Threshold Corrections To DY and Higgs at N^3LO QCD

Taushif Ahmed Institute of Mathematical Sciences, India April 12, 2016

Threshold Corrections To DY and Higgs at N³LO QCD

PROLOGUE : PROCESSES OF INTEREST

• Drell-Yan (DY) $pp \rightarrow \gamma^*/Z$: Xsection and rapidity distributions.

• Higgs boson production through gg : Rapidity distributions.

• Higgs boson production through $b\bar{b}$: Xsection and rapidity distributions.

Such processes are very important for precision studies in SM.

Threshold Corrections To DY and Higgs at N³LO QCD

PROLOGUE : STATE OF THE ART IN EARLY 2014

DY .	Xsection : NNLO QCD Hamberg, Matsuura, Van Neerven ('91)
	N^3LO_{pSV} Moch, Vogt (2005); Ravindran ('06)
•	Rapidity: NNLO QCD Anastasiou, Dixon, Melnikov, Petriello ('03);
	Melnikov, Petriello ('06)
	N^3LO_{pSV} Ravindran, Smith, van Neerven ('07)
Higgs in ge	g
	• Xsection : NNLO QCD Harlander, Kilgore ('02); Anastasiou,
	Melnikov ('02); Ravindran, Smith, van Neerven ('03)
	N^3LO_{pSV} Moch, Vogt ('05); Ravindran ('06)
	Rapidity : NNLO QCD Anastasiou, Melnikov, Petriello ('04, '05)
Higgs in $b\bar{b}$	N^3LO_{pSV} Ravindran, Smith, van Neerven ('07)
	• Xsection : NNLO QCD Harlander, Kilgore ('03)
	N^3LO_{pSV} Ravindran ('06)
	Rapidity : NNLO QCD Buehler, Herzog, Lazopoulos, Mueller ('12)

 $N^{3}LO_{pSV}$ Ravindran, Smith, van Neerven ('07)

Threshold Corrections To DY and Higgs at N^3LO QCD

Can we push the theoretical boundary little more?

- Testing SM with more accuracy to answer many unanswered questions
- Reducing the unphysical scale uncertainties

First crucial step towards this direction

• Higgs production through *gg* fusion at threshold N³LO by Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger ('14)

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Can we push the theoretical boundary little more?

- Testing SM with more accuracy to answer many unanswered questions
- Reducing the unphysical scale uncertainties

First crucial step towards this direction

• Higgs production through gg fusion at threshold N³LO by

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger ('14)

$\begin{array}{l} \mbox{Prologue}: \mbox{Spin-offs from Higgs Production} \\ \mbox{At Threshold N^3LO} \end{array}$

Recent results on threshold N³LO QCD corrections TA, Mahakhud, Mandal, Rana, Ravindran

- dσ/dQ² of DY
 Phys. Rev. Lett. 113 (2014) 112002
- $d\sigma/dY$ of Higgs in gg fusion and $d^2\sigma/dQ^2/dY$ of DY Phys. Rev. Lett. 113 (2014) 212003
- σ_{tot} and $d\sigma/dY$ of Higgs in $b\bar{b}$ annihilation JHEP 1410 (2014) 139 JHEP 1502 (2015) 131

$\begin{array}{l} \mbox{Prologue}: \mbox{Spin-offs from Higgs Production} \\ \mbox{At Threshold N^3LO} \end{array}$

Recent results on threshold N³LO QCD corrections TA, Mahakhud, Mandal, Rana, Ravindran

• $d\sigma/dQ^2$ of DY Phys. Rev. Lett. 113 (2014) 112002

 $\Leftarrow \mathsf{Goal}$

- $d\sigma/dY$ of Higgs in gg fusion and $d^2\sigma/dQ^2/dY$ of DY Phys. Rev. Lett. 113 (2014) 212003
- σ_{tot} and $d\sigma/dY$ of Higgs in $b\bar{b}$ annihilation JHEP 1410 (2014) 139 JHEP 1502 (2015) 131

Plan of the Talk

- What is threshold corrections?
- ◊ Prescription of Computation
 - Factorization of Soft Gluons
 - Overall Operator Renormalization
 - Form Factor
 - Soft-Collinear Distribution
 - Mass Factorization
- ◊ Master Formula
- \diamond Result of DY SV Xsection at N³LO

◊ Conclusions

WHY THRESHOLD CORRECTIONS?

Basic calculational framework for inclusive production : QCD factorization theorem

$$\sigma_X(\tau, q^2) = \frac{1}{S} \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \Delta_{ab}\left(\frac{\tau}{x}, q^2\right)$$

 $\tau \equiv \frac{q^2}{S}, \; q^2 \equiv m_{l^+l^-}^2 \; {\rm for} \; {\rm DY} \; {\rm and} \; m_H^2 \; {\rm for} \; {\rm Higgs}$

Perturbatively calculable partonic cross section (CS)

$$\Delta_{ab} \equiv \hat{s} \,\hat{\sigma}_{ab}$$

Non-perturbative partonic flux

$$\Phi_{ab}(x) = \int_{x}^{1} \frac{du}{u} f_{a}(u) f_{b}\left(\frac{x}{u}\right)$$

WHY THRESHOLD CORRECTIONS?

Basic calculational framework for inclusive production : QCD factorization theorem

$$\sigma_X(\tau, q^2) = \frac{1}{S} \sum_{ab} \int_{\tau}^{1} \frac{dx}{x} \Phi_{ab}(x) \Delta_{ab}\left(\frac{\tau}{x}, q^2\right)$$

 $\tau \equiv \frac{q^2}{S}, \; q^2 \equiv m_{l^+l^-}^2 \; {\rm for} \; {\rm DY} \; {\rm and} \; m_H^2 \; {\rm for} \; {\rm Higgs}$

Perturbatively calculable partonic cross section (CS)

$$\Delta_{ab} \equiv \hat{s} \,\hat{\sigma}_{ab}$$

Non-perturbative partonic flux

$$\Phi_{ab}\left(x\right) = \int_{x}^{1} \frac{du}{u} f_{a}\left(u\right) f_{b}\left(\frac{x}{u}\right)$$

Why Threshold ...

- $\Phi_{ab}(x)$ becomes large when $x \to x_{\min} = \tau \Rightarrow$ enhances σ_X
- x → τ ⇒ ŝ → q² ⇒ partonic COM energy is just enough to produce final state particle ⇒ all the radiations are soft → soft limit.
 - In this region, Dominant contributions arise from Virtual and Soft gluon emission processes (SV).
 - For Higgs and DY productions, substantial contribution come from this region. e.g. for DY 91% - 95% at NNLO

THRESHOLD EXPAN : SOFT-PLUS-VIRTUAL (SV)

Splitting the partonic CS into singular & regular parts around $z \equiv \frac{\tau}{x} = \frac{q^2}{\hat{s}} = 1$

$$\Delta\left(z\right) = \underbrace{\Delta^{\text{sing}}(z)} + \Delta^{\text{hard}}(z)$$

$$\Delta^{\text{sing}}(z) \equiv \Delta^{\text{SV}}(z) = \Delta^{\text{SV}}_{\delta}\delta(1-z) + \sum_{j=0}^{\infty} \Delta^{\text{SV}}_{j}\mathcal{D}_{j} \quad \mathcal{D}_{j} \equiv \left(\frac{\ln^{j}(1-z)}{1-z}\right)_{+}$$

- These two are the most singular terms when $z \rightarrow 1$, so dominant contribution comes from these.
- $\Delta^{hard}(z)$: subleading and polynomial in $\ln(1-z)$.

Plus distribution + is defined by its action on test function $f\left(z\right)$

$$\int_0^1 dz \mathcal{D}_j(z) f(z) \equiv \int_0^1 dz \frac{\ln^j (1-z)}{1-z} \left[f(z) - f(1) \right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Goal : Computation of $\Delta^{SV}(z)$

Threshold Corrections To DY and Higgs at N³LO QCD

VARIOUS METHODS TO COMPUTE SV

Matrix elements square and phase space integrals in the soft limit.

Catani et al; Harlander and Kilgore

- ► Form factors and DGLAP kernels :
 - Factorization theorem
 - Renormalization group invariance
 - Sudakov resummation of form factors

Moch and Vogt; Ravindran, Smith and Van Neerven

Soft Collinear effective theory

Becher and Neubert

Threshold Corrections To DY and Higgs at N³LO QCD

DIAGRAMS AT $\mathcal{O}(a_s^3)$ for DY

VARIOUS METHODS TO COMPUTE SV

 Matrix elements square and phase space integrals in the soft limit.

Catani et al; Harlander and Kilgore

- Form factors and DGLAP kernels :
 - Factorization theorem
 - Renormalization group invariance
 - Sudakov resummation of form factors

Moch and Vogt; Ravindran, Smith and Van Neerven

Becher and Neubert

Threshold Corrections To DY and Higgs at N³LO QCD

DIAGRAMS AT $\mathcal{O}(a_s^3)$ for DY

Threshold Corrections To DY and Higgs at $\mathrm{N}^{3}\mathrm{LO}$ QCD

DIAGRAMS AT $\mathcal{O}(a_s^3)$ for DY

Threshold Corrections To DY and Higgs at N^3LO QCD

VARIOUS METHODS TO COMPUTE SV

 Matrix elements square and phase space integrals in the soft limit.

Catani et al; Harlander and Kilgore

- Form factors and DGLAP kernels :
 - Factorization theorem
 - Renormalization group invariance
 - Sudakov resummation of form factors

Moch and Vogt; Ravindran, Smith and Van Neerven

Soft Collinear effective theory

Becher and Neubert

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

VARIOUS METHODS TO COMPUTE SV

 Matrix elements square and phase space integrals in the soft limit.

Catani et al; Harlander and Kilgore

Moch and Vogt; Ravindran, Smith and Van Neerven

Becher and Neubert

Threshold Corrections To DY and Higgs at N³LO QCD

The Prescription ↓ Master Formula

Threshold Corrections To DY and Higgs at N^3LO QCD

General structure of Δ upon taking radiative corrections :

$$\Delta(z,q^2) = \delta(1-z) + a_s \left(q^2\right) \left[c_1^{(1)} \delta\left(1-z\right) + c_2^{(1)} \left(\frac{\ln\left(1-z\right)}{(1-z)}\right)_+ + R_1(z,q^2) \right] + a_s^2 \left(q^2\right) \left[\dots + \dots + R_2(z,q^2) \right] + \dots$$

$$z=rac{q^2}{\hat{s}}$$
, $R_i(z,q^2)$ are remaining terms.

• Virtual $\rightsquigarrow \delta(1-z)$

- Real emission $\rightsquigarrow \delta(1-z), \mathcal{D}_j, R_k$
- Soft approximation $z \to 1$

Defn.: $a_s \equiv \alpha_s/4\pi$

Threshold Corrections To DY and Higgs at N³LO QCD

General structure of Δ upon taking radiative corrections :

$$\Delta(z,q^2) = \delta(1-z) + a_s \left(q^2\right) \left[c_1^{(1)} \delta\left(1-z\right) + c_2^{(1)} \left(\frac{\ln\left(1-z\right)}{(1-z)}\right)_+ + R_1(z,q^2) \right] + a_s^2 \left(q^2\right) \left[\dots + \dots + R_2(z,q^2) \right] + \dots$$

 $z=rac{q^2}{\hat{s}}$, $R_i(z,q^2)$ are remaining terms.

- Virtual $\rightsquigarrow \delta(1-z)$
- Real emission $\rightsquigarrow \delta(1-z), \mathcal{D}_j, R_k$
- Soft approximation $z \to 1$

Defn.: $a_s \equiv \alpha_s/4\pi$

Threshold Corrections To DY and Higgs at N³LO QCD

General structure of Δ upon taking radiative corrections :

$$\begin{aligned} \Delta(z,q^2) &= \delta(1-z) \\ &+ a_s \left(q^2\right) \left[c_1^{(1)} \delta\left(1-z\right) + c_2^{(1)} \left(\frac{\ln\left(1-z\right)}{(1-z)}\right)_+ + R_1(z,q^2) \right] \\ &+ a_s^2 \left(q^2\right) \left[\dots + \dots + R_2(z,q^2) \right] + \dots \end{aligned}$$

$$z=rac{q^2}{\hat{s}}$$
 , $R_i(z,q^2)$ are remaining terms.

• Virtual
$$\rightsquigarrow \delta(1-z)$$

• Real emission $\rightsquigarrow \delta(1-z), \mathcal{D}_j, R_k$

• Soft approximation $z \to 1$

Defn.: $a_s\equiv \alpha_s/4\pi$

Threshold Corrections To DY and Higgs at N³LO QCD

General structure of Δ upon taking radiative corrections :

$$\begin{aligned} \Delta(z,q^2) &= \delta(1-z) \\ &+ a_s \left(q^2\right) \left[c_1^{(1)} \delta\left(1-z\right) + c_2^{(1)} \left(\frac{\ln\left(1-z\right)}{(1-z)}\right)_+ + R_1(z,q^2) \right] \\ &+ a_s^2 \left(q^2\right) \left[\dots + \dots + R_2(z,q^2) \right] + \dots \end{aligned}$$

$$z=rac{q^2}{\hat{s}}$$
 , $R_i(z,q^2)$ are remaining terms.

• Virtual
$$\rightsquigarrow \delta(1-z)$$

- Real emission $\rightsquigarrow \delta(1-z), \mathcal{D}_j, R_k$
- Soft approximation $z \to 1$

Defn.: $a_s\equiv \alpha_s/4\pi$

Threshold Corrections To DY and Higgs at N³LO QCD

FACTORIZATION OF SOFT GLUONS

Soft distribution factorizes as exponentiation

$$\Delta\left(z,q^{2}\right) = S\left(z,q^{2},\mu_{R}^{2}\right) \otimes \left[\delta\left(1-z\right) + a_{s}\tilde{R}_{1}(z,q^{2}) + a_{s}^{2}\tilde{R}_{2}(z,q^{2})\right]$$

and

$$S\left(z,q^2,\mu_R^2
ight) = \mathcal{C}\exp\left(\Phi(z,q^2,\mu_R^2)
ight), \quad \Phi \text{ is a finite distribution}$$

Defn:

$$Ce^{f(z)} = \delta(1-z) + \frac{1}{1!}f(z) + \frac{1}{2!}f(z) \otimes f(z) + \cdots$$

 \otimes is Mellin convolution.

Drop all regular functions.

FACTORIZATION OF SOFT GLUONS

Soft distribution factorizes as exponentiation

$$\Delta\left(z,q^{2}\right) = S\left(z,q^{2},\mu_{R}^{2}\right) \otimes \left[\delta\left(1-z\right) + a_{s}\tilde{R}_{1}(z,q^{2}) + a_{s}^{2}\tilde{R}_{2}(z,q^{2})\right]$$

and

$$S\left(z,q^2,\mu_R^2
ight) = \mathcal{C}\exp\left(\Phi(z,q^2,\mu_R^2)
ight), \quad \Phi \text{ is a finite distribution}$$

Defn:

$$Ce^{f(z)} = \delta(1-z) + \frac{1}{1!}f(z) + \frac{1}{2!}f(z) \otimes f(z) + \cdots$$

 \otimes is Mellin convolution.

Drop all regular functions.

We propose UV renormalized

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

I = q, g, b for DY, Higgs through gg and Higgs in $b\bar{b}$.

- Soft contribution
- Form factor factorizes due to Born kinematics.
- Overall operator ren. const. required for
 - 1. effective Lagrangian of Higgs in gg
 - 2. Yukawa coupling for Higgs in $b\bar{b}$
 - and $Z^I = 1$ for DY.

Threshold Corrections To DY and Higgs at N³LO QCD

We propose UV renormalized

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

I = q, g, b for DY, Higgs through gg and Higgs in $b\bar{b}$.

- Soft contribution
- Form factor factorizes due to Born kinematics.
- Overall operator ren. const. required for
 - 1. effective Lagrangian of Higgs in gg
 - 2. Yukawa coupling for Higgs in $b\bar{b}$

and $Z^I = 1$ for DY.

We propose UV renormalized

$$\begin{split} \hat{\Delta}^{\text{SV},I}\left(z,q^{2},\mu_{R}^{2}\right) &= \mathcal{C}e^{2\Phi^{I}\left(\hat{a}_{s},q^{2},\mu^{2},z\right)} \\ &\otimes \left(Z^{I}\left(\hat{a}_{s},\mu_{R}^{2},\mu^{2}\right)\right)^{2}|\hat{F}^{I}\left(\hat{a}_{s},Q^{2},\mu^{2}\right)|^{2}\delta(1-z) \end{split}$$

I = q, g, b for DY, Higgs through gg and Higgs in $b\bar{b}$.

- Soft contribution
- Form factor factorizes due to Born kinematics.
- Overall operator ren. const. required for
 - 1. effective Lagrangian of Higgs in gg
 - 2. Yukawa coupling for Higgs in $b\bar{b}$

and $Z^I = 1$ for DY.

Threshold Corrections To DY and Higgs at N³LO QCD

We propose UV renormalized

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

I = q, g, b for DY, Higgs through gg and Higgs in $b\bar{b}$.

- Soft contribution
- Form factor factorizes due to Born kinematics.
- Overall operator ren. const. required for
 - 1. effective Lagrangian of Higgs in gg
 - 2. Yukawa coupling for Higgs in $b\bar{b}$

and $Z^I = 1$ for DY.

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.

Threshold Corrections To DY and Higgs at N³LO QCD

$$\begin{split} \hat{\Delta}^{\text{SV},I}\left(z,q^{2},\mu_{R}^{2}\right) &= \mathcal{C}e^{2\Phi^{I}\left(\hat{a}_{s},q^{2},\mu^{2},z\right)} \\ &\otimes \left(Z^{I}\left(\hat{a}_{s},\mu_{R}^{2},\mu^{2}\right)\right)^{2}|\hat{F}^{I}\left(\hat{a}_{s},Q^{2},\mu^{2}\right)|^{2}\delta(1-z) \end{split}$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.

Threshold Corrections To DY and Higgs at N³LO QCD

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.

Threshold Corrections To DY and Higgs at N³LO QCD

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.

Threshold Corrections To DY and Higgs at N³LO QCD

$$\begin{split} \hat{\Delta}^{\text{SV},I}\left(z,q^{2},\mu_{R}^{2}\right) &= \mathcal{C}e^{2\Phi^{I}\left(\hat{a}_{s},q^{2},\mu^{2},z\right)} \\ &\otimes \left(Z^{I}\left(\hat{a}_{s},\mu_{R}^{2},\mu^{2}\right)\right)^{2}|\hat{F}^{I}\left(\hat{a}_{s},Q^{2},\mu^{2}\right)|^{2}\delta(1-z) \end{split}$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.
CANCELLATION OF DIVERGENCES

$$\hat{\Delta}^{\text{SV},I}(z,q^2,\mu_R^2) = \mathcal{C}e^{2\Phi^I(\hat{a}_s,q^2,\mu^2,z)} \\ \otimes \left(Z^I(\hat{a}_s,\mu_R^2,\mu^2)\right)^2 |\hat{F}^I(\hat{a}_s,Q^2,\mu^2)|^2 \delta(1-z)$$

- \hat{a}_s renormalization and Z^I makes partonic CS UV finite.
- Soft divergences from real radiation and virtual correction cancel upon summing over all the final states (KLN).
- Final state collinear singularities also cancel upon summing over all the final states (KLN)
- Still XSection is NOT fully finite due to initial state collinear singularities
- This can arise from virtual as well as real corrections
- Mass factorization to make collinear finite.

FACTORIZATION OF COLLINEAR SINGULARITIES

$$\hat{\Delta}^{\mathrm{SV},I}\left(z,q^{2},\mu_{R}^{2}\right) = \Gamma^{\mathrm{T}}(z,\mu_{F}^{2}) \otimes \underbrace{\Delta^{\mathrm{SV},I}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right)}_{\nearrow} \otimes \Gamma(z,\mu_{F}^{2})$$

- Kernels Γ absorb all the initial state collinear singularities.
- Only diagonal elements contribute to threshold limit.
- Substituting this we arrive at the master formula to compute SV CS.

FACTORIZATION OF COLLINEAR SINGULARITIES

$$\hat{\Delta}^{\text{SV},I}\left(z,q^{2},\mu_{R}^{2}\right) = \Gamma^{\text{T}}(z,\mu_{F}^{2}) \otimes \underbrace{\Delta^{\text{SV},I}\left(z,q^{2},\mu_{R}^{2},\mu_{F}^{2}\right)}_{\nearrow} \otimes \Gamma(z,\mu_{F}^{2})$$

- Kernels Γ absorb all the initial state collinear singularities.
- Only diagonal elements contribute to threshold limit.
- Substituting this we arrive at the master formula to compute SV CS.

$$\Delta^{\mathrm{SV},I}\left(z,q^2,\mu_R^2,\mu_F^2\right) = \mathcal{C}\exp\left(\Psi^I\left(z,q^2,\mu_R^2,\mu_F^2,\epsilon\right)\right)|_{\epsilon=0}$$

where

$$\Psi^{I} = \left(\ln \left[Z^{I}(\hat{a}_{s}, \mu_{R}^{2}, \mu^{2}, \epsilon) \right]^{2} + \ln \left| \hat{F}^{I}(\hat{a}_{s}, Q^{2}, \mu^{2}, \epsilon) \right|^{2} \right) \delta(1 - z)$$

+ $2\Phi^{I}(\hat{a}_{s}, q^{2}, \mu^{2}, z, \epsilon) - 2\mathcal{C} \ln \Gamma_{II}(\hat{a}_{s}, \mu^{2}, \mu_{F}^{2}, z, \epsilon)$

Ravindran

Threshold Corrections To DY and Higgs at N^3LO QCD

Bergische Universitat Wuppertal

24

- 1. Logarithm of the overall operator renormalization $\ln Z^I$
- 2. Logarithm of the form factor $\ln \hat{F}^I$
- 3. Soft distribution Φ^I
- 4. Logarithm of the mass factorization kernel $\ln \Gamma_{II}$

Goal boils down to compute these quantities.

Threshold Corrections To DY and Higgs at $\mathrm{N}^{3}\mathrm{LO}$ QCD

- 1. Logarithm of the overall operator renormalization $\ln Z^I$
- 2. Logarithm of the form factor $\ln \hat{F}^I$
- 3. Soft distribution Φ^I
- 4. Logarithm of the mass factorization kernel $\ln \Gamma_{II}$

Goal boils down to compute these quantities.

The Prescription \downarrow Master Formula \downarrow How do we compute these?

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

26

INGREDIENT 1 : OVERALL OPERATOR RENORMALIZATION $\rightsquigarrow \ln Z^I$

It satisfies the RGE

$$\mu_R^2 \frac{d}{d\mu_R^2} \ln Z^I(\hat{a}_s, \mu_R^2, \mu^2, \epsilon) = \sum_{i=1}^{\infty} a_s^i(\mu_R^2) \gamma_{i-1}^I$$

- γ_i^I 's are anomalous dimensions.
- γ^{I} are available up to $\mathcal{O}(a_{s}^{3})$ for I = b, g and $\gamma^{q} = 0$ $(q \neq b)$.
- Solution of this RGE provides $\ln Z^I$.
- OOR is not required for $\mathrm{DY}{\leadsto}~Z^I=1$.

Ingredient 2 : Form factor $\rightsquigarrow \ln \hat{F}^I$

- ▶ $\ln |\hat{F}^I|^2$ can be computed from available results up to 3-loop.
- Instead, we have followed an alternative way. The reason would be clear soon.
- Gauge and RG invariance implies KG eqn

$$\left[Q^2 \frac{d}{dQ^2} \ln \hat{F^I} = \frac{1}{2} \left[K^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon \right) + G^I \left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon \right) \right]$$

Ashoke Sen, Mueller, Collins, Magnea

- K^I contains all the poles in ϵ where, ST dimensions $d = 4 + \epsilon$.
- G^I collects finite terms at $\epsilon \to 0$.

INGREDIENT 2 ...

RG invariance of \hat{F} implies

$$\mu_R^2 \frac{d}{d\mu_R^2} K^I\left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon\right) = -\mu_R^2 \frac{d}{d\mu_R^2} G^I\left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon\right) = -A^I\left(a_s(\mu_R^2) + \frac{Q^2}{\mu^2}\right)$$

• A^I's are finite, called cusp anomalous dimensions.

• A^I's are maximally non-Abelian

$$A^g = \frac{C_A}{C_F} A^q$$

$$C_A = N, C_F = (N^2 - 1)/2N$$

- Solve by expanding K^I, G^I and A^I in powers of $a_s(\mu_R^2)$.
- Substitute these $K^I \& G^I$ in KG eqn to solve for $\ln \hat{F}^I$ to order by order.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

INGREDIENT 2 ...

RG invariance of \hat{F} implies

$$\mu_R^2 \frac{d}{d\mu_R^2} K^I\left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon\right) = -\mu_R^2 \frac{d}{d\mu_R^2} G^I\left(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon\right) = -A^I\left(a_s(\mu_R^2) + \frac{Q^2}{\mu^2}\right)$$

• A^I's are finite, called cusp anomalous dimensions.

• A^{I} 's are maximally non-Abelian

$$A^g = \frac{C_A}{C_F} A^q$$

$$C_A = N, C_F = (N^2 - 1)/2N$$

- Solve by expanding K^I, G^I and A^I in powers of $a_s(\mu_R^2)$.
- Substitute these K^I & G^I in KG eqn to solve for $\ln \hat{F}^I$ to order by order.

Ingredient 2 . . . Solution of $\ln \hat{F}^I$

The solution up to 3 loops are:

$$\ln \hat{F}^{I}(\hat{a}_{s}, Q^{2}, \mu^{2}, \epsilon) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{Q^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i} \hat{\mathcal{L}}_{F}^{I,(i)}(\epsilon)$$

Moch, Vogt, Vermaseren; Ravindran; Magnea

with

$$\begin{split} \hat{\mathcal{L}}_{F}^{I,(1)}(\epsilon) &= \frac{1}{\epsilon^{2}} \left\{ -2A_{1}^{I} \right\} + \frac{1}{\epsilon} \left\{ G_{1}^{I}(\epsilon) \right\}, \\ \hat{\mathcal{L}}_{F}^{I,(2)}(\epsilon) &= \frac{1}{\epsilon^{3}} \left\{ \beta_{0} A_{1}^{I} \right\} + \frac{1}{\epsilon^{2}} \left\{ -\frac{1}{2} A_{2}^{I} - \beta_{0} G_{1}^{I}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{2} G_{2}^{I}(\epsilon) \right\}, \\ \hat{\mathcal{L}}_{F}^{I,(3)}(\epsilon) &= \frac{1}{\epsilon^{4}} \left\{ -\frac{8}{9} \beta_{0}^{2} A_{1}^{I} \right\} + \frac{1}{\epsilon^{3}} \left\{ \frac{2}{9} \beta_{1} A_{1}^{I} + \frac{8}{9} \beta_{0} A_{2}^{I} + \frac{4}{3} \beta_{0}^{2} G_{1}^{I}(\epsilon) \right\} \\ &+ \frac{1}{\epsilon^{2}} \left\{ -\frac{2}{9} A_{3}^{I} - \frac{1}{3} \beta_{1} G_{1}^{I}(\epsilon) - \frac{4}{3} \beta_{0} G_{2}^{I}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{3} G_{3}^{I}(\epsilon) \right\} \end{split}$$

At every order, all the poles except $\frac{1}{\epsilon}$ can be predicted from previous order.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

30

Ingredient 2 . . . Solution of $\ln \hat{F}^I$

The solution up to 3 loops are:

$$\ln \hat{F}^{I}(\hat{a}_{s}, Q^{2}, \mu^{2}, \epsilon) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{Q^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i} \hat{\mathcal{L}}_{F}^{I,(i)}(\epsilon)$$

Moch, Vogt, Vermaseren; Ravindran; Magnea

with

$$\begin{split} \hat{\mathcal{L}}_{F}^{I,(1)}(\epsilon) &= \frac{1}{\epsilon^{2}} \left\{ -2A_{1}^{I} \right\} + \frac{1}{\epsilon} \left\{ G_{1}^{I}(\epsilon) \right\}, \\ \hat{\mathcal{L}}_{F}^{I,(2)}(\epsilon) &= \frac{1}{\epsilon^{3}} \left\{ \beta_{0} A_{1}^{I} \right\} + \frac{1}{\epsilon^{2}} \left\{ -\frac{1}{2} A_{2}^{I} - \beta_{0} G_{1}^{I}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{2} G_{2}^{I}(\epsilon) \right\}, \\ \hat{\mathcal{L}}_{F}^{I,(3)}(\epsilon) &= \frac{1}{\epsilon^{4}} \left\{ -\frac{8}{9} \beta_{0}^{2} A_{1}^{I} \right\} + \frac{1}{\epsilon^{3}} \left\{ \frac{2}{9} \beta_{1} A_{1}^{I} + \frac{8}{9} \beta_{0} A_{2}^{I} + \frac{4}{3} \beta_{0}^{2} G_{1}^{I}(\epsilon) \right\} \\ &+ \frac{1}{\epsilon^{2}} \left\{ -\frac{2}{9} A_{3}^{I} - \frac{1}{3} \beta_{1} G_{1}^{I}(\epsilon) - \frac{4}{3} \beta_{0} G_{2}^{I}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{3} G_{3}^{I}(\epsilon) \right\} \end{split}$$

At every order, all the poles except $\frac{1}{\epsilon}$ can be predicted from previous order.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_{1}^{I}(\epsilon) = 2\left(B_{1}^{I} - \gamma_{1}^{I}\right) + f_{1}^{I} + \sum_{k=1}^{\infty} \epsilon^{k} g_{1}^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(B_{2}^{I} - \gamma_{2}^{I}\right) + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{2}^{I,k}$$

- Origin : $B_i^I \rightsquigarrow$ collinear, $\gamma_i^I \rightsquigarrow$ UV and $f_i^I \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

 \sim

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_1^I(\epsilon) = 2\left(\frac{B_1^I}{1} - \gamma_1^I\right) + f_1^I + \sum_{k=1}^{\infty} \epsilon^k g_1^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(\frac{B_{2}^{I} - \gamma_{2}^{I}}{2} + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{2}^{I,k}\right)$$

- Origin : $B_i^I \rightsquigarrow$ collinear, $\gamma_i^I \rightsquigarrow$ UV and $f_i^I \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_1^I(\epsilon) = 2\left(B_1^I - \gamma_1^I\right) + f_1^I + \sum_{k=1}^{\infty} \epsilon^k g_1^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(B_{2}^{I} - \gamma_{2}^{I}\right) + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{2}^{I,k}$$

- Origin : $B_i^I \rightsquigarrow$ collinear, $\gamma_i^I \rightsquigarrow$ UV and $f_i^I \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

 \sim

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_1^I(\epsilon) = 2\left(B_1^I - \gamma_1^I\right) + \frac{f_1^I}{f_1} + \sum_{k=1}^{\infty} \epsilon^k g_1^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(B_{2}^{I} - \gamma_{2}^{I}\right) + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{2}^{I,k}$$

- Origin : $B_i^I \rightsquigarrow$ collinear, $\gamma_i^I \rightsquigarrow$ UV and $f_i^I \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_1^I(\epsilon) = 2\left(B_1^I - \gamma_1^I\right) + f_1^I + \sum_{k=1}^{\infty} \epsilon^k g_1^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(B_{2}^{I} - \gamma_{2}^{I}\right) + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}\epsilon^{k}g_{2}^{I,k}$$

- Origin : $B_i^I \rightsquigarrow$ collinear, $\gamma_i^I \rightsquigarrow$ UV and $f_i^I \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

Ravindran, Smith, van Neerven

2-loop results for \hat{F}^q & \hat{F}^g in SU(N) dictates

$$G_1^I(\epsilon) = 2\left(B_1^I - \gamma_1^I\right) + \frac{f_1^I}{f_1} + \sum_{k=1}^{\infty} \epsilon^k g_1^{I,k}$$

$$G_{2}^{I}(\epsilon) = 2\left(B_{2}^{I} - \gamma_{2}^{I}\right) + f_{2}^{I} - 2\beta_{0}g_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{2}^{I,k}$$

- Origin : $B^I_i \rightsquigarrow$ collinear, $\gamma^I_i \rightsquigarrow$ UV and $f^I_i \rightsquigarrow$ soft region.
- B_i^I are collinear anomalous dimensions.
- Single pole can also be predicted!
- f_i^I are soft anomalous dimensions. These satisfy

$$f_i^g = \frac{C_A}{C_F} f_i^q \qquad i = 1, 2$$

Threshold Corrections To DY and Higgs at N³LO QCD

31

3-loop results for the \hat{F}^I by Moch et al, Gehrmann et al. confirm this conclusion

$$G_{3}^{I}(\epsilon) = 2(B_{3}^{I} - \gamma_{3}^{I}) + f_{3}^{I} - 2\beta_{1}g_{1}^{I,1} - 2\beta_{0}\left(g_{2}^{I,1} + 2\beta_{0}g_{1}^{I,2}\right) + \sum_{k=1}^{\infty} \epsilon^{k}g_{3}^{I,k}$$

with

$$f_3^g = \frac{C_A}{C_F} f_3^q$$

• f^{I} 's are universal.

- Explicit computation of FF gives ϵ dependent $g_i^{I,k}$.
- This understanding is crucial to get soft part.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

32

3-loop results for the \hat{F}^{I} by Moch et al, Gehrmann et al. confirm this conclusion

$$G_{3}^{I}(\epsilon) = 2(B_{3}^{I} - \gamma_{3}^{I}) + f_{3}^{I} - 2\beta_{1}g_{1}^{I,1} - 2\beta_{0}\left(g_{2}^{I,1} + 2\beta_{0}g_{1}^{I,2}\right) + \sum_{k=1}^{\infty} \epsilon^{k}g_{3}^{I,k}$$

with

$$f_3^g = \frac{C_A}{C_F} f_3^q$$

• f^{I} 's are universal.

- Explicit computation of FF gives ϵ dependent $g_i^{I,k}$.
- This understanding is crucial to get soft part.

Threshold Corrections To DY and Higgs at N³LO QCD

32

Ingredient 3 : Mass Factorization $\rightsquigarrow \ln \Gamma$

DGLAP kernel Γ satisfies the RGE

$$\left(\mu_F^2 \frac{d}{d\mu_F^2} \Gamma(z, \mu_F^2, \epsilon) = \frac{1}{2} P\left(z, \mu_F^2\right) \otimes \Gamma\left(z, \mu_F^2, \epsilon\right)\right)$$

- *P*'s are Altarelli Parisi splitting functions (matrix valued).
- Diagonal parts of the kernel ONLY contribute to SV limit.
- By solving we get $\Gamma \rightsquigarrow \ln \Gamma$
- Γ is available up to $\mathcal{O}(a_s^4)$.

WHERE ARE WE?

 $\checkmark \ln[Z^I]^2$ $\checkmark \ln |\hat{F}^I|^2$ $\checkmark \ln \Gamma_{II}$?? Φ^I

Threshold Corrections To DY and Higgs at N³LO QCD

34

Revisiting cancellation of poles

Revisiting cancellation of poles

Revisiting cancellation of poles

Ingredient 4 : Strategy to Calculate Soft Φ^I

Revisiting cancellation of poles

Threshold Corrections To DY and Higgs at N³LO QCD

38

Ingredient 4 : Strategy to Calculate Soft Φ^I

Revisiting cancellation of poles

- Demanding finiteness of partonic $CS \Rightarrow \Phi^I$ must have soft as well as collinear contributions.
- Now onward we will call Φ^I as Soft-Collinear distribution.

Ingredient 4 : Strategy to Calculate Soft Φ^I

Revisiting cancellation of poles

- Demanding finiteness of partonic $CS \Rightarrow \Phi^I$ must have soft as well as collinear contributions.
- Now onward we will call Φ^I as Soft-Collinear distribution.

Ingredient 4 . . . Ansatz for Soft-Collinear Φ^I

Demand of

1. finiteness of $\Delta^{\mathrm{SV},I}(z)$ at $\epsilon \to 0$ and

2. the RGE

$$\mu_R^2 \frac{d}{d\mu_R^2} \Phi^I\left(\hat{a}_s, q^2, \mu^2, z, \epsilon\right) = 0$$

can be achieved if we make an ansatz that Φ^I satisfies KG type DE

$$q^2 \frac{d}{dq^2} \Phi^I = \frac{1}{2} \left[\overline{K}^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) + \overline{G}^I \left(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) \right]$$

• \overline{K}^I contains all the poles in ϵ . \overline{G}^I contains finite terms in $\epsilon \to 0$.

Ingredient 4 . . . Ansatz for Soft-Collinear Φ^I

Demand of

- 1. finiteness of $\Delta^{\mathrm{SV},I}(z)$ at $\epsilon \to 0$ and
- 2. the RGE

$$\mu_R^2 \frac{d}{d\mu_R^2} \Phi^I\left(\hat{a}_s, q^2, \mu^2, z, \epsilon\right) = 0$$

can be achieved if we make an ansatz that Φ^I satisfies KG type DE

$$q^2 \frac{d}{dq^2} \Phi^I = \frac{1}{2} \left[\overline{K}^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) + \overline{G}^I \left(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) \right]$$

• \overline{K}^I contains all the poles in ϵ . \overline{G}^I contains finite terms in $\epsilon \to 0$.

Ingredient 4 . . . Ansatz for Soft-Collinear Φ^I

Demand of

- 1. finiteness of $\Delta^{SV}(z)$ at $\epsilon \to 0$ and
- 2. the RGE

$$\mu_R^2 \frac{d}{d\mu_R^2} \Phi^I\left(\hat{a}_s, q^2, \mu^2, z, \epsilon\right) = 0$$

can be achieved if we make an ansatz that Φ satisfies KG type DE

$$q^2 \frac{d}{dq^2} \Phi^I = \frac{1}{2} \left[\overline{K}^I \left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) + \overline{G}^I \left(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \epsilon \right) \right]$$

 \overline{K}^I contains all the poles in ϵ . \overline{G}^I contains finite terms in $\epsilon \to 0$.

• The solutions of \overline{KG} consistent with our demands

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Ingredient 4 . . . Solution of Φ^I

$$\Phi^{I}(\hat{a}_{s},q^{2},\mu^{2},z,\epsilon) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{q^{2}(1-z)^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i}\left(\frac{i\epsilon}{1-z}\right) \hat{\phi}^{I,(i)}(\epsilon)$$

where

$$\hat{\phi}^{I,(i)}(\epsilon) = \hat{\mathcal{L}}_{F}^{I,(i)}(\epsilon) \left(A^{I} \to -A^{I}, G^{I}(\epsilon) \to \overline{\mathcal{G}}^{I}(\epsilon) \right)$$

This implies

$$\begin{split} \overline{\mathcal{G}}_{1}^{I}(\epsilon) &= -f_{1}^{I} + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{1}^{I,k} \\ \overline{\mathcal{G}}_{2}^{I}(\epsilon) &= -f_{2}^{I} - 2\beta_{0} \overline{\mathcal{G}}_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{2}^{I,k} \\ \overline{\mathcal{G}}_{3}^{I}(\epsilon) &= -f_{3}^{I} - 2\beta_{1} \overline{\mathcal{G}}_{1}^{I,1} - 2\beta_{0} \left(\overline{\mathcal{G}}_{2}^{I,1} + 2\beta_{0} \overline{\mathcal{G}}_{1}^{I,2} \right) + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{3}^{I,k} \end{split}$$

Explicit computation is required to get ϵ dependent cof $\bar{\mathcal{G}}_i^{I,\kappa}$.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

INGREDIENT 4 ... Solution of Φ^I

$$\Phi^{I}(\hat{a}_{s},q^{2},\mu^{2},z,\epsilon) = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{q^{2}(1-z)^{2}}{\mu^{2}}\right)^{i\frac{\epsilon}{2}} S_{\epsilon}^{i}\left(\frac{i\epsilon}{1-z}\right) \hat{\phi}^{I,(i)}(\epsilon)$$

where

$$\hat{\phi}^{I,(i)}(\epsilon) = \hat{\mathcal{L}}_{F}^{I,(i)}(\epsilon) \left(A^{I} \to -A^{I}, G^{I}(\epsilon) \to \overline{\mathcal{G}}^{I}(\epsilon) \right)$$

This implies

$$\begin{split} \overline{\mathcal{G}}_{1}^{I}(\epsilon) &= -f_{1}^{I} + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{1}^{I,k} \\ \overline{\mathcal{G}}_{2}^{I}(\epsilon) &= -f_{2}^{I} - 2\beta_{0} \overline{\mathcal{G}}_{1}^{I,1} + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{2}^{I,k} \\ \overline{\mathcal{G}}_{3}^{I}(\epsilon) &= -f_{3}^{I} - 2\beta_{1} \overline{\mathcal{G}}_{1}^{I,1} - 2\beta_{0} \left(\overline{\mathcal{G}}_{2}^{I,1} + 2\beta_{0} \overline{\mathcal{G}}_{1}^{I,2} \right) + \sum_{k=1}^{\infty} \epsilon^{k} \overline{\mathcal{G}}_{3}^{I,k} \end{split}$$

Explicit computation is required to get ϵ dependent cof $\overline{\mathcal{G}}_i^{I,k}$.

Ingredient 4 . . . Crucial Property of Φ^I

Explicit computation shows

$$\Phi^q = rac{C_F}{C_A} \Phi^g$$
 and $ar{\mathcal{G}}_i^{q,k} = rac{C_F}{C_A} ar{\mathcal{G}}_i^{g,k}$

up to $\mathcal{O}(a_s^2)$.

→ soft-collinear distributions are universal

$$\Phi^I = C_I \Phi$$

with

$$C_{I} = \begin{cases} C_{A} & \text{ for Higgs in } gg \\ C_{F} & \text{ for DY and for Higgs in } b\bar{b} \end{cases}$$

Threshold Corrections To DY and Higgs at N^3LO QCD

Explicit computation shows

$$\Phi^q = rac{C_F}{C_A} \Phi^g$$
 and $ar{\mathcal{G}}_i^{q,k} = rac{C_F}{C_A} ar{\mathcal{G}}_i^{g,k}$

up to $\mathcal{O}(a_s^2)$.

 \rightsquigarrow soft-collinear distributions are universal

$$\Phi^I = C_I \Phi$$

with

 $C_{I} = \begin{cases} C_{A} & \text{ for Higgs in } gg \\ C_{F} & \text{ for DY and for Higgs in } b\bar{b} \end{cases}$
WHERE ARE WE?

 $\checkmark \ln[Z^I]^2$ $\checkmark \ln |\hat{F}^I|^2$ $\checkmark \ln \Gamma_{II}$ $\checkmark \Phi^I$

Threshold Corrections To DY and Higgs at N³LO QCD

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Results : SV XSection for DY at N^3LO

$$\Delta^{\mathrm{SV},(3)} = \Delta^{\mathrm{SV},(3)} |_{\delta} \delta(1-z) + \sum_{j=0}^{5} \Delta^{\mathrm{SV},(3)} |_{\mathcal{D}_{j}} \mathcal{D}_{j}$$

All the D_j, j = 0, 1, ..., 5 and partial δ(1 − z) contributions were known for a decade.

Moch and Vogt

• We completed the full computation of $\delta(1-z)$ part.

TA, Mahakhud, Rana, Ravindran

- All the required quantities were available except $\bar{\mathcal{G}}_{3}^{q,1}$ from $\Phi^{q,(3)}$.
 - $\begin{array}{l} \checkmark \quad \ln[Z^q]^2 \text{ up to } \mathcal{O}(a_s^3) \\ \\ \checkmark \quad \ln|\hat{F}^q|^2 \text{ up to } \mathcal{O}(a_s^3) \\ \\ \\ \checkmark \quad \ln\Gamma_{qq} \text{ up to } \mathcal{O}(a_s^3) \\ \\ \\ \\ \\ \hline \end{array} \begin{array}{l} \checkmark \quad \Phi^q \text{ up to } \mathcal{O}(a_s^2) \\ \\ \end{array} \begin{array}{l} \mathsf{BUT} \quad ? \quad \mathcal{O}(a_s^3) \\ \\ \end{array} \end{array}$

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Results : SV XSection for DY at N^3LO

$$\Delta^{\mathrm{SV},(3)} = \Delta^{\mathrm{SV},(3)} |_{\delta} \delta(1-z) + \sum_{j=0}^{5} \Delta^{\mathrm{SV},(3)} |_{\mathcal{D}_j} \mathcal{D}_j$$

All the D_j, j = 0, 1, ..., 5 and partial δ(1 − z) contributions were known for a decade.

Moch and Vogt

• We completed the full computation of $\delta(1-z)$ part.

TA, Mahakhud, Rana, Ravindran

- All the required quantities were available except $\bar{\mathcal{G}}_3^{q,1}$ from $\Phi^{q,(3)}$.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Results : SV XSection for DY at N^3LO

$$\Delta^{\mathrm{SV},(3)} = \Delta^{\mathrm{SV},(3)} |_{\delta} \delta(1-z) + \sum_{j=0}^{5} \Delta^{\mathrm{SV},(3)} |_{\mathcal{D}_j} \mathcal{D}_j$$

All the D_j, j = 0, 1, ..., 5 and partial δ(1 − z) contributions were known for a decade.

Moch and Vogt

• We completed the full computation of $\delta(1-z)$ part.

TA, Mahakhud, Rana, Ravindran

- All the required quantities were available except $\bar{\mathcal{G}}_{3}^{q,1}$ from $\Phi^{q,(3)}$.
 - $$\begin{split} &\checkmark \ \ln[Z^q]^2 \text{ up to } \mathcal{O}(a_s^3) \\ &\checkmark \ \ln|\hat{F}^q|^2 \text{ up to } \mathcal{O}(a_s^3) \\ &\checkmark \ \ln\Gamma_{qq} \text{ up to } \mathcal{O}(a_s^3) \\ &\checkmark \ \Phi^q \text{ up to } \mathcal{O}(a_s^2) \\ \end{split}$$

Results : SV XSection for DY at N^3LO ...

- Recently, complete SV XSec at N³LO for the Higgs production in gluon fusion was computed by Anastasiou et. al.
- From which we extracted Φ^g at $\mathcal{O}(a_s^3)$.

Recall

$$\Phi^q = \frac{C_F}{C_A} \Phi^g$$

was established up to $\mathcal{O}(a_s^2)$ by explicit computation.

- We conjectured the relation to be hold true even at $\mathcal{O}(a_s^3)$.
- Using this we got $\Phi^q \rightsquigarrow \bar{\mathcal{G}}_3^{q,1}$.

Results : SV XSection for DY at N^3LO ...

- Recently, complete SV XSec at N³LO for the Higgs production in gluon fusion was computed by Anastasiou et. al.
- From which we extracted Φ^g at $\mathcal{O}(a_s^3)$.

Recall

$$\Phi^q = \frac{C_F}{C_A} \Phi^g$$

was established up to $\mathcal{O}(a_s^2)$ by explicit computation.

- We conjectured the relation to be hold true even at $\mathcal{O}(a_s^3)$.
- Using this we got $\Phi^q \rightsquigarrow \bar{\mathcal{G}}_3^{q,1}$.

Results : SV XSection for DY at N^3LO ...

- Recently, complete SV XSec at N³LO for the Higgs production in gluon fusion was computed by Anastasiou et. al.
- From which we extracted Φ^g at $\mathcal{O}(a_s^3)$.

Recall

$$\Phi^q = \frac{C_F}{C_A} \Phi^g$$

was established up to $\mathcal{O}(a_s^2)$ by explicit computation.

• We conjectured the relation to be hold true even at $\mathcal{O}(a_s^3)$.

• Using this we got
$$\Phi^q \rightsquigarrow \bar{\mathcal{G}}_3^{q,1}$$
 .

- This gives the ONLY missing part to achieve $\delta(1-z)$ part.
- In addition, now $\mathcal{D}_7, \ldots \mathcal{D}_1$ are available at N⁴LO exactly.

TA, Mahakhud, Rana, Ravindran; de Florian, Mazzitelli, Moch, Vogt

- Later the result was reconfirmed by two groups : Catani, Cieri, de Florian, Ferrera, Frazzini; Li, von Manteuffel, Schabinger, Zhu
- This in turn establishes our conjecture at $\mathcal{O}(a_s^3)$.

Threshold Corrections To DY and Higgs at N³LO QCD

Results : Numerical Implications

At 14 TeV LHC with $\mu_F = \mu_R = Q = m_{l^+l^-}$

•
$$\left[Q^2 \frac{d\sigma}{dQ^2}\right]_{\delta} \approx -\sum_j \left[Q^2 \frac{d\sigma}{dQ^2}\right]_{\mathcal{D}_j} \Rightarrow \text{Most of the contributions}$$

from \mathcal{D}_j 's are cancelled against $\delta(1-z)$ making N³LO_{SV} more subleading.

Q (GeV)	50	90	200	400	600	1000
δ (nb)	2.561 10 ⁻³	140.114 10^{-3}	4.567 10 ⁻⁵	$3.153 \ 10^{-6}$	6.473 10 ⁻⁷	7.755 10 ⁻⁸
\mathcal{D} (nb)	-2.053 10 ⁻³	-124.493 10 ⁻³	$-4.421 \ 10^{-5}$	$-3.368 \ 10^{-6}$	-7.455 10 ⁻⁷	-9.959 10 ⁻⁸

Threshold Corrections To DY and Higgs at N^3LO QCD

Bergische Universitat Wuppertal

Results : Numerical Implications ...

• Correction at N³LO_{SV} is very very small \rightsquigarrow Good newz!

Q (GeV)	50	90	200	400	600	1000
NNLO (nb)	0.158	11.296	5.233 10^{-3}	4.694 10^{-4}	$1.116 \ 10^{-4}$	$1.607 \ 10^{-5}$
$N^3LO_{ m SV}$ (nb)	0.158	11.311	$5.234 \ 10^{-3}$	$4.692 \ 10^{-4}$	$1.116 \ 10^{-4}$	$1.605 \ 10^{-5}$

Threshold Corrections To DY and Higgs at N^3LO QCD

Results : Numerical Implications ...

Scale dependence reduces.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

SUMMARY

- A systematic way of computing threshold corrections to inclusive Higgs and DY productions in pQCD is prescribed.
- Underlying principles : factorization of soft and collinear divergences, RG invariance, gauge invariance and Sudakov resummation.
- $\delta(1-z)$ part of ${\rm N}^3{\rm LO}_{\rm SV}$ DY X section is computed for the first time.
- Importantly, the calculation is done even without performing the explicit computation of the real emission diagrams for DY at $\mathcal{O}(a_s^3)$.
- Necessary information arising from real emission processes is extracted from the computation of Higgs boson in gg at N³LO threshold.

SUMMARY

- A systematic way of computing threshold corrections to inclusive Higgs and DY productions in pQCD is prescribed.
- Underlying principles : factorization of soft and collinear divergences, RG invariance, gauge invariance and Sudakov resummation.
- $\delta(1-z)$ part of ${\rm N}^3{\rm LO}_{\rm SV}$ DY Xsection is computed for the first time.
- Importantly, the calculation is done even without performing the explicit computation of the real emission diagrams for DY at $\mathcal{O}(a_s^3)$.
- Necessary information arising from real emission processes is extracted from the computation of Higgs boson in gg at N³LO threshold.

- We find that the impact of the $\delta(1-z)$ contribution is quite large to the pure $\rm N^3LO_{SV}$ correction.
- This method has been later employed to compute some other inclusive and exclusive observables at threshold by us in

```
Phys. Rev. Lett. 113 (2014) 212003
JHEP 1410 (2014) 139
JHEP 1502 (2015) 131
```

RG Improved Higgs Boson Production to N 3 LO in QCD

TA, Das, Kumar, Rana, Ravindran

arXiv:1505.07422

Threshold Corrections To DY and Higgs at N³LO QCD

State of the art : The production cross section of Higgs boson through gg at N³LO by Anastasiou et. al.

Consequence

- (a) Spectacular accuracy
- (b) Significant reduction in unphysical renormalization & factorization scales.

Points of concern

- (a) Significant increase in scale uncertainties upon increasing the range of scale variation : $\mu_R < m_H/4$
- (b) Total cross section may become negative in this region.

Reason : The presence of large logarithms of the scales at every order $\Rightarrow a_s^n(\mu_R^2) \ln^k(\mu_R^2/m_H^2)$.

Remedy : (a) Go beyond N³LO, (b) Perform all order resummations

State of the art : The production cross section of Higgs boson through gg at N³LO by Anastasiou et. al.

Consequence

- (a) Spectacular accuracy
- (b) Significant reduction in unphysical renormalization & factorization scales.

Points of concern

- (a) Significant increase in scale uncertainties upon increasing the range of scale variation : $\mu_R < m_H/4$
- (b) Total cross section may become negative in this region.

Reason : The presence of large logarithms of the scales at every order $\Rightarrow a_s^n(\mu_R^2) \ln^k(\mu_R^2/m_H^2)$.

Remedy : (a) Go beyond N³LO, (b) Perform all order resummations

State of the art : The production cross section of Higgs boson through gg at N³LO by Anastasiou et. al.

Consequence

- (a) Spectacular accuracy
- (b) Significant reduction in unphysical renormalization & factorization scales.

Points of concern

- (a) Significant increase in scale uncertainties upon increasing the range of scale variation : $\mu_R < m_H/4$
- (b) Total cross section may become negative in this region.

Reason : The presence of large logarithms of the scales at every order $\Rightarrow a_s^n(\mu_R^2) \ln^k(\mu_R^2/m_H^2)$.

Remedy : (a) Go beyond N^3LO , (b) Perform all order resummations

Figure: Higgs boson production in gg fusion

Duhr, Talk at RADCOR '15

Threshold Corrections To DY and Higgs at N^3LO QCD

Bergische Universitat Wuppertal

State of the art : The production cross section of Higgs boson through gg at N³LO by Anastasiou et. al.

Consequence

- (a) Spectacular accuracy
- (b) Significant reduction in unphysical renormalization & factorization scales.

Points of concern

- (a) Significant increase in scale uncertainties upon increasing the range of scale variation : $\mu_R < m_H/4$
- (b) Total cross section may become negative in this region.

Reason : The presence of large logarithms of the scales at every order $\Rightarrow a_s^n(\mu_R^2) \ln^k(\mu_R^2/m_H^2)$.

Remedy : (a) Go beyond N³LO, (b) Perform all order resummations

State of the art : The production cross section of Higgs boson through gg at N³LO by Anastasiou et. al.

Consequence

- (a) Spectacular accuracy
- (b) Significant reduction in unphysical renormalization & factorization scales.

Points of concern

- (a) Significant increase in scale uncertainties upon increasing the range of scale variation : $\mu_R < m_H/4$
- (b) Total cross section may become negative in this region.

Reason : The presence of large logarithms of the scales at every order $\Rightarrow a_s^n(\mu_R^2) \ln^k(\mu_R^2/m_H^2)$.

Remedy : (a) Go beyond N 3 LO, (b) Perform all order resummations

Our Proposal to Improve μ_R Dependence

Our proposal : Perform resummations by including RG accessible μ_R dependent logarithms of all orders.

Consequence : Quite remarkable!

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

Collecting the highest logs to all orders

$$\overline{\sigma}_{\Sigma}^{(0)}(S, m_{\rm H}^2, \mu_R^2) \equiv \sum_{n=0}^{\infty} \overline{\sigma}_n^{(n)} \left(a_s L_R \right)^n$$

Collecting the next-to-highest logs to all orders

$$\overline{\sigma}_{\Sigma}^{(1)}(S, m_{\mathrm{H}}^2, \mu_R^2) \equiv \sum_{n=1}^{\infty} \overline{\sigma}_{n-1}^{(n)} \left(a_s L_R \right)^{n-1}$$

and so on. We re-write the Xsection in terms of these as

$$\begin{split} \sigma^{\rm H}(S, m_{\rm H}^2) &= a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2) \\ &= a_s^2(\mu_R^2) \ \sum_{i=0}^{\infty} a_s^i(\mu_R^2) \overline{\sigma}_{\Sigma}^{(i)}(S, m_{\rm H}^2, \mu_R^2) \end{split}$$

Goal : Compute $\overline{\sigma}_{\Sigma}^{(i)}$ for i = 0, 1, 2, 3 for $gg \to H$.

Our Proposal to Improve μ_R Dependence

Our proposal : Perform resummations by including RG accessible μ_R dependent logarithms of all orders.

Consequence : Quite remarkable!

Our Proposal to Improve μ_R Dependence ...

Figure: Dependence of μ_R in both the fixed order and resummed Xsections on \sqrt{S}

Demerit : Method fails to improve the central value of Xsection, unlike other resummation.

Other Areas of Interest ...

Two-loop QCD corrections to Higgs $\rightarrow b + \bar{b} + g$ amplitude

TA, Mahakhud, Mathews, Rana, Ravindran JHEP 1408 (2014) 075

- Theory : SM.
- Bottom quark mass ~ VFS scheme.
- No of diagrams : 251
- Mostly in-house codes written in FORM and Mathematica.
- For IBP, LI identities ~> LiteRed by Lee.
- Agrees with the universal IR-pole structures of QCD.
- Result will be used for Higgs + jet production through $b\bar{b}$ at NNLO QCD in hadron colliders.
- Analytically computed.

Other Areas of Interest ...

Two-Loop QCD Correction to massive spin-2 resonance \rightarrow 3 gluons

TA, Mahakhud, Mathews, Rana, Ravindran JHEP 1405 (2014) 107

- Spin-2 couples to SM minimally through SM energy-momentum tensor.
- No of diagrams : 2362
- Mostly in-house codes written in FORM and Mathematica.
- For IBP, LI identities ~> LiteRed by Lee.
- Explicit verification of the universal IR-pole structure of QCD when spin-2 presents.
- Result will be used for spin-2 + jet production at NNLO QCD in hadron colliders.
- Analytically computed.

Thank You!

Any Questions?

Threshold Corrections To DY and Higgs at N^3LO QCD

Extra Slides

Threshold Corrections To DY and Higgs at N^3LO QCD

Extra 1 : RG Resum in Details

Threshold Corrections To DY and Higgs at N^3LO QCD
The inclusive cross section of Higgs production

$$\begin{split} \sigma^{\rm H}(S, m_{\rm H}^2) &= \sigma^0 a_s^2(\mu_R^2) \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \\ &\times \mathcal{C}_{\rm H}^2 \left(a_s(\mu_R^2) \right) \Delta_{ab}^{\rm H} \left(\frac{\tau}{x_1 x_2}, m_{\rm H}^2, \mu_R^2, \mu_F^2 \right) \\ &\equiv a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2) \end{split}$$

• RG invariance wrt μ_R of the observable $\mu_R^2 \frac{d}{d\mu_R^2} \sigma^H = 0$

• The Solution

$$\overline{\sigma}(\mu_R^2) = \overline{\sigma}(\mu_0^2) \exp\left[-\int_{\mu_0^2}^{\mu_R^2} \frac{d\mu^2}{\mu^2} \frac{2 \ \beta(a_s(\mu^2))}{a_s(\mu^2)}\right]$$

Threshold Corrections To DY and Higgs at N^3LO QCD

The inclusive cross section of Higgs production

$$\begin{split} \sigma^{\mathrm{H}}(S, m_{\mathrm{H}}^{2}) &= \sigma^{0} a_{s}^{2}(\mu_{R}^{2}) \sum_{a, b} \int dx_{1} dx_{2} f_{a}(x_{1}, \mu_{F}^{2}) f_{b}(x_{2}, \mu_{F}^{2}) \\ &\times \mathcal{C}_{\mathrm{H}}^{2} \left(a_{s}(\mu_{R}^{2}) \right) \Delta_{ab}^{\mathrm{H}} \left(\frac{\tau}{x_{1} x_{2}}, m_{\mathrm{H}}^{2}, \mu_{R}^{2}, \mu_{F}^{2} \right) \\ &\equiv a_{s}^{2}(\mu_{R}^{2}) \ \overline{\sigma}(S, m_{\mathrm{H}}^{2}, \mu_{R}^{2}) \end{split}$$

• RG invariance wrt μ_R of the observable $\mu_R^2 \frac{d}{d\mu_R^2} \sigma^H = 0$

• The Solution

$$\overline{\sigma}(\mu_R^2) = \overline{\sigma}(\mu_0^2) \exp\left[-\int_{\mu_0^2}^{\mu_R^2} \frac{d\mu^2}{\mu^2} \frac{2 \ \beta(a_s(\mu^2))}{a_s(\mu^2)}\right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

The inclusive cross section of Higgs production

$$\begin{split} \sigma^{\rm H}(S, m_{\rm H}^2) &= \sigma^0 a_s^2(\mu_R^2) \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F^2) f_b(x_2, \mu_F^2) \\ &\times \mathcal{C}_{\rm H}^2\left(a_s(\mu_R^2)\right) \Delta_{ab}^{\rm H}\left(\frac{\tau}{x_1 x_2}, m_{\rm H}^2, \mu_R^2, \mu_F^2\right) \\ &\equiv a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2) \end{split}$$

- RG invariance wrt μ_R of the observable $\mu_R^2 \frac{d}{d\mu_R^2} \sigma^H = 0$
- The Solution

$$\overline{\sigma}(\mu_R^2) = \overline{\sigma}(\mu_0^2) \exp\left[-\int_{\mu_0^2}^{\mu_R^2} \frac{d\mu^2}{\mu^2} \frac{2 \ \beta(a_s(\mu^2))}{a_s(\mu^2)}\right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

• Considering μ_0 as central scale m_H and using naive evolution of a_s , the solution

$$\overline{\sigma}(\mu_R^2) = \sum_{n=0}^{\infty} \sum_{k=0}^n a_s^n(\mu_R^2) \ \mathcal{R}_{n,k} \ L_R^k$$

where,
$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$
.

• The RG invariance dictates

$$\mathcal{R}_{n,n-m} = \frac{1}{(n-m)} \sum_{i=0}^{m} (n-i+1)\beta_i \mathcal{R}_{n-i-1,n-m-1}$$

i.e. the coefficients of the logarithms $\mathcal{R}_{n,k}(0 < k \leq n)$ can be expressed in terms of the lower order ones $\mathcal{R}_{n-1,0}$.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

69

 Considering μ₀ as central scale m_H and using naive evolution of a_s, the solution

$$\overline{\sigma}(\mu_R^2) = \sum_{n=0}^{\infty} \sum_{k=0}^n a_s^n(\mu_R^2) \ \mathcal{R}_{n,k} \ L_R^k$$

where, $L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$.

• The RG invariance dictates

$$\mathcal{R}_{n,n-m} = \frac{1}{(n-m)} \sum_{i=0}^{m} (n-i+1)\beta_i \mathcal{R}_{n-i-1,n-m-1}$$

i.e. the coefficients of the logarithms $\mathcal{R}_{n,k}(0 < k \leq n)$ can be expressed in terms of the lower order ones $\mathcal{R}_{n-1,0}$.

69

- Coefficients of the highest logarithms at n^{th} order in a_s grows as $(n+1)a_s^n\beta_0^n\mathcal{R}_{0,0}$
 - \rightsquigarrow can be potentially large contributions!
 - \rightsquigarrow fixed order predictions become unreliable
- RG invariance can be used to resum these large logarithms to all orders.

Threshold Corrections To DY and Higgs at N³LO QCD

• Coefficients of the highest logarithms at n^{th} order in a_s grows as $(n+1)a_s^n\beta_0^n\mathcal{R}_{0,0}$

 \rightsquigarrow can be potentially large contributions!

- \rightsquigarrow fixed order predictions become unreliable
- RG invariance can be used to resum these large logarithms to all orders.

THE REMEDY : OUR PRESCRIPTION

We extend the approach by Ahmady et. al. to resum these large contributions.

• We rewrite the solution $\overline{\sigma}(\mu_R^2)$ as

$$\overline{\sigma}(\mu_R^2) = \sum_{m=0}^{\infty} a_s^m(\mu_R^2) \sum_{n=m}^{\infty} \mathcal{R}_{n,n-m}(a_s L_R)^{n-m}$$
$$\equiv \sum_{m=0}^{\infty} a_s^m(\mu_R^2) \overline{\sigma}_{\Sigma}^{(m)} \left(a_s(\mu_R^2) L_R\right),$$

$$\overline{\sigma}_{\Sigma}^{(m)}$$
 resums $a_s(\mu_R^2)L_R$ to all orders.

• Our Goal : Determine
$$\overline{\sigma}_{\Sigma}^{(m)}$$
's.

Threshold Corrections To DY and Higgs at N³LO QCD

THE REMEDY : OUR PRESCRIPTION

We extend the approach by Ahmady et. al. to resum these large contributions.

• We rewrite the solution $\overline{\sigma}(\mu_R^2)$ as

$$\overline{\sigma}(\mu_R^2) = \sum_{m=0}^{\infty} a_s^m(\mu_R^2) \sum_{n=m}^{\infty} \mathcal{R}_{n,n-m}(a_s L_R)^{n-m}$$
$$\equiv \sum_{m=0}^{\infty} a_s^m(\mu_R^2) \overline{\sigma}_{\Sigma}^{(m)} \left(a_s(\mu_R^2) L_R\right),$$

 $\overline{\sigma}_{\Sigma}^{(m)}$ resums $a_s(\mu_R^2)L_R$ to all orders.

• Our Goal : Determine
$$\overline{\sigma}_{\Sigma}^{(m)}$$
's.

Using the recursion relation we show $\overline{\sigma}_{\Sigma}^{(m)}$ satisfies

$$\begin{bmatrix} \omega \frac{d}{d\omega} + (m+2) \end{bmatrix} \overline{\sigma}_{\Sigma}^{(m)} \\ = \Theta_{m-1} \sum_{i=1}^{m} \eta_i \Big[(1-\omega) \frac{d}{d\omega} - (m-i+2) \Big] \overline{\sigma}_{\Sigma}^{(m-i)} \end{bmatrix}$$

 $\eta_i\equiv eta_i/eta_0$ and $\omega\equiv 1-eta_0a_s(\mu_R^2)L_R$

Threshold Corrections To DY and Higgs at N³LO QCD

THE REMEDY : THE SOLUTIONS

$$\begin{split} \overline{\sigma}_{\Sigma}^{(0)} &= \frac{1}{\omega^2} \Big\{ \mathcal{R}_{0,0} \Big\}, \ \overline{\sigma}_{\Sigma}^{(1)} &= \frac{1}{\omega^3} \Big\{ \mathcal{R}_{1,0} - 2\eta_1 \mathcal{R}_{0,0} \ln(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(2)} &= \frac{1}{\omega^3} \Big\{ 2\mathcal{R}_{0,0} \left(\eta_1^{-2} - \eta_2 \right) \Big\} + \frac{1}{\omega^4} \Big\{ \mathcal{R}_{2,0} + 2\mathcal{R}_{0,0} \left(\eta_2 - \eta_1^2 \right) + \ln(\omega) \Big(-2\eta_1^{-2}\mathcal{R}_{0,0} - 3\eta_1 \mathcal{R}_{1,0} \Big) \\ &+ 3\eta_1^{-2}\mathcal{R}_{0,0} \ln^2(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(3)} &= \frac{1}{\omega^3} \Big\{ \mathcal{R}_{0,0} \left(-\eta_1^{-3} + 2\eta_1 \eta_2 - \eta_3 \right) \Big\} + \frac{1}{\omega^4} \Big\{ \mathcal{R}_{0,0} \left(2\eta_1^{-3} - 2\eta_1 \eta_2 \right) + \mathcal{R}_{1,0} \left(3\eta_1^{-2} - 3\eta_2 \right) \\ &+ \mathcal{R}_{0,0} \left(6\eta_1 \eta_2 - 6\eta_1^{-3} \right) \ln(\omega) \Big\} + \frac{1}{\omega^5} \Big\{ \mathcal{R}_{3,0} + \mathcal{R}_{0,0} \left(\eta_3 - \eta_1^{-3} \right) + \mathcal{R}_{1,0} \left(3\eta_2 - 3\eta_1^{-2} \right) \\ &+ \ln(\omega) \Big(\mathcal{R}_{0,0} \left(6\eta_1^{-3} - 8\eta_1 \eta_2 \right) - 3\eta_1^{-2}\mathcal{R}_{1,0} - 4\eta_1 \mathcal{R}_{2,0} \Big) + \ln^2(\omega) \Big(7\eta_1^{-3}\mathcal{R}_{0,0} + 6\eta_1^{-2}\mathcal{R}_{1,0} \Big) \\ &- 4\eta_1^{-3}\mathcal{R}_{0,0} \ln^3(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(4)} &= \textit{Big expression} \end{split}$$

- We have resummed only μ_R dependent logarithms.
- μ_F has been chosen to some specific value $m_H \rightsquigarrow \mu_F$ dependence remains unchanged.

Threshold Corrections To DY and Higgs at N³LO QCD

THE REMEDY : THE SOLUTIONS

$$\begin{split} \overline{\sigma}_{\Sigma}^{(0)} &= \frac{1}{\omega^2} \Big\{ \mathcal{R}_{0,0} \Big\}, \ \overline{\sigma}_{\Sigma}^{(1)} &= \frac{1}{\omega^3} \Big\{ \mathcal{R}_{1,0} - 2\eta_1 \mathcal{R}_{0,0} \ln(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(2)} &= \frac{1}{\omega^3} \Big\{ 2\mathcal{R}_{0,0} \left(\eta_1^2 - \eta_2 \right) \Big\} + \frac{1}{\omega^4} \Big\{ \mathcal{R}_{2,0} + 2\mathcal{R}_{0,0} \left(\eta_2 - \eta_1^2 \right) + \ln(\omega) \Big(-2\eta_1^2 \mathcal{R}_{0,0} - 3\eta_1 \mathcal{R}_{1,0} \Big) \\ &+ 3\eta_1^2 \mathcal{R}_{0,0} \ln^2(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(3)} &= \frac{1}{\omega^3} \Big\{ \mathcal{R}_{0,0} \left(-\eta_1^3 + 2\eta_1 \eta_2 - \eta_3 \right) \Big\} + \frac{1}{\omega^4} \Big\{ \mathcal{R}_{0,0} \left(2\eta_1^3 - 2\eta_1 \eta_2 \right) + \mathcal{R}_{1,0} \left(3\eta_1^2 - 3\eta_2 \right) \\ &+ \mathcal{R}_{0,0} \left(6\eta_1 \eta_2 - 6\eta_1^3 \right) \ln(\omega) \Big\} + \frac{1}{\omega^5} \Big\{ \mathcal{R}_{3,0} + \mathcal{R}_{0,0} \left(\eta_3 - \eta_1^3 \right) + \mathcal{R}_{1,0} \left(3\eta_2 - 3\eta_1^2 \right) \\ &+ \ln(\omega) \Big(\mathcal{R}_{0,0} \left(6\eta_1^3 - 8\eta_1 \eta_2 \right) - 3\eta_1^2 \mathcal{R}_{1,0} - 4\eta_1 \mathcal{R}_{2,0} \Big) + \ln^2(\omega) \Big(7\eta_1^3 \mathcal{R}_{0,0} + 6\eta_1^2 \mathcal{R}_{1,0} \Big) \\ &- 4\eta_1^3 \mathcal{R}_{0,0} \ln^3(\omega) \Big\}, \\ \overline{\sigma}_{\Sigma}^{(4)} &= \textit{Big expression} \end{split}$$

- We have resummed only μ_R dependent logarithms.
- μ_F has been chosen to some specific value $m_H \rightsquigarrow \mu_F$ dependence remains unchanged.

Threshold Corrections To DY and Higgs at N³LO QCD

(a) Result is almost μ_R independent for a wide range of $\mu_R \in [0.1m_{\rm H}, 10m_{\rm H}]$

	LO	NLO	NNLO	N ³ LO
FO (%)	167.26	143.40	54.99	27.01
RESUM (%)	6.11	5.47	3.39	1.23

The Remedy : Numerical Implications

Threshold Corrections To DY and Higgs at N³LO QCD

(b) Cross section is always positive and reliable

Threshold Corrections To DY and Higgs at N^3LO QCD

(b) Cross section is always positive and reliable.

Extra 2 : What are we resumming?

Threshold Corrections To DY and Higgs at N^3LO QCD

77

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

The inclusive cross section of Higgs production

$$\sigma^{\rm H}(S, m_{\rm H}^2) = a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2)$$

Structure of perturbation theory :

$$\begin{aligned} \overline{\sigma} &= \overline{\sigma}_{0}^{(0)} \\ &+ a_{s} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(1)} + \overline{\sigma}_{1}^{(1)} L_{R} \right\} \\ &+ a_{s}^{2} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(2)} + \overline{\sigma}_{1}^{(2)} L_{R} + \overline{\sigma}_{2}^{(2)} L_{R}^{2} \right\} \\ &+ a_{s}^{3} \left(\mu_{R}^{2}\right) \left\{ \overline{\sigma}_{0}^{(3)} + \overline{\sigma}_{1}^{(3)} L_{R} + \overline{\sigma}_{2}^{(3)} L_{R}^{2} + \overline{\sigma}_{3}^{(3)} L_{R}^{3} \right\} \\ &+ \dots \end{aligned}$$

where

$$L_R \equiv \ln\left(\frac{\mu_R^2}{m_H^2}\right)$$

Collecting the highest logs to all orders

$$\overline{\sigma}_{\Sigma}^{(0)}(S, m_{\rm H}^2, \mu_R^2) \equiv \sum_{n=0}^{\infty} \overline{\sigma}_n^{(n)} \left(a_s L_R \right)^n$$

Collecting the next-to-highest logs to all orders

$$\overline{\sigma}_{\Sigma}^{(1)}(S, m_{\mathrm{H}}^2, \mu_R^2) \equiv \sum_{n=1}^{\infty} \overline{\sigma}_{n-1}^{(n)} \left(a_s L_R \right)^{n-1}$$

and so on. We re-write the Xsection in terms of these as

$$\begin{split} \sigma^{\rm H}(S, m_{\rm H}^2) &= a_s^2(\mu_R^2) \ \overline{\sigma}(S, m_{\rm H}^2, \mu_R^2) \\ &= a_s^2(\mu_R^2) \ \sum_{i=0}^{\infty} a_s^i(\mu_R^2) \overline{\sigma}_{\Sigma}^{(i)}(S, m_{\rm H}^2, \mu_R^2) \end{split}$$

Goal : Compute $\overline{\sigma}_{\Sigma}^{(i)}$ for i = 0, 1, 2, 3 for $gg \to H$.

Threshold Corrections To DY and Higgs at N³LO QCD

Extra 3 : SV Xsection of Higgs in $b\bar{b}$

Threshold Corrections To DY and Higgs at N^3LO QCD

80

 $\Delta^{{\rm SV},(3)}$ for Higgs production in $b\bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\overline{\bar{\mathcal{G}}_3^{b,1} = \bar{\mathcal{G}}_3^{q,1}}$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in bb
 *b a*nnihilation.

Threshold Corrections To DY and Higgs at N³LO QCD

 $\Delta^{{\rm SV},(3)}$ for Higgs production in $b\bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\overline{\bar{\mathcal{G}}_3^{b,1}} = \overline{\mathcal{G}}_3^{q,1}$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in bb
 *b a*nnihilation.

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

81

 $\Delta^{{\rm SV},(3)}$ for Higgs production in $b\bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\bar{\mathcal{G}}_3^{b,1} = \bar{\mathcal{G}}_3^{q,1}$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in bb annihilation.

Threshold Corrections To DY and Higgs at N³LO QCD

 $\Delta^{{\rm SV},(3)}$ for Higgs production in $b\bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\boxed{\bar{\mathcal{G}}_3^{b,1} = \bar{\mathcal{G}}_3^{q,1}}$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in bb annihilation.

Threshold Corrections To DY and Higgs at N³LO QCD

 $\Delta^{{\rm SV},(3)}$ for Higgs production in $b\bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\left[\bar{\mathcal{G}}_{3}^{b,1}=\bar{\mathcal{G}}_{3}^{q,1}\right]$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in bb annihilation.

Threshold Corrections To DY and Higgs at N³LO QCD

 $\Delta^{\mathrm{SV},(3)}$ for Higgs production in $bar{b}$ annihilation

- All the D_i and partial $\delta(1-z)$ contributions were known.
- We completed the full computation of $\delta(1-z)$ part.
- All the required quantities were available except $\bar{\mathcal{G}}_3^{b,1}$ from Φ^b and $g_3^{b,1}$ from 3-loop form factor \hat{F}^b .
- Being flavor independent

$$\boxed{\bar{\mathcal{G}}_3^{b,1}=\bar{\mathcal{G}}_3^{q,1}}$$

which is available from our DY result.

- $g_3^{b,1}$ is extracted from recent result of 3-loop $Hb\bar{b}$ form factor by Gehrmann et. al.
- This completes the calculation of threshold N³LO corrections to Higgs production in $b\bar{b}$ annihilation.

Extra 4 : Fixing soft-collinear distribution Φ^I

Threshold Corrections To DY and Higgs at N^3LO QCD

82

FIXING FORMS OF Φ^I

$$\begin{split} \Delta^{\mathrm{SV},I} &= \mathcal{C} \exp(\Psi^{I}) \text{ with} \\ \Psi^{I} &= \left[\ln \left(Z^{I} \right)^{2} + \ln |\hat{F}^{I}|^{2} \right] \delta(1-z) + 2\Phi^{I} - 2\mathcal{C} \ln \Gamma_{II} \end{split}$$

Considering only poles at $\mathcal{O}(a_s)$ with $\mu_R=\mu_F$ in $d=4+\epsilon$

$$\begin{split} &\ln\left(Z^{I,(1)}\right)^{2} = a_{s}(\mu_{F}^{2})\frac{4\gamma_{0}^{I}}{\epsilon} \\ &\ln|\hat{F}^{I,(1)}|^{2} = a_{s}(\mu_{F}^{2})\left(\frac{q^{2}}{\mu_{F}^{2}}\right)^{\epsilon/2} \left[-\frac{4A_{1}^{I}}{\epsilon^{2}} + \frac{1}{\epsilon}\left(2f_{1}^{I} + 4B_{1}^{I} - 4\gamma_{0}^{I}\right)\right] \\ &2\mathcal{C}\ln\Gamma_{II,(1)} = 2a_{s}(\mu_{F}^{2})\left[\frac{2B_{1}^{I}}{\epsilon}\delta(1-z) + \frac{2A_{1}^{I}}{\epsilon}\mathcal{D}_{0}\right] \end{split}$$

Collecting the coefficient of $a_s(\mu_F^2)$ [neglecting $\ln\left(q^2/\mu_F^2
ight)$ terms

$$\begin{split} \Psi^{I,(1)} &= a_s(\mu_F^2) \left[\left\{ \underbrace{\frac{4\gamma_F^I}{\epsilon} - \frac{4A_1^I}{\epsilon^2} + \frac{1}{\epsilon} \left(2f_1^I + 4B_1^I - 4\gamma_0^I \right) \right\} \delta(1-z) - \left\{ \underbrace{\frac{4B_1^I}{\epsilon}}_{\epsilon} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right\} + 3\delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right\} + 3\delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right] + 2\Phi^I \end{split}$$

Demand 1 : Hence to cancel all the poles, we must have at $\mathcal{O}(a_s)$

$$2\Phi^{I,(1)}|_{\text{poles}} = a_s(\mu_F^2) \left[\left\{ \frac{4A_1^I}{\epsilon^2} - \frac{2f_1^I}{\epsilon} \right\} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

FIXING FORMS OF Φ^I

$$\begin{split} &\Delta^{\mathrm{SV},I} = \mathcal{C} \exp(\Psi^{I}) \text{ with} \\ &\Psi^{I} = \left[\ln \left(Z^{I} \right)^{2} + \ln |\hat{F}^{I}|^{2} \right] \delta(1-z) + 2\Phi^{I} - 2\mathcal{C} \ln \Gamma_{II} \end{split}$$

Considering only poles at $\mathcal{O}(a_s)$ with $\mu_R=\mu_F$ in $d=4+\epsilon$

$$\begin{split} &\ln\left(Z^{I,(1)}\right)^{2} = a_{s}(\mu_{F}^{2})\frac{4\gamma_{0}^{I}}{\epsilon} \\ &\ln\left|\hat{F}^{I,(1)}\right|^{2} = a_{s}(\mu_{F}^{2})\left(\frac{q^{2}}{\mu_{F}^{2}}\right)^{\epsilon/2} \left[-\frac{4A_{1}^{I}}{\epsilon^{2}} + \frac{1}{\epsilon}\left(2f_{1}^{I} + 4B_{1}^{I} - 4\gamma_{0}^{I}\right)\right] \\ &2\mathcal{C}\ln\Gamma_{II,(1)} = 2a_{s}(\mu_{F}^{2})\left[\frac{2B_{1}^{I}}{\epsilon}\delta(1-z) + \frac{2A_{1}^{I}}{\epsilon}\mathcal{D}_{0}\right] \end{split}$$

Collecting the coefficient of $a_s(\mu_F^2)$ [neglecting $\ln\left(q^2/\mu_F^2\right)$ terms]

$$\begin{split} \Psi^{I,(1)} &= a_s(\mu_F^2) \left[\left\{ \frac{4\gamma_0^I}{\epsilon} - \frac{4A_1^I}{\epsilon^2} + \frac{1}{\epsilon} \left(2f_1^I + 4\mathbf{R}_1^I - 4\gamma_0^I \right) \right\} \delta(1-z) - \left\{ \frac{4A_1^I}{\epsilon} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right\} + 2\mathbf{P}_1^I \\ &= a_s(\mu_F^2) \left[\left\{ -\frac{4A_1^I}{\epsilon^2} + \frac{2f_1^I}{\epsilon} \right\} \delta(1-z) - \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right] + 2\Phi^I \end{split}$$

Demand 1 : Hence to cancel all the poles, we must have at $\mathcal{O}(a_s)$

$$2\Phi^{I,(1)}|_{\text{poles}} = a_s(\mu_F^2) \left[\left\{ \frac{4A_1^I}{\epsilon^2} - \frac{2f_1^I}{\epsilon} \right\} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

FIXING FORMS OF Φ^I

$$\begin{split} &\Delta^{\mathrm{SV},I} = \mathcal{C} \exp(\Psi^{I}) \text{ with} \\ &\Psi^{I} = \left[\ln \left(Z^{I} \right)^{2} + \ln |\hat{F}^{I}|^{2} \right] \delta(1-z) + 2\Phi^{I} - 2\mathcal{C} \ln \Gamma_{II} \end{split}$$

Considering only poles at $\mathcal{O}(a_s)$ with $\mu_R=\mu_F$ in $d=4+\epsilon$

$$\begin{split} &\ln\left(Z^{I,(1)}\right)^{2} = a_{s}(\mu_{F}^{2})\frac{4\gamma_{0}^{I}}{\epsilon} \\ &\ln|\hat{F}^{I,(1)}|^{2} = a_{s}(\mu_{F}^{2})\left(\frac{q^{2}}{\mu_{F}^{2}}\right)^{\epsilon/2} \left[-\frac{4A_{1}^{I}}{\epsilon^{2}} + \frac{1}{\epsilon}\left(2f_{1}^{I} + 4B_{1}^{I} - 4\gamma_{0}^{I}\right)\right] \\ &2\mathcal{C}\ln\Gamma_{II,(1)} = 2a_{s}(\mu_{F}^{2})\left[\frac{2B_{1}^{I}}{\epsilon}\delta(1-z) + \frac{2A_{1}^{I}}{\epsilon}\mathcal{D}_{0}\right] \end{split}$$

Collecting the coefficient of $a_s(\mu_F^2)$ [neglecting $\ln\left(q^2/\mu_F^2\right)$ terms]

$$\begin{split} \Psi^{I,(1)} &= a_s(\mu_F^2) \left[\left\{ \frac{4\gamma_0^I}{\epsilon} - \frac{4A_1^I}{\epsilon^2} + \frac{1}{\epsilon} \left(2f_1^I + 4\mathbf{R}_1^I - 4\gamma_0^I \right) \right\} \delta(1-z) - \left\{ \frac{4A_1^I}{\epsilon} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right\} + 2\mathbf{P}_1^I \\ &= a_s(\mu_F^2) \left[\left\{ -\frac{4A_1^I}{\epsilon^2} + \frac{2f_1^I}{\epsilon} \right\} \delta(1-z) - \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right] + 2\mathbf{P}_1^I \end{split}$$

Demand 1 : Hence to cancel all the poles, we must have at $\mathcal{O}(a_s)$

$$2\Phi^{I,(1)}|_{\text{poles}} = a_s(\mu_F^2) \left[\left\{ \frac{4A_1^I}{\epsilon^2} - \frac{2f_1^I}{\epsilon} \right\} \delta(1-z) + \frac{4A_1^I}{\epsilon} \mathcal{D}_0 \right]$$

Threshold Corrections To DY and Higgs at N³LO QCD

Fixing Form of Φ^I . . .

Demand 2 : Also, Φ^I has to be RG-invariant i.e. $\mu_R^2 \frac{d}{d\mu_D^2} \Phi^I = 0.$

We make an ansatz that if Φ^I satisfies KG-type DE, then we can accomplish this

$$q^2 \frac{d}{dq^2} \Phi^I\left(\hat{a}_s, q^2, \mu^2, z, \epsilon\right) = \frac{1}{2} \left[\overline{K}^I\left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, z, \epsilon\right) + \overline{G}^I\left(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \epsilon\right) \right]$$

using Demand 2

$$\mu_R^2 \frac{d}{d\mu_R^2} \overline{K}^I = -\mu_R^2 \frac{d}{d\mu_R^2} \overline{G}^I \equiv -X^I$$

The solution

$$\Phi^{I} = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{q^{2}}{\mu^{2}}\right)^{i\epsilon/2} S_{\epsilon}^{i} \Phi^{I,(i)}(z,\epsilon)$$

with

$$\Phi^{I,(i)}(z,\epsilon) = \hat{\mathcal{L}}^{I,(i)}\left(A^I \to X^I, G^I \to \overline{G}^I(z,\epsilon)\right).$$

So

$$2\Phi^{I,(1)}(z,\epsilon) = \frac{1}{\epsilon^2} \left(-4X_1^I\right) + \frac{2}{\epsilon}\overline{G}_1^I(z,\epsilon)\right)$$

Threshold Corrections To DY and Higgs at N^3LO QCD

Fixing Form of Φ^I . . .

Demand 2 : Also, Φ^I has to be RG-invariant i.e. $\mu_R^2 \frac{d}{d \mu_R^2} \Phi^I = 0.$

We make an ansatz that if Φ^I satisfies KG-type DE, then we can accomplish this

$$q^2 \frac{d}{dq^2} \Phi^I\left(\hat{a}_s, q^2, \mu^2, z, \epsilon\right) = \frac{1}{2} \left[\overline{K}^I\left(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, z, \epsilon\right) + \overline{G}^I\left(\hat{a}_s, \frac{q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, z, \epsilon\right)\right]$$

using Demand 2

$$\mu_R^2 \frac{d}{d\mu_R^2} \overline{K}^I = -\mu_R^2 \frac{d}{d\mu_R^2} \overline{G}^I \equiv -X^I$$

The solution

$$\Phi^{I} = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{q^{2}}{\mu^{2}}\right)^{i\epsilon/2} S_{\epsilon}^{i} \Phi^{I,(i)}(z,\epsilon)$$

with

$$\Phi^{I,(i)}(z,\epsilon) = \hat{\mathcal{L}}^{I,(i)}\left(\boldsymbol{A}^{I} \to \boldsymbol{X}^{I}, \boldsymbol{G}^{I} \to \overline{\boldsymbol{G}}^{I}(z,\epsilon)\right).$$

So

$$2\Phi^{I,(1)}(z,\epsilon) = \frac{1}{\epsilon^2} \left(-4X_1^I\right) + \frac{2}{\epsilon}\overline{G}_1^I(z,\epsilon)\right)$$
Fixing Form of Φ^I . . .

where,

$$\begin{split} \Phi^{I} &= \sum_{i=1}^{\infty} \dot{a}_{s}^{i} \left(\frac{q^{2}}{\mu^{2}}\right)^{i\epsilon/2} S_{\epsilon}^{i} \Phi^{I,(i)}(z,\epsilon) \\ &= \sum_{i=1}^{\infty} a_{s}^{i} \left(\mu_{F}^{2}\right) \left(\frac{q^{2}}{\mu^{2}}\right)^{i\epsilon/2} Z_{a_{s}}^{i} \Phi^{I,(i)}(z,\epsilon) \\ &\equiv \sum_{i=1}^{\infty} a_{s}^{i} \Phi_{R}^{I,(i)}(z,\epsilon) \end{split}$$

At $\mathcal{O}(a_s(\mu_F^2)) \Rightarrow \Phi^{I,(1)}(z,\epsilon) = \Phi_R^{I,(1)}(z,\epsilon)$

$$\begin{split} \boldsymbol{X}^{I} &= \sum_{i=1}^{\infty} \boldsymbol{a}_{s}^{i}(\boldsymbol{\mu}_{F}^{2})\boldsymbol{X}_{i}^{I} \\ \overline{\boldsymbol{G}}^{I}\left(\boldsymbol{z},\boldsymbol{\epsilon}\right) &= \sum_{i=1}^{\infty} \boldsymbol{a}_{s}^{i}(\boldsymbol{\mu}_{F}^{2})\overline{\boldsymbol{G}}_{i}^{I}\left(\boldsymbol{z},\boldsymbol{\epsilon}\right)) \end{split}$$

Hence,

$$\begin{split} X_1^I &= -A_1^I \delta(1-z) \\ \overline{G}_1^I \left(z, \epsilon \right) \right) &= -f_1^I \delta(1-z) + 2A_1^I \mathcal{D}_0 + \sum_{k=1}^\infty \epsilon^k \overline{g}_1^{I,k}(z) \end{split}$$

Explicit computation is required to determine $\mathcal{O}(\epsilon)$ terms $\overline{g}_1^{I,k}(z).$

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

Fixing Form of Φ^I . . .

Alternative Method : We say our demands can be fulfilled if we assume the solution of \overline{KG} Eq.

$$\Phi^{I} = \sum_{i=1}^{\infty} \hat{a}_{s}^{i} \left(\frac{q^{2}}{\mu^{2}}\right)^{i\epsilon/2} S_{\epsilon}^{i} \Phi^{I,(i)}(z,\epsilon)$$

with

$$\Phi^{I,(i)}(z,\epsilon) \equiv \left\{ i\epsilon \frac{1}{1-z} \left[(1-z)^2 \right]^{i\epsilon/2} \right\} \phi^{I,(i)}(\epsilon)$$
$$= \left\{ \delta(1-z) + \sum_{j=0}^{\infty} \frac{(i\epsilon)^{j+1}}{j!} \mathcal{D}_j \right\} \phi^{I,(i)}(\epsilon)$$

RGE invarinace of Φ^I

$$\mu_R^2 \frac{d}{d\mu_R^2} \overline{K}^I = -\mu_R^2 \frac{d}{d\mu_R^2} \overline{G}^I \equiv -Y^I$$

The solution

$$\phi^{I,(i)}(\epsilon) = \hat{\mathcal{L}}^{I,(i)} \left(\boldsymbol{A}^{I} \to \boldsymbol{Y}^{I}, \boldsymbol{G}^{I} \to \mathcal{G}^{I}(\epsilon) \right).$$

So

$$2\Phi^{I,(1)}(z,\epsilon) = \left\{\frac{1}{\epsilon^2}\left(-4Y_1^I\right) + \frac{2}{\epsilon}\overline{\mathcal{G}}_1^I(\epsilon)\right)\right\}\delta(1-z) + \left\{-\frac{4Y_1^I}{\epsilon^2} + \frac{2}{\epsilon}\overline{\mathcal{G}}_1^I(\epsilon)\right\}\sum_{j=0}^{\infty}\frac{\epsilon^{j+1}}{j!}\mathcal{D}_j$$

Threshold Corrections To DY and Higgs at N^3LO QCD

Fixing Form of Φ^I ...

where

$$\begin{split} Y^{I} &= \sum_{i=1}^{\infty} a_{s}^{i}(\mu_{F}^{2})X_{i}^{I} \\ \overline{\mathcal{G}}^{I}\left(\epsilon\right) &= \sum_{i=1}^{\infty} a_{s}^{i}(\mu_{F}^{2})\overline{\mathcal{G}}_{i}^{I}\left(\epsilon\right) \end{split}$$

Hence,

$$Y_1^I = -A_1^I$$
$$\overline{\mathcal{G}}_1^I(\epsilon) = -f_1^I + \sum_{k=1}^{\infty} \epsilon^k \overline{\mathcal{G}}_1^{I,k}$$

Explicit computation is required to determine the $\mathcal{O}(\epsilon)$ terms $\overline{\mathcal{G}}_1^{I,k}$.

- The methodology holds at every order.
- · Both methods are equivalent. We have followed the 2nd one to perform our computations.

Threshold Corrections To DY and Higgs at N³LO QCD

Extra 5 : Higgs N³LO

Threshold Corrections To DY and Higgs at N^3LO QCD

88

BAND PLOT FOR HIGGS BOSON

Figure: Higgs boson production in gg fusion

Anastasiou, Duhr, Dulat, Herzog, Mistlberger

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

N³LL Threshold Resum for Higgs Boson

Figure: Higgs boson production in gg fusion

Duhr, Talk at RadCor '15

Threshold Corrections To DY and Higgs at N³LO QCD

Bergische Universitat Wuppertal

90