INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK

Einführung in die Flavourphysik SoSe 2016

Karlsruhe Institute of Technology

Prof. Dr. U. Nierste Dr. S. Schacht

Übungsblatt 3 Besprechung: Di, 03.05.2016

Problem 1: Meson-antimeson mixing

The M^0 - \bar{M}^0 mixing amplitude M_{12} , where $M=K,B_d$ or B_s , can be written as

$$M_{12} = A_M \sum_{i,j=u,c,t} \lambda_i^M \lambda_j^M \tilde{S}(x_i, x_j)$$
(1)

if one neglects QCD corrections. Here $x_i = m_i^2/M_W^2$ and $\tilde{S}(x_i, x_j) = \tilde{S}(x_j, x_i)$ is obtained from the box diagram:

For $M = K, B_d, B_s$ one has:

	M = K	$M = B_d$	$M = B_s$
$A_M [{ m GeV}]$	$(6.2 \pm 0.8) \cdot 10^{-11}$	$(1.3 \pm 0.4) \cdot 10^{-9}$	$(2.0 \pm 0.6) \cdot 10^{-9}$
λ_i^M	$V_{is}V_{id}^{st}$	$V_{ib}V_{id}^{st}$	$V_{ib}V_{is}^{st}$

The uncertainties stem from poorly known hadronic quantities.

a) Use CKM unitarity to eliminate λ_u^M in favour of λ_c^M and λ_t^M to write

$$M_{12} = A_M[(\lambda_t^M)^2 S(x_t) + 2\lambda_c^M \lambda_t^M S(x_c, x_t) + (\lambda_c^M)^2 S(x_c)]$$
 (2)

and find the relation between S in (2) and \tilde{S} in (1), setting $x_u = 0$. Verify the GIM mechanism: Which function vanishes for (i) $x_c = x_t$ and (ii) $x_c = 0$?

- b) With $S(x_c) = 2.6 \cdot 10^{-4}$, $S(x_c, x_t) = 2.3 \cdot 10^{-3}$ and $S(x_t) = 2.3$ compute the three terms in (2) and assess the relevance of the second and third term for the three meson systems. Mixing-induced CP asymmetries determine $\sin(2 \arg M_{12})$ (assuming the standard CKM phase convention). How big is the relative deviation of $\arg M_{12}(B_d)$ from $2\beta \simeq 46^\circ$ and of $\arg M_{12}(B_s)$ from $-2\beta_s \simeq -2.2^\circ$?
- c) The mass difference between the mass eigenstates is given by $\Delta m = 2|M_{12}|$. Compute Δm from the formula above and assess the relevance of neglected QCD effects by comparing your results with the experimental numbers

$$\Delta m_K = (3.483 \pm 0.006) \cdot 10^{-15} \,\text{GeV} ,$$

$$\Delta m_{B_d} = (3.34 \pm 0.03) \cdot 10^{-13} \,\text{GeV} ,$$

$$\Delta m_{B_s} = (1.170 \pm 0.008) \cdot 10^{-11} \,\text{GeV} .$$

d) The CP-violating quantity $|\varepsilon_K|$ in K^0 - \bar{K}^0 mixing,

$$|\varepsilon_K| \approx \frac{1}{2\sqrt{2}} \arg M_{12},$$

has been measured as $|\varepsilon_K| = (2.28 \pm 0.02) \cdot 10^{-3}$. Express the λ_c^K and λ_t^K in terms of Wolfenstein parameters (to leading non-vanishing order in λ) and determine the constraint on $(\bar{\rho}, \bar{\eta})$ found from $|\varepsilon_K|$.