\[\langle \mathcal{H} | \mathcal{H} | \mathcal{N} \rangle \]

where the expression for the matrix element is given by:

\[M = -\frac{\pi}{2} \sqrt{r^2 + 1} \]

Pictorially:

\[\begin{array}{c}
\text{Deep inelastic scattering} \\
\text{for } \pi^0 \rightarrow \gamma \gamma \text{ after the interaction}
\end{array} \]
Since \(P = 0 \),

\[
L = \nabla B + P \nabla \cdot \mathbf{M} = 8 \rho (P - \rho)
\]

\[
L = \nabla (P - \rho) + 2 \nabla (\rho - \rho) + 2 (\rho - \rho) - 9 \nabla \cdot \mathbf{M}
\]

\[
L = -9 \nabla \cdot \mathbf{M} + P \nabla \cdot \mathbf{M}
\]

Next, we need to parametrize the hadronic tensor.

\[
W = \frac{1}{2} \delta_{ab} W_{ab}
\]

\[
\rho_0 = \frac{1}{2} \delta_{ab} \frac{\delta_{ab} W_{ab}}{W} = \frac{1}{2} \delta_{ab} \frac{\delta_{ab} W_{ab}}{W}
\]

We introduce

\[
\langle N| \langle 0 | T | (x) \rangle | N > \rangle_{x \rho} \equiv \int_{x \rho} \frac{d^4 \mathbf{p}}{2 \pi^3} \frac{1}{W} \nabla \cdot \mathbf{M}
\]

\[
\sim \int_{x \rho} \frac{d^4 \mathbf{p}}{2 \pi^3} \frac{1}{W} \nabla \cdot \mathbf{M}
\]

\[
\sim \int_{x \rho} \frac{d^4 \mathbf{p}}{2 \pi^3} \frac{1}{W} \nabla \cdot \mathbf{M}
\]

We can now write:
\[
\left\{ \begin{array}{l}
\frac{M(\theta d)(R-1)}{P} + h \frac{P}{h} \quad \frac{d\phi}{d\rho} = \frac{xp_2d\rho}{\rho}
\end{array} \right.
\]

Converting from

we can write the cross-section in the

\[
\frac{\phi}{\rho} = \frac{\phi}{\rho} \quad \frac{x}{h} = \frac{x}{h}
\]

Thus,

\[
\begin{aligned}
\left(M(\theta R) \frac{Z}{x^2} + N_2 \phi \right) \frac{d\phi}{d\rho} \frac{\rho}{r} &= \frac{x\phi}{r} \\
\frac{s}{h} &= \frac{h}{r} \quad \frac{d\phi}{d\rho} \frac{\rho}{r} = x
\end{aligned}
\]

are

Conventional

For DIS case

\[
\left(M(\frac{s}{h} - I) \frac{Z}{x^2} + N_2 \phi \right) \frac{d\phi}{d\rho} \frac{\rho}{r} = \frac{x\phi}{r}
\]

After the step we find:

\[
(3s^2 + \phi)^s = (s^3 - \frac{2}{3}s) (s^3 - \frac{2}{3}s) = b
\]

Write:

\[
\frac{d\phi}{d\rho} \frac{\rho}{r} = b
\]

1. In addition:

\[
\frac{d\phi}{d\rho} \frac{\rho}{r} = b
\]

Now, we can integrate over \(y \). To this end:

\[
\left[M(\frac{s}{h} - I) \frac{Z}{x^2} + N_2 \phi \right] \frac{d\phi}{d\rho} \frac{\rho}{r} = b
\]

For the total cross-section, we find:

\[
\left(\frac{s}{h} - I \right) \frac{Z}{s} = d(b - b) \frac{P_2}{dP_2} = \frac{P_2}{dP_2} = \frac{1}{2} b
\]

If \(P_2 \), then the products can be expanded in four -
By normal nuclear currents, when interaction with the photon is facilitated, we obtain that particles are split from the nucleus.

\[
\int_0^\infty \int_0^1 (x^2 + y^2 + z^2)^{\frac{3}{2}} \, dx \, dy \, dz = \int_0^\infty \frac{d^3p}{p^3} \left(\frac{1}{\sqrt{2}} \right)^3 f \left(\frac{3}{p} \right)^2 \left(x + 1 + \frac{2}{2} + x \right)^{\frac{3}{2}} \, dp
\]

Since we are dealing with interaction in the particle model, so in the particle model, the function \(f \) is given by \(f(x) = \frac{1}{x^2 + 1} \), where \(f \) is a function. The probability of finding the momentum \(p \) is given by the momentum conservation that carry momentum in the system of reaction can appear one proton or one neutron. The reaction is written as

Let us calculate \(F_1 \) and \(F_2 \) in the reaction. More functions, in general, depend on the number of protons and neutrons forming the nucleus. The reaction is of deep nuclear scattering. The result is often interpreted as \(W_1, W_2 \) are two other functions. The functions \(F_1, F_2 \) are used.
\[
\frac{16 \cdot S \cdot \psi}{\eta u \times \frac{2}{\gamma}^2 r} \times \frac{z_{\psi}^2}{\eta^2 u^2 r^2} = \frac{\alpha p \cdot dp}{\eta^2 r^2}
\]
\[
\left(\frac{\pi}{2} - \frac{x}{3} \right) s \times \left[2 \left(M(R-l) \right)^2 \left(\frac{5}{z} \right) \left(\frac{3}{z} \right) + \frac{1}{z} \right] \left(\frac{2}{\pi} \right) \left(\frac{y}{s} \right) = \frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

We write again hadronic

\[
\frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

Next: the quantity \(S \) is real in perturbation theory.

\[
\left(s_{s-p} \right) \left[\left(\frac{s}{b} \right)^2 \left(\frac{-1}{2} s \right) + \frac{1}{2} \left(\frac{z}{b} \right)^2 \right] = \frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

We write the above expression in hadronic

\[
\frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

Let \(g \) and \(l \) be equal, then

\[
\left[\left(\frac{s}{b} \right)^2 \left(\frac{-1}{2} s \right) + \frac{1}{2} \left(\frac{z}{b} \right)^2 \right] = \frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

Therefore, calculation. Here we keep track

The two functions are identical to what

\[
\left[\left(\frac{s}{b} \right)^2 \left(\frac{-1}{2} s \right) + \frac{1}{2} \left(\frac{z}{b} \right)^2 \right] = \frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

To conclude, let \(H \) and \(\varphi \) be equal, to

\[
\frac{2}{\pi} \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

Given that \(p = b \),

\[
\varphi = \left(\frac{2}{\pi} \right) \left(\frac{x}{2} \right) \varphi = \frac{x}{\varphi}
\]

Now, let \(g \) and \(\varphi \) be equal, to
The partition model differs from others.

We will now try to understand how

point-like constituent particles (e.g., quarks et al.)

This observation provides that part of the

in deep inelastic scattering experiments (see)

for the model. Thus, we use the expression

For x and F, we independend on Q^2 in the

The above result shows that the structure function†

\[F_1 \times x = F_2 \]

\[F_2 \cdot x = F_2 \]

\[F_1 \cdot x = F_1 \]

\[\begin{align*}
F_1 & = \frac{1}{2} F_2 \\
F_2 & = \frac{1}{2} F_1 \\
F_2 & = \frac{1}{2} F_1
\end{align*} \]

Hence we find:

\[\left[\frac{\alpha M \cdot (B-1)}{\beta} \right] \left[\frac{\alpha M \cdot (B-1)}{\beta} \right] \]

\[\begin{align*}
\frac{\alpha M \cdot (B-1)}{\beta} & \geq \frac{\alpha M \cdot (B-1)}{\beta} \\
\frac{\alpha M \cdot (B-1)}{\beta} & \geq \frac{\alpha M \cdot (B-1)}{\beta}
\end{align*} \]

\[\begin{align*}
\int_0^1 \rho \, d\rho & = \frac{\alpha M \cdot (B-1)}{\beta} \\
\int_0^1 \rho \, d\rho & = \frac{\alpha M \cdot (B-1)}{\beta}
\end{align*} \]

Now, the hadronic cross-section

\[(x-\bar{y}) \left[\frac{\alpha M \cdot (B-1)}{\beta} \right] \frac{\alpha M \cdot (B-1)}{\beta} \frac{\alpha M \cdot (B-1)}{\beta} \]

\[\begin{align*}
\frac{\alpha M \cdot (B-1)}{\beta} & \geq \frac{\alpha M \cdot (B-1)}{\beta} \\
\frac{\alpha M \cdot (B-1)}{\beta} & \geq \frac{\alpha M \cdot (B-1)}{\beta}
\end{align*} \]

\[\begin{align*}
\int_0^1 \rho \, d\rho & = \frac{\alpha M \cdot (B-1)}{\beta} \\
\int_0^1 \rho \, d\rho & = \frac{\alpha M \cdot (B-1)}{\beta}
\end{align*} \]
\[y = x \cdot \sqrt{\frac{x}{2}} \]

where \(p = 0 \), \(q = 0 \), and \(r = 0 \).

To this end, observe \(1 = a + p \) and \(2 = a + p + q \) which implies \(0 \leq x \leq 2 \) for all \(x \in [0, 2] \).

We are interested in the solution \(x \in [0, 2] \) and \(y \geq 0 \) to

\[\frac{dy}{dx} = x \]

Given the integral properties, we have

\[\int_{0}^{2} \sqrt{\frac{x}{2}} \, dx = x \]

Taking the imaginary part of the given wave,

\[W = \text{Im}(F) \]

From the summation point of view, we have

\[\int_{0}^{2} \sqrt{\frac{x}{2}} \, dx = \frac{x^2}{2} \]

To connect this to Green's function's consideration,

\[W = \int_{0}^{2} \sqrt{\frac{x}{2}} \, dx \]

Considering the wavefunction

\[W = \int_{0}^{2} \sqrt{\frac{x}{2}} \, dx \]

To understand this, we will need to

To understand this, we will need to consider...
For example, an operator \mathcal{D} can be described differently from the other way. The two indices are g to s.

Let us write, symbolically, the case of 2 nodes of this orientation. The important curly braces:

\[
\mathcal{D} = \{ y \mid f(x) \}
\]

Let us write, symbolically, the case of 2 nodes of this orientation. The important curly braces:

\[
\mathcal{D} = \{ y \mid f(x) \}
\]

Now, approximate $y = 0$. Then,

\[
y \approx y_0, \quad \text{for large } y
\]

The right hand side of the curve. Hence, in the DIS

contribution to the final result comes from

\[
y^2 \approx 2ab + \frac{b^2}{\gamma^2} \to \frac{y}{\gamma} \to 0, \quad \text{for large } y
\]

not restricted. On the other hand, since

\[
y \approx \frac{b}{\gamma^2} \implies \frac{y}{\gamma} \to 0
\]

we find $y_1 \approx 0$, $y_2 \approx \frac{b}{\gamma^2}$, and since the contribution to the integral

\[
y \approx b + \frac{b^2}{\gamma^2} \implies \frac{y}{\gamma} \to 0
\]
\[
\left(z^2 \right)^2 \beta \frac{\partial}{\partial z} \frac{1}{e} \left(\frac{1}{z^2 e^z} \right) = \beta \frac{1}{z^2 e^z} \frac{\partial}{\partial z} \frac{1}{e} \left(\frac{1}{z^2 e^z} \right)
\]

At the next step, we need to make a note on:

\[
\left(\sum_{n=0}^{\infty} \frac{1}{n!} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial}{\partial z} \right)
\]

We obtain

\[
\phi_n \rightarrow \infty \text{; therefore, this can be dropped.}
\]

Text with \(q \) read to \(\frac{1}{z} \)

where the largest operator becomes the dominant one.

The result is a rank-\(f \) tensor that

\[
\left(N \right) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\partial}{\partial z} \right)
\]

We see now take the matrix elements as \(\langle N | \left(0 \right) T(0) \rangle \).
\[
\frac{\delta}{\delta i} \left(\frac{1}{2} \right) = \int_{0}^{\infty} \frac{1}{2} e^{\frac{-b}{2e}} e^{\frac{-3b}{2e}} = \int_{0}^{\infty} \frac{1}{2} e^{\frac{-3b}{2e}}
\]

To extract the final function from this we note that \(W \) in the imaginary part of \(T \).

\[
W \quad \text{in the imaginary part of} \quad T.
\]

Hence, we find

\[
(2b)^{2} e^{\frac{1}{2}} \left(\frac{\partial \theta}{\partial e} \right) \left(\frac{\partial \theta}{\partial n} \right) = (2b)^{2} e^{\frac{1}{2}} \left(\frac{\partial \theta}{\partial e} \right) \left(\frac{\partial \theta}{\partial n} \right) = \int_{0}^{\infty} \frac{1}{2} e^{\frac{-3b}{2e}}
\]

Hence, we find

\[
(2b)^{2} e^{\frac{1}{2}} \left(\frac{\partial \theta}{\partial e} \right) \left(\frac{\partial \theta}{\partial n} \right) = (2b)^{2} e^{\frac{1}{2}} \left(\frac{\partial \theta}{\partial e} \right) \left(\frac{\partial \theta}{\partial n} \right) = \int_{0}^{\infty} \frac{1}{2} e^{\frac{-3b}{2e}}
\]
For the OPE, the intuition is different. In case of operators with higher modes appearing in the standard OPE, contributions to the pole will arise from the OPE.

What are the equations that contribute to the next step? We need to understand

$$\int \frac{d^2 q}{(2\pi)^2} \langle \phi | g(x) | O \rangle = \sum \frac{1}{n!} (i\hbar)^n \frac{\partial^n}{\partial q_1 \ldots \partial q_n} \langle \phi | g(0) | O \rangle$$

Comparing with the OPE, we find

$$T(g, \phi)(x) = \int \frac{d^2 q}{(2\pi)^2} \frac{x \cdot q}{i x \cdot q} \frac{1}{e^{-\frac{q^2}{2\Delta}} - 1} \langle \phi | g(0) | O \rangle$$

At expanded in x/ϵ, we find

$$x - \frac{x}{\epsilon}$$

Can conclude $x < 1$. Then we can make contact with the OPE expression,

$$\int \frac{dx}{(\epsilon + \frac{x}{2})^{\frac{d}{2}}} \int = \frac{x}{1-x} \int \frac{dx}{x^\mu} \mu = \frac{1}{x} \int \frac{dx}{x^\mu} \mu$$

When $\mu > 1$, x^μ will be dominant in the expansion. Hence $x = \frac{1}{\epsilon}$, the solution

In the second case: $\mu > \frac{d}{2}$, the solution

Thus $T(g, \phi)(x) = \frac{1}{x}$ in some region.
can do, we focus on the contributions to understand what we could have...

Q. M. P: Then we note that for a non-regular generalization of Q, M, $P,$

\[
T_{0, n} H_{n - 1} \left(\begin{array}{c} n \n - 1 \end{array} \right) \cdot \frac{1}{n - 1} \cdot \frac{\varphi \left(x \right)}{x} \quad \text{for all \(x \neq 0 \)}
\]

In Cd, there are three types of parameters. The reason is that y and x are not differentiable terms with $h = \varphi \left(x \right)$, but as we see from expression for $\varphi \left(x \right)$, many of them are increased with $\varphi \left(x \right)$ (again).

At the beginning, for fixed $\varphi \left(x \right)$ (there), we can see that from the discussion of $\varphi \left(x \right)$ (again)...

To test, the difference between two mass...
The equation for $\int_{-\infty}^{\infty} x e^{-\frac{x^2}{2}} \, dx$ is $\sqrt{\pi}$. However, in this case, we can recast the integral as a convolution:

$$\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = \sqrt{2\pi}.$$

The above calculation can be done assuming

$$\langle N | \psi_0 | N \rangle = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} \, dx = 1.$$
from AC.

major path model equation is devised

\[
(\phi, z) \times 1 - \varepsilon \phi \text{ by} \int
\]

\[
(3) \phi (3z - x) \delta (x, z) \Delta \text{d} \phi
\]

\[
(\omega, x, \phi) = \text{d} \phi \text{d} x
\]

\[
\text{modular transform, hence,}
\]

\[
\text{multiply transform, hence,}
\]

of a convolution as a product of

statement that a modular transform

Then, there is a motion.

```
Let $A$ be a commutator on a Hecke
```

in a unique way. Namely, the