Institut für Theoretische Teilchenphysik Einführung in die Flavorphysik SoSe 2016

Karlsruhe Institute of Technology

Prof. Dr. U. Nierste Dr. S. Schacht Übungsblatt 2 Besprechung: Di, 26.04.2016

Aufgabe 1 (10 Punkte):

a) (2 Punkte) Starting from the standard convention for the CKM matrix find a new phase convention in which 5 CKM elements are exactly real and positive. Keep V_{ud} , V_{us} , V_{cb} , V_{tb} as they are and choose one of the remaining elements to be real. For which CKM elements is this possible?

b) (2 Punkte) In the Wolfenstein approximation one has $V_{ub} = |V_{ub}| \exp(-i\gamma)$ and $V_{td} = |V_{td}| \exp(-i\beta)$, while all other CKM elements are real. Rephase V_{ij} (Eq. (14) of the lecture) in order to express V such that the only non-zero phases are

i)
$$\alpha$$
 and β
ii) α and γ .

c) (3 Punkte) Show explicitly that the three angles α , β and γ of the unitarity triangle (defined in Eq. (21) of the lecture) are independent of the phase convention of V.

d) (3 Punkte) Two sides of the unitarity triangle are

$$R_u = \sqrt{\bar{\rho}^2 + \bar{\eta}^2}, \qquad \qquad R_t = \sqrt{(1 - \bar{\rho})^2 + \bar{\eta}^2},$$

and the angles γ and β are given by

$$\gamma = \arctan \frac{\bar{\eta}}{\bar{\rho}}, \qquad \qquad \beta = \arctan \frac{\bar{\eta}}{1-\bar{\rho}}.$$

Express

- R_t and β in terms of R_u and γ ,
- R_u and R_t in terms of β and γ ,
- α , β and γ in terms of R_u and R_t .

Hint: This can be either solved with secondary school geometry or with Eq. (27) of the lecture.

Aufgabe 2 (10 Punkte): Jarlskog invariant For $i \neq k$ and $j \neq l$ consider

$$J = \sigma_{ik}\sigma_{jl} \operatorname{Im} \left[V_{ij}V_{il}^*V_{kl}V_{kj}^* \right] \quad \text{with} \quad \sigma_{ik} = \sum_{m=1}^3 \epsilon_{ikm} \,.$$

- a) (3 Punkte) Show that J is independent of the phase convention of V.
- **b)** (3 Punkte) Show that J is independent of i, k, j, l.
- c) (4 Punkte) Express J in terms of the (improved) Wolfenstein parameters A, λ , $\bar{\rho}$ and $\bar{\eta}$.