	
		000	00000	

Prologue : Goal

GOAL

\downarrow

Given a Lagrangian, how do we calculate the loop-amplitude following modern technique.

Reference

Two-Loop QCD Correction to massive spin-2 resonance ightarrow 3 gluons

TA, Maguni Mahakhud, Prakash Mathews, Narayan Rana and V. Ravindran
 JHEP 1405 (2014) 107 $\,$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000000000000000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \to ggg$

Why Beyond NLO in Extra Dimensional Model?

- Well studied at LHC : QCD corrections play an important role to constrain the model parameters.
 - \rightsquigarrow K-factors for processes like $\gamma\gamma,$ ZZ, WW, ll etc. at NLO are as large as \sim 1.6 to 1.8.
- QCD has a very rich infrared divergence structure! UV renormalized QCD amplitude is not divergence free. In dimensional regularization $(d = 4 + \epsilon)$

UV renorm 1-loop QCD amplitude : $\frac{a_2^{(2)}}{\epsilon^2} + \frac{a_1^{(2)}}{\epsilon} + \text{finite}$ UV renorm 2-loop QCD amplitude : $\frac{a_4^{(2)}}{\epsilon^4} + \frac{a_3^{(2)}}{\epsilon^3} + \frac{a_2^{(2)}}{\epsilon^2} + \frac{a_1^{(2)}}{\epsilon} + \text{finite}$

Predicted by *Catani* (1998) except $a_1^{(2)}$. Later verfied by *Sterman & Tejeda* (2003, 2006) and *Becher & Neubert* (2009) including $a_1^{(2)}$.

 \rightsquigarrow We address : Is the universal structure really true if spin-2 coupling is present?

Why Beyond NLO in Extra Dimensional Model?

- Well studied at LHC : QCD corrections play an important role to constrain the model parameters.
 - \rightsquigarrow K-factors for processes like $\gamma\gamma,$ ZZ, WW, ll etc. at NLO are as large as \sim 1.6 to 1.8.
- **2** QCD has a very rich infrared divergence structure! UV renormalized QCD amplitude is not divergence free. In dimensional regularization $(d = 4 + \epsilon)$

UV renorm 1-loop QCD amplitude : $\frac{a_2^{(1)}}{\epsilon^2} + \frac{a_1^{(1)}}{\epsilon} + \text{finite}$ UV renorm 2-loop QCD amplitude : $\frac{a_4^{(2)}}{\epsilon^4} + \frac{a_3^{(2)}}{\epsilon^3} + \frac{a_2^{(2)}}{\epsilon^2} + \frac{a_1^{(2)}}{\epsilon} + \text{finite}$

Predicted by Catani (1998) except $a_1^{(2)}$. Later verfied by Sterman & Tejeda (2003, 2006) and Becher & Neubert (2009) including $a_1^{(2)}$.

 \rightarrow We address : Is the universal structure really true if spin-2 coupling is present?

Why Beyond NLO in Extra Dimensional Model?

- Well studied at LHC : QCD corrections play an important role to constrain the model parameters.
 - \rightsquigarrow K-factors for processes like $\gamma\gamma,$ ZZ, WW, ll etc. at NLO are as large as \sim 1.6 to 1.8.
- **2** QCD has a very rich infrared divergence structure! UV renormalized QCD amplitude is not divergence free. In dimensional regularization $(d = 4 + \epsilon)$

 $\begin{array}{lll} \text{UV renorm 1-loop QCD amplitude} & : & \displaystyle \frac{a_2^{(1)}}{\epsilon^2} + \frac{a_1^{(1)}}{\epsilon} + \text{finite} \\ \\ \text{UV renorm 2-loop QCD amplitude} & : & \displaystyle \frac{a_4^{(2)}}{\epsilon^4} + \frac{a_3^{(2)}}{\epsilon^3} + \frac{a_2^{(2)}}{\epsilon^2} + \frac{a_1^{(2)}}{\epsilon} + \text{finite} \end{array}$

Predicted by *Catani* (1998) except $a_1^{(2)}$. Later verified by *Sterman & Tejeda* (2003, 2006) and *Becher & Neubert* (2009) including $a_1^{(2)}$.

 \rightarrow We address : Is the universal structure really true if spin-2 coupling is present?

Why Beyond NLO in Extra Dimensional Model?

- Well studied at LHC : QCD corrections play an important role to constrain the model parameters.
 - \rightsquigarrow K-factors for processes like $\gamma\gamma,$ ZZ, WW, ll etc. at NLO are as large as \sim 1.6 to 1.8.
- **2** QCD has a very rich infrared divergence structure! UV renormalized QCD amplitude is not divergence free. In dimensional regularization $(d = 4 + \epsilon)$

 $\begin{array}{lll} \text{UV renorm 1-loop QCD amplitude} & : & \displaystyle \frac{a_2^{(1)}}{\epsilon^2} + \frac{a_1^{(1)}}{\epsilon} + \text{finite} \\ \\ \text{UV renorm 2-loop QCD amplitude} & : & \displaystyle \frac{a_4^{(2)}}{\epsilon^4} + \frac{a_3^{(2)}}{\epsilon^3} + \frac{a_2^{(2)}}{\epsilon^2} + \frac{a_1^{(2)}}{\epsilon} + \text{finite} \end{array}$

Predicted by *Catani* (1998) except $a_1^{(2)}$. Later verified by *Sterman & Tejeda* (2003, 2006) and *Becher & Neubert* (2009) including $a_1^{(2)}$.

 \rightsquigarrow We address : Is the universal structure really true if spin-2 coupling is present?

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
000	000000000000000000000000000000000000000	00 0000	0000
	000	00000	

The Effective Action

• We consider the SM with an additional **massive** spin-2 field $h^{\mu\nu}$.

 Assumption : Spin-2 field couples to SM through minimal gravitational coupling i.e.,

$$\int d^4x \mathcal{L}(\eta, \mathcal{S}, \mathcal{V}, \mathcal{F}) \to \int d^4x \sqrt{|\hat{g}|} \mathcal{L}(\hat{g}, \mathcal{S}, \mathcal{V}, \mathcal{F})$$
(1)

where, S = scalar fields, V = vector fields & F = fermionic fields and $\hat{g}^{\mu\nu}$ = induced metric in 4-dimension ~ $\eta^{\mu\nu} + \kappa h^{\mu\nu}$.

$$S = S_{SM} + S_h - \frac{\kappa}{2} \int d^4x \ T^{SM}_{\mu\nu}(x) \ h^{\mu\nu}(x)$$
 (2)

 $\kappa \sim M_P^{-1}$ is the strength of interaction.

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
000	000000000000000000000000000000000000000	00 0000	0000
	000	00000	

The Effective Action

- We consider the SM with an additional **massive** spin-2 field $h^{\mu\nu}$.
- Assumption : Spin-2 field couples to SM through minimal gravitational coupling i.e.,

$$\int d^4x \mathcal{L}(\eta, \mathbf{S}, \mathbf{V}, \mathbf{F}) \to \int d^4x \sqrt{|\hat{g}|} \mathcal{L}(\hat{g}, \mathbf{S}, \mathbf{V}, \mathbf{F})$$
(1)

where, S = scalar fields, V = vector fields & F = fermionic fields and $\hat{g}^{\mu\nu}$ = induced metric in 4-dimension ~ $\eta^{\mu\nu}$ + $\kappa h^{\mu\nu}$.

$$S = S_{SM} + S_h - \frac{\kappa}{2} \int d^4x \ T^{SM}_{\mu\nu}(x) \ h^{\mu\nu}(x)$$
 (2)

 $\kappa \sim M_P^{-1}$ is the strength of interaction.

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
000	000000000000000000000000000000000000000	00 0000	0000
	000	00000	

The Effective Action

- We consider the SM with an additional **massive** spin-2 field $h^{\mu\nu}$.
- Assumption : Spin-2 field couples to SM through minimal gravitational coupling i.e.,

$$\int d^4x \mathcal{L}(\eta, \mathbf{S}, \mathbf{V}, \mathbf{F}) \to \int d^4x \sqrt{|\hat{g}|} \mathcal{L}(\hat{g}, \mathbf{S}, \mathbf{V}, \mathbf{F})$$
(1)

where, S = scalar fields, V = vector fields & F = fermionic fields and $\hat{g}^{\mu\nu}$ = induced metric in 4-dimension ~ $\eta^{\mu\nu}$ + $\kappa h^{\mu\nu}$.

$$S = S_{SM} + S_h - \frac{\kappa}{2} \int d^4x \ T^{SM}_{\mu\nu}(x) \ h^{\mu\nu}(x)$$
 (2)

 $\kappa \sim M_P^{-1}$ is the strength of interaction.

Feynman Rules

▶ Effectively the interaction involving spin-2 field :

▶ Thumb rule : attach a spin-2 field to any SM propagator or vertex.

Feynman Rules

▶ Effectively the interaction involving spin-2 field :

▶ Thumb rule : attach a spin-2 field to any SM propagator or vertex.

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
000	000000000000000000000000000000000000000	00	0000
	000	00000	

QCD part of the Action

▶ QCD part :

$$S = S_{QCD} + S_h - \frac{\kappa}{2} \int d^4x \ T^{QCD}_{\mu\nu}(x) \ h^{\mu\nu}(x) \tag{3}$$

• $T^{QCD}_{\mu\nu}(x)$: A big expression containing

- gauge, fermionic & ghost fields
- strong coupling constant and
- gauge fixing parameter.

Note : Spin-2 field couples to anything and everything!

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
000	000000000000000000000000000000000000000	00	0000
	000	00000	
	00		

QCD part of the Action

▶ QCD part :

$$S = S_{QCD} + S_h - \frac{\kappa}{2} \int d^4x \ T^{QCD}_{\mu\nu}(x) \ h^{\mu\nu}(x) \tag{3}$$

• $T^{QCD}_{\mu\nu}(x)$: A big expression containing

- gauge, fermionic & ghost fields
- strong coupling constant and
- gauge fixing parameter.

Note : Spin-2 field couples to anything and everything!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	000000000000000000000000000000000000000	00 0000	0000
		000	00000	

QCD part of the Action

 \blacktriangleright QCD part :

$$S = S_{QCD} + S_h - \frac{\kappa}{2} \int d^4x \ T^{QCD}_{\mu\nu}(x) \ h^{\mu\nu}(x) \tag{3}$$

• $T^{QCD}_{\mu\nu}(x)$: A big expression containing

- gauge, fermionic & ghost fields
- strong coupling constant and
- gauge fixing parameter.
- ▶ Note : Spin-2 field couples to anything and everything!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	•00000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams

Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Calculation of Loop Amplitude(COLA) : Feynman Diagrams

Step 1 : Generate Feynman diagrams using QGRAF.

For our case $h^*(M_h) \to g(p_1) + g(p_2) + g(p_3)$, the no. of diagrams

Tree : 4

1-loop: 108

2-loop : 2362 !

No spin-2 particle in loop or at intermediate propagator.

For eg.

 Nasty calculations, huge numbers and additionally, involvement of spin-2 field demand automatization.

Calculation of Loop Amplitude(COLA) : Feynman Diagrams

Step 1 : Generate Feynman diagrams using QGRAF.

For our case $h^*(M_h) \to g(p_1) + g(p_2) + g(p_3)$, the no. of diagrams

Tree : 4

1-loop: 108

2-loop : 2362 !

No spin-2 particle in loop or at intermediate propagator.

For eg.

 Nasty calculations, huge numbers and additionally, involvement of spin-2 field demand automatization.

COLA : Structure

- Step 2 : In-house form routines convert symbolic raw output of QGRAF to a format usable in FORM and apply Feynman rules.
- **Step 3** : Color simplification using in-house form programs.
- Structure at *l*-loop for $h^* \to g g g g$:

$$\mathcal{M}_{4}^{(l)}(p_{1}, p_{2}, p_{3}) = \sum_{f=1}^{\text{no. of FD}} \mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3})$$
(4)

with

$$\mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3}) = \epsilon^{\mu_{1}}(p_{1}) \epsilon^{\mu_{2}}(p_{2}) \epsilon^{\mu_{3}}(p_{3}) \epsilon^{\nu_{1} \nu_{2}}(q) \\ \left(\int \prod_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{T_{\mu_{1} \mu_{2} \mu_{3} \nu_{1} \nu_{2}}(\{p_{i}\}, \{k_{j}\})}{\prod_{\beta=1}^{n_{prop}} D_{\beta}} \right)$$
(5)

where, $n_{\text{prop}} = \text{no.}$ of propagators present in the f-th *l*-loop FD.

COLA : Structure

- Step 2 : In-house form routines convert symbolic raw output of QGRAF to a format usable in FORM and apply Feynman rules.
- **Step 3** : Color simplification using in-house form programs.
- Structure at *l*-loop for $h^* \to g g g g$:

$$\mathcal{M}_{4}^{(l)}(p_{1}, p_{2}, p_{3}) = \sum_{f=1}^{\text{no. of FD}} \mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3})$$
(4)

with

$$\mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3}) = \epsilon^{\mu_{1}}(p_{1}) \epsilon^{\mu_{2}}(p_{2}) \epsilon^{\mu_{3}}(p_{3}) \epsilon^{\nu_{1} \nu_{2}}(q) \\ \left(\int \prod_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{T_{\mu_{1} \mu_{2} \mu_{3} \nu_{1} \nu_{2}}(\{p_{i}\}, \{k_{j}\})}{\prod_{\beta=1}^{n_{prop}} D_{\beta}} \right)$$
(5)

where, $n_{\text{prop}} = \text{no.}$ of propagators present in the f-th *l*-loop FD.

COLA : Structure

- Step 2 : In-house form routines convert symbolic raw output of QGRAF to a format usable in FORM and apply Feynman rules.
- **Step 3** : Color simplification using in-house form programs.
- Structure at *l*-loop for $h^* \to g g g g$:

$$\mathcal{M}_{4}^{(l)}(p_{1}, p_{2}, p_{3}) = \sum_{f=1}^{\text{no. of FD}} \mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3})$$
(4)

with

$$\mathcal{F}_{f}^{(l)}(p_{1}, p_{2}, p_{3}) = \epsilon^{\mu_{1}}(p_{1}) \epsilon^{\mu_{2}}(p_{2}) \epsilon^{\mu_{3}}(p_{3}) \epsilon^{\nu_{1} \nu_{2}}(q) \\ \left(\int \prod_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{T_{\mu_{1} \mu_{2} \mu_{3} \nu_{1} \nu_{2}}(\{p_{i}\}, \{k_{j}\})}{\prod_{\beta=1}^{n_{\text{prop}}} D_{\beta}} \right)$$
(5)

where, $n_{\text{prop}} = \text{no. of propagators present in the f-th } l$ -loop FD.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000000000000000000000000	00 0000 00000	0000

COLA : Prescriptions

Step 4 : To do the polarization sum multiply with

(i) appropriate projectors

OR

(ii) CC of n-th loop amplitude .

 $n = 0 \Rightarrow \overline{\mathcal{M}_4^{(0)}} \mathcal{M}_4^{(l)}$ i.e. Tree amplitude * *l*-th loop amplitude. $n = 1 \Rightarrow \overline{\mathcal{M}_4^{(1)}} \mathcal{M}_4^{(l)}$ i.e. T-loop amplitude * *l*-th loop amplitude.

Second one has been followed in this calculation. We have computed

- BornCC * Born
- BornCC * 1-loop
- BornCC * 2-loop

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000000000000000000000000	00 0000 00000	0000

COLA : Prescriptions

Step 4 : To do the polarization sum multiply with

 $\left(i\right)$ appropriate projectors

OR

(ii) CC of *n*-th loop amplitude .

 $n = 0 \Rightarrow \overline{\mathcal{M}_4^{(0)}} \mathcal{M}_4^{(l)}$ i.e. Tree amplitude * *l*-th loop amplitude. $n = 1 \Rightarrow \overline{\mathcal{M}_4^{(1)}} \mathcal{M}_4^{(l)}$ i.e. T-loop amplitude * *l*-th loop amplitude.

Second one has been followed in this calculation. We have computed

BornCC * Born
 BornCC * 1-loop
 BornCC * 2-loop

COLA : Structure in Prescription 2

► So

=

$$\sum_{\text{spin}} \overline{\mathcal{M}_{4}^{(n)}} \mathcal{M}_{4}^{(l)} \\ \left(\sum_{\text{spin}} \overline{\epsilon^{\mu_{1}'}(p_{1})} \epsilon^{\mu_{1}}(p_{1}) \right) \left(\sum_{\text{spin}} \overline{\epsilon^{\mu_{2}'}(p_{2})} \epsilon^{\mu_{2}}(p_{2}) \right) \left(\sum_{\text{spin}} \overline{\epsilon^{\mu_{3}'}(p_{3})} \epsilon^{\mu_{3}}(p_{3}) \right) \\ \left(\sum_{\text{spin}} \overline{\epsilon^{\nu_{1}'\nu_{2}'}(q)} \epsilon^{\nu_{1}\nu_{2}}(q) \right) \\ \left(\int_{\alpha'=1}^{n} \frac{d^{d}k_{\alpha'}'}{(2\pi)^{d}} \overline{\frac{T_{\mu_{1}'\mu_{2}'\mu_{3}'\nu_{1}'\nu_{2}'}(\{p_{i}\}, \{k_{j}'\})}{\prod_{\beta'=1}^{n_{\text{prop}}} D_{\beta'}} \right) \\ \left(\int_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{T_{\mu_{1}\mu_{2}\mu_{3}\nu_{1}\nu_{2}}(\{p_{i}\}, \{k_{j}\})}{\prod_{\beta=1}^{n_{\text{prop}}} D_{\beta}} \right)$$
(6)

Why NNLO in EDM? The Effective Action	on Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
000	00000000000000000	00	0000
	000000000	0000	
	000	00000	

COLA : Polarization Sum

- ► Choice of gauge :
 - Axial gauge for polarization sum of external gluons.
 - ▶ Feynman gauge for internal gluons ⇒ internal ghost contributions to loop are taken.

Polarization sum of gluons in axial gauge in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu}(p_j)} \epsilon^{\nu}(p_j) = -\eta^{\mu\nu} + \frac{p_j^{\mu} r_j^{\nu} + r_j^{\mu} p_j^{\nu}}{p \cdot r}$$

where, r_i^{μ} is reference momentum of corresponding gluon.

Polarization sum of spin-2 particles in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu\nu}(q)} \epsilon^{\rho\sigma}(q) = \left(\eta^{\mu\rho} - \frac{q^{\mu}q^{\rho}}{q \cdot q}\right) \left(\eta^{\nu\sigma} - \frac{q^{\nu}q^{\sigma}}{q \cdot q}\right) + \left(\eta^{\mu\sigma} - \frac{q^{\mu}q^{\sigma}}{q \cdot q}\right) \\ \left(\eta^{\nu\rho} - \frac{q^{\nu}q^{\rho}}{q \cdot q}\right) - \frac{2}{d-1} \left(\eta^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q \cdot q}\right) \left(\eta^{\rho\sigma} - \frac{q^{\rho}q^{\sigma}}{q \cdot q}\right)$$

COLA : Polarization Sum

- ► Choice of gauge :
 - Axial gauge for polarization sum of external gluons.
 - ▶ Feynman gauge for internal gluons ⇒ internal ghost contributions to loop are taken.
- > Polarization sum of gluons in axial gauge in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu}(p_j)} \epsilon^{\nu}(p_j) = -\eta^{\mu\nu} + \frac{p_j^{\mu} r_j^{\nu} + r_j^{\mu} p_j^{\nu}}{p \cdot r}$$

where, r_j^{μ} is reference momentum of corresponding gluon.

Polarization sum of spin-2 particles in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu\nu}(q)} \epsilon^{\rho\sigma}(q) = \left(\eta^{\mu\rho} - \frac{q^{\mu}q^{\rho}}{q.q}\right) \left(\eta^{\nu\sigma} - \frac{q^{\nu}q^{\sigma}}{q.q}\right) + \left(\eta^{\mu\sigma} - \frac{q^{\mu}q^{\sigma}}{q.q}\right) \\ \left(\eta^{\nu\rho} - \frac{q^{\nu}q^{\rho}}{q.q}\right) - \frac{2}{d-1} \left(\eta^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q.q}\right) \left(\eta^{\rho\sigma} - \frac{q^{\rho}q^{\sigma}}{q.q}\right)$$

COLA : Polarization Sum

- ► Choice of gauge :
 - Axial gauge for polarization sum of external gluons.
 - ▶ Feynman gauge for internal gluons ⇒ internal ghost contributions to loop are taken.
- Polarization sum of gluons in axial gauge in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu}(p_j)} \epsilon^{\nu}(p_j) = -\eta^{\mu\nu} + \frac{p_j^{\mu} r_j^{\nu} + r_j^{\mu} p_j^{\nu}}{p \cdot r}$$

where, r_i^{μ} is reference momentum of corresponding gluon.

Polarization sum of spin-2 particles in d-dimensions :

$$\sum_{\text{spin}} \overline{\epsilon^{\mu\nu}(q)} \epsilon^{\rho\sigma}(q) = \left(\eta^{\mu\rho} - \frac{q^{\mu}q^{\rho}}{q \cdot q}\right) \left(\eta^{\nu\sigma} - \frac{q^{\nu}q^{\sigma}}{q \cdot q}\right) + \left(\eta^{\mu\sigma} - \frac{q^{\mu}q^{\sigma}}{q \cdot q}\right) \\ \left(\eta^{\nu\rho} - \frac{q^{\nu}q^{\rho}}{q \cdot q}\right) - \frac{2}{d-1} \left(\eta^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q \cdot q}\right) \left(\eta^{\rho\sigma} - \frac{q^{\rho}q^{\sigma}}{q \cdot q}\right)$$

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ So,
$$\sum_{\text{spin}} \overline{\mathcal{M}_4^{(n)}} \mathcal{M}_4^{(l)}$$
 becomes

$$\int \prod_{\alpha'=1}^{n} \frac{d^d k'_{\alpha'}}{(2\pi)^d} \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot p_j, p_i \cdot k_j, k_i \cdot k_j, k'_i \cdot k'_j, k_i \cdot k'_j)}{\prod_{\beta=1}^{n_{\text{prop}}} D_{\beta} \prod_{\beta'=1}^{n_{\text{prop}}} D'_{\beta'}}$$

- Solve the # 2362 2-loop scalar integrals → problem is solved!!
 → Not a brilliant idea!
- ▶ Alternative : **exploit the symmetry**, if there is any!.
 - There is some symmetry!
 - Also, some identities can be devised!
 - \Rightarrow All of the integrals are not independent!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ So,
$$\sum_{\text{spin}} \overline{\mathcal{M}_4^{(n)}} \mathcal{M}_4^{(l)}$$
 becomes

$$\int \prod_{\alpha'=1}^{n} \frac{d^d k'_{\alpha'}}{(2\pi)^d} \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot p_j, p_i \cdot k_j, k_i \cdot k_j, k'_i \cdot k'_j, k_i \cdot k'_j)}{\prod_{\beta=1}^{n_{POP}} D_{\beta} \prod_{\beta'=1}^{n_{POP}} D_{\beta'}}$$

- ▶ Solve the # 2362 2-loop scalar integrals \rightsquigarrow problem is solved!!
 - \rightarrow Not a brilliant idea!
- Alternative : exploit the symmetry, if there is any!.
 - There is some symmetry!
 - Also, some identities can be devised!
 - \Rightarrow All of the integrals are not independent!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ So,
$$\sum_{\text{spin}} \overline{\mathcal{M}_4^{(n)}} \mathcal{M}_4^{(l)}$$
 becomes

$$\int \prod_{\alpha'=1}^{n} \frac{d^d k'_{\alpha'}}{(2\pi)^d} \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot p_j, p_i \cdot k_j, k_i \cdot k_j, k'_i \cdot k'_j, k_i \cdot k'_j)}{\prod_{\beta=1}^{n_{prop}} D_{\beta} \prod_{\beta'=1}^{n_{prop}} D_{\beta'}}$$

- Solve the # 2362 2-loop scalar integrals → problem is solved!!
 → Not a brilliant idea!
- Alternative : exploit the symmetry, if there is any!.
 - There is some symmetry!
 - Also, some identities can be devised!
 - \Rightarrow All of the integrals are not independent!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Reman
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ So,
$$\sum_{\text{spin}} \overline{\mathcal{M}_4^{(n)}} \mathcal{M}_4^{(l)}$$
 becomes

$$\int \prod_{\alpha'=1}^{n} \frac{d^d k'_{\alpha'}}{(2\pi)^d} \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot p_j, p_i \cdot k_j, k_i \cdot k_j, k'_i \cdot k'_j, k_i \cdot k'_j)}{\prod_{\beta=1}^{n_{Prop}} D_{\beta} \prod_{\beta'=1}^{n_{Prop}} D_{\beta'}}$$

- Solve the # 2362 2-loop scalar integrals → problem is solved!!
 → Not a brilliant idea!
- ▶ Alternative : exploit the symmetry, if there is any!.
 - There is some symmetry!
 - Also, some identities can be devised!
 - \Rightarrow All of the integrals are not independent!

COLA : Alternative Method

▶ Consider the terms involving loop momenta of $\sum_{spin} \overline{\mathcal{M}_4^{(0)}} \mathcal{M}_4^{(2)}$:

$$\int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot k_j, k_i \cdot k_j)}{\prod_{\beta=1}^{n_{\text{prop}}} D_{\beta}}$$

▶ For *l*-loops and n_{ileg} momenta :

$$\mathbf{n}_{SP} = l \cdot \mathbf{n}_{ileg} + {l \choose 2} + l = l \cdot \mathbf{n}_{ileg} + \frac{l(l+1)}{2}.$$

For $l = 2 \& n_{ileg} = 3$, $n_{SP} = 9$ $\rightsquigarrow k_1^2, k_2^2, k_1 \cdot k_2, k_1 \cdot p_1, k_1 \cdot p_2, k_1 \cdot p_3, k_2 \cdot p_1, k_2 \cdot p_2, k_2 \cdot p_3$ They appear with arbitrary powers n_{ρ} .

COLA : Alternative Method

• Consider the terms involving loop momenta of $\sum_{spin} \overline{\mathcal{M}_4^{(0)}} \mathcal{M}_4^{(2)}$:

$$\int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{\prod_{\rho=1}^{n_{SP}} S_{\rho}^{n_{\rho}}(p_i \cdot k_j, k_i \cdot k_j)}{\prod_{\beta=1}^{n_{\text{prop}}} D_{\beta}}$$

• For *l*-loops and n_{ileg} momenta :

$$\mathbf{n}_{SP} = l \cdot \mathbf{n}_{ileg} + {l \choose 2} + l = l \cdot \mathbf{n}_{ileg} + \frac{l(l+1)}{2}.$$

For $l = 2 \& n_{ileg} = 3$, $n_{SP} = 9$ $\rightsquigarrow k_1^2, k_2^2, k_1 \cdot k_2, k_1 \cdot p_1, k_1 \cdot p_2, k_1 \cdot p_3, k_2 \cdot p_1, k_2 \cdot p_2, k_2 \cdot p_3$ They appear with arbitrary powers n_{ρ} .

COLA : Propagator Representation of Integrals

- ▶ Step 5 : Classify the integrals into set of independent integrals
 ⇒ minimize the number of integrals to be computed.
 - Express every integral in terms of ONLY propagators

since there are $n_{SP} = 9$ independent SP, we need the same no. of different propagators (#9) for this representation.

2-loop diagram has n_{prop} no. of propagators (involving loop momenta). This can be max 7. Introduce #(9 - n_{prop}) propagators.

COLA : Propagator Representation of Integrals

- ▶ Step 5 : Classify the integrals into set of independent integrals
 ⇒ minimize the number of integrals to be computed.
 - Express every integral in terms of ONLY propagators

 \downarrow

since there are $n_{SP} = 9$ independent SP, we need the same no. of different propagators (#9) for this representation.

2-loop diagram has n_{prop} no. of propagators (involving loop momenta). This can be max 7. Introduce #(9 - n_{prop}) propagators.

COLA : Propagator Representation of Integrals

- ▶ Step 5 : Classify the integrals into set of independent integrals
 ⇒ minimize the number of integrals to be computed.
 - Express every integral in terms of ONLY propagators

 \downarrow

since there are $n_{SP} = 9$ independent SP, we need the same no. of different propagators (#9) for this representation.

2-loop diagram has n_{prop} no. of propagators (involving loop momenta). This can be max 7. Introduce #(9 - n_{prop}) propagators.

COLA : Propagator Representation of Integrals

▶ Consider an example :

$$I = \int \frac{d^{d}k_{1}}{(2\pi)^{d}} \frac{d^{d}k_{2}}{(2\pi)^{d}} \frac{1}{D_{1}D_{2}D_{3}D_{4}D_{5}D_{6}D_{7}} \\ \left\{ (k_{1}^{2})^{n_{1}} (k_{2}^{2})^{n_{2}} (k1 \cdot k_{2})^{n_{3}} (k1 \cdot p_{1})^{n_{4}} (k1 \cdot p_{2})^{n_{5}} (k1 \cdot p_{3})^{n_{6}} (k2 \cdot p_{1})^{n_{7}} (k2 \cdot p_{2})^{n_{8}} \\ (k2 \cdot p_{3})^{n_{9}} \right\}$$

Introduce $D_8 \& D_9$ s.t. they form a complete basis \Rightarrow expressible SPs in terms of D_1, \dots, D_9 :

$$I[a_1, a_2, \cdots, a_9] \equiv \int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{1}{D_1^{a_1} D_2^{a_2} \cdots D_9^{a_\xi}}$$

COLA : Propagator Representation of Integrals

▶ Consider an example :

$$I = \int \frac{d^{d}k_{1}}{(2\pi)^{d}} \frac{d^{d}k_{2}}{(2\pi)^{d}} \frac{1}{D_{1}D_{2}D_{3}D_{4}D_{5}D_{6}D_{7}} \\ \left\{ (k_{1}^{2})^{n_{1}} (k_{2}^{2})^{n_{2}} (k1 \cdot k_{2})^{n_{3}} (k1 \cdot p_{1})^{n_{4}} (k1 \cdot p_{2})^{n_{5}} (k1 \cdot p_{3})^{n_{6}} (k2 \cdot p_{1})^{n_{7}} (k2 \cdot p_{2})^{n_{8}} \\ (k2 \cdot p_{3})^{n_{9}} \right\}$$

Introduce $D_8 \& D_9$ s.t. they form a complete basis \Rightarrow expressible SPs in terms of D_1, \dots, D_9 :

$$I[a_1, a_2, \cdots, a_9] \equiv \int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{1}{D_1^{a_1} D_2^{a_2} \cdots D_9^{a_9}}$$

COLA : Propagator Representation of Integrals

▶ Consider an example :

$$I = \int \frac{d^{d}k_{1}}{(2\pi)^{d}} \frac{d^{d}k_{2}}{(2\pi)^{d}} \frac{1}{D_{1}D_{2}D_{3}D_{4}D_{5}D_{6}D_{7}} \\ \left\{ (k_{1}^{2})^{n_{1}} (k_{2}^{2})^{n_{2}} (k1 \cdot k_{2})^{n_{3}} (k1 \cdot p_{1})^{n_{4}} (k1 \cdot p_{2})^{n_{5}} (k1 \cdot p_{3})^{n_{6}} (k2 \cdot p_{1})^{n_{7}} (k2 \cdot p_{2})^{n_{8}} \\ (k2 \cdot p_{3})^{n_{9}} \right\}$$

Introduce $D_8 \& D_9$ s.t. they form a complete basis \Rightarrow expressible SPs in terms of D_1, \dots, D_9 :

$$I[a_1, a_2, \cdots, a_9] \equiv \int \frac{d^d k_1}{(2\pi)^d} \frac{d^d k_2}{(2\pi)^d} \frac{1}{D_1^{a_1} D_2^{a_2} \cdots D_9^{a_9}}$$

COLA : Propagator Representation of Integrals

A possible choice of basis :

$$\begin{split} D_1 &= k_1^2 \\ D_2 &= k_2^2 \\ D_3 &= (k_1 - k_2)^2 \\ D_4 &= (k_2 - p_1)^2 \\ D_5 &= (k_1 - p_1 - p_2)^2 \\ D_6 &= (k_2 - p_1 - p_2)^2 \\ D_7 &= (k_1 - p_1 - p_2 - p_3)^2 \\ D_8 &= (k_1 - p_1)^2 \\ D_9 &= (k_2 - p_1 - p_2 - p_3)^2 \end{split}$$

Indeed SPs are expressible in terms of these props and kinematical invariants:

$$k1.k1 = D_1$$

$$k2.k2 = D_2$$

$$k1.k2 = (1/2) * (D_1 + D_2 - D_3)$$

$$k1.p1 = (1/2) * (D_1 - D_8)$$

$$k1.p2 = (1/2) * (D_8 - D_5 + s)$$

$$k1.p3 = (1/2) * (D_5 - D_7 + t + u)$$

$$k2.p1 = (1/2) * (D_2 - D_4)$$

$$k2.p2 = (1/2) * (D_4 - D_6 + s)$$

$$k2.p3 = (1/2) * (D_6 - D_9 + t + u)$$

COLA : Propagator Representation of Integrals

A possible choice of basis :

$$\begin{split} D_1 &= k_1^2 \\ D_2 &= k_2^2 \\ D_3 &= (k_1 - k_2)^2 \\ D_4 &= (k_2 - p_1)^2 \\ D_5 &= (k_1 - p_1 - p_2)^2 \\ D_6 &= (k_2 - p_1 - p_2)^2 \\ D_7 &= (k_1 - p_1 - p_2 - p_3)^2 \\ D_8 &= (k_1 - p_1)^2 \\ D_9 &= (k_2 - p_1 - p_2 - p_3)^2 \end{split}$$

Indeed SPs are expressible in terms of these props and kinematical invariants:

$$k1.k1 = D_1$$

$$k2.k2 = D_2$$

$$k1.k2 = (1/2) * (D_1 + D_2 - D_3)$$

$$k1.p1 = (1/2) * (D_1 - D_8)$$

$$k1.p2 = (1/2) * (D_8 - D_5 + s)$$

$$k1.p3 = (1/2) * (D_5 - D_7 + t + u)$$

$$k2.p1 = (1/2) * (D_2 - D_4)$$

$$k2.p2 = (1/2) * (D_4 - D_6 + s)$$

$$k2.p3 = (1/2) * (D_6 - D_9 + t + u)$$

COLA : Propagator Representation of Integrals

A possible choice of basis :

$$D_1 = k_1^2$$

$$D_2 = k_2^2$$

$$D_3 = (k_1 - k_2)^2$$

$$D_4 = (k_2 - p_1)^2$$

$$D_5 = (k_1 - p_1 - p_2)^2$$

$$D_6 = (k_2 - p_1 - p_2)^2$$

$$D_7 = (k_1 - p_1 - p_2 - p_3)^2$$

$$D_8 = (k_1 - p_1)^2$$

$$D_9 = (k_2 - p_1 - p_2 - p_3)^2$$

Indeed SPs are expressible in terms of these props and kinematical invariants:

$$k1.k1 = D_1$$

$$k2.k2 = D_2$$

$$k1.k2 = (1/2) * (D_1 + D_2 - D_3)$$

$$k1.p1 = (1/2) * (D_1 - D_8)$$

$$k1.p2 = (1/2) * (D_8 - D_5 + s)$$

$$k1.p3 = (1/2) * (D_5 - D_7 + t + u)$$

$$k2.p1 = (1/2) * (D_2 - D_4)$$

$$k2.p2 = (1/2) * (D_4 - D_6 + s)$$

$$k2.p3 = (1/2) * (D_6 - D_9 + t + u)$$

Basis - topology : a diagram containing **ALL** the propagators of a basis. For the above example :

▶ For #2362 diagrams we should have #2362 basis !!? ~ Fortunately the answer is NO!

Basis - topology : a diagram containing **ALL** the propagators of a basis. For the above example :

▶ For #2362 diagrams we should have #2362 basis !!?

 \rightarrow Fortunately the answer is NO!

Basis - topology : a diagram containing **ALL** the propagators of a basis. For the above example :

For #2362 diagrams we should have #2362 basis !!? → Fortunately the answer is NO!

Integrals are invariant w.r.t. shifts in loop momenta

 \rightsquigarrow all the 2362 2-loop integrals can be cast to belong to only TWO basis-topologies !

$$\underbrace{Example}_{\{k_1, k_2, k_1 + k_2, k_2 + p_1 + p_2, k_1 + k_2 + p_1 + p_2, k_1 + k_2 + p_1 + p_2, k_1 - k_2, k_1 - k_2 \neq k_2 \rightarrow k_2 - p_1 - p_2 \\ \{k_1 - k_2, k_2 - p_1 - p_2, k_1 - p_1 - p_2, k_2, k_1\} \\ \rightsquigarrow \{D_1, D_2, D_3, D_6, D_7\}$$

 \in above basis i.e. **sub-topology** of the above basis-topology.

Integrals are invariant w.r.t. shifts in loop momenta

 \rightsquigarrow all the 2362 2-loop integrals can be cast to belong to only TWO basis-topologies !

 $\underline{Example} : \text{Suppose a 2-loop diagram contains} \\ \{ k_1, k_2, k_1 + k_2, k_2 + p_1 + p_2, k_1 + k_2 + p_1 + p_2 \} \\ k_1 \rightarrow k_1 - k_2 \quad \Downarrow \quad k_2 \rightarrow k_2 - p_1 - p_2 \\ \{ k_1 - k_2, k_2 - p_1 - p_2, k_1 - p_1 - p_2, k_2, k_1 \} \\ \rightsquigarrow \{ D_1, D_2, D_3, D_6, D_7 \} \end{cases}$

 \in above basis i.e. **sub-topology** of the above basis-topology.

Integrals are invariant w.r.t. shifts in loop momenta

 \rightarrow all the 2362 2-loop integrals can be cast to belong to only TWO basis-topologies !

k1+k2-

p123

k2+p12

 \in above basis i.e. **sub-topology** of the above basis-topology.

Why NNLO in EDM? The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
000	000000000000000000000000000000000000000	00	0000
	000000000	0000	
	000	00000	

▶ The other basis-topology:

\rightsquigarrow non-planar

 $\rightsquigarrow k_1, k_2, (k_1 - k_2), (k_1 - p_1), (k_2 - p_1), (k_1 - k_2 - p_3), (k_1 - p_1 - p_2), (k_2 - p_1 - p_2), (k_1 - p_1 - p_2 - p_3).$

COLA : Full Set of Basis(2-loop)

Full basis for 2-loop 4-leg processes [1 massive] :

- **1** $k_1, k_2, (k_1 k_2), (k_1 p_1), (k_2 p_1), (k_1 p_1 p_2), (k_2 p_1 p_2), (k_1 p_1 p_2 p_3), (k_2 p_1 p_2 p_3).$
- $[2] \{ p_1 \to p_2, p_2 \to p_3, p_3 \to p_1 \}$
- **3** $\{p_1 \to p_3, p_2 \to p_1, p_3 \to p_2\}$

 \rightsquigarrow Planar / basis-topology 1 (2-loop).

 $= k_1, k_2, (k_1 - k_2), (k_1 - p_1), (k_2 - p_1), (k_1 - k_2 - p_3), (k_1 - p_1 - p_2), (k_2 - p_1 - p_2), (k_1 - p_1 - p_2 - p_3).$

- **5** $\{p_1 o p_2, p_2 o p_3, p_3 o p_1\}$
- 6 $\{p_1 o p_3, p_2 o p_1, p_3 o p_2\}$

 \rightarrow Non-planar / basis-topology 2 (2-loop).

COLA : Full Set of Basis(2-loop)

Full basis for 2-loop 4-leg processes [1 massive] :

- **1** $k_1, k_2, (k_1 k_2), (k_1 p_1), (k_2 p_1), (k_1 p_1 p_2), (k_2 p_1 p_2), (k_1 p_1 p_2 p_3), (k_2 p_1 p_2 p_3).$
- $[2 \ \{p_1 \to p_2, p_2 \to p_3, p_3 \to p_1\}\]$
- **3** $\{p_1 \to p_3, p_2 \to p_1, p_3 \to p_2\}$

 \rightsquigarrow Planar / basis-topology 1 (2-loop).

 $\begin{array}{l} \blacksquare \ k_1, \ k_2, \ (k_1 - k_2), \ (k_1 - p_1), \ (k_2 - p_1), \ (k_1 - k_2 - p_3), \ (k_1 - p_1 - p_2), \ (k_2 - p_1 - p_2), \ (k_1 - p_1 - p_2 - p_3). \end{array} \\ \\ \blacksquare \ \left\{ p_1 \rightarrow p_2, p_2 \rightarrow p_3, p_3 \rightarrow p_1 \right\} \\ \blacksquare \ \left\{ p_1 \rightarrow p_3, p_2 \rightarrow p_1, p_3 \rightarrow p_2 \right\} \end{array}$

 \rightsquigarrow Non-planar / basis-topology 2 (2-loop).

COLA : Full Set of Basis(1-loop)

▶ Full basis for **1-loop** 4-leg processes [1 massive] :

$$\begin{array}{l} \blacksquare \ k_1, \ (k_1 - p_1), \ (k_1 - p_1 - p_2), \ (k_1 - p_1 - p_2 - p_3) \\ \\ \blacksquare \ \{p_1 \rightarrow p_2, p_2 \rightarrow p_3, p_3 \rightarrow p_1\} \\ \\ \blacksquare \ \{p_1 \rightarrow p_3, p_2 \rightarrow p_1, p_3 \rightarrow p_2\} \end{array}$$

p123	k1	p1
k1-p123		k1-p1
p3	k1-p12	p2

\rightarrow planar.

- One of the most crucial part of this method.
- ▶ The basis are **not unique**.

COLA : Full Set of Basis(1-loop)

▶ Full basis for **1-loop** 4-leg processes [1 massive] :

$$\begin{array}{l} \blacksquare \ k_1, \ (k_1 - p_1), \ (k_1 - p_1 - p_2), \ (k_1 - p_1 - p_2 - p_3) \\ \\ \blacksquare \ \{p_1 \rightarrow p_2, p_2 \rightarrow p_3, p_3 \rightarrow p_1\} \\ \\ \blacksquare \ \{p_1 \rightarrow p_3, p_2 \rightarrow p_1, p_3 \rightarrow p_2\} \end{array}$$

p123	k1	pl
k1-p123	•	k1-p1
p3	k1-p12	p2

 \rightarrow planar.

- One of the most crucial part of this method.
- ▶ The basis are **not unique**.

COLA : Full Set of Basis(1-loop)

▶ Full basis for **1-loop** 4-leg processes [1 massive] :

p123	K1	p1
k1-p123		k1-p1
p3	k1-p12	p2

 \rightarrow planar.

- One of the most crucial part of this method.
- ▶ The basis are **not unique**.

COLA : Mini Summanry

Mini Summary

- Computation of multiloop amplitude is reduced to computation of scalar integrals.
- \blacksquare All the scalar integrals (diagrams) are organized to belong to any of the above set of basis.
- Still large number of scalar integrals with different set of indices ~> impractical to solve all!
- ▶ Identities for each topology ~→ further reduction.
 - Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov]
 - **2** Lorentz invariant (LIs) identities [Gehrmann-Remiddi]
- At the end we will have
 - only 2 types of 1-loop integrals!
 - only 21 types of 2-loop integrals!
 - [Apart from permutations of external momenta]

Mini Summary

- Computation of multiloop amplitude is reduced to computation of scalar integrals.
- **2** All the scalar integrals (diagrams) are organized to belong to any of the above set of basis.
- Still large number of scalar integrals with different set of indices ~> impractical to solve all!
- ▶ Identities for each topology ~→ further reduction.
 - Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov]
 - **2** Lorentz invariant (LIs) identities [Gehrmann-Remiddi]
- At the end we will have
 - only 2 types of 1-loop integrals!
 - only 21 types of 2-loop integrals!
 - [Apart from permutations of external momenta]

Mini Summary

- Computation of multiloop amplitude is reduced to computation of scalar integrals.
- **2** All the scalar integrals (diagrams) are organized to belong to any of the above set of basis.
- Still large number of scalar integrals with different set of indices ~> impractical to solve all!
- ▶ Identities for each topology ~→ further reduction.
 - Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov]
 - **2** Lorentz invariant (LIs) identities [Gehrmann-Remiddi]
- At the end we will have
 - only 2 types of 1-loop integrals!
 - only 21 types of 2-loop integrals!
 - [Apart from permutations of external momenta]

Mini Summary

- Computation of multiloop amplitude is reduced to computation of scalar integrals.
- **2** All the scalar integrals (diagrams) are organized to belong to any of the above set of basis.
- Still large number of scalar integrals with different set of indices ~> impractical to solve all!
- \blacktriangleright Identities for each topology \rightsquigarrow further reduction.
 - Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov]
 - **2** Lorentz invariant (LIs) identities [Gehrmann-Remiddi]
- At the end we will have
 - only 2 types of 1-loop integrals!
 - only 21 types of 2-loop integrals!
 - [Apart from permutations of external momenta]

Mini Summary

- Computation of multiloop amplitude is reduced to computation of scalar integrals.
- **2** All the scalar integrals (diagrams) are organized to belong to any of the above set of basis.
- Still large number of scalar integrals with different set of indices ~> impractical to solve all!
- \blacktriangleright Identities for each topology \rightsquigarrow further reduction.
 - Integraltion-by-parts (IBPs) identities [Chetyrkin-Tkachov]
 - **2** Lorentz invariant (LIs) identities [Gehrmann-Remiddi]
- ▶ At the end we will have
 - only 2 types of 1-loop integrals!
 - only 21 types of 2-loop integrals!

[Apart from permutations of external momenta]

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000000000000000000000000	00	0000
		000	00000	

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals

Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Conclusions and Remarks

COLA : Integration-by-parts identities (IBPs)

▶ Generalization of **Gauss' divergence theorem** in d-dimensions.

- Any d-dimensional integral is convergent.
- Necessary condition for convergence : surface terms vanish

$$\int \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\partial}{\partial k_{j,\mu}} \left(v^{\mu} f_{scalar} \right) = 0 \tag{7}$$

where,

$$f_{scalar} = \left(\frac{1}{\prod_{i=1}^{n_{sp}} D_i^{a_i}}\right)$$
 and v^{μ} is loop or external momenta.

▶ Integrals remain within the same topology and its sub-topologies* due to differentiation

 \rightsquigarrow IBP of a topology relate integrals belonging to that and/or its sub-topologies.

▶ With n_{ext} independent external momenta, there are $l(l + n_{ext})$ IBP identities for each set of indices $\{a_1, a_2, \cdots\}$.

- ▶ Generalization of **Gauss' divergence theorem** in d-dimensions.
- Any d-dimensional integral is **convergent**.
- Necessary condition for convergence : surface terms vanish

$$\int \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\partial}{\partial k_{j,\mu}} \left(v^{\mu} f_{scalar} \right) = 0 \tag{7}$$

where,

$$f_{scalar} = \left(\frac{1}{\prod_{i=1}^{n_{sp}} D_i^{a_i}}\right)$$
 and v^{μ} is loop or external momenta.

▶ Integrals remain within the same topology and its sub-topologies* due to differentiation

 \rightsquigarrow IBP of a topology relate integrals belonging to that and/or its sub-topologies.

▶ With n_{ext} independent external momenta, there are $l(l + n_{ext})$ IBP identities for each set of indices $\{a_1, a_2, \cdots\}$.

- ▶ Generalization of **Gauss' divergence theorem** in d-dimensions.
- Any d-dimensional integral is **convergent**.
- ▶ Necessary condition for convergence : surface terms vanish

$$\int \prod_{\alpha=1}^{l} \frac{d^d k_{\alpha}}{(2\pi)^d} \frac{\partial}{\partial k_{j,\mu}} \left(v^{\mu} f_{scalar} \right) = 0$$
(7)

where,

$$f_{scalar} = \left(\frac{1}{\prod_{i=1}^{n_{sp}} D_i^{a_i}}\right)$$
 and v^{μ} is loop or external momenta.

 Integrals remain within the same topology and its sub-topologies* due to differentiation

 \rightsquigarrow IBP of a topology relate integrals belonging to that and/or its sub-topologies.

▶ With n_{ext} independent external momenta, there are $l(l + n_{ext})$ IBP identities for each set of indices $\{a_1, a_2, \cdots\}$.

- ▶ Generalization of **Gauss' divergence theorem** in d-dimensions.
- Any d-dimensional integral is **convergent**.
- ▶ Necessary condition for convergence : surface terms vanish

$$\int \prod_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{\partial}{\partial k_{j,\mu}} \left(v^{\mu} f_{scalar} \right) = 0$$
(7)

where,

$$f_{scalar} = \left(\frac{1}{\prod_{i=1}^{n_{sp}} D_i^{a_i}}\right)$$
 and v^{μ} is loop or external momenta.

▶ Integrals remain within the same topology and its sub-topologies* due to differentiation

\rightsquigarrow IBP of a topology relate integrals belonging to that and/or its sub-topologies.

With n_{ext} independent external momenta, there are $l(l + n_{ext})$ IBP identities for each set of indices $\{a_1, a_2, \cdots\}$.

- ▶ Generalization of **Gauss' divergence theorem** in d-dimensions.
- Any d-dimensional integral is **convergent**.
- ▶ Necessary condition for convergence : surface terms vanish

$$\int \prod_{\alpha=1}^{l} \frac{d^{d}k_{\alpha}}{(2\pi)^{d}} \frac{\partial}{\partial k_{j,\mu}} \left(v^{\mu} f_{scalar} \right) = 0$$
(7)

where,

$$f_{scalar} = \left(\frac{1}{\prod_{i=1}^{n_{sp}} D_i^{a_i}}\right)$$
 and v^{μ} is loop or external momenta.

▶ Integrals remain within the same topology and its sub-topologies* due to differentiation

\rightsquigarrow IBP of a topology relate integrals belonging to that and/or its sub-topologies.

▶ With n_{ext} independent external momenta, there are $l(l + n_{ext})$ IBP identities for each set of indices $\{a_1, a_2, \cdots\}$.

► Example: Topology ~ 1-loop box (1-loop basis-topology)

with $D_1 \equiv k_1$, $D_2 \equiv (k_1 - p_1)$, $D_3 \equiv (k_1 - p_1 - p_2)$, $D_4 \equiv (k_1 - p_1 - p_2 - p_3)$ **4 IBP** identities for each set of indices $\{a_1, a_2, a_3, a_4\}$.

► Example: Topology ~ 1-loop box (1-loop basis-topology)

with $D_1 \equiv k_1$, $D_2 \equiv (k_1 - p_1)$, $D_3 \equiv (k_1 - p_1 - p_2)$, $D_4 \equiv (k_1 - p_1 - p_2 - p_3)$ **4 IBP** identities for each set of indices $\{a_1, a_2, a_3, a_4\}$.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000000000000000000000000000	00	0000
		000	00000	

 $\blacksquare \text{ For } v^{\mu} = p_{1\mu}, \text{ IBP } \rightsquigarrow$

$$\begin{split} 0 &= \int \frac{d^d k}{(2\pi)^d} \quad \left[\begin{array}{c} a_1(-1+\frac{D_2}{D_1}) + a_2(1-\frac{D_1}{D_2}) - a_3(\frac{D_1}{D_3} - \frac{D_2}{D_3} - \frac{s}{D_3}) \\ & -a_4(\frac{D_1}{D_4} - \frac{D_2}{D_4} - \frac{s}{D_4} - \frac{u}{D_4}) \end{array} \right] \frac{1}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4}} \end{split}$$

$$\Rightarrow \qquad a_1(-1+1^+2^-) + a_2(1-2^+1^-) - a_3(3^+1^- - 3^+2^- - s \, 3^+) \\ -a_4(4^+1^- - 4^+2^- - s \, 4^+ - u \, 4^+) = 0$$

<u>Convention</u>: $1^+2^-I[a_1, a_2, a_3, a_4] = I[a_1 + 1, a_2 - 1, a_3, a_4]$

Similarly for $p_{2\mu}, p_{3\mu}, k_{\mu}$.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000000000000000000000000000	00	0000
		000	00000	

 $\blacksquare \text{ For } v^{\mu} = p_{1\mu}, \text{ IBP } \rightsquigarrow$

$$\begin{split} 0 &= \int \frac{d^d k}{(2\pi)^d} \quad \left[\begin{array}{c} a_1(-1+\frac{D_2}{D_1}) + a_2(1-\frac{D_1}{D_2}) - a_3(\frac{D_1}{D_3} - \frac{D_2}{D_3} - \frac{s}{D_3}) \\ & -a_4(\frac{D_1}{D_4} - \frac{D_2}{D_4} - \frac{s}{D_4} - \frac{u}{D_4}) \end{array} \right] \frac{1}{D_1^{a_1} D_2^{a_2} D_3^{a_3} D_4^{a_4}} \end{split}$$

$$\Rightarrow \quad a_1(-1+1^+2^-) + a_2(1-2^+1^-) - a_3(3^+1^- - 3^+2^- - s \, 3^+) \\ -a_4(4^+1^- - 4^+2^- - s \, 4^+ - u \, 4^+) = 0$$

<u>Convention</u>: $1^{+}2^{-}I[a_1, a_2, a_3, a_4] = I[a_1 + 1, a_2 - 1, a_3, a_4]$ Similarly for $p_{2\mu}, p_{3\mu}, k_{\mu}$.

■ Clearly IBP gives recursion relations among the integrals of a topology and/or its sub-topologies.

 \Rightarrow Only 3 independent integrals!, called master integrals (MIs).

■ First two belong to a sub-topology (bubble)* :

and the last one belongs to the topology itself.

■ Clearly IBP gives recursion relations among the integrals of a topology and/or its sub-topologies.

 \Rightarrow Only 3 independent integrals!, called master integrals (MIs).

 $I[1,0,1,0] \to \{k_1,k_1-p_1-p_2\}$ $I[1,0,0,1] \to \{k_1,k_1-p_1-p_2-p_3\}$ $I[1,1,1,1] \to \{k_1,k_1-p_1,k_1-p_1-p_2,k_1-p_1-p_2-p_3\}$

 $[1,1,1,1] \quad (\alpha_1,\alpha_1 \quad p_1,\alpha_1 \quad p_1 \quad p_2,\alpha_1 \quad p_1$

■ First two belong to a sub-topology (bubble)* :

and the last one belongs to the topology itself.

■ Clearly IBP gives recursion relations among the integrals of a topology and/or its sub-topologies.

 \Rightarrow Only 3 independent integrals!, called master integrals (MIs).

$$\begin{split} &I[1,0,1,0] \to \{k_1,k_1-p_1-p_2\} \\ &I[1,0,0,1] \to \{k_1,k_1-p_1-p_2-p_3\} \\ &I[1,1,1,1] \to \{k_1,k_1-p_1,k_1-p_1-p_2,k_1-p_1-p_2-p_3\} \end{split}$$

■ First two belong to a sub-topology (bubble)* :

and the last one belongs to the topology itself.

■ Clearly IBP gives recursion relations among the integrals of a topology and/or its sub-topologies.

 \Rightarrow Only 3 independent integrals!, called master integrals (MIs).

$$\begin{split} &I[1,0,1,0] \to \{k_1,k_1-p_1-p_2\} \\ &I[1,0,0,1] \to \{k_1,k_1-p_1-p_2-p_3\} \\ &I[1,1,1,1] \to \{k_1,k_1-p_1,k_1-p_1-p_2,k_1-p_1-p_2-p_3\} \end{split}$$

■ First two belong to a sub-topology (bubble)* :

and the last one belongs to the topology itself.

■ Clearly IBP gives recursion relations among the integrals of a topology and/or its sub-topologies.

 \Rightarrow Only 3 independent integrals!, called master integrals (MIs).

$$\begin{split} &I[1,0,1,0] \to \{k_1,k_1-p_1-p_2\} \\ &I[1,0,0,1] \to \{k_1,k_1-p_1-p_2-p_3\} \\ &I[1,1,1,1] \to \{k_1,k_1-p_1,k_1-p_1-p_2,k_1-p_1-p_2-p_3\} \end{split}$$

■ First two belong to a sub-topology (bubble)* :

and the last one belongs to the topology itself.

COLA : Lorentz invariance identities (LIs)

Scalar loop integrals are Lorentz scalars :

$$p_i^{\mu} \to p_i^{\mu} + \delta p_i^{\mu} = p_i^{\mu} + \omega^{\mu\nu} p_{\nu} , \quad \text{with} \quad \omega^{\mu\nu} = -\omega^{\nu\mu}$$
$$I(p_i + \delta p_i) = I(p_i) + \omega^{\mu\nu} \sum_j p_{j,\nu} \frac{\partial}{\partial p_j^{\mu}} I(p_i) = I(p_i)$$

• Anti-symmetry of $\omega^{\mu\nu}$ gives

$$\sum_{i} p_{i,\left[\mu\right]} \frac{\partial}{\partial p_{i}^{\nu]}} I(p_{i}) = 0$$

• Multiply anti-symmetric combination of $p_j^{\mu} p_k^{\nu}$ to get scalar relations among the scalar integrals:

$$p_j^{[\mu} p_k^{\nu]} \sum_i p_{i,[\mu} \frac{\partial}{\partial p_i^{\nu]}} I(p_i) = 0$$

COLA : Lorentz invariance identities (LIs)

Scalar loop integrals are Lorentz scalars :

$$p_i^{\mu} \to p_i^{\mu} + \delta p_i^{\mu} = p_i^{\mu} + \omega^{\mu\nu} p_{\nu} , \quad \text{with} \quad \omega^{\mu\nu} = -\omega^{\nu\mu}$$
$$I(p_i + \delta p_i) = I(p_i) + \omega^{\mu\nu} \sum_j p_{j,\nu} \frac{\partial}{\partial p_j^{\mu}} I(p_i) = I(p_i)$$

• Anti-symmetry of $\omega^{\mu\nu}$ gives

$$\sum_{i} p_{i,[\mu} \frac{\partial}{\partial p_i^{\nu]}} I(p_i) = 0$$

• Multiply anti-symmetric combination of $p_j^{\mu} p_k^{\nu}$ to get scalar relations among the scalar integrals:

$$p_j^{[\mu} p_k^{\nu]} \sum_i p_{i,[\mu} \frac{\partial}{\partial p_i^{\nu]}} I(p_i) = 0$$

COLA : Lorentz invariance identities (LIs)

Scalar loop integrals are Lorentz scalars :

$$p_i^{\mu} \to p_i^{\mu} + \delta p_i^{\mu} = p_i^{\mu} + \omega^{\mu\nu} p_{\nu} , \quad \text{with} \quad \omega^{\mu\nu} = -\omega^{\nu\mu}$$
$$I(p_i + \delta p_i) = I(p_i) + \omega^{\mu\nu} \sum_j p_{j,\nu} \frac{\partial}{\partial p_j^{\mu}} I(p_i) = I(p_i)$$

• Anti-symmetry of $\omega^{\mu\nu}$ gives

$$\sum_{i} p_{i,[\mu} \frac{\partial}{\partial p_i^{\nu]}} I(p_i) = 0$$

Multiply anti-symmetric combination of p^µ_j p^ν_k to get scalar relations among the scalar integrals:

$$p_j^{[\mu} p_k^{\nu]} \sum_i p_{i,[\mu} \frac{\partial}{\partial p_i^{\nu]}} I(p_i) = 0$$

Why NNLO in EDM? The Effective Ac	tion Calculation of Loop Amplitude	e Renormalization	Conclusions and Remai
000	00000000000000000	00	0000
	0000000000	0000	
	000	00000	

COLA: LIs

Example : 4-pt functions

$$p_{1}^{[\mu}p_{2}^{\nu]}\sum_{i=1}^{3}p_{i,[\mu}\frac{\partial}{\partial p_{i}^{\nu]}}I(p_{i})=0$$
$$p_{2}^{[\mu}p_{3}^{\nu]}\sum_{i=1}^{3}p_{i,[\mu}\frac{\partial}{\partial p_{i}^{\nu]}}I(p_{i})=0$$
$$p_{1}^{[\mu}p_{3}^{\nu]}\sum_{i=1}^{3}p_{i,[\mu}\frac{\partial}{\partial p_{i}^{\nu]}}I(p_{i})=0$$

The LI identities always can be represented as a linear combination of the IBP identities. . LIs do not bring any information additional to that contained in the IBP identities, and therefore, can be discarded! Though they help to make the process faster.
[R. N. Lee]

Why NNLO in EDM? The Effective Ac	tion Calculation of Loop Amplitude	e Renormalization	Conclusions and Remai
000	00000000000000000	00	0000
	0000000000	0000	
	000	00000	

COLA: LIs

Example : 4-pt functions

$$p_{1}^{[\mu} p_{2}^{\nu]} \sum_{i=1}^{3} p_{i,[\mu} \frac{\partial}{\partial p_{i}^{\nu]}} I(p_{i}) = 0$$
$$p_{2}^{[\mu} p_{3}^{\nu]} \sum_{i=1}^{3} p_{i,[\mu} \frac{\partial}{\partial p_{i}^{\nu]}} I(p_{i}) = 0$$
$$p_{1}^{[\mu} p_{3}^{\nu]} \sum_{i=1}^{3} p_{i,[\mu} \frac{\partial}{\partial p_{i}^{\nu]}} I(p_{i}) = 0$$

▶ The LI identities always can be represented as a linear combination of the IBP identities. . LIs do not bring any information additional to that contained in the IBP identities, and therefore, can be discarded! Though they help to make the process faster.

[R. N. Lee]

COLA : Implementation of Identities in Computer

▶ Implemented IBPs and LIs in computer following some algorith :

AIR FIRE REDUZE LiteRed* - we have used this.

- For $h^* \to g(p_1) \ g(p_2) \ g(p_3)$
 - ▶ 1-loop :
 - No. of **diag.** 108

• No. of zero diag. due to color algebra & momentum dependence: 19

 \rightsquigarrow non-zero 89.

- All \in planar basis-topology (1-loop box).
- $IBPs + LIs \Rightarrow ONLY 2$ planar topologies of master integrals!

- For $h^* \to g(p_1) \ g(p_2) \ g(p_3)$
 - ▶ 1-loop :
 - No. of **diag.** 108

• No. of zero diag. due to color algebra & momentum dependence: 19

- \rightsquigarrow non-zero 89.
- All \in planar basis-topology (1-loop box).
- $IBPs + LIs \Rightarrow ONLY 2$ planar topologies of master integrals!

For $h^* \to g(p_1) \ g(p_2) \ g(p_3)$

- ▶ 1-loop :
 - No. of **diag.** 108

• No. of zero diag. due to color algebra & momentum dependence: 19

 \rightsquigarrow non-zero 89.

• All \in planar basis-topology (1-loop box).

• $IBPs + LIs \Rightarrow ONLY 2$ planar topologies of master integrals!

For $h^* \to g(p_1) \ g(p_2) \ g(p_3)$

- ▶ 1-loop :
 - No. of **diag.** 108

• No. of zero diag. due to color algebra & momentum dependence: 19

- \rightsquigarrow non-zero 89.
- All \in planar basis-topology (1-loop box).
- $IBPs + LIs \Rightarrow ONLY 2$ planar topologies of master integrals!

For $h^* \to g(p_1) \ g(p_2) \ g(p_3)$

- ▶ 1-loop :
 - No. of **diag.** 108

• No. of zero diag. due to color algebra & momentum dependence: 19

- \rightsquigarrow non-zero 89.
- All \in planar basis-topology (1-loop box).
- $IBPs + LIs \Rightarrow ONLY 2$ planar topologies of master integrals!

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000000000000000000000000	00 0000 00000	0000

- ▶ 2-loop :
 - No. of **diag.** 2362

No. of zero diag. due to color & momentum dependence: 427
 → non-zero 1935.

• 1863 \in planar basis-topology (basis-topology 1) and

 $72 \in \text{non-planar basis-topology (basis-topology 2)}.$

• $IBPs + LIs \Rightarrow ONLY 16$ planar topologies and 5 non-planar topologies of master integrals!

- ▶ 2-loop :
 - No. of **diag.** 2362

No. of zero diag. due to color & momentum dependence: 427
 → non-zero 1935.

• 1863 \in planar basis-topology (basis-topology 1) and

 $72 \in \text{non-planar basis-topology (basis-topology 2)}.$

• $IBPs + LIs \Rightarrow ONLY 16$ planar topologies and 5 non-planar topologies of master integrals!

Why NNLO in EDM? The Effective Action Calculation of Loop Amplitude Renormalization Conclusions and Remar

COLA : IBPs + LIs

- ▶ 2-loop :
 - No. of **diag.** 2362

No. of zero diag. due to color & momentum dependence: 427
 → non-zero 1935.

• 1863 \in planar basis-topology (basis-topology 1)

and

$72 \in \text{non-planar basis-topology (basis-topology 2)}.$

• $IBPs + LIs \Rightarrow ONLY 16$ planar topologies and 5 non-planar topologies of master integrals!

- ▶ 2-loop :
 - No. of **diag.** 2362

No. of zero diag. due to color & momentum dependence: 427
 → non-zero 1935.

• 1863 \in planar basis-topology (basis-topology 1) and

 $72 \in \text{non-planar basis-topology (basis-topology 2)}.$

• $IBPs + LIs \Rightarrow ONLY 16$ planar topologies and 5 non-planar topologies of master integrals!

- ▶ 2-loop :
 - No. of **diag.** 2362

No. of zero diag. due to color & momentum dependence: 427
 → non-zero 1935.

• 1863 \in planar basis-topology (basis-topology 1) and

 $72 \in \text{non-planar basis-topology (basis-topology 2)}.$

- $IBPs + LIs \Rightarrow ONLY 16$ planar topologies and 5 non-planar topologies of master integrals!
- By permuting the external momenta of these topologies, the set of final integrals can be obtained.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	00000000000000000000000000000000000000	00 0000 00000	0000

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Conclusions and Remarks
COLA : Planar Master-Topologies for $\mathbf{h}^* \to ggg~(\text{2-loop})$

COLA : Non-planar Master-Topologies for $h^* \rightarrow ggg$ (2-loop)

Rocket3S

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000 000000000 000	00 0000 00000	0000

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Conclusions and Remarks

COLA : Unrenormalized Results

- ▶ The results of these MIs are taken from a paper by *T. Gehrmann and E. Remiddi* which are computed using differential equation method.
- ▶ By putting the results of these MIs, we obtain the unrenormalized results.
- Results contain mandelstam variables and Harmonic Polylogarithms (HPLs).

COLA : Unrenormalized Results

- ▶ The results of these MIs are taken from a paper by *T. Gehrmann and E. Remiddi* which are computed using differential equation method.
- ▶ By putting the results of these MIs, we obtain the unrenormalized results.
- Results contain mandelstam variables and Harmonic Polylogarithms (HPLs).

COLA : Unrenormalized Results

- ▶ The results of these MIs are taken from a paper by *T. Gehrmann and E. Remiddi* which are computed using differential equation method.
- ▶ By putting the results of these MIs, we obtain the unrenormalized results.
- Results contain mandelstam variables and Harmonic Polylogarithms (HPLs).

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ The loop integrals encounter **singularities** in **4-dimension** :

- Singularities arising from the high-momentum limit of the loop integrals
 VUV divergences.
- Singularities arising from
 - the **zero-momentum** limit of the loop integrals (**soft**) :
 - \oplus associated with **massless vector bosons** : arise in gauge theories only.
 - \oplus present also when matter particles are **massive**.
 - the **collinearity** of loop momenta to one of the massless external particles(**collinear**):
 - \oplus present in any QFT with interaction vertices involving **massless** particles only.
 - \rightsquigarrow IR divergences.

Why NNLO in EDM? T	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
0	000	000000000000000 000000000 000	00 0000 00000	0000
		00		

- ▶ The loop integrals encounter **singularities** in **4-dimension** :

 - Singularities arising from
 - the zero-momentum limit of the loop integrals (soft) :
 - \oplus associated with **massless vector bosons** : arise in gauge theories only.
 - \oplus present also when matter particles are **massive**.
 - the **collinearity** of loop momenta to one of the massless external particles(**collinear**):
 - \oplus present in any QFT with interaction vertices involving **massless** particles only.
 - \rightsquigarrow IR divergences.

Why NNLO in EDM? The Effec	tive Action Calculation of	Loop Amplitude Renorm	nalization Conclusions and	d Remar
000	000000000000000000000000000000000000000	000000 00 0000 00000	0000	
	00			

- ▶ The loop integrals encounter **singularities** in **4-dimension** :
 - Singularities arising from the high-momentum limit of the loop integrals → UV divergences.
 - 2 Singularities arising from
 - \bullet the **zero-momentum** limit of the loop integrals $({\bf soft})$:
 - \oplus associated with ${\bf massless}\ {\bf vector}\ {\bf bosons}$: arise in gauge theories only.
 - \oplus present also when matter particles are **massive**.

• the **collinearity** of loop momenta to one of the massless external particles(**collinear**):

 \oplus present in any QFT with interaction vertices involving **massless** particles only.

→ IR divergences.

Why NNLO in EDM? The Effec	tive Action Calculation of	Loop Amplitude Renorm	nalization Conclusions and	d Remar
000	000000000000000000000000000000000000000	000000 00 0000 00000	0000	
	00			

- ▶ The loop integrals encounter **singularities** in **4-dimension** :
 - Singularities arising from the high-momentum limit of the loop integrals → UV divergences.
 - 2 Singularities arising from
 - the **zero-momentum** limit of the loop integrals (soft) :
 - \oplus associated with ${\bf massless}~{\bf vector}~{\bf bosons}$: arise in gauge theories only.
 - \oplus present also when matter particles are **massive**.
 - the **collinearity** of loop momenta to one of the massless external particles(**collinear**):
 - \oplus present in any QFT with interaction vertices involving **massless** particles only.
 - \rightsquigarrow IR divergences.

Why NNLO in EDM? The Effec	tive Action Calculation of	Loop Amplitude Renorm	nalization Conclusions and	d Remar
000	000000000000000000000000000000000000000	000000 00 0000 00000	0000	
	00			

- ▶ The loop integrals encounter **singularities** in **4-dimension** :
 - Singularities arising from the high-momentum limit of the loop integrals → UV divergences.
 - 2 Singularities arising from
 - the **zero-momentum** limit of the loop integrals (soft) :
 - \oplus associated with ${\bf massless}\ {\bf vector}\ {\bf bosons}$: arise in gauge theories only.
 - \oplus present also when matter particles are **massive**.
 - the **collinearity** of loop momenta to one of the massless external particles(**collinear**):
 - \oplus present in any QFT with interaction vertices involving **massless** particles only.
 - \rightsquigarrow IR divergences.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000 000000000 000	• 0 0000 00000	0000

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization

IR Factorization $h \rightarrow ggg$

Conclusions and Remarks

How do we remove these singularities?

Regularization

Before renormalizing the theory, regulate the integrals in some regularization scheme (for both UV and IR) :

- Momentum cutoff regularization,
- Pauli-Villars regularization,
- **B** Dimensional regularization (DR).
- \rightsquigarrow In **DR** change the dimension from 4 to $\mathbf{d} = \mathbf{4} + \epsilon$.

 \sim The regularization is of course removed after the cancellation of divergences.

- The singularities of loop integrals will show up as **poles** in ϵ .
- Removing UV divergence

redefine all the bare fields and couplings of the Lagrangian \rightarrow generate precisely those singular terms required to render the theory UV finite.

How do we remove these singularities?

Regularization

Before renormalizing the theory, regulate the integrals in some regularization scheme (for both UV and IR) :

Momentum cutoff regularization,

- 2 Pauli-Villars regularization,
- **3** Dimensional regularization (DR).
- \rightsquigarrow In **DR** change the dimension from 4 to **d** = 4 + ϵ .

 \leadsto The regularization is of course removed after the cancellation of divergences.

- The singularities of loop integrals will show up as **poles** in ϵ .
- Removing UV divergence

redefine all the bare fields and couplings of the Lagrangian \rightarrow generate precisely those singular terms required to render the theory UV finite.

How do we remove these singularities?

Regularization

Before renormalizing the theory, regulate the integrals in some regularization scheme (for both UV and IR) :

Momentum cutoff regularization,

2 Pauli-Villars regularization,

3 Dimensional regularization (DR).

 \rightsquigarrow In **DR** change the dimension from 4 to **d** = 4 + ϵ .

 \leadsto The regularization is of course removed after the cancellation of divergences.

• The singularities of loop integrals will show up as **poles** in ϵ .

Removing UV divergence

redefine all the bare fields and couplings of the Lagrangian \rightarrow generate precisely those singular terms required to render the theory UV finite.

How do we remove these singularities?

Regularization

Before renormalizing the theory, regulate the integrals in some regularization scheme (for both UV and IR) :

Momentum cutoff regularization,

2 Pauli-Villars regularization,

3 Dimensional regularization (DR).

 \rightsquigarrow In **DR** change the dimension from 4 to $\mathbf{d} = \mathbf{4} + \epsilon$.

 \leadsto The regularization is of course removed after the cancellation of divergences.

• The singularities of loop integrals will show up as **poles** in ϵ .

Removing UV divergence

redefine all the bare fields and couplings of the Lagrangian \rightarrow generate precisely those singular terms required to render the theory UV finite.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000 000000000 000	00 •000 00000	0000

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Conclusions and Remarks

Removing Soft divergence

- **a** quark with **virtual** gluons
- a quark accompanied by an arbitrary no. of **real soft** gluons

indistinguishable \in same energy eigenstate as that of quark.

→ degenerate states (soft)

 \rightarrow this degeneracy is the origin of the soft divergence in transition matrix element.

 \rightarrow summation over these degenerate states eliminate the soft - divergence (KLN theorem).

 $\sim \rightarrow$

 $\sum_{Degn.st. \in final} (virtual + real) \rightsquigarrow \text{ soft free}$

For eg.

 \rightsquigarrow Partonic cross-section is soft-divergence free at every order in perturbation theory.

Removing Soft divergence

- 1 a quark with **virtual** gluons
- 2 a quark accompanied by an arbitrary no. of **real soft** gluons

indistinguishable \in same energy eigenstate as that of quark.

→ degenerate states (soft)

 \rightsquigarrow this degeneracy is the origin of the soft divergence in transition matrix element.

 \rightarrow summation over these degenerate states eliminate the softdivergence (KLN theorem).

 $\sim \rightarrow$

 $\sum_{Degn.st. \in final} (virtual + real) \rightsquigarrow \text{ soft free}$

For eg.

 \rightsquigarrow Partonic cross-section is soft-divergence free at every order in perturbation theory.

Removing Soft divergence

- 1 a quark with **virtual** gluons
- 2 a quark accompanied by an arbitrary no. of real soft gluons

indistinguishable \in same energy eigenstate as that of quark.

\rightsquigarrow degenerate states (soft)

 \rightsquigarrow this degeneracy is the origin of the soft divergence in transition matrix element.

 \rightarrow summation over these degenerate states eliminate the softdivergence (KLN theorem).

~~)

 $\sum_{Degn.st. \in final} (virtual + real) \rightsquigarrow \text{ soft free}$

For eg.

 \rightsquigarrow Partonic cross-section is soft-divergence free at every order in perturbation theory.

Removing Soft divergence

- 1 a quark with **virtual** gluons
- 2 a quark accompanied by an arbitrary no. of **real soft** gluons

indistinguishable \in same energy eigenstate as that of quark.

\rightsquigarrow degenerate states (soft)

 \rightsquigarrow this degeneracy is the origin of the soft divergence in transition matrix element.

 \leadsto summation over these degenerate states eliminate the soft - divergence (KLN theorem).

 $\sim \rightarrow$

 $\sum_{Degn.st. \in final} (virtual + real) \rightsquigarrow soft free$

For eg.

 \rightsquigarrow Partonic cross-section is soft-divergence free at every order in perturbation theory.

Real

Virtual

Removing Soft divergence

- 1 a quark with virtual gluons
- 2 a quark accompanied by an arbitrary no. of **real soft** gluons

indistinguishable \in same energy eigenstate as that of quark.

\rightsquigarrow degenerate states (soft)

 \rightsquigarrow this degeneracy is the origin of the soft divergence in transition matrix element.

 \leadsto summation over these degenerate states eliminate the soft - divergence (KLN theorem).

 $\sim \rightarrow$

 $\sum_{Degn.st. \in final} (virtual + real) \rightsquigarrow soft free$

For eg.

Real

Virtual

Renormalization Procedure : Collinear

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- a massless quark accompanied by an arbitrary no. of real collinear gluons

indistinguishable

→ degenerate states (collinear)

 \rightarrow this degeneracy is the origin of the collinear divergence in transition matrix element.

 \sim summation over these degenerate states eliminate the collinear divergence (KLN theorem).

 \rightarrow This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim Reason : no summation is done over initial degenerate states at partonic cross-section level.

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- 2 a massless quark accompanied by an arbitrary no. of **real collinear** gluons

indistinguishable

→ degenerate states (collinear)

 \rightarrow this degeneracy is the origin of the collinear divergence in transition matrix element.

 \rightarrow summation over these degenerate states eliminate the collinear divergence (KLN theorem).

→ This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim **Reason** : no summation is done over initial degenerate states at partonic cross-section level.

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- **2** a massless quark accompanied by an arbitrary no. of **real collinear** gluons

indistinguishable

\rightsquigarrow degenerate states (collinear)

 \leadsto this degeneracy is the origin of the collinear divergence in transition matrix element.

 \rightarrow summation over these degenerate states eliminate the collinear divergence (KLN theorem).

 \rightarrow This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim Reason : no summation is done over initial degenerate states at partonic cross-section level.

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- **2** a massless quark accompanied by an arbitrary no. of **real collinear** gluons

indistinguishable

\rightsquigarrow degenerate states (collinear)

 \leadsto this degeneracy is the origin of the collinear divergence in transition matrix element.

 \sim summation over these degenerate states eliminate the collinear divergence (KLN theorem).

→ This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim Reason : no summation is done over initial degenerate states at partonic cross-section level.

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- 2 a massless quark accompanied by an arbitrary no. of real collinear gluons

indistinguishable

\rightsquigarrow degenerate states (collinear)

 \leadsto this degeneracy is the origin of the collinear divergence in transition matrix element.

 \sim summation over these degenerate states eliminate the collinear divergence (KLN theorem).

 \leadsto This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim **Reason** : no summation is done over initial degenerate states at partonic cross-section level.

Removing Collinear divergence

- **1** a massless quark with **virtual** gluons
- 2 a massless quark accompanied by an arbitrary no. of **real collinear** gluons

indistinguishable

\rightsquigarrow degenerate states (collinear)

 \leadsto this degeneracy is the origin of the collinear divergence in transition matrix element.

 \sim summation over these degenerate states eliminate the collinear divergence (KLN theorem).

 \leadsto This divergence doesn't necessarily cancel out in transition matrix element or in partonic cross-section!

 \sim **Reason** : no summation is done over initial degenerate states at partonic cross-section level.

 \rightsquigarrow Unlike soft in the collinear, external massless particles are involved : collinearity of the external massless partons with massless real or virtual partons.

 $\sum_{Deg.sta. \in ini, final} (virtual + real) \rightsquigarrow collinear free$

→ This is achieved through collinear or mass factorization. Redefine the PDFs in such a way that the collinear singularities in the bare partonic cross-section are removed.

 \rightsquigarrow Unlike soft in the collinear, external massless particles are involved : collinearity of the external massless partons with massless real or virtual partons.

 $\sim \rightarrow$

 $\sum_{Deg.sta. \ \in \ ini, \ final} (virtual + real) \rightsquigarrow collinear \ free$

 \rightarrow This is achieved through **collinear or mass factorization**. Redefine the PDFs in such a way that the collinear singularities in the bare partonic cross-section are removed.

 \rightsquigarrow Unlike soft in the collinear, external massless particles are involved : collinearity of the external massless partons with massless real or virtual partons.

 $\sim \rightarrow$

$$\sum_{Deg.sta. \in ini, final} (virtual + real) \rightsquigarrow collinear free$$

 \sim This is achieved through **collinear or mass factorization**. Redefine the PDFs in such a way that the collinear singularities in the bare partonic cross-section are removed.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000000000000000000000000000	00 0000 00000	0000

Outline

Why NNLO in EDM?

The Effective Action

Calculation of Loop Amplitude

Feynman Diagrams Reduction of Loop-Integrals : IBPs and LIs Master Integrals Unrenormalizad Results

Renormalization

UV Renormalization IR Factorization $h \rightarrow ggg$

Conclusions and Remarks

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remai
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

▶ For $h \to ggg$

•
$$|\mathcal{M}\rangle = \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{1}{2}}|\hat{\mathcal{M}}^{(0)}\rangle + \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{3}{2}}|\hat{\mathcal{M}}^{(1)}\rangle + \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{5}{2}}|\hat{\mathcal{M}}^{(2)}\rangle + \mathcal{O}(\hat{a}_s^3) ,$$
(8)

with

 $S_{\epsilon} = \exp[\frac{\epsilon}{2}(\gamma_E - \ln 4\pi)]$ with Euler constant $\gamma_E = 0.5772...$ $|\hat{\mathcal{M}}^{(i)}\rangle$: unrenormalized matrix element representing the i^{th} loop amplitude. μ_0 : introduced to keep \hat{a}_s dimensionless in d-dimension.

• UV renormalization in \overline{MS}

$$\frac{l_s}{\epsilon_0^{\epsilon}} S_{\epsilon} = \frac{a_s}{\mu_R^{\epsilon}} Z(\mu_R^2)$$

$$= \frac{a_s}{\mu_R^{\epsilon}} \left[1 + a_s \frac{2\beta_0}{\epsilon} + a_s^2 \left(\frac{4\beta_0^2}{\epsilon^2} + \frac{\beta_1}{\epsilon} \right) + \mathcal{O}(a_s^3) \right]$$
(9)

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Rema
	000	0000000000000000	00	0000
		000000000	0000	
		00		

▶ For $h \to ggg$

•
$$|\mathcal{M}\rangle = \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{1}{2}}|\hat{\mathcal{M}}^{(0)}\rangle + \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{3}{2}}|\hat{\mathcal{M}}^{(1)}\rangle + \left(\frac{\hat{a}_s}{\mu_0^{\epsilon}}S_{\epsilon}\right)^{\frac{5}{2}}|\hat{\mathcal{M}}^{(2)}\rangle + \mathcal{O}(\hat{a}_s^3) ,$$
(8)

with

 $S_{\epsilon} = \exp[\frac{\epsilon}{2}(\gamma_E - \ln 4\pi)]$ with Euler constant $\gamma_E = 0.5772...$ $|\hat{\mathcal{M}}^{(i)}\rangle$: unrenormalized matrix element representing the i^{th} loop amplitude. μ_0 : introduced to keep \hat{a}_s dimensionless in d-dimension.

 \bullet UV renormalization in \overline{MS}

$$\hat{a}_{s} S_{\epsilon} = \frac{a_{s}}{\mu_{R}^{\epsilon}} Z(\mu_{R}^{2})$$

$$= \frac{a_{s}}{\mu_{R}^{\epsilon}} \left[1 + a_{s} \frac{2\beta_{0}}{\epsilon} + a_{s}^{2} \left(\frac{4\beta_{0}^{2}}{\epsilon^{2}} + \frac{\beta_{1}}{\epsilon} \right) + \mathcal{O}(a_{s}^{3}) \right]$$
(9)

Why NNLO in EDM? The Effect	ive Action Calculation of Loop	Amplitude Renormalizatio	n Conclusions and Reman
000	000000000000000000000000000000000000000	00 00	0000
	0000000000	0000	
	000	00000	

•
$$|\mathcal{M}\rangle \equiv (a_s)^{\frac{1}{2}} \left(|\mathcal{M}^{(0)}\rangle + a_s |\mathcal{M}^{(1)}\rangle + a_s^2 |\mathcal{M}^{(2)}\rangle + \mathcal{O}(a_s^3) \right)$$
(10)

Compairing (8) and (10) we get **UV renormalized** matrix elements :

$$\begin{split} |\mathcal{M}^{(0)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{1}{2}} |\hat{\mathcal{M}}^{(0)}\rangle ,\\ |\mathcal{M}^{(1)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{3}{2}} \left[|\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{\epsilon} \frac{r_1}{2} |\hat{\mathcal{M}}^{(0)}\rangle \right] ,\\ |\mathcal{M}^{(2)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{5}{2}} \left[|\hat{\mathcal{M}}^{(2)}\rangle + \mu_R^{\epsilon} \frac{3r_1}{2} |\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{2\epsilon} \left(\frac{r_2}{2} - \frac{r_1^2}{8}\right) |\hat{\mathcal{M}}^{(0)}\rangle \right] \end{split}$$

with

$$r_1 = \frac{2\beta_0}{\epsilon}$$
, $r_2 = \left(\frac{4\beta_0^2}{\epsilon^2} + \frac{\beta_1}{\epsilon}\right)$.

• Since spin-2 field couples to SM particles through **conserved** EM tensor \rightarrow no UV renormalization for κ .

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

•
$$|\mathcal{M}\rangle \equiv (a_s)^{\frac{1}{2}} \left(|\mathcal{M}^{(0)}\rangle + a_s |\mathcal{M}^{(1)}\rangle + a_s^2 |\mathcal{M}^{(2)}\rangle + \mathcal{O}(a_s^3) \right)$$
(10)

Compairing (8) and (10) we get UV renormalized matrix elements :

$$\begin{split} |\mathcal{M}^{(0)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{1}{2}} |\hat{\mathcal{M}}^{(0)}\rangle ,\\ |\mathcal{M}^{(1)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{3}{2}} \left[|\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{\epsilon} \frac{r_1}{2} |\hat{\mathcal{M}}^{(0)}\rangle \right] ,\\ |\mathcal{M}^{(2)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{5}{2}} \left[|\hat{\mathcal{M}}^{(2)}\rangle + \mu_R^{\epsilon} \frac{3r_1}{2} |\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{2\epsilon} \left(\frac{r_2}{2} - \frac{r_1^2}{8}\right) |\hat{\mathcal{M}}^{(0)}\rangle \right] \end{split}$$

with

$$r_1 = \frac{2\beta_0}{\epsilon}$$
, $r_2 = \left(\frac{4\beta_0^2}{\epsilon^2} + \frac{\beta_1}{\epsilon}\right)$.

• Since spin-2 field couples to SM particles through **conserved** EM tensor \rightarrow no UV renormalization for κ .
Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	

Renormalization for $h \to ggg$

•
$$|\mathcal{M}\rangle \equiv (a_s)^{\frac{1}{2}} \left(|\mathcal{M}^{(0)}\rangle + a_s |\mathcal{M}^{(1)}\rangle + a_s^2 |\mathcal{M}^{(2)}\rangle + \mathcal{O}(a_s^3) \right)$$
(10)

Compairing (8) and (10) we get UV renormalized matrix elements :

$$\begin{split} |\mathcal{M}^{(0)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{1}{2}} |\hat{\mathcal{M}}^{(0)}\rangle ,\\ |\mathcal{M}^{(1)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{3}{2}} \left[|\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{\epsilon} \frac{r_1}{2} |\hat{\mathcal{M}}^{(0)}\rangle\right] ,\\ |\mathcal{M}^{(2)}\rangle &= \left(\frac{1}{\mu_R^{\epsilon}}\right)^{\frac{5}{2}} \left[|\hat{\mathcal{M}}^{(2)}\rangle + \mu_R^{\epsilon} \frac{3r_1}{2} |\hat{\mathcal{M}}^{(1)}\rangle + \mu_R^{2\epsilon} \left(\frac{r_2}{2} - \frac{r_1^2}{8}\right) |\hat{\mathcal{M}}^{(0)}\rangle\right] \end{split}$$

with

$$r_1 = \frac{2\beta_0}{\epsilon}$$
, $r_2 = \left(\frac{4\beta_0^2}{\epsilon^2} + \frac{\beta_1}{\epsilon}\right)$.

• Since spin-2 field couples to SM particles through **conserved** EM tensor \rightarrow no UV renormalization for κ .

• The UV renormalized matrix elements contain divergences coming from **IR** region of massless QCD (**soft + collinear**).

IR divergence in QCD has universal structure! \rightsquigarrow depends only on the external partons.

$$\begin{aligned} |\mathcal{M}^{(1)}\rangle &= 2 \mathbf{I}_g^{(1)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(1)fin}\rangle \\ |\mathcal{M}^{(2)}\rangle &= 2 \mathbf{I}_g^{(1)}(\epsilon) |\mathcal{M}^{(1)}\rangle + 4 \mathbf{I}_g^{(2)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(2)fin}\rangle \end{aligned}$$
(11)

where

$$\mathbf{I}_{g}^{(1)}(\epsilon) = \frac{a_{2}^{(1)}}{\epsilon^{2}} + \frac{a_{1}^{(1)}}{\epsilon}$$

$$\mathbf{I}_{g}^{(2)}(\epsilon) = \frac{a_{4}^{(2)}}{\epsilon^{4}} + \frac{a_{3}^{(2)}}{\epsilon^{3}} + \frac{a_{2}^{(2)}}{\epsilon^{2}} + \frac{a_{1}^{(2)}}{\epsilon}$$
(12)

Catani predicted all $a^{(1)}$ and $a^{(2)}$ except $a_1^{(2)}$, later verified by Sterman & Tejeda. Becher and Neubert derived the same including $a_1^{(2)}$.

 \rightsquigarrow These poles serve as the most **crucial check** of any calculation.

• The UV renormalized matrix elements contain divergences coming from **IR** region of massless QCD (**soft + collinear**).

IR divergence in QCD has universal structure! \leadsto depends only on the external partons.

$$\begin{aligned} |\mathcal{M}^{(1)}\rangle &= 2 \mathbf{I}_g^{(1)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(1)fin}\rangle \\ |\mathcal{M}^{(2)}\rangle &= 2 \mathbf{I}_g^{(1)}(\epsilon) |\mathcal{M}^{(1)}\rangle + 4 \mathbf{I}_g^{(2)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(2)fin}\rangle \end{aligned}$$
(11)

where

$$\mathbf{I}_{g}^{(1)}(\epsilon) = \frac{a_{2}^{(1)}}{\epsilon^{2}} + \frac{a_{1}^{(1)}}{\epsilon}$$

$$\mathbf{I}_{g}^{(2)}(\epsilon) = \frac{a_{4}^{(2)}}{\epsilon^{4}} + \frac{a_{3}^{(2)}}{\epsilon^{3}} + \frac{a_{2}^{(2)}}{\epsilon^{2}} + \frac{a_{1}^{(2)}}{\epsilon}$$
(12)

Catani predicted all $a^{(1)}$ and $a^{(2)}$ except $a_1^{(2)}$, later verified by Sterman & Tejeda. Becher and Neubert derived the same including $a_1^{(2)}$.

 \rightsquigarrow These poles serve as the most **crucial check** of any calculation.

• The UV renormalized matrix elements contain divergences coming from **IR** region of massless QCD (**soft + collinear**).

IR divergence in QCD has universal structure! \leadsto depends only on the external partons.

$$|\mathcal{M}^{(1)}\rangle = 2 \mathbf{I}_{g}^{(1)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(1)fin}\rangle |\mathcal{M}^{(2)}\rangle = 2 \mathbf{I}_{g}^{(1)}(\epsilon) |\mathcal{M}^{(1)}\rangle + 4 \mathbf{I}_{g}^{(2)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(2)fin}\rangle$$
(11)

where

$$\mathbf{I}_{g}^{(1)}(\epsilon) = \frac{a_{2}^{(1)}}{\epsilon^{2}} + \frac{a_{1}^{(1)}}{\epsilon}$$

$$\mathbf{I}_{g}^{(2)}(\epsilon) = \frac{a_{4}^{(2)}}{\epsilon^{4}} + \frac{a_{3}^{(2)}}{\epsilon^{3}} + \frac{a_{2}^{(2)}}{\epsilon^{2}} + \frac{a_{1}^{(2)}}{\epsilon}$$
(12)

Catani predicted all $a^{(1)}$ and $a^{(2)}$ except $a_1^{(2)}$, later verified by Sterman & Tejeda. Becher and Neubert derived the same including $a_1^{(2)}$.

 \rightsquigarrow These poles serve as the most **crucial check** of any calculation.

• The UV renormalized matrix elements contain divergences coming from **IR** region of massless QCD (**soft + collinear**).

IR divergence in QCD has universal structure! \rightsquigarrow depends only on the external partons.

$$|\mathcal{M}^{(1)}\rangle = 2 \mathbf{I}_{g}^{(1)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(1)fin}\rangle |\mathcal{M}^{(2)}\rangle = 2 \mathbf{I}_{g}^{(1)}(\epsilon) |\mathcal{M}^{(1)}\rangle + 4 \mathbf{I}_{g}^{(2)}(\epsilon) |\mathcal{M}^{(0)}\rangle + |\mathcal{M}^{(2)fin}\rangle$$
(11)

where

$$\mathbf{I}_{g}^{(1)}(\epsilon) = \frac{a_{2}^{(1)}}{\epsilon^{2}} + \frac{a_{1}^{(1)}}{\epsilon}$$

$$\mathbf{I}_{g}^{(2)}(\epsilon) = \frac{a_{4}^{(2)}}{\epsilon^{4}} + \frac{a_{3}^{(2)}}{\epsilon^{3}} + \frac{a_{2}^{(2)}}{\epsilon^{2}} + \frac{a_{1}^{(2)}}{\epsilon}$$
(12)

Catani predicted all $a^{(1)}$ and $a^{(2)}$ except $a_1^{(2)}$, later verified by Sterman & Tejeda. Becher and Neubert derived the same including $a_1^{(2)}$.

 \rightsquigarrow These poles serve as the most $\mathbf{crucial}\ \mathbf{check}$ of any calculation.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	000000000000000000000000000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

- Our results agree with these poles including the single pole!
- ► Even in the presence of spin-2 particle, QCD amplitude factorizes into soft-collinear and hard parts in a universal way ~> something new!

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~→ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- Crucial check : Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~→ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~→ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~→ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~→ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- Remaining parts involve real emission & phase space integration ~ new developments are underway (phase space slicing, antenna subtraction etc).

- ▶ We have seen the power of IBPs and LIs : thousands of feynman integrals are reducible to only few MIs!
- **Crucial check :** Gauge invarince and universal IR pole structure.
- Explicitly verified the universality of QCD amplitude factorization even with the presence of spin-2 graviton.
- ▶ Renormalized finite part can't be shown here...50 pages long!
- ▶ This finite part can be analytically continued to get the result for production of massive spin-2 graviton with one jet in gluon gluon fusion.
- ▶ We have computed one of the most difficult parts → 2-loop contribution to graviton + jet production → important ingradients of the full NNLO computation.
- ▶ Remaining parts involve real emisiion & phase space integration ~> new developments are underway (phase space slicing, antenna subtraction etc).

Harmonic Polylogarithms (HPLs)

• Logarithms, polylogarithms $(Li_n(x))$ and Nielsen's polylogarithm $(S_{n,p}(x))$ appear naturally in the analytical expressions of radiative correction in pQCD.

•
$$\ln(x) = \int_1^x \frac{dt}{t}$$

•
$$\operatorname{Li}_{n}(x) \equiv \sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}} = \int_{0}^{x} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$
 e.g. $\operatorname{Li}_{1}(x) = -\ln(1-x)$

•
$$S_{n,p}(x) \equiv \frac{(-1)^{n+p-1}}{(n-1)!p!} \int_0^1 \frac{dt}{t} [\ln(t)]^{n-1} [\ln(1-xt)]^p$$

e.g. $S_{n-1,1}(x) = \operatorname{Li}_n(x)$

- But, for higher order (2-loops and beyond) these functions are not sufficient to evaluate all the loop integrals appearing in the Feynman graphs.
- ▶ Overcome by introducing new set of functions : Harmonic Polylogarithms (HPLs) ~→ generalization of NP.

Harmonic Polylogarithms (HPLs)

▶ Logarithms, polylogarithms (Li_n(x)) and Nielsen's polylogarithm (S_{n,p}(x)) appear naturally in the analytical expressions of radiative correction in pQCD.

•
$$\ln(x) = \int_1^x \frac{dt}{t}$$

•
$$\operatorname{Li}_{n}(x) \equiv \sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}} = \int_{0}^{x} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$
 e.g. $\operatorname{Li}_{1}(x) = -\ln(1-x)$

•
$$S_{n,p}(x) \equiv \frac{(-1)^{n+p-1}}{(n-1)!p!} \int_0^1 \frac{dt}{t} [\ln(t)]^{n-1} [\ln(1-xt)]^p$$

e.g. $S_{n-1,1}(x) = \operatorname{Li}_n(x)$

- But, for higher order (2-loops and beyond) these functions are not sufficient to evaluate all the loop integrals appearing in the Feynman graphs.
- ▶ Overcome by introducing new set of functions : Harmonic Polylogarithms (HPLs) ~→ generalization of NP.

Harmonic Polylogarithms (HPLs)

▶ Logarithms, polylogarithms (Li_n(x)) and Nielsen's polylogarithm (S_{n,p}(x)) appear naturally in the analytical expressions of radiative correction in pQCD.

•
$$\ln(x) = \int_1^x \frac{dt}{t}$$

•
$$\operatorname{Li}_{n}(x) \equiv \sum_{k=1}^{\infty} \frac{x^{k}}{k^{n}} = \int_{0}^{x} \frac{dt}{t} \operatorname{Li}_{n-1}(t)$$
 e.g. $\operatorname{Li}_{1}(x) = -\ln(1-x)$

•
$$S_{n,p}(x) \equiv \frac{(-1)^{n+p-1}}{(n-1)!p!} \int_0^1 \frac{dt}{t} [\ln(t)]^{n-1} [\ln(1-xt)]^p$$

e.g. $S_{n-1,1}(x) = \operatorname{Li}_n(x)$

- But, for higher order (2-loops and beyond) these functions are not sufficient to evaluate all the loop integrals appearing in the Feynman graphs.
- ► Overcome by introducing new set of functions : Harmonic Polylogarithms (HPLs) ~ generalization of NP.

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

▶ 1D HPLs

$$H(0;x) \equiv \ln(x)$$

$$H(1;x) \equiv \int_0^x \frac{dt}{1-t} = -\ln(1-x)$$

$$H(-1;x) \equiv \int_0^x \frac{dt}{1+t} = \ln(1+x)$$

Consequently,

$$\frac{d}{dx}H(a;x) = f(a;x) \qquad a \in \{-1,0,1\}$$

with

$$\begin{array}{rcl} f(-1;x) & = & \displaystyle \frac{1}{1+x} \\ f(0;x) & = & \displaystyle \frac{1}{x} \\ f(1;x) & = & \displaystyle \frac{1}{1-x} \end{array}$$

 \rightarrow weight 1 HPLs

Why NNLO in EDM?	The Effective Action	Calculation of Loop Amplitude	Renormalization	Conclusions and Remar
	000	0000000000000000	00	0000
		000000000	0000	
		000	00000	
		00		

▶ 1D HPLs

$$H(0;x) \equiv \ln(x)$$

$$H(1;x) \equiv \int_0^x \frac{dt}{1-t} = -\ln(1-x)$$

$$H(-1;x) \equiv \int_0^x \frac{dt}{1+t} = \ln(1+x)$$

Consequently,

$$\frac{d}{dx}H(a;x) = f(a;x) \qquad a \in \{-1,0,1\}$$

with

$$\begin{array}{rcl} f(-1;x) & = & \displaystyle \frac{1}{1+x} \\ f(0;x) & = & \displaystyle \frac{1}{x} \\ f(1;x) & = & \displaystyle \frac{1}{1-x} \end{array}$$

 $\rightsquigarrow \mathbf{weight}~\mathbf{1}~\mathrm{HPLs}$

- ▶ HPLs of higher weight are defined recursively.
 - Introduce $\vec{m}_{\omega} \equiv (a, \vec{m}_{\omega-1})$. Each component $\in \{-1, 0, 1\}$. e.g. $\vec{0}_{\omega} = (0, 0, \dots, 0) \rightsquigarrow \omega$ no. of 0.
 - HPLs of weight ω :

$$H(\vec{0}_{\omega}; x) \equiv \frac{1}{\omega!} \ln^{\omega} x$$
$$H(a, \vec{m}_{\omega-1}; x) \equiv \int_{0}^{x} dx' f(a; x')$$

- ▶ HPLs of higher weight are defined recursively.
 - Introduce $\vec{m}_{\omega} \equiv (a, \vec{m}_{\omega-1})$. Each component $\in \{-1, 0, 1\}$. e.g. $\vec{0}_{\omega} = (0, 0, \cdots, 0) \rightsquigarrow \omega$ no. of 0.
 - HPLs of weight ω :

$$H(\vec{0}_{\omega}; x) \equiv \frac{1}{\omega!} \ln^{\omega} x$$
$$H(a, \vec{m}_{\omega-1}; x) \equiv \int_{0}^{x} dx' f(a; x')$$