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Abstract

In the first part, basic properties of the Coherent State of a linear
Harmonic Oscillator are described using Schroedinger Wave Mechan-
ics. Then coherent states being a ”over-complete” set have been used
as a tool for the evaluation of the path integral. After that, spin states
just analogous to the coherent state of a Harmonic oscillator are de-
fined which are called Spin-Coherent State. Their properties will be
described followed by some specific applications. Second part consists
of a short introduction to the semi-classical quantization.
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1 Introduction

Classical as well as Quantum mechanics are well developed & well under-
stood, nevertheless the intermediate stage of these two are still not explored
satisfactorily. In spite of having a huge difference between the classical phi-
losophy and quantum philosophy, physicists expect there should be a way of
making transition from quantum world to classical one and indeed peoples
have explored a lot in support of this. Our main aim of this project
is to try to focus on this intermediate area through the study of
Coherent state.

We know coherent states are the quantum states which are mimic to the
classical one. Therefore these states are among the best candidates which
can help us to reveal our query. Therefore we take coherent states as our
basic thing to explore this physics.Apart from this there are many other
applications of these coherent states, we will see some of the them.

To understand the connection between the classical mechanics and quan-
tum mechanics it would be better to consider Hamilton-Jacobi formalism
since this formalism contains the essential hints of the wave nature of parti-
cles which is one of the most fundamental ingredients of quantum mechanics
(wave-particle duality). So, to describe the semi-classical physics we will fol-
low the Hamilton-Jacobi formalism.

In the higher spin limit spin states can be identified as coherent states
by an appropriate transformation. This is known as spin-coherent states.

2 Coherent States of the Linear Harmonic Oscil-
lator

From the properties of the stationary states of linear harmonic oscillator we
know, the expectation values 〈X〉 & 〈P〉 of the position and momentum of
the oscillator are zero in these states. Now, in Classical Mechanics, it is
well known that the position x & momentum p are oscillating functions of
time, which always remain zero only if the energy of the motion is also
zero. Also, Correspondence Principle says that Quantum Mechanics(QM)
must yield the same results as Classical Mechanics(CM) in the limiting case
where the harmonic oscillator has an energy much greater than the quantum
energy unit ~ω i.e. in the limit of large quantum number.
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Thus we ask the following question : is it possible to construct quan-
tum mechanical states leading to physical predictions which are
almost identical to the classical ones, at least for a macroscopic
oscillator? We shall see these states indeed exist: they are coherent linear
superposition of the stationary states |φn〉. These are called ”quasi-classical
states” or ”coherent states” of the linear harmonic oscillator. So, a coher-
ent state in QM is a specific kind of quantum state whose dynamics
most closely resemble the behaviour of the corresponding classical
system.

The position, the momentum, and the energy of a harmonic oscillator are
described in QM by operators which do not commute; they are incompatible
physical observables. It is not possible to construct a state in which they
are all perfectly well defined, instead we will look for a state such that the
mean values 〈X〉, 〈P〉 and 〈H〉 are as close as possible to the corresponding
classical values for all time. This will lead us to a compromise in which none
of these three observables is perfectly known, nevertheless the root-mean-
square deviations ∆X,∆P,∆H are completely negligible in the macroscopic
limit.

2.1 Classical Linear Harmonic Oscillator

The classical equations of motion (1D oscillator) :

d

dt
x(t) =

1

m
p(t),

d

dt
p(t) = −mω2x(t) (1)

Let’s introduce the operators :

ˆx(t) ≡ βx(t), ˆp(t) ≡ 1

β~
p(t) (2)

where, β =
√

mω
~ .

So, (1) can be written

d

dt
ˆx(t) = ωp(t),

d

dt
ˆp(t) = −ω ˆx(t) (3)

The classical state of the oscillator is described by x(t), p(t) at t. Now,
we will combine and introduce another quantity α(t) defined by :

α(t) ≡ 1√
2

[x̂(t) + p̂(t)] (4)
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So, Eq(3) can be rewritten as :

d

dt
α(t) = −iωα(t) (5)

whose solution is :

α(t) = α0 exp(−iωt) (6)

where,

α0 = α(0) =
1√
2

[x̂(0) + ip̂(0)] (7)

Hence,

x̂(t) =
1√
2

[α0 exp(−iωt) + α∗0 exp(iωt)] (8a)

p̂(t) = − i√
2

[α0 exp(−iωt)− α∗0 exp(iωt)] (8b)

Energy which is constant over time,

H =
1

2m
p(0)2 +

mω2

2
x(0)2 = ~ω|α0|2 (9)

For a macroscopic oscillator, the energy must be much greater than the
quantum ~ω , so : |α0| 〉〉1.

2.2 Conditions Defining Quasi-Classical States

We are looking for a quantum mechanical state for which at every instant
the mean values 〈X〉 , 〈P 〉, 〈H〉 are practically equal to the values x, p &
H which correspond to a given classical motion.
QM ⇒

X̂ = βX =
1√
2

(a+ a†) P̂ =
1

~β
P = − i√

2
(a− a†) (10)

and,

H = ~ω(aa† +
1

2
) (11)

For an arbitrary state |ψ(t)〉 the time evolution of the matrix element 〈a〉(t) =
〈ψ(t)|a|ψ(t)〉 is given by:
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i~
d

dt
〈a〉(t) = 〈[a,H]〉(t) = ω〈a〉(t) (12)

Hence,

〈a〉(t) = 〈a〉(0) exp(−iωt) (13a)

〈a†〉(t) = 〈a†〉(0) exp(iωt) = 〈a〉∗(0) exp(iωt) (13b)

See, Eq(13) are analogous to the classical Eq(6)!
Substituting (13) in (10) :

〈X̂〉(t) =
1√
2

[〈a〉(0) exp(−iωt) + 〈a〉∗(0) exp(iωt)] (14a)

〈P̂ 〉(t) = − i√
2

[〈a〉(0) exp(−iωt)− 〈a〉∗(0) exp(iωt)] (14b)

Comparing (14) with (8), we see that, in order to have at all times t :

〈X̂〉(t) = x̂(t), 〈P̂ 〉(t) = p̂(t) (15)

it is necessary and sufficient to set, at the instant t = 0, the condition :

〈a〉(0) = α0 (16a)

The normalized state vector |ψ(t)〉 of the oscillator must therefore satisfy
the condition :

〈ψ(0)|a|ψ(0)〉 = α0 (16b)

Now, we must require the mean value of the Hamiltonian equal classical
energy i.e.,

〈H〉 = ~ω〈a†a〉(0) +
~ω
2

= ~ω|α0|2 (16c)

Since for a classical oscillator, |α0| is much greater than 1, we can neglect
~ω
2 with respect to the other term. Then this gives us the 3rd condition on

the state vector: 〈a†a〉(0) = |α0|2 i.e.,

〈ψ(0)|α†a|ψ(0)〉 = |α0|2 (16d)

We shall see that conditions (16b) and (16d) are sufficient to determine
the normalized state vector |ψ(0)〉.
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Hence, we require

〈ψ(0)|a|ψ(0)〉 = α0, 〈ψ(0)|α†a|ψ(0)〉 = |α0|2 (17)

m (18)

〈X̂〉(t) = x̂(t), 〈P̂ 〉(t) = p̂(t), 〈H〉 = E (19)

2.3 Quasi-Classical States are Eigenvectors of the operator
a

Let’s define an operator

b = a− α0I (20)

Then,

b†b = (a† − α∗0I)(a− α0I) = a†a− α∗0a− a†α0 + α∗0α (21)

and the square of the norm of the ket b|ψ(0)〉 is

〈ψ(0)|b†b|ψ(0)〉 = |α0|2 − α∗0α− αα∗0 + α∗0α = 0 (22)

Therefore,

b|ψ(0)〉 = 0 (23a)

a|ψ(0)〉 = α0|ψ(0)〉 (23b)

Conversely, if the normalized vector |ψ0〉 satisfies the relation (23b), it
is obvious that conditions (17) and (19) are satisfied.
We therefore get the result : the quasi-classical state, associated with
a classical motion characterized by the parameter α0, is such that
|ψ(0)〉 is an eigenvector of the operator a with eigenvalue α0.
Now onwards we shall denote the eigenvector of the operator a with eigen-
value α by |α〉 i.e.,

a|α〉 = α|α〉 (24)

where, |α〉 is called the ”Coherent State” of the oscillator.
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2.4 Expansion of |α〉 in stationary states |φn〉 of the Hamil-
tonian

Since |φn〉 forms a complete state, so

|α〉 =
∑
n

cn(α)|φn〉 (25)

Then,

a|α〉 =
∑
n

cn(α)
√
n|φn−1〉 (26)

Now,

a|α〉 = α|α〉 (27a)

⇒ a
∑
n

cn(α)|φn〉 = α
∑
n

cn(α)|φn〉 (27b)

⇒
∞∑
n=1

cn(α)
√
n|φn−1〉 = α

∞∑
n=0

cn(α)|φn〉 (27c)

⇒
∞∑
n=0

cn+1(α)
√
n+ 1|φn〉 = α

∞∑
n=0

cn(α)|φn〉 (27d)

⇒ cn+1(α)
√
n+ 1 = αcn(α) (27e)

⇒ cn(α) =
αn√
n!
c0(α) (27f)

It shows that if c0(α) is fixed, then cn(α) are also fixed.Let’s choose c0(α)
as real, positive and then let’s put the normalization condition 〈α〉 = 1 to
fix the c0(α).Hence, ∑

n

|cn(α)|2 = 1 (28a)

⇒ |c0(α)|2
∑
n

|α|2n

n!
= 1 (28b)

⇒ |c0(α)|2 exp(|α|2) = 1 (28c)

⇒ c0(α) = exp(−|α|
2

2
) (28d)
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Therefore,

|α〉 = exp(−|α|
2

2
)
∑
n

αn√
n!
|φn〉 (28e)

The relation (27f) says that the probability distribution follows
Poisson distribution i.e.

Pn(α) = |cn(α)|2 =
|α|2n

n!
exp(−|α|2) (29)

2.5 Minimum Uncertainty

Let’s calculate (∆X)α, (∆P )α and, (∆H)α :

〈X〉α = 〈α|X|α〉 (30a)

= 〈α
√

~
2mω

|(a+ a†)|α〉 (30b)

⇒ 〈X〉α =

√
2~
mω

Re(α) (30c)

and, exactly by similar calculations,

〈P 〉α =
√

2m~ωIm(α) (31)

〈X2〉α =
~

2mω
[(α+ α∗)2 + 1] (32)

〈P 2〉α =
m~ω

2
[1− (α− α)2] (33)

Therefore,

(∆X)α =

√
~

2mω
(34)

(∆P )α =

√
m~ω

2
(35)

and consequently,

(∆X)α(∆P )α =
~
2

(36)

So, the coherent state satisfies the minimum uncertainty rela-
tion.
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Similarly if we calculate

〈H〉α =
∑
n

Pn(α)En =
∑
n

Pn(α)(n+
1

2
~ω) (37a)

or, equivalently

〈H〉α = ~ω〈α|(a†a+
1

2
)|α〉 (37b)

and,

〈H2〉α = ~2ω2〈α|(a†a+
1

2
)2|α〉 (37c)

(∆H)α = ~ω|α| ⇒ (∆H)α
〈H〉α

≈ 1

|α|
〈〈1 (37d)

2.6 Existence of a Unitary Operator D(α)

In this section, our aim is to examine whether there is any unitary trans-
formation which transforms the ground state |φ0〉 of the oscillator to the
coherent state |α〉 = D(α)|φ0〉 with DD† = D†D = 1.Now,

|α〉 = exp(−|α|
2

2
)
∑
n

αn√
n!
|φn〉 (38a)

⇒ |α〉 = exp(−|α|2/2)
∑
n

(αa†)n

n!
|φ0〉 (38b)

⇒ |α〉 = exp(−|α|2/2) exp(αa†)|φ0〉 (38c)

Now, if we define D(α) by

D(α) ≡ exp(−|α|2/2) exp(αa†) (38d)

then we will get

D†D = exp(−|α|2) exp(α∗a+ αa†) exp(|α|2/2) 6= 1 (38e)

So to make D(α) unitary we need to multiply (38e) by exp(−α∗a −
αa†) exp(|α|2/2). Therefore, if we choose

D(α) ≡ exp(−|α|2/2) exp(αa†) exp(−α∗a) (38f)

then that can fulfil the requirements. Further, multiplying (38d) by the
extra term exp(−α∗a) does not have any effect on the coherent state |α〉
since exp(−α∗a)|φ0〉 = |φ0〉. Therefore,

11



D(α) ≡ exp(−|α|2/2) exp(αa†) exp(−α∗a) (38g)

⇒ D(α) = exp(−|α|2/2) exp(αa† − α∗a) exp(|α|2/2) (38h)

⇒ D(α) = exp(αa† − α∗a) (38i)

Hence, we can define the unitary operator by

D(α) ≡ exp(−|α|2/2) exp(αa†) exp(−α∗a) = exp(αa† − α∗a) (38j)

2.7 Wave Function α(x)

Let’s see the form of the coherent state in the position basis.

α(x) = 〈x|α〉 = 〈x|D(α)|φ0〉 (39)

⇒ α(x) = 〈x| exp(

√
mω

~
α− α∗√

2
X) exp(−i

√
1

mω~
α+ α∗√

2
P ) exp(

(α∗)2 − α2

4
|φ0〉

(40)

⇒ α(x) = exp(

√
mω

~
α− α∗√

2
x) exp(

(α∗)2 − α2

4
)φ0(x−

√
~

2mω
) (41)

⇒ α(x) = exp(
(α∗)2 − α2

4
) exp(i〈P 〉αx/~)φ0(x− 〈X〉α) (42)

where, 〈X〉α & 〈P 〉α are given by (30c) and (31) respectively. If we
replace the form of the φ0(x) then the form of the wave packet associated
with the coherent state |α〉 is given by:

|α(x)|2 =

√
mω

π~
exp{−1

2
[
x− 〈X〉α

∆Xα
]2} (43)

which is a Gaussian. This is expected since in the coherent state min-
imum uncertainty relation is satisfied and, in general it can be shown that
if any system is in a state where this relation ∆P∆X = ~/2 is
satisfied, then the corresponding weve function is Gaussian.
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2.8 Over-Complete Set

Since, |α〉 are eigenvectors of the non-Hermitian operator a, there is no
obvious reason for these states to satisfy orthogonality & closure relations.
Let’s see whether these state satisfy any closure relation.

Firstly, it is straightforward to show that

|〈α|α′〉|2 = exp(−|α− α′|2 (44)

⇓ (45)

scalar product can never be zero i.e. they do not satisfy or-
thogonality condition.

However, we will see these satisfy some kind of closure relation. Let’s
define an operator by

Î ≡ 1

π

∫
(dRe(α))(dIm(α))|α〉〈α| (46)

Then,

〈ψ1|Î|ψ2〉 =
∑
m,n

c∗mcn〈φm|Î|φn〉 (47a)

=
1

π

∑
m,n

c∗mcn

∫
〈φm|(dRe(α))(dIm(α))|α〉〈α|φn〉 (47b)

=
1

2iπ

∑
m,n

c∗mcn

∫
〈φm|α〉〈α|φn〉(dα)(dᾱ) (47c)

where, α = Re(α) + iIm(α). Using the form of the coherent state

〈ψ1|Î|ψ2〉 =
1

2iπ

∑
m,n

c∗mcn√
m!n!

∫
exp(−|α|2)αmᾱn(dα)(dᾱ) (47d)

Let, α = ρ exp(iθ), or, dαdᾱ = 2iρdρdθ then (47d) becomes

〈ψ1|Î|ψ2〉 =
1

π

∑
m,n

c∗mcn√
m!n!

∫ ∞
0

ρdρ exp(−ρ2)ρmρn
∫ 2π

o
dθ exp(i(m− n)θ)

(47e)
Then simple calculation gives
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〈ψ1|Î|ψ2〉 =
∑
n

|cn|2 = 〈ψ1|ψ2〉 (47f)

Hence,
⇓ (47g)

Î ≡ 1

π

∫
(dRe(α))(dIm(α))|α〉〈α| = I (47h)

Therefore, coherent states satisfy closure relation but not ortho-
normalization condition. These type of set is called an over-
complete set.

2.9 Time Evolution of the Coherent State

Time-independent Hamiltonian ⇒
|α(t)〉 = exp(− |α0|2

2 )
∑

n
αn0√
n!

exp(−i(n+ 1
2)ωt)|φn〉.

Comparing this result with (28e), we see, to get |α(t)〉 from |α0〉 we just have
to change α0 to α0 exp(−iωt) and multiply the obtained ket by exp(−iωt)

Hence,

|α(t)〉 = exp(−iωt/2)|α = α0 exp(−iωt)〉 (48)

Therefore, a coherent state remains an eigenvector of the annihi-
lation operator a for ALL TIME, with an eigenvalue α0 exp(−iωt).

Following the above results we obtain:

〈X〉(t) =

√
2~
mω

Re[α0 exp(−iωt)] (49a)

〈P 〉(t) =
√

2m~ωIm[α0 exp(−iωt)] (49b)

and, as expected

〈H〉 = ~ω[|α0|2 +
1

2
] (49c)

average energy is time-independent.
Also,simple calculations show that the rms deviations become

∆X =

√
~

2mω
, ∆P =

√
m~ω

2
(50)
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Hence, ∆X & ∆P are time-independent i.e. the coherent state
wave packet remains a minimum wave packet for all time. We know,
a free Gaussian wave packet spreads out with time as it propagates but here
we are seeing this Gaussian wave packet, in the parabolic potential(harmonic
oscillator potential) it remains a Gaussian without any distortion. Physi-
cally, this happens because the tendency of the wave-packet to
spread out is compensated by the parabolic potential, which tries
to push the wave packet towards the origin.

Figure 1: Propagation of the Gaussian Wave Packet in SHO potential

Therefore,

• Coherent States describe a maximal kind of coherence & classical kind
of behaviour.

• When |α| is very large then the rms deviations of position, momen-
tum as well as Hamiltonian becomes much smaller than that of the
mean values. So, one can obtain a quantum mechanical state where
position and momentum can be adjusted with very high accuracy si-
multaneously which resembles classical motion. Therefore, coherent
state describes the motion of a macroscopic harmonic oscillator, for
which the position, momentum and the energy can be considered to
be classical quantities.

• Vacuum state of the oscillator is also a coherent state.

15



2.10 A Different way of looking the coherent state

Here, I will try to show an alternative way of getting the properties of the
coherent states.

• General Properties of the two observables whose commutator
is a constant: Let’s take the example of position & momentum which
satisfy [Q,P ] = i~. Let’s define an operator by

S(λ) ≡ exp(λP/i~) (51)

with, real λ. Clearly this is unitary operator which is the conse-
quence of the anti-unitarity of λP/i~. Also,

S†(λ) = S−1(λ) = S(−λ) (52a)

S(λ1)S(λ2) = S(λ1 + λ2) (52b)

[Q,S(λ)] = λS(λ) (52c)

Now, let’s assume Q|p〉 = q|q〉, then

Q(S(λ)|q〉) = (q + λ)(λ)|q〉) (52d)

So, starting with an eigenvector of Q, one can construct an-
other eigenvector of Q by applying S(λ).Also,since λ can take
any real value, so the spectrum of Q is continuous & com-
posed of all possible values on the real axis.

Many properties can be obtained, like :

All the eigenvalues of Q have the same degree of degeneracy.

• Now, for the SHO [a, a†] = 1 = constant. Following the previous
procedure if we define:

S(λ) = exp(λa†) (53a)

with complex λ, then clearly this is not a unitary operator. This is
expected because λa is NOT anti-Hermitian. Following the similar
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argument as we saw in the section 2.6 it can be proved easily that we
will end up with

S(λ) ≡ exp(λa† − λ∗a) (53b)

Similar to the previous one, if we assume

a|α〉 = α|α〉 (53c)

then,
a(S(λ)|α〉) = (α+ λ)((S(λ)|α〉) (53d)

This shows, spectrum of a is the whole complex plane. Im-
portantly, all the properties of the Coherent state can be
derived following this procedure, though I won’t derive again all
the properties following this procedure.

3 Spin Coherent States

Recall the case for the Harmonic Oscillator: though, in general, we can’t
determine position and momentum simultaneously with arbitrary accuracy,
nevertheless in the case of parabolic potential(SHO potential) we can con-
struct a state having dynamics very much analogous to the classical one.
For spin angular momentum also we can find such a state,called Spin Co-
herent State, where average of the spin-angular momentum follow classical
like dynamics though three components of the spin angular momentum do
not commute.

3.1 Spin States

Let’s consider a single particle with spin S.

(a) Defining Ground State:

|0〉 ≡ |s, s〉 (54a)

& so,

⇓ (54b)
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Sz|0〉 = Sz|s,ms = s〉 = ms|s, s〉 = s|s, s〉 (54c)

Let’s define:

S−|l〉 ≡ c|l + 1〉 (55)

where, S− ≡ Sx − iSy , S+ ≡ Sx + iSy and |l〉 ≡ |s, l〉.

Note: Here we have defined

|0〉 ≡ |s, s〉 ≡ |s,ms = s〉
S−|0〉 ∝ |s, s− 1〉 ≡ |1〉

(S−)2|0〉 ∝ |s, s− 2〉 ≡ |2〉
.

(S−)s−1|0〉 ∝ |s, s− s+ 1〉 ≡ |s− 1〉
(S−)s|0〉 ∝ |s, s− s〉 = |s, 0〉 ≡ |s〉

(S−)s+1|0〉 ∝ |s, 1〉 ≡ |s+ 1〉
.

(S−)2s|0〉 ∝ |s, s− 2s〉 = |s,−s〉 ≡ |2s〉

So, |S−〉p ⇒ 0 ≤ p ≤ 2s.
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Hence,

|c|2 = 〈l|S+S−|l〉
= 〈l|S2 − S2

z + Sz|l〉
= s(s+ 1)− (s− l)2 + (s− l)

⇒ c =
√

(2s− l)(l + 1)

where, we have used Sz|l〉 = (s− l)|l〉. Hence,

S−|l〉 =
√

(2s− l)(l + 1)|l + 1〉

⇒ (S−)2|l〉 =
√

(2s− l)(l + 1)s−|l + 1〉

⇒ (S−)p|l〉 =
√

(2s− l)(l + 1)(2s− l − 1)(l + 2)..(2s− l − p+ 1)(l + p)|l + p〉

Putting l = 0,

(S−)p|0〉 =

√
p!(2s)!

(2s− p)!
|p〉 ⇒ (S−)p|s, s〉 =

√
p!(2s)!

(2s− p)!
|s, s− p〉

(56)

(b) Defining Spin Coherent State: Let’s consider a state

|µ〉 ≡ N−
1
2 exp(µS−)|0〉

= N−
1
2

∞∑
p

(µS−)p

p!
|0〉

= N−
1
2

2s∑
p

(µp

p!

√
p!(2s)!

(2s− p)!
|p〉

|µ〉 = N−
1
2

2s∑
p=0

µp

√
(2s)!

(2s− p)!p!
|p〉 (57)
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(c) Properties:

• Finding Normalization Constant:

〈µ|µ〉 = N−1
∑
p

∑
q

µ∗qµp

√
(2s)!

p!(2s− p)!

√
(2s)!

q!(2s− q)!
〈q|p〉

= N−1
2s∑
p=0

|µ|2p (2s)!

p!(2s− p)!

= N−1
2s∑
p=0

2sCp(|µ|2)p

1 = N−1(1 + |µ|2)2s

|µ〉 = (1 + |µ|2)−s exp(µS−)|0〉 = (1 + |µ|2)−s
2s∑
p=0

µp

√
(2s)!

p!(2s− p)!
|p〉

(58)

• Inner Product: Just similar to the last calculation shows

〈λ|µ〉 =
1

(1 + |λ|2)s(1 + |µ|2)s
(1 + λ∗µ)2s (59)

and, hence

|〈λ|µ〉|2 = [
1 + λ∗µ+ λµ∗ + |λµ|2

(1 + |µ|2)(1 + |λ|2)]
]2s

= [
(1 + |µ|2)(1 + |λ|2)− 1− |λ|2 − |µ|2|λµ|2 + 1 + λ∗µ+ λµ∗ + |λµ|2

(1 + |µ|2)(1 + |λ|2)
]2s

|〈λ|µ〉|2 = [1− |λ− µ|2

(1 + |µ|2)(1 + |λ|2)
]2s (60)

• Completeness Relation: We require,∫
d2µ|µ〉〈µ|m(|µ|2) =

2s∑
0

|p〉〈p| = 1 (61)
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where, m(|µ|2) > 0 is a weight function and d2µ = (dReµ)(dImµ)
Now,

∫
d2µ|µ〉〈µ|m(|µ|2) =

∑
p,q

|p〉〈q|

√
(2s)!

p!(2s− p)!

√
(2s)!

q!(2s− q)!∫
ρdρdθ(1 + ρ2)−2sm(ρ2)ρp+q exp[iθ(p− q)]

(62)

where, we have used the form (58) and assumed µ = ρ exp(iθ).
Now, using the orthogonality condition of the angular variable i.e.∫ 2π
0 dθ exp(iθ(p− q)) = 2πδp,q we get:

∫
d2µ|µ〉〈µ|m(|µ|2) =

2s∑
p=0

|p〉〈p| (2s)!

p!(2s− p)!
I(p, s) (63)

where,

I(p, s) ≡ 2π

∫ ∞
0

dρρ
ρ2p+1

(1 + ρ2)2s
m(ρ2) (64)

Now, if we see the form (63), clearly we need to choose m(ρ2) in

such a way that I(p, s) = p!(2s−p)!
(2s)! to fulfil our requirement of the

orthogonality condition (61).

Calculation shows,

m(|µ|2) =
2s+ 1

π(1 + |µ|2)2
⇒

∫
d2µ|µ〉〈µ|m(|µ|2) =

2s∑
0

|p〉〈p| = 1

(65)

This result can be proved by an another method which we will see
shortly.

3.2 Analogies with Harmonic Oscillator

For the moment let’s write:

S− →
√

2sa† & µ→ α√
2s

(66)
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Then, (58) becomes

|µ〉 → |α〉s = (1 +
|α|2

2s
) exp(αa†)|0〉 (67)

Using limx→∞(1 + |α|2
2s )2s = exp( |α|

2

2 )
we get,

lim
s→∞

|α〉s = exp(−|α|
2

2
) exp(αa†)|0〉 (68)

This is precisely the harmonic oscillator coherent state. So,higher spin
limit and our identification(66) gives us the coherent state.

3.3 Some Matrix Elements

Let’s define an operator,

A ≡ S − Sz (69)

• Using the form of |µ〉 (58) :

〈µ|A|µ〉 = (1 + |µ|2)−2s
∑
p,q

µ∗pµq

√
(2s)!

p!(2s− p)!

√
(2s)!

q!(2s− q)!
〈p|(S − Sz)|n〉

= (1 + |µ|2)−2s
2s∑
p=0

|µ|2p (2s)!

p!(2s− p)!
p

Now,

(1 + x)p = C0 + C1x+ C2x
2 + ...+ Cpx

p

⇒ p(1 + x)p−1 = C1 + 2C2x+ 3C3x
2 + ...+ pCpx

p−1

⇒ xp(1 + x)p−1 = C1x+ 2C2x
2 + 3C3x

3 + ...+ pCpx
p

Therefore,

2s∑
p=0

|µ|2p (2s)!

p!(2s− p)!
p =

2s∑
p=0

2sCp|µ|2pp = |µ|22s(1 + |µ|2)2s−1 (70)

22



Hence,

〈µ|A|µ〉 =
2s|µ|2

1 + |µ|2
(71)

• We want to calculate 〈µ|S+|µ〉.
Now using S−|p〉 =

√
(2s− p)(p+ 1)|p+ 1〉, we get

〈µ|S+|µ〉 = (1 + |µ|2)−2s
∑
p,q

√
(2s)!(2s− p)(p+ 1)

p!(2s− p)!

√
(2s)!

p!(2s− q)!
µ∗pµq〈p+ 1|q〉

⇒ 〈µ|S+|µ〉 = (1 + |µ|2)−2s
2s−1∑
p=0

(2s)!

p!(2s− p− 1)!
µ∗pµp+1

⇒ 〈µ|S+|µ〉 = (1 + |µ|2)−2s
2s−1∑
p=0

(2s)!

p!(2s− p− 1)!
(|µ|2)pµ

= (1 + |µ|2)−2s2s
2s−1∑
p=0

2s−1Cp(|µ|2)pµ

⇒ 〈µ|S+|µ〉 =
2sµ

1 + |µ|2
(72)

Similar type of straightforward calculations show

•
〈λ|A|µ〉 =

2sλ∗µ

1 + λ∗µ
〈λ|µ〉 (73)

•
〈λ|S+|µ〉 =

2sµ

1 + λ∗µ
〈λ|µ〉 (74)
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and

•
〈λ|S+|µ〉 =

1

λ∗
〈λ|A|µ〉 (75)

3.4 An Alternative Parametrization

We will introduce another useful parametrization (θ, φ) instead of (µR, µI)
by the relation

µ = exp(iφ) tan(θ/2) (76)

with, 0 < θ < π & 0 6 φ 6 2π.

So, |µ|2 = tan2(θ/2) 1 + |µ|2 = sec2(θ/2).Hence,

|µ〉 = (1 + |µ|2)−s exp(µS−)|0〉 (77)

⇓ (78)

|θ, φ〉 ≡ |Ω〉 = cos2s(θ/2) exp[tan(θ/2) exp(iφ)S−]|0〉 (79)

• Completeness Relation: Using this:

dµRdµI =

∣∣∣∣∣ ∂µR
∂θ

∂µI
∂φ

∂µI
∂θ

∂µI
∂φ

∣∣∣∣∣ dθdφ
we get,

d2µ =
1

2
sec2(θ/2) tan(θ/2)dθdφ (80)

2s+ 1

π

∫
d2µ

1

(1 + |µ|2)2
|µ〉〈µ| (81)

⇓ (82)

(2s+ 1)

∫
dΩ

1

4π
|Ω〉〈Ω| = 1 (83)
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• Geometrical Interpretation:

The point µ is the projection onto the µ−plane of the point (θ, φ) on
the sphere from the opposite pole.

• Some Relations In Terms of New Parameters:

Using the relation (59)

〈Ω′|Ω〉 ≡ 〈λ|µ〉 =
1

(1 + |λ|2)s(1 + |µ|2)s
(1 + λ∗µ)2s

= [cos(θ/2) cos(θ′/2) + sin(θ/2) sin(θ′/2) exp(i(φ− φ′))]2s
≡ (z1 + z2)

2s

= ((z1 + z2)(z
∗
1 + z∗2))s

.

.

|〈Ω′|Ω〉| = (
1 + r̂.r̂′

2
)s

where,
r̂(θ, φ) = sin θ cosφî+ sin θ sinφĵ + cos θk̂ (84)

is the unit vector in the direction specified by (θ, φ).
Simple calculations show:

•

〈Ω|A|Ω〉 = s(1− cos θ)

〈Ω|S+|Ω〉 = s sin θ exp(iφ)

〈Ω|S−|Ω〉 = s sin θ exp(−iφ)

From these relations it’s clear that

〈Sz〉 = s cos θ

〈Sx〉 = s sin θ cosφ

〈Sy〉 = s sin θ sinφ

In general,

〈Ω|S|Ω〉 = sr̂ (85)
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3.5 The Effect of Changing the Ground State

From (77)
|µ〉 = (1 + |µ|2)−s exp(µS−)|0〉 ≡ B(µ)|0〉 (86)

where, Sz|0〉 = s|0〉. Now, if we make a rotate our quantization axis z to a
new z′, then we demand

|a〉′ = B′(a)|0′〉 (87)

where, Sz′ |0′〉 = s|0′〉 and B′(a) ≡ (1 + |b|2)−s exp(aS′−)
That means,

|µ〉 = B(µ)|0〉 ⇒ |a〉′ = B′(a)|0′〉 (88)

Here,changing of basis representation: {µ, λ, ..., 0} ⇒ {a, b, ..., 0′}.
AIM: Expressing |a〉′ in terms of |µ〉.

Using the completeness property of {|µ〉} we get,

|a〉′ = 2s+ 1

π

∫
d2µ

(1 + |µ|2)2
|µ〉〈µ|a〉′ (89)

Therefore, clearly our aim boils down to calculate the probability
amplitude 〈µ|a〉′.
Let a unitary rotation operator which carries |0〉 to |0〉′ be denoted by R,
s.t.

|0〉′ = R|0〉 (90)

Now, eigenvalues should not change with our change of basis.Hence,

′〈0|Sz′ |0〉′ = 〈0|Sz|0〉
⇒ 〈0|R†Sz′R|0〉 = 〈0|Sz|0〉

⇒ R†Sz′R = Sz

Hence,

Sz′ = RSzR
† & (S+)′ = RS+R

† (91)

Using above relations:

|a〉′ = R|a〉 (92)
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So,the rotation operator transforms |a〉 to |a〉′. Hence, we need to
calculate

〈µ|a〉′ = 〈µ|R|a〉′ (93)

From Euler’s Theorem,

R = exp(−iαSz) exp(−iβSy) exp(−iγSz) (94)

where, α, β, γ are Euler’s angles describing the rotation.
Now, expressing 〈µ|, |a〉 in terms of 〈p|, |p′〉

〈µ|R|a〉 = (1 + |µ|2)−s(1 + |a|2)−s
2s∑

p,p′=0

√
(2s)!

p!(2s− p)!

√
(2s)!

p′!(2s− p′)!
µ∗pap

′〈p|R|p′〉

⇒ 〈µ|R|a〉 = (1 + |µ|2)−s(1 + |a|2)−s
2s∑

p,p′=0

√
(2s)!

p!(2s− p)!

√
(2s)!

p′!(2s− p′)!

µ∗pap
′〈p| exp(−iαSz) exp(−iβSy) exp(−iγSz)|p′〉

(95)

⇒ 〈µ|R|a〉 = (1 + |µ|2)−s(1 + |a|2)−s
2s∑

p,p′=0

√
(2s)!

p!(2s− p)!

√
(2s)!

p′!(2s− p′)!

µ∗pap
′
exp{−iα(s− p)} exp{−iγ(s− p′)}〈p| exp(−iβSy)|p′〉

(96)

where, we have used Sz|p〉 = (s− p)|p〉 ≡ (s− p)|s, s− p〉 which follows
from (56).

⇒ 〈µ|R|a〉 = (1 + |µ|2)−s(1 + |a|2)−s
2s∑

p,p′=0

√
(2s)!

p!(2s− p)!

√
(2s)!

p′!(2s− p′)!

µ∗pap
′
exp{−iα(s− p)} exp{−iγ(s− p′)}∑

t

(−1)t
√

(2s− p)!p!(2s− p′)!p′!
(2s− p− t)!(p′ − t)!t!(t+ p− p′)!

cos2s+p
′−p−2t(β/2) sin2t+p−p′(β/2)

(97)

27



Now, let’s evaluate the same thing i.e. 〈µ|R|a〉 in the new (θ, φ)basis
which is 〈θ, φ|R|θ′, φ′〉. To do this we have to use the pre-defined transfor-
mation :

µ ≡ exp(iφ) tan(θ/2), a ≡ exp(iφ′) tan(θ′/2) (98)

Then after doing the calculation we get

〈θ, φ|R|θ′, φ′〉 = (cos(β/2) cos(θ/2) cos(θ′/2))2s exp{−i(α+ γ)}
2s∑

p,p′=0

∑
t

(2s)!

(2s− p− t)!(p′ − t)!t!(t+ p− p′)!

tan2t+p−p′(β/2) tanp(θ/2) tanp
′
(θ′/2) exp{−ip()φ− α}

exp{ip′(φ′ + γ)}
(99)

After performing a bit long calculation we get finally

〈θ, φ|R|θ′, φ′〉 = exp(−iαs) exp(−iγs)(cosβ/2 cos θ/2 cos θ′/2)2s

[1 + tan θ/2 exp{−i(φ− α)} tan θ′/2 exp{i(φ′ − γ)} − tan θ′/2

exp{i(φ′ + γ)} tanβ/2 + tan θ/2 exp{−i(φ− α)} tanβ/22]2s

(100)

So, (97) & (100) are same thing in two different basis.
See if we put R as identity operator and equate Euler angles to zero(α =
β = γ = 0) then we get,

〈θ, φ|θ′, φ′〉 = [cos θ/2 cos θ′/2 + sin θ/2 sin θ′/2 exp{i(φ′ − φ)}]2s (101)

which is in agreement with our expectation.

3.6 Some Applications

(a) Partition Function for a Single Spin in a Magnetic Field:

With a suitable choice of the zero of the energy, we can write the par-
tition function in the form
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Z = Tr{exp(−Ah)} ≡
2s∑
p=0

exp(−ph) =
(exp (−h))2s+1 − 1

exp (−h)− 1
(102)

where, h ≡ γmH/kBT , γm is particle’s magnetic moment, H is the
magnetic field.

Now, it can be written as

Z = (2s+ 1)

∫
dΩ

4π
[
1

2
(1 + e−h) +

1

2
(1− e−h) cos θ]2s

= (2s+ 1)

∫
dΩ

4π
〈Ω| exp(−βH)|Ω〉

Now, mean value of 〈A〉 = −Z−1 ∂Z∂H , then after performing this calcu-
lation we find

〈A〉 =
2s(2s+ 1)

Z

∫
dΩ

4π
(

sin2(θ/2)e−h

cos2(θ/2) + sin2(θ/2)e−h
)[

1

2
(1 + e−h) +

1

2
(1− e−h) cos θ]2s

= (2s+ 1)

∫
dΩ

4π
〈p(Ω)〉〈Ω|ρ̂|Ω〉

where, ρ̂ ≡ exp(−βH)/Z is the density matrix and p(Ω) = ( 2s sin2(θ/2)e−h

cos2(θ/2)+sin2(θ/2)e−h
)

Now, see in the limit ~→ 0 we get

〈A〉 =
2s(2s+ 1)

Z

∫
dΩ

4π
sin2(θ/2) = ... = s (103)

and, in the limit ~〉〉1 we get 〈A〉 → e−h.

(b) Ferromagnetic Spin Waves:

The ground state |0〉 of the ferromagnetic has pi = 0 for all spins i
(i = 1, 2, ..., N).In the {|µ〉} representation

|0〉 =

∫
dM(µ)|µ〉〈µ|0〉 (104)
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where |µ〉 is shorthand for |µ1, µ2, ..., µN and
∫
dM(µ) for the expression

(
2s+ 1

π
)N

N∏
i=1

∫
d2µi(1 + |µi|2)−2 (105)

The wavefunction of the ground state in the {|µ〉} representation is

〈0|µ〉 ≡ φ0(µ) =
∏
i

(1 + |µi|2)−s (106)

In the p representation a state containing a single spin wave of wave-
vector |k〉 is given by

|k〉 = N−
1
2

∑
i

exp(i~k. ~Ri)|0, 0, ..., pi = 1, 0, 0..〉 (107)

Hence, in the µ space we have

|k〉 =

∫
dM(µ)|µ〉〈µ|k〉

=
√

2s

∫
dM(µ)|µ〉{N−(1/2)

∑
i

exp(i~k. ~Ri)µ
∗
i }〈µ|0〉

So, the amplitude of the spin-wave state in µ space is

φk(µ) = (2s)(1/2)N (−1/2) exp(i~k. ~Ri)µ
∗
iφ0(µ) ≡ µ∗kφ0(µ) (108)

(c) Two Spin 1/2 Particles Interacting via the Heisenberg Hamil-
tonian

Hamiltonian:

H = −2JS1.S2 (109)

It can be shown that the diagonal elements of the density operator ρ ≡
exp(−βH)/Tr(exp(−βH)) [where β = 1

kBT
] are
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〈µ1µ2|ρ|µ1µ2〉 =
1

3e2βJ + 1

1

1 + |µ1|2
1

1 + |µ2|2

{e2βJ(1 +
1

2
|µ1 + µ2|2 + |µ1µ2|2) +

1

2
|µ1 − µ2|2}

(110)

After doing some manipulation, we end up with

⇒ 〈µ1µ2|ρ|µ1µ2〉 =
1

3 + e−2βJ
(1− (1− e−2βJ)|µ1 − µ2|2

2(1 + |µ1|2)(1 + |µ2|2)
) (111)

In terms of the angular variables(θ, φ) it turns out to be

〈Ω1Ω2|ρ|Ω1Ω2〉 =
1

4
(1 +

1− e−2βJ

3 + e−2βJ
r̂1.r̂2) (112)

These show:

(i) For β J 〉0, i.e., ferromagnetic coupling, the spins are correlated and
tend to align parallel(i.e. with r̂1.r̂2 > 0)

(ii) For β J 〈0, i.e., anti-ferromagnetic coupling, the spins are tend to
align anti-parallel(i.e. with r̂1.r̂2 < 0)

(iii) The density matrix is invariant under rotations.

Although we have shown here some simple problems but this view point
may be more useful for some non-trivial problems.

4 Semi-Classical Quantization of Integrable Sys-
tems

Though CM as well as QM are well explored but the intermediate state of
these two fields are still not clearly understood. The Semi-classical quanti-
zation mainly deals with the connection between the classical and quantum
mechanical equations of motion. Our aim of this section will be as follows:

• We will review the Canonical Transformation,Hamilton-Jacobi formal-
ism of CM and then see the similarity with Schroedinger Wave Equa-
tion.
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• WKB approximation for 1D quantum problems and the generalization
to the higher dimensions.

• Torus Quantization

• Speciality of the closed periodic orbits in quantization.

Let’s start with a short review on the basics.

4.1 Canonical Transformation(CT)

• A canonical transformation is one which preserves the the Poisson
bracket of any two functions defined over the phase space i.e.

{f, g}(q,p) = {f, g}(Q,P ) (113)

The consequence of this definition of the canonical transformation
turns out to be the condition as

MJMT = J (114)

where, M is the matrix of the general transformation on phase space
and J is the Symplectic matrix.

• In a canonical theory, one may take any two of the variables from
(q,p,Q,P) as the independent ones. F2(q, P ) is one of the generating
functions of the CT with the choice of (q,P) as the independent ones.
This satisfies

∂F2

∂q
= p(q, P ) &

∂F2

∂P
= Q(q, P ) (115)

This F2(q, P ) is related to another generating function F1(q,Q) of the
CT through the following Legendre Transformation

F1(q,Q) = F2(q, P )− PQ (116)

and, It generates through the following equations:

∂F1

∂q
= p(q,Q) &

∂F1

∂Q
= −P (q,Q) (117)
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• In the extended phase space(EPS) (p, q, t)

(pdq −Hdt)− (PdQ−H ′dt) (118)

is a total differential in the EPS for any CT (p, q)→ (P,Q). Hence,
for an arbitrary closed contour C in the phase space(for an autonomous
system) ∮

(pdq − PdQ) =

∮
(pdq +QdP ) = 0 (119)

• According to Miller, the significance of the generating functions can
be explored easily if we consider the classical limit of QM using Dirac’s
transformation theory. We know,

〈q|p〉 =
1

2π~
exp(ipq/~)

〈Q|P 〉 =
1

2π~
exp(iPQ/~)

Let, the form of the wave functions in the mixed representation are

〈q|Q〉 = A1(q,Q) exp(if1(q,Q)/~)

〈q|P 〉 = A2(q, P ) exp(if2(q, P )/~)

with real amplitude and phase.

Our aim is to find the semi-classical limit of the above wave-functions
as ~→ 0. Using completeness relation

δ(P − P ′) =

∫ +∞

−∞
dq〈P |q〉〈q|P ′〉

=

∫ +∞

−∞
dqA2(q, P )A′2(q, P

′) exp{i[f ′2(q, P ′)− f2(q, P )]/~}

In the limit ~ → 0, the exponent varies rapidly, and the dominant con-
tribution to the integral comes only from P ′ in the nbd of P.Now,
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f ′2(q, P
′)− f2(q, P ) ' ∂f2(q, P )

∂P
(P ′ − P ) ≡ ω(q, P )(P ′ − P )

Putting this in the previous expression we get,

|A2(q, P )| = 1√
2π~
|∂

2f2(q, P )

∂P∂q
|1/2 (120)

Now, consider 〈q|Q〉:

〈q|Q〉 =

∮ ∞
−∞

dP 〈q|P 〉〈P |Q〉

=
1√
2π~

∮ ∞
−∞

dPA2(q, P ) exp{i[f2(q, P )− PQ]/~}

In the limit ~→ 0 if we use saddle point approximation then,

[
∂f2(q, P )

∂P
]P=P̃ = Q (121)

where, P̃ is the saddle point.
clearly if we see (115) then clearly at the saddle point the function
f2(q, P ) appearing in the quantum wave function obeys the same
partial differential equation as the classical generator F2(q, P ). This
equivalence can be proved for the variable q also. Therefore,we may iden-
tify f2(q, P ) with the generator F2(q, P ) in the limit ~→ 0 and write
(120) as

|A2(q, P )| = 1√
2π~
|∂

2F2(q, P )

∂P∂q
|1/2 (122)

So, we get the stetement of the Correspondence Principle as

〈q|P 〉 =
1√
2π~
|∂

2f2(q, P )

∂P∂q
|1/2 exp(if2(q, P )/~) (123)

Classicallimit ⇓ ~→ 0 (124)

〈q|P 〉 =
1√
2π~
|∂

2F2(q, P )

∂P∂q
|1/2 exp(iF2(q, P )/~) (125)
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4.2 Hamilton-Jacobi Formalism & the Classical Limit

In spite of the remarkable difference between the classical & quantum phi-
losophy, Hamilton-Jacobi formalism of classical mechanics can give us a
possible connection between classical mechanical equations of motion and
that of QM. Also, we will see WKB approximation in QM is basically a
semi-classical approximation which matches with H-J equations.

• Time-dependent HJ Equation: We ask the following question that
could there be some CT which makes the dynamics trivial, namely is
there any (Q,P ) in terms of which H ′ = 0?
Then Q = constant & P = constant are the equations of motion,
which is of course trivial.
Cosidering the generating function of such kind namely F1(q,Q, t) =
R(q,Q, t) the,

H ′ = H +
∂F1

∂t

⇒ 0 = H +
∂R

∂t

⇒ H(q,
∂R

∂q
) = −∂R

∂t

which is called the Hamilton-Jacobi equation(HJ).Here, R is called the
Hamilton’s Principal Function.

• Time-independent form of the HJ Equations of Motion(EqM):
If the Hamiltonian doesn’t have explicit time dependence then we can
perform the separation of variables through the relation

R(q, t) = S(q, E)− Et (126)

where E is a constant of motion.Then we get the time-independent HJ
EqM as

⇒ H(q,
∂S

∂q
) = E (127)

• Wave Nature of the HJ EqM: The HJ EqM actually describes a
whole family of orbits in the configuration space. For eg. in a two
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dimensional configuration space described by two coordinates (q1, q2),
S(q1, q2, E) = Si is satisfied by a curve on the configuration space(with
E=constant).Trajectory of a particle, starting on an initial point on Si,
is along a ray that is perpendicular to these curves of constant S, since
its direction of motion is determined by q̇ = p/m = (∇qS)/m. In this
sense there is an implicit wave picture in the family of the trajectories
of the particle, with the wave-fronts defined by the the lines of constant
phase S, and the propagating rays describing the particle trajectories
as in geometrical optics.

Figure 2: An ensemble of rays each representing a classical trajectory

4.3 The WKB Method

Our AIM of this section is to see the similarity between the HJ equation
and the Schroedinger Wave Mechanicswhich will lead us to the WKB ap-
proximation. Most importantly we will see how a matching of the wave
function across a turning point introduces an extra phase in it.

Consider Schroedinger equation:

−~2

2m
∇2ψ(~r, t) + V (~r)ψ(~r, t) = i~

∂ψ

∂t
(128)
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Let,

ψ(~r, t) = A(~r, t) exp[iR(~r, t)/~] (129)

with A & R real. Then putting this into the SE and equating the real
& imaginary part we get,

−∂R
∂t

=
(∇R)2

2m
+ V (~r)− ~2

2m

∇2√ρ
√
ρ

(130)

&

∂ρ

∂t
+∇.(ρ∇R

m
) = 0 (131)

In the limit ~→ 0 (WKB Approximation)(130) becomes

−∂R
∂t

=
(∇R)2

2m
+ V (~r) (132)

which is the same as HJ EqM.[Here ρ = A2]

• WKB in One Dimension:

(126)⇒ R(x, t) = S(x,E)− Et. So,

∂R

∂t
= −E

&
∂R

∂x
=
∂S

∂x

Putting these in (132),

E =
1

2m
(
∂S

∂x
)2 + V (x) (133)

S(x, x1, E) = ±
∫ x

x1

√
2m[E − V (x′)]dx′ (134)

and,
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Figure 3: An Arbitrary 1-dimensional Potential

S(x2, x, E) = ±
∫ x2

x

√
2m[E − V (x′)]dx′ (135)

For Time-independent potential the solution of the SE is

ψ(x, t) = ψ(x)e−
−Et
~

= A(x)eiS(x,E)e−
−Et
~

where, A and S are real.
So, ρ = A2(x) ⇒ ∂ρ

∂t = 0

Then (131) ⇒ ρ = constant,K
∂S
∂x

≡ K
p(x) = K√

2m(E−V (x))

Case-I: Solutions in the classically allowed region (x1 6 x 6 x2) are
oscillatory.Solution around the turning point x2 is

ψ(x, t) =
1√
p(x)

[A1e
i
~
∫ x2
x p(x′)dx′ +A2e

− i
~
∫ x2
x p(x′)dx′ ]e−

iEt
~ (136)
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Case-II: To get the solution in the classically forbidden region we
can analytically continue (136) and then we will get for x > x2

ψ(x, t) =
1√
p(x)

C exp[−1

~

∫ x

x2

|p(x′)|dx′]e−
iEt
~ (137)

The solution blows up at the turning point. So, instead of looking
at the turning point we would focus very near to the turning point.
We expand potential around the turning point and keeping only upto
the 1st order term if we put that in SE we get a differential equation
known as Airy DE. This solution is valid only at the vicinity of the
turning point.
we use these solutions to connect with the oscillatory solutions within
the classically allowed region. So we get some matching conditions.
Using those the solution in the interior region becomes:

ψ(x) =
2C√
p(x)

[sin{1

~

∫ x2

x
p(x′)dx′ +

π

4
}] (138)

and, in the classically forbidden region,e.g. in the region x > x2
we get

ψ(x) =
C√
p(x)

exp[
1

~

∫ x2

x
|p(x′)|dx′] (139)

Therefore, a phase factor of π/4 is introduced in the wave func-
tion at the turning point of a smoothly varying potential.

From here after a bit calculation we get the WKB quantization
condition as

∫ x2

x1

p(x′)dx′ = (n+
1

2
)π~ (140)

where, n = 0, 1, 2, ...
If one of the walls is infinite then the relation modifies as

∫ x2

x1

p(x′)dx′ = (n+
3

4
)π~ (141)
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So, an extra π/2 phase is introduced at the step wall.

• WKB for Radial Motion:A Particle Moving in a 2-dimensional
Central Potential V(r) If we take square-well of depth V0 then after
a bit calculation we end up with the quantization condition

∫ r2

r1

˜Ql(r′)dr′ = (nr +
1

2
)π (142)

where,

Ql(r) =

√
2m

~2
[E − V (r)− ~2

2mr2
(l2 − 1

4
)] (143)

is the local radial wave number in the l-th partial wave.
In general, the quantization condition is

Ir ≡
1

2π
Sr ≡

∮
prdr = (nr +

µ

4
)~ (144)

where, µ is called the Maslov index which just counts the number
of classical turning points, where the amplitude of the wave function
diverges.Note thatin this case WKB wave function acquires a factor
±2π(nr + µ/4) over a complete cycle.
In case the particle encounters a hard wall b times, the wave function
goes to zero under Dirichlet boundary condition at every encounter
with the wall, and picks up an extra phase of bπ for b reflections.Hence,
the acquired phase becomes 2π(nr + µ

4 + b
2).On the other hand, under

the Neumann BC,there is no change in the phase of the wave at the
wall,and b = 0.Thus,the quantization condition (144) gets modified to

Ir ≡
1

2π
Sr ≡

∮
prdr = (nr +

µ

4
+
b

2
)~ (145)

4.4 Torus Quantization:From WBK to EBK

We have seen in (134) & (135) that the action and its first deriva-
tive (with respect to coordinates) is double valued function of coordi-
nates with having the same value of the two branches at the turning

40



points.Hence, for the one dimensional case we can draw two branches
of the momentum (px = ∂S(x,E)

∂x ) as a function of the position showing
that they join together at the turning points to form a single closed
curve.This curve is the phase plot having unique value of the momen-
tum at every point on the curve.Here the semi-classical wave function
is

ψ(x,E) =
1√
2π~
|∂

2S(x,E)

∂E∂x
|1/2 exp(iS(x,E)/~) (146)

which is same as (125).
Suppose, S changes by ∆S in one cycle i.e. phase changes by ∆S/~.
Also above wave function shows amplitude is inversely proportional to
the square root of the momentum, which itself changes sign at each
turning point.A change in sign is equivalent to a change in phase π.So,
each turning point gives an additional phase of −π/2. Therefore, the
single-valuedness of the wave function demands

1

~
∆S − 2

π

2
= 2nπ (147)

where, n is an integer.
Now, since ∆S = 2

∫ x2
x1
p(x)dx, hence the condition becomes

∮
pdq = (n+

µ

4
)2π~ (148)

• Transformation to Action-angle variables: We may canonically
transform from the variables {x, p} to {I, φ} where φ is the cyclic
coordinates such that Hamiltonian is just function of I only. This is
done by defining for a given energy E by∮

Idφ = 2πI =

∮
pdx (149)

Then the quantization condition becomes

I(En) = (n+
µ

4
)~ (150)

where, n = 0, 1, 2, ....
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• For an integrable system with N DOF, there are N constants of motion
Ai(i = 1, 2, ..., N) .Hence, the trajectory in the phase space is confined
to a N-dimensional manifold. According to Poincare-Hopf theorem if
in an N-dimensional manifold one can construct N-independent (and
commuting) vector fields, then the manifold has a structure of an N-
torus. In an N-torus, there are N-topologically independent closed
curves, with N independent branches of the action S. the most con-
venient choice of the basis is N-closed curves, each wound around the
angle variable φj .An arbitrary closed curve in this topology may be
expressed as a linear combination of these N windings in this basis.
Single valuedness of the wave function demands that we get N-independent
quantization conditions just like (150).

4.5 Connection to Classical Periodic Orbits

The study says that there is a closed connection between the semi-
classical quantization and the periodic orbits of the classical system.For
integrable systems Berry and Tabor have shown that it is always pos-
sible to derive a ”trace-formula” for the level density whose oscillating
part is expressed in terms of the classical periodic orbits.After a long
mathematical calculation we get an important conclusion that in the
saddle point approximation, only those orbits on the torus
with commensurate frequencies i.e. closed periodic orbits
contribute to the density of states. This establishes the connec-
tion between the oscillating part of the trace formula and the classical
orbits.
When the frequencies are not commensurate, the orbits do not close al-
though the motion is still confined to the torus.Such orbits are termed
as multiply periodic.
A periodic orbit is specified by (M1,M2); it closes after M1 turns
around the angle φ1 and M2 turns around φ2.The topology is thus
determined by the indices ~M . This is why the sum over (M!,M2) is
called a ”topological sum”.
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5 Propagator, Path Integral and Partition Func-
tion

As we know Feynman’s Path Integral approach is an another way of
looking quantum mechanics which is based on the fundamental idea
that a probability amplitude is associated with every possible path
joining initial & final positions, and all the path contributes to the net
probability amplitudes unlike classical mechanics. Also all the paths
contribute equally in magnitudes but with different phase.
Now the propagator(transition amplitude) between two states comes
out to be

K(qi, qf ;T = tf − ti) ≡ 〈qf |U(tf , ti)|qi〉 =

∫ qf

qi

d[p]d[q]eiSH [p,q]

(151)
where,

SH [p, q] =

∫ tf

ti

dt[p(t) ˙q(t)−H(p(t), q(t)] (152)

and(we have used ~ = 1),

d[p] ≡
N−1∏
n=0

dpn
2π

& d[q] ≡
N−1∏
n=0

dqn (153)

• Partition Function: In statistical mechanics, at a temperature T,
all the information is stored within the partition function Z.

Z[β] = tr(e−βH)

=

∫
dq〈q|(e−βH)|q〉

=

∫
dq〈q|(e

−iH
~

~β
i )|q〉

=

∫
dqiK(i, i;−iβ~)
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Therefore, the partition function is the integration over the initial state
of the propagator that goes around a loop for a ’time’ t = iβ~.
So, in terms of the path integral formalism, we can find the parti-
tion function by inserting N resolution of unity

∫
|p〉〈p|q〉〈q|dqdp2π~ in

e−β~.After doing the path integral calculation we get,

Z[β] =

∫
d[q]d[p]exp{−

∫ β

0
(
i

~
pq̇ +H(p.q))dτ} (154)

where, q̇ = limN→∞(
qj+1−qj
β/N ) is a ’temperature derivative’, and q(0) =

q(β), a loop in the q space for a ’time’ β

6 Conclusion

We have seen these coherent states are very useful, not only to explore
the physics of the semi-classical quantization but it also has many
other applications. Also, the path integral approach which we have
followed partially but we can derive all the properties of the spin-
coherent states following this method. This path integral quantization
has many more significant contribution to quantum field theory.
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