PSEUDO SCALAR FORM FACTORS AT 3-LOOP QCD

Taushif Ahmed Institute of Mathematical Sciences, India March 22, 2016

University at Buffalo *The State University of New York*

SM

Complex scalar doublet (4 DOF)

- → 3 DOF transform into longitudinal modes of W^{\pm} & Z
- → Neutral Higgs boson
 - Yukawa coupling between Higgs field and fermions

 Masses to fermions

SM

Complex scalar doublet (4 DOF)

- → 3 DOF transform into longitudinal modes of W^{\pm} & Z
- → Neutral Higgs boson
 - Yukawa coupling between Higgs field and fermions

 Masses to fermions

MSSM

 $h, H : \mathbf{CP}$ even $A : \mathbf{CP}$ odd \blacktriangleright neutral h, H, A

- charged H^{\pm}

PROLOGUE: STATE OF THE ART

CP even

Inclusive production cross section at N³LO QCD

[Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger]

CP odd

Inclusive production cross section at NNLO QCD

[Harlander, Kilgore; Anastasiou, Melnikov]

PROLOGUE: STATE OF THE ART

CP even

Inclusive production cross section at N³LO QCD

[Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger]

CP odd

Inclusive production cross section at NNLO QCD

[Harlander, Kilgore; Anastasiou, Melnikov]

What is next?

Go beyond NNLO for CP odd!

requires

1. Virtual correction at 3-loop

2. Real corrections at N^3LO

PROLOGUE: STATE OF THE ART

CP even

Inclusive production cross section at N³LO QCD

[Anastasiou, Duhr, Dulat, Furlan, Herzog, Mistlberger]

CP odd

Inclusive production cross section at NNLO QCD

[Harlander, Kilgore; Anastasiou, Melnikov]

What is next? Go beyond NNLO for CP odd! requires

Our GOAL

1. Virtual correction at 3-loop

2. Real corrections at N^3LO

PLAN OF THE TALK

- ♦ Underlying Theory
- Optimize Optimize Optimized Control Defining Form Factors
- ♦ Calculation of FF
 - Feynman Diagrams
 - Prescription of γ_5
 - IBP & LI: Master Integrals
 - Unrenormalised Results
- Our Openation UV Renormalisation
 - Coupling Const Renorm
 - Operator Renorm
- Our Control of Cont
 - Determining Oper Renorm
- Axial Anomaly

UNDERLYING THEORY

Original Theory

Pseudo scalar couples to quarks through Yukawa

$$\mathcal{L}^{A} = -i\frac{g_{c}}{v}\Phi^{A}\left(m_{t}\bar{\psi}_{t}\gamma_{5}\psi_{t} + \sum_{i=1}^{n_{l}}m_{i}\bar{\psi}_{i}\gamma_{5}\psi_{i}\right)$$

 $g_c = \text{coupling constant, depends on specific theory}$ $v = vev = 2^{-\frac{1}{4}}G_F^{-\frac{1}{2}}$ $m_t = \text{top quark mass}$ $\Phi^A = \text{pseudo scalar field}$ $\psi_t = \text{top quark field}$ $n_l = \text{no of light quarks} = 5$

EFFECTIVE LAGRANGIAN

Effective Theory

[Chetyrkin, Kniehl, Steinhauser and Bardeen]

- $g_c = \cot \beta$ in MSSM
- In $\tan \beta \rightarrow 1$ top quark loop dominates
- Simplifications occur if $m_A << 2m_t$

effective theory by int out top loop massless QCD

$$\mathcal{L}_{\text{eff}}^A = \Phi^A \left[-\frac{1}{8} C_G O_G - \frac{1}{2} C_J O_J \right]$$

$$O_G(x) = G_a^{\mu\nu} \tilde{G}_{a,\mu\nu} \equiv \epsilon_{\mu\nu\rho\sigma} G_a^{\mu\nu} G_a^{\rho\sigma} \qquad O_J(x) = \partial_\mu \left(\bar{\psi} \gamma^\mu \gamma_5 \psi \right)$$
$$C_G = -a_s 2^{\frac{5}{4}} G_F^{\frac{1}{2}} \cot\beta \qquad C_J = -\left[a_s C_F \left(\frac{3}{2} - 3 \ln \frac{\mu_R^2}{m_t^2} \right) + a_s^2 C_J^{(2)} + \cdots \right] C_G$$

FEYNMAN RULES

Form Factors

GOAL gluon FF

quark FF

at 3-loop

Recall Existence of 2-operators

Our Strategy Calculate FF for individual operators

Later we will combine

Gluon FF

Corresponding to O_G

Quark FF

Quark FF

Calculating

FEYNMAN DIAGRAMS

in-house codes

22

- Color simplification in SU(N) theory
 Lorentz & Dirac algebra in d-dimensions
- What about $\gamma_5 \& \varepsilon_{\mu\nu\rho\sigma}$?

inherently 4-dimensional

problem of defining in d ($\neq 4$) dimensions

Treat in d-dimensions

Prescription
$$\gamma_{5} = i \frac{1}{4!} \varepsilon_{\nu_{1}\nu_{2}\nu_{3}\nu_{4}} \gamma^{\nu_{1}} \gamma^{\nu_{2}} \gamma^{\nu_{3}} \gamma^{\nu_{4}} \{\gamma_{5}, \gamma^{\mu}\} \neq 0$$

$$\varepsilon_{\mu_{1}\nu_{1}\lambda_{1}\sigma_{1}} \varepsilon^{\mu_{2}\nu_{2}\lambda_{2}\sigma_{2}} = 4! \delta^{\mu_{2}}_{[\mu_{1}} \cdots \delta^{\sigma_{2}}_{\sigma_{1}]}$$

$$(the equation of the equation of theq$$

Problem

Chiral Ward identities fails to hold

Remedy

Finite renormalization of axial current is required

[Larin]

Will come back to this

IBP & LI

• Removing unphysical DOF of gluons

1. Internal: Ghost loops

2. External: Polarization sum in axial gauge

• Results

Thousands of 3-loop scalar integrals! LiteRed [Lee] IBP & LI identities [Chetyrkin,Tkachov; Gehrmann, Remeddy] 22 Master Integrals (topologically different)

MIS

Master Integrals

[Gehrmann, Huber & Maitre '05; Gehrmann, Heinrich, Huber & Studerus '06; Heinrich, Huber & Maitre '08; Heinrich, Huber, Kosower & Smirnov '09; Lee, Smirnov & Smirnov '10]

Results

Unrenormalized 3-loop FF in power series of ϵ ($d = 4 + \epsilon$)

COUPLING CONS RENORM

• Dimensional Regularization

$$d = 4 + \epsilon$$

Coupling Constant Renorm

$$\hat{a}_s S_\epsilon = \left(\frac{\mu^2}{\mu_R^2}\right)^{\epsilon/2} Z_{a_s} a_s$$

$$Z_{a_s} = 1 + a_s \left[\frac{2}{\epsilon}\beta_0\right] + a_s^2 \left[\frac{4}{\epsilon^2}\beta_0^2 + \frac{1}{\epsilon}\beta_1\right] + a_s^3 \left[\frac{8}{\epsilon^3}\beta_0^3 + \frac{14}{3\epsilon^2}\beta_0\beta_1 + \frac{2}{3\epsilon}\beta_2\right] + \cdots$$

 β_i QCD beta functions

OPERATOR RENORM

• Overall Operator Renorm

 $O_G \& O_J$ requires additional renorm

$$[O_G]_R = Z_{GG} [O_G]_B + Z_{GJ} [O_J]_B$$
$$[O_J]_R = \frac{Z_5^s Z_5^s}{MS} [O_J]_B$$

- O_G mixes under renorm
- * Finite renorm Z_5^s \longrightarrow γ_5 prescription

OPERATOR RENORM

't Hooft & Veltman Prescription

 $\{\gamma_5, \gamma^{\mu}\} = 0$ Chiral Ward identities

Violated in d-dimensions

Fails to restore correct renorm axial current

$$J_5^{\mu} \equiv \bar{\psi}\gamma^{\mu}\gamma_5\psi = i\frac{1}{3!}\varepsilon^{\mu\nu_1\nu_2\nu_3}\bar{\psi}\gamma_{\nu_1}\gamma_{\nu_2}\gamma_{\nu_3}\psi$$

Introduce finite renorm const Z_5^s

$$\partial_{\mu}J_{5}^{\mu} \checkmark \begin{bmatrix} [J_{5}^{\mu}]_{R} = Z_{5}^{s}Z_{\overline{MS}}^{s}[J_{5}^{\mu}]_{B} \\ [O_{J}]_{R} = Z_{5}^{s}Z_{\overline{MS}}^{s}[O_{J}]_{B} \end{bmatrix}$$

[Larin]

RENORM FF

Corresponding to $[O_G]_R$

$$\left[O_G\right]_R = Z_{GG} \left[O_G\right]_B + Z_{GJ} \left[O_J\right]_B$$

$$\mathcal{S}_g^G \equiv Z_{GG} \langle \hat{\mathcal{M}}_g^{G,(0)} | \mathcal{M}_g^G \rangle + Z_{GJ} \langle \hat{\mathcal{M}}_g^{G,(0)} | \mathcal{M}_g^J \rangle$$

$$\mathcal{S}_q^G \equiv Z_{GG} \langle \hat{\mathcal{M}}_q^{J,(0)} | \mathcal{M}_q^G \rangle + Z_{GJ} \langle \hat{\mathcal{M}}_q^{J,(0)} | \mathcal{M}_q^J \rangle$$

$$\begin{bmatrix} \mathcal{F}_{g}^{G} \end{bmatrix}_{R} \equiv \frac{\mathcal{S}_{g}^{G}}{\mathcal{S}_{g}^{G,(0)}} \equiv 1 + \sum_{n=1}^{\infty} a_{s}^{n} \begin{bmatrix} \mathcal{F}_{g}^{G,(n)} \end{bmatrix}_{R}$$
$$\begin{bmatrix} \mathcal{F}_{q}^{G} \end{bmatrix}_{R} \equiv \frac{\mathcal{S}_{q}^{G}}{a_{s}\mathcal{S}_{q}^{G,(1)}} \equiv 1 + \sum_{n=1}^{\infty} a_{s}^{n} \begin{bmatrix} \mathcal{F}_{q}^{G,(n)} \end{bmatrix}_{R}$$

3-Loop

n = 3

n = 2

RENORM FF

Corresponding to $[O_J]_R$

$$[O_J]_R = Z_5^s Z_{\overline{MS}}^s [O_J]_B$$
$$S_g^J \equiv Z_5^s Z_{\overline{MS}}^s \langle \hat{\mathcal{M}}_g^{G,(0)} | \mathcal{M}_g^J \rangle$$
$$S_q^J \equiv Z_5^s Z_{\overline{MS}}^s \langle \hat{\mathcal{M}}_q^{J,(0)} | \mathcal{M}_q^J \rangle$$

$$\begin{split} \left[\mathcal{F}_{g}^{J}\right]_{R} &\equiv \frac{\mathcal{S}_{g}^{J}}{a_{s}\mathcal{S}_{g}^{J,(1)}} \equiv 1 + \sum_{n=1}^{\infty} a_{s}^{n} \left[\mathcal{F}_{g}^{J,(n)}\right]_{R} \\ \left[\mathcal{F}_{q}^{J}\right]_{R} &\equiv \frac{\mathcal{S}_{q}^{J}}{\mathcal{S}_{q}^{J,(0)}} \equiv 1 + \sum_{n=1}^{\infty} a_{s}^{n} \left[\mathcal{F}_{q}^{J,(n)}\right]_{R} \end{split}$$

 $\frac{3\text{-Loop}}{n=2}$

RENORM FF

Operator renorm is expressed as matrix

$$\begin{pmatrix} O_G \\ O_J \end{pmatrix}_R = \begin{pmatrix} Z_{GG} & Z_{GJ} \\ Z_{JG} & Z_{JJ} \end{pmatrix} \begin{pmatrix} O_G \\ O_J \end{pmatrix}_B$$
$$Z_{ij}$$

with
$$Z_{JG} = 0$$

 $Z_{JJ} = Z_5^s Z_{\overline{MS}}^s$

How do we determine Z_{ij} ?

Universal Structure of FF

KG

QCD Factorization, Gauge & RG invariances

$$Q^2 \frac{d}{dQ^2} \ln \mathcal{F}^{\lambda}_{\beta}(\hat{a}_s, Q^2, \mu^2, \epsilon) = \frac{1}{2} \left[K^{\lambda}_{\beta}(\hat{a}_s, \frac{\mu_R^2}{\mu^2}, \epsilon) + G^{\lambda}_{\beta}(\hat{a}_s, \frac{Q^2}{\mu_R^2}, \frac{\mu_R^2}{\mu^2}, \epsilon) \right]$$

$$K_{\beta}^{\lambda} : \text{poles in } \epsilon$$

$$* G^{\lambda}_{\beta}$$
 : finite in ϵ

RG invariance

KG: SOLUTION

Solution to order by order

[Moch, Vogt, Vermaseren; Ravindran; Magnea]

$$\ln \mathcal{F}^{\lambda}_{\beta}(\hat{a}_s, Q^2, \mu^2, \epsilon) = \sum_{i=1}^{\infty} \hat{a}^i_s \left(\frac{Q^2}{\mu^2}\right)^{i\frac{\epsilon}{2}} S^i_{\epsilon} \hat{\mathcal{L}}^{\lambda}_{\beta,i}(\epsilon)$$

with

$$\begin{split} \hat{\mathcal{L}}^{\lambda}_{\beta,1}(\epsilon) &= \frac{1}{\epsilon^2} \Big\{ -2A^{\lambda}_{\beta,1} \Big\} + \frac{1}{\epsilon} \Big\{ G^{\lambda}_{\beta,1}(\epsilon) \Big\} \\ \hat{\mathcal{L}}^{\lambda}_{\beta,2}(\epsilon) &= \frac{1}{\epsilon^3} \Big\{ \beta_0 A^{\lambda}_{\beta,1} \Big\} + \frac{1}{\epsilon^2} \Big\{ -\frac{1}{2} A^{\lambda}_{\beta,2} - \beta_0 G^{\lambda}_{\beta,1}(\epsilon) \Big\} + \frac{1}{\epsilon} \Big\{ \frac{1}{2} G^{\lambda}_{\beta,2}(\epsilon) \Big\} \\ \hat{\mathcal{L}}^{\lambda}_{\beta,3}(\epsilon) &= \frac{1}{\epsilon^4} \Big\{ -\frac{8}{9} \beta_0^2 A^{\lambda}_{\beta,1} \Big\} + \frac{1}{\epsilon^3} \Big\{ \frac{2}{9} \beta_1 A^{\lambda}_{\beta,1} + \frac{8}{9} \beta_0 A^{\lambda}_{\beta,2} + \frac{4}{3} \beta_0^2 G^{\lambda}_{\beta,1}(\epsilon) \Big\} \\ &+ \frac{1}{\epsilon^2} \Big\{ -\frac{2}{9} A^{\lambda}_{\beta,3} - \frac{1}{3} \beta_1 G^{\lambda}_{\beta,1}(\epsilon) - \frac{4}{3} \beta_0 G^{\lambda}_{\beta,2}(\epsilon) \Big\} + \frac{1}{\epsilon} \Big\{ \frac{1}{3} G^{\lambda}_{\beta,3}(\epsilon) \Big\} \end{split}$$

KG: SOLUTION

Solution to order by order

[Moch, Vogt, Vermaseren; Ravindran; Magnea]

$$\ln \mathcal{F}^{\lambda}_{\beta}(\hat{a}_s, Q^2, \mu^2, \epsilon) = \sum_{i=1}^{\infty} \hat{a}^i_s \left(\frac{Q^2}{\mu^2}\right)^{i\frac{\epsilon}{2}} S^i_{\epsilon} \hat{\mathcal{L}}^{\lambda}_{\beta,i}(\epsilon)$$

with

$$\begin{split} \hat{\mathcal{L}}^{\lambda}_{\beta,1}(\epsilon) &= \frac{1}{\epsilon^2} \left\{ -2A^{\lambda}_{\beta,1} \right\} + \frac{1}{\epsilon} \left\{ G^{\lambda}_{\beta,1}(\epsilon) \right\} \\ \hat{\mathcal{L}}^{\lambda}_{\beta,2}(\epsilon) &= \frac{1}{\epsilon^3} \left\{ \beta_0 A^{\lambda}_{\beta,1} \right\} + \frac{1}{\epsilon^2} \left\{ -\frac{1}{2} A^{\lambda}_{\beta,2} - \beta_0 G^{\lambda}_{\beta,1}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{2} G^{\lambda}_{\beta,2}(\epsilon) \right\} \\ \hat{\mathcal{L}}^{\lambda}_{\beta,3}(\epsilon) &= \frac{1}{\epsilon^4} \left\{ -\frac{8}{9} \beta_0^2 A^{\lambda}_{\beta,1} \right\} + \frac{1}{\epsilon^3} \left\{ \frac{2}{9} \beta_1 A^{\lambda}_{\beta,1} + \frac{8}{9} \beta_0 A^{\lambda}_{\beta,2} + \frac{4}{3} \beta_0^2 G^{\lambda}_{\beta,1}(\epsilon) \right\} \\ &+ \frac{1}{\epsilon^2} \left\{ -\frac{2}{9} A^{\lambda}_{\beta,3} - \frac{1}{3} \beta_1 G^{\lambda}_{\beta,1}(\epsilon) - \frac{4}{3} \beta_0 G^{\lambda}_{\beta,2}(\epsilon) \right\} + \frac{1}{\epsilon} \left\{ \frac{1}{3} G^{\lambda}_{\beta,3}(\epsilon) \right\} \end{split}$$

All the poles, except single, can be predicted from previous order

3-Loop results of FF

[Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.]

$$\begin{split} G_{\beta,1}^{\lambda}(\epsilon) &= 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum_{k=1}^{\infty} \epsilon^{k} g_{\beta,1}^{\lambda,k} \\ G_{\beta,2}^{\lambda}(\epsilon) &= 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_{0} g_{\beta,1}^{\lambda,1} + \sum_{k=1}^{\infty} \epsilon^{k} g_{\beta,2}^{\lambda,k} \\ G_{\beta,3}^{\lambda}(\epsilon) &= 2\left(B_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_{1} g_{\beta,1}^{\lambda,1} - 2\beta_{0} \left(g_{\beta,2}^{\lambda,1} + 2\beta_{0} g_{\beta,1}^{\lambda,2}\right) \\ &+ \sum_{k=1}^{\infty} \epsilon^{k} g_{\beta,2}^{\lambda,k} \end{split}$$

3-Loop results of FF [Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.] ∞ $G_{\beta,1}^{\lambda}(\epsilon) = 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum \epsilon^{k} g_{\beta,1}^{\lambda,k}$ $G_{\beta,2}^{\lambda}(\epsilon) = 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_0 g_{\beta,1}^{\lambda,1} + \sum \epsilon^k g_{\beta,2}^{\lambda,k}$ $G_{\beta,3}^{\lambda}(\epsilon) = 2\left(\underline{B}_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_1 g_{\beta,1}^{\lambda,1} - 2\beta_0 \left(g_{\beta,2}^{\lambda,1} + 2\beta_0 g_{\beta,1}^{\lambda,2}\right)$ $+\sum \epsilon^k g^{\lambda,k}_{\beta.2}$ k=1* $B_{\beta,i}^{\lambda}$: collinear, $\gamma_{\beta,i}^{\lambda}$: UV, $f_{\beta,i}^{\lambda}$: soft

3-Loop results of FF [Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.] ∞ $G_{\beta,1}^{\lambda}(\epsilon) = 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum \epsilon^{k} g_{\beta,1}^{\lambda,k}$ $G_{\beta,2}^{\lambda}(\epsilon) = 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_0 g_{\beta,1}^{\lambda,1} + \sum \epsilon^k g_{\beta,2}^{\lambda,k}$ k=1 $G_{\beta,3}^{\lambda}(\epsilon) = 2\left(B_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_1 g_{\beta,1}^{\lambda,1} - 2\beta_0 \left(g_{\beta,2}^{\lambda,1} + 2\beta_0 g_{\beta,1}^{\lambda,2}\right)$ $+\sum \epsilon^k g_{\beta,2}^{\lambda,k}$ k=1 $* B_{\beta,i}^{\lambda}$: collinear, $\gamma_{\beta,i}^{\lambda}$: UV, $f_{\beta,i}^{\lambda}$: soft

3-Loop results of FF [Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.] ∞ $G_{\beta,1}^{\lambda}(\epsilon) = 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum \epsilon^{k} g_{\beta,1}^{\lambda,k}$ $G_{\beta,2}^{\lambda}(\epsilon) = 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_0 g_{\beta,1}^{\lambda,1} + \sum \epsilon^k g_{\beta,2}^{\lambda,k}$ k=1 $G_{\beta,3}^{\lambda}(\epsilon) = 2\left(B_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_1 g_{\beta,1}^{\lambda,1} - 2\beta_0 \left(g_{\beta,2}^{\lambda,1} + 2\beta_0 g_{\beta,1}^{\lambda,2}\right)$ $+\sum \epsilon^k g_{\beta,2}^{\lambda,k}$ k=1* $B_{\beta,i}^{\lambda}$: collinear, $\gamma_{\beta,i}^{\lambda}$: UV, $f_{\beta,i}^{\lambda}$: soft

3-Loop results of FF [Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.] ∞ $G_{\beta,1}^{\lambda}(\epsilon) = 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum \epsilon^{k} g_{\beta,1}^{\lambda,k}$ $G_{\beta,2}^{\lambda}(\epsilon) = 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_0 g_{\beta,1}^{\lambda,1} + \sum \epsilon^k g_{\beta,2}^{\lambda,k}$ k=1 $G_{\beta,3}^{\lambda}(\epsilon) = 2\left(B_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_1 g_{\beta,1}^{\lambda,1} - 2\beta_0 \left(g_{\beta,2}^{\lambda,1} + 2\beta_0 g_{\beta,1}^{\lambda,2}\right)$ $+\sum \epsilon^k g_{eta,2}^{\lambda,k}$ k=1

* $B_{\beta,i}^{\lambda}$: collinear, $\gamma_{\beta,i}^{\lambda}$: UV, $f_{\beta,i}^{\lambda}$: soft

Single pole can also be predicted!

[Ravindran, Smith, van Neerven]

3-Loop results of FF [Ravindran, Smith, van Neerven; Moch et. al.; Gehrmann et. al.]

$$\begin{aligned} G_{\beta,1}^{\lambda}(\epsilon) &= 2\left(B_{\beta,1}^{\lambda} - \gamma_{\beta,1}^{\lambda}\right) + f_{\beta,1}^{\lambda} + \sum_{k=1}^{\infty} \epsilon^{k} g_{\beta,1}^{\lambda,k} \\ G_{\beta,2}^{\lambda}(\epsilon) &= 2\left(B_{\beta,2}^{\lambda} - \gamma_{\beta,2}^{\lambda}\right) + f_{\beta,2}^{\lambda} - 2\beta_{0}g_{\beta,1}^{\lambda,1} + \sum_{k=1}^{\infty} \epsilon^{k}g_{\beta,2}^{\lambda,k} \\ G_{\beta,3}^{\lambda}(\epsilon) &= 2\left(B_{\beta,3}^{\lambda} - \gamma_{\beta,3}^{\lambda}\right) + f_{\beta,3}^{\lambda} - 2\beta_{1}g_{\beta,1}^{\lambda,1} - 2\beta_{0}\left(g_{\beta,2}^{\lambda,1} + 2\beta_{0}g_{\beta,1}^{\lambda,2}\right) \\ &+ \sum_{k=1}^{\infty} \epsilon^{k}g_{\beta,2}^{\lambda,k} \end{aligned}$$

- * $B_{\beta,i}^{\lambda}$: collinear, $\gamma_{\beta,i}^{\lambda}$: UV, $f_{\beta,i}^{\lambda}$: soft
- Single pole can also be predicted!
- * Explicit computation gives $g_{\beta,i}^{\lambda,k}$

[Ravindran, Smith, van Neerven]

KG: UNIVERSALITY OF $f_{\beta,i}^{\lambda}$

*
$$f_{g,i}^{\lambda} = \frac{C_A}{C_F} f_{q,i}^{\lambda}$$
 $i = 1, 2, 3$
 $f_{\beta,i}^{\lambda}$: universal

• Extract $\gamma_{\beta,i}^{\lambda}$ from poles of FF since A, B & f are universal A, B & f are same which appear in scalar and vector FF known up to 3-loop level

[Ravindran, Smith, van Neerven]

Determining Z_{ij}

Recall

$$\left[\mathcal{F}_{\beta}^{J}\right]_{R} \equiv \frac{\mathcal{S}_{\beta}^{J}}{a_{s}\mathcal{S}_{\beta}^{J,(1)}} = Z_{5}^{s}Z_{\overline{MS}}^{s}\mathcal{F}_{\beta}^{J}$$

 $\begin{array}{c} \mathsf{KG} \\ \mathsf{Consider unrenorm} \ \mathcal{F}_{\beta}^{J} \longrightarrow \mathsf{calculate UV anomalous dimen} \end{array}$

$$\begin{array}{ccc} \mathcal{F}_{q}^{J} & \longrightarrow & \gamma_{q,i}^{J} & i = 1, 2, 3 \\ \mathcal{F}_{g}^{J} & \longrightarrow & \gamma_{g,i}^{J} & i = 1, 2 \end{array} \right\} \begin{array}{c} \gamma_{g,i}^{J} = \gamma_{q,i}^{J} & \text{As expected} \end{array}$$

$$\gamma_{\beta,1}^{J} = 0 \qquad \qquad \gamma_{\beta,2}^{J} = C_A C_F \left\{ -\frac{44}{3} \right\} + C_F n_f \left\{ -\frac{10}{3} \right\}$$

$$\begin{split} \gamma^{J}_{\beta,3} &= C_{A}^{2} C_{F} \Big\{ -\frac{3578}{27} \Big\} + C_{F}^{2} n_{f} \Big\{ \frac{22}{3} \Big\} - C_{F} n_{f}^{2} \Big\{ \frac{26}{27} \Big\} + C_{A} C_{F}^{2} \Big\{ \frac{308}{3} \Big\} \\ &+ C_{A} C_{F} n_{f} \Big\{ -\frac{149}{27} \Big\} \end{split}$$

DETERMINING $Z^s_{\overline{MS}}$

$$Z_{\overline{MS}}^{s} = 1 + a_{s}^{2} \Big[C_{A} C_{F} \Big\{ -\frac{44}{3\epsilon} \Big\} + C_{F} n_{f} \Big\{ -\frac{10}{3\epsilon} \Big\} \Big] + a_{s}^{3} \Big[C_{A}^{2} C_{F} \Big\{ -\frac{1936}{27\epsilon^{2}} - \frac{7156}{81\epsilon} \Big\} \\ + C_{F}^{2} n_{f} \Big\{ \frac{44}{9\epsilon} \Big\} + C_{F} n_{f}^{2} \Big\{ \frac{80}{27\epsilon^{2}} - \frac{52}{81\epsilon} \Big\} + C_{A} C_{F}^{2} \Big\{ \frac{616}{9\epsilon} \Big\} + C_{A} C_{F} n_{f} \Big\{ -\frac{88}{27\epsilon^{2}} - \frac{298}{81\epsilon} \Big\} \Big]$$

Overall operator renorm const of $[O_J]_B$

Agrees with existing results: different methodology [Larin]

 $[O_J]_R = Z_5^s Z_{\overline{MS}}^s [O_J]_B$ Finite renorm can't be fixed in this way!

$$Z_5^s = 1 + a_s \{-4C_F\} + a_s^2 \left\{ 22C_F^2 - \frac{107}{9}C_A C_F + \frac{31}{18}C_F n_f \right\}$$

[Larin] 47

DETERMINING Z_{ij}

Recall

$$\begin{split} \left[\mathcal{F}_{g}^{G}\right]_{R} &\equiv \frac{\mathcal{S}_{g}^{G}}{\mathcal{S}_{g}^{G,(0)}} = Z_{GG}\mathcal{F}_{g}^{G} + Z_{GJ}\mathcal{F}_{g}^{J}\frac{\langle\mathcal{M}_{g}^{G,(0)}|\mathcal{M}_{g}^{J,(1)}\rangle}{\langle\mathcal{M}_{g}^{G,(0)}|\mathcal{M}_{g}^{G,(0)}\rangle} \\ \left[\mathcal{F}_{q}^{G}\right]_{R} &\equiv \frac{\mathcal{S}_{q}^{G}}{a_{s}\mathcal{S}_{q}^{G,(1)}} = \frac{Z_{GG}\mathcal{F}_{q}^{G}\langle\mathcal{M}_{q}^{J,(0)}|\mathcal{M}_{q}^{G,(1)}\rangle + Z_{GJ}\mathcal{F}_{q}^{J}\langle\mathcal{M}_{q}^{J,(0)}|\mathcal{M}_{q}^{J,(0)}\rangle}{a_{s}\left[\langle\mathcal{M}_{q}^{J,(0)}|\mathcal{M}_{q}^{G,(1)}\rangle + Z_{GJ}^{(1)}\langle\mathcal{M}_{q}^{J,(0)}|\mathcal{M}_{q}^{J,(0)}\rangle\right]} \end{split}$$

Consider $Z_{GG}^{-1}[\mathcal{F}_{\beta}^{G}]_{R}$

Effectively treat as unrenorm FF

However, this involves $\frac{Z_{GJ}}{Z_{GG}}$ with bare FF

Requires parametrisation of Z_{ij} in terms of anomalous dimensions

Non-trivial due to operator mixing!

DETERMINING Z_{ij}

Introduce γ_{ij}

$$\mu_R^2 \frac{d}{d\mu_R^2} Z_{ij} \equiv \gamma_{ik} Z_{kj}$$

$$i, j, k = G, J$$

Matrix equation

$$Z_{ij} = \delta_{ij} + a_s \left[\frac{2}{\epsilon} \gamma_{ij,1} \right] + a_s^2 \left[\frac{1}{\epsilon^2} \left\{ 2\beta_0 \gamma_{ij,1} + 2\gamma_{ik,1} \gamma_{kj,1} \right\} + \frac{1}{\epsilon} \left\{ \gamma_{ij,2} \right\} \right] + a_s^3 \left[\frac{1}{\epsilon^3} \left\{ \frac{8}{3} \beta_0^2 \gamma_{ij,1} + 4\beta_0 \gamma_{ik,1} \gamma_{kj,1} + \frac{4}{3} \gamma_{ik,1} \gamma_{kl,1} \gamma_{lj,1} \right\} + \frac{1}{\epsilon^2} \left\{ \frac{4}{3} \beta_1 \gamma_{ij,1} + \frac{4}{3} \beta_0 \gamma_{ij,2} + \frac{2}{3} \gamma_{ik,1} \gamma_{kj,2} + \frac{4}{3} \gamma_{ik,2} \gamma_{kj,1} \right\} + \frac{1}{\epsilon} \left\{ \frac{2}{3} \gamma_{ij,3} \right\} \right]$$

* Recall
$$Z_{JJ} = Z_5^s Z_{\overline{MS}}^s$$
 $\gamma JJ,i$ $i = 1,2$
$$\gamma_{JJ} = a_s \left[-\epsilon 2C_F \right] + a_s^2 \left[\epsilon \left\{ -\frac{107}{9} C_A C_F + 14C_F^2 + \frac{31}{18} C_F n_f \right\} - 6C_F n_f \right]$$

 ϵ dependence is uncommon but crucial!

* Recall $Z_{JG} = 0$ $\longrightarrow \gamma_{JG} = 0$ to all order

* With this parametrisation of Z_{ij} , consider $Z_{GG}^{-1}[\mathcal{F}_{\beta}^{G}]_{R}$

 $Z_{GG}^{-1}[\mathcal{F}_{g}^{G}]_{R} \xrightarrow{\mathrm{KG}} f(\gamma_{GG,i},\gamma_{GJ,i}) \\ Z_{GG}^{-1}[\mathcal{F}_{q}^{G}]_{R} \xrightarrow{\mathrm{KG}} g(\gamma_{GG,i},\gamma_{GJ,i}) \xrightarrow{\mathrm{Solve coupled linear}} eqns$

 $\gamma_{GG,i} \& \gamma_{GJ,i} \qquad i = 1, 2, 3$

50

DETERMINING Z_{ij}

Findings

$$\begin{split} \gamma_{GG} &= a_s \Big[\frac{11}{3} C_A - \frac{2}{3} n_f \Big] + a_s^2 \Big[\frac{34}{3} C_A^2 - \frac{10}{3} C_A n_f - 2 C_F n_f \Big] + a_s^3 \Big[\frac{2857}{54} C_A^3 - \frac{1415}{54} C_A^2 n_f - \frac{205}{18} C_A C_F n_f + C_F^2 n_f + \frac{79}{54} C_A n_f^2 + \frac{11}{9} C_F n_f^2 \Big] \end{split}$$

Agrees with existing
$$O(a_s^2)$$
 by Larin
New result $O(a_s^3)$
 $\gamma_{GG} = -\frac{\beta}{a_s}$ up to 3-loop

$$\begin{split} \gamma_{GJ} &= a_s \left[-12C_F \right] + a_s^2 \left[-\frac{284}{3} C_A C_F + 36C_F^2 + \frac{8}{3} C_F n_f \right] + a_s^3 \left[-\frac{1607}{3} C_A^2 C_F \right. \\ &+ 461C_A C_F^2 - 126C_F^3 - \frac{164}{3} C_A C_F n_f + 214C_F^2 n_f + \frac{52}{3} C_F n_f^2 + 288C_A C_F n_f \zeta_3 \\ &- 288C_F^2 n_f \zeta_3 \right] \end{split}$$

DETERMINING Z_{ij}

Findings

Results of γ_{ij} uniquely specifies Z_{ij}

 $\longrightarrow Z_{GG} \& Z_{GJ}$ up to $\mathcal{O}(a_s^3)$

With these we compute renorm FF

AXIAL ANOMALY RELATION

Axial Anomaly

$$[O_J]_R = a_s \frac{n_f}{2} [O_G]_R$$

RG Invariance
$$\gamma_{JJ} = \frac{\beta}{a_s} + \gamma_{GG} + a_s \frac{n_f}{2} \gamma_{GJ}$$

Our results are in agreement with this in $\epsilon \to 0$

• Soft-virtual cross section at $N^{3}LO$ and Threshold resum cross section at $N^{3}LL$ [TA, Kumar, Mathews, Rana & Ravindran] [arXiv:1510.02235]

• For total inclusive production cross section, it is an important ingredient.

- Pseudo scalar FF at 3-loop QCD have been computed
- In dimensional regularization, 't Hooft-Veltman prescription for γ_5 , which requires finite renorm.
- By exploiting universal IR structure independent determination of operator renorm constants.
- An important ingredient to precision theoretical and phenomenological study.
- Immediate applications: N^3LO_{SV} & N^3LL

Thank you!