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Abstract: We present integrated subtraction terms and finite remainders for arbitrary processes with massless

partons at hadron and lepton colliders in the context of the nested soft-collinear subtraction scheme. These results

provide the very last ingredients needed to make this scheme a fully local, analytic and process-independent frame-

work for treating infrared singularities at next-to-next-to-leading order in perturbative QCD. The explicit infrared

finiteness of all required contributions, as well as their process-independence, puts these results on par with subtrac-

tion schemes developed for next-to-leading order computations and opens up a clear path towards the automation

of next-to-next-to-leading order computations in QCD.
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1 Introduction

Over the last two decades, the evolving needs of the physics program at the Large Hadron Collider (LHC) have shaped

theoretical studies aimed at improving the understanding of partonic scattering processes. Since the asymptotic

freedom of quantum chromodynamics (QCD) allows the use of perturbation theory for the description of high-energy

interactions, computing higher-order predictions for a wide range of partonic cross sections has become one of the

major undertakings in contemporary theoretical particle physics. Central to this goal is the efficient treatment

of infrared singularities, which arise separately in real-emission and virtual corrections and must cancel among

themselves to give a finite physical result. This is challenging because the real and virtual corrections populate

different phase spaces, and solving this problem relies on so-called subtraction schemes. At next-to-leading order

(NLO) in perturbative QCD, such schemes were developed in a process-independent fashion nearly thirty years

ago [1–4] and have been extensively used for theoretical predictions. However, a similar level of understanding at

next-to-next-to-leading order (NNLO) has not yet been achieved.

Indeed, in spite of the fact that many different subtraction schemes for NNLO calculations are being devel-

oped [5–34], none is as advanced as the NLO methods. What is missing is the explicit demonstration of the

cancellation of infrared divergences and the derivation of finite remainders of the integrated subtraction terms for

arbitrary collider processes. However, it is important to stress that the absence of such general results has not

hindered the impressive progress in NNLO QCD computations. In fact, such calculations for many very important

and complex LHC processes have already been performed (see, e.g., Refs [35–64] for a selection of phenomenolog-

ical papers employing different theoretical methods), which implies that this issue is hardly a practical limitation.

Nevertheless, we believe that understanding the infrared structure of perturbative QCD at NNLO in full generality

is an interesting theoretical problem whose solution may also improve the efficiency of computations at this order

and lead to their automation, as well as provide insight into the connection between fixed-order and all-order (i.e.

resummed or parton shower) approaches.
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In this paper, we solve this problem in the context of the nested soft-collinear (NSC) subtraction scheme [16]

by deriving the finite remainders of the integrated NNLO subtraction terms for arbitrary collider processes with

massless partons. Along the way, we demonstrate analytically the cancellation of all 1/ϵ infrared poles for infrared-

safe observables in a process-independent manner.

Achieving this requires a good understanding of the many singular limits of various scattering amplitudes, as

well as the interplay of these limits, which becomes rather intricate at NNLO. Furthermore, the integrals over the

unresolved parts of phase space of universal quantities arising in these limits, such as eikonal and splitting functions,

have to be calculated. We have studied these issues in detail in Refs [65, 66], focusing on final states of increasing

complexity and preparing a solid foundation for addressing the NNLO subtraction problem in full generality.

Another outstanding obstacle that one has to face when crafting subtraction schemes at NNLO is the bookkeep-

ing. This issue is somewhat unusual, as it originates from the need to keep track of the many partonic channels that

contribute to an arbitrary process. The problem stems from the fact that the cancellation of collinear singularities

involves all partonic channels at once, because collinear emissions by initial-state partons may change the initial

state of a hard partonic process. A different, but somewhat analogous problem also exists for the final-state collinear

splittings, since particular combinations of various limits and various final states are needed to arrive at the physical

splitting functions and collinear anomalous dimensions. Although some aspects of this problem have already been

addressed in Ref. [66], the fully general treatment that we present in this paper goes beyond these results.

The remainder of the paper is organized as follows. In Section 2, we set the stage by summarizing the results

of the earlier papers on the NSC scheme [16, 65–69]. The goal of this section is to make the discussion in the

following sections understandable without the need to consult earlier papers. In Sections 3 and 4, we discuss the

calculation of NLO and NNLO QCD corrections, respectively. In particular, Section 4 contains the final result for

the finite remainders of the integrated subtraction terms for arbitrary process. We conclude in Section 5, where we

also summarize how to use the final results scattered throughout Section 4. Several appendices contain discussions

of some aspects of the problem at a more technical level.

2 Summary of the nested soft-collinear subtraction scheme

Before proceeding with the derivation of the integrated subtraction terms for arbitrary processes at colliders, both

at NLO and at NNLO in QCD, we summarize the aspects of earlier work on the NSC scheme [16, 65–69] that

provide the foundation for the following discussion. Our primary intention is to explain the basic approach of this

method and introduce notation that will be used throughout the paper. With this out of the way, we will be able

to focus on the problems of combinatorics and bookkeeping that will arise when discussing NLO and NNLO QCD

corrections to general processes in Sections 3 and 4.

Consider a process where N jets and a color-singlet X are produced in a hadronic collision.1 The cross section

for this process is written as

dσ =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µF)fb(x2, µF) dσ̂ab(x1, x2, µF, µR;O)

=
∑
a,b

(fa ⊗ fb)⊗ dσ̂ab(x1, x2, µF, µR;O) ,

(2.1)

where fa,b are the parton distribution functions (pdfs), µR and µF are the renormalization and factorization scales,

respectively, and O is an infrared-safe observable. The sum in Eq. (2.1) includes all initial-state partons a and b

that contribute to the production of a particular final state. Throughout the paper, we set µF = µR = µ.

It is conventional to expand partonic cross sections in series in the strong coupling αs,

dσ̂ab = dσ̂LO
ab + dσ̂NLO

ab + dσ̂NNLO
ab + ... , (2.2)

1Throughout the paper, we discuss hadronic collisions, but our results can easily be modified to obtain formulas valid for leptonic or

lepton-hadron collisions. We explain how to do so when we present our final result in Section 4.
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where each subsequent term in the above equation is suppressed by an additional power of αs with respect to dσ̂LO
ab .

The leading-order (LO) term dσ̂LO
ab is defined as

2sab dσ̂
LO
ab =

〈
F ab
LM[ ... ]

〉
= N

∫
dΦ (2π)4δ(4)(pH + pX − pa − pb) |M0(pa, pb; pH, pX)|2 O(pH, pX) , (2.3)

where N is the appropriate symmetry factor, pH and pX denote the momenta of the outgoing partons and the

color-singlet in the hard process, respectively, and dΦ is the phase space for final-state particles. We do not display

the arguments of the function FLM since a convenient way to introduce them will be discussed later. Further details

about the function FLM can be found in Section 2 of Ref. [65].

The well-known problem with constructing the perturbative expansion of the partonic cross section in Eq. (2.2) is

that, at each perturbative order, one must combine contributions of partonic final states with different multiplicities

to achieve results which are insensitive to long-distance physics. These long-distance effects manifest themselves as

infrared divergences that appear in contributions with different numbers of emissions of off-shell (in virtual loops)

and on-shell (i.e. real) partons. These divergences cancel when their combined effect on infrared-safe observables

is evaluated. The goal of many studies performed during the past thirty years aimed at developing subtraction

schemes both at NLO and NNLO [1–33] was to establish a general, process- and observable-independent procedure,

where the cancellation of the divergences is achieved prior to nontrivial integrations over the phase space of hard

partons.

Restricting our discussion to NLO and NNLO in the perturbative expansion, it is fair to say that the origin of

infrared divergences is well understood. They arise from three sources: i) from the integration over loop momenta in

virtual corrections, where their general form is encapsulated by the well-known formulas due to Catani [70], ii) from

the emission of low-energy (soft) gluons, and iii) from the emission of (collinear) partons at small angles relative to

other incoming or outgoing partons. The individual singular limits, both at NLO and at NNLO, have been known

for more than twenty years [71, 72], yet the question of how to combine them into a working subtraction scheme

at NNLO continues to be the subject of active research. This includes our work [65, 66] on the development of the

nested soft-collinear subtraction scheme, introduced in Ref. [16].

Our goal in this section is to provide the reader with a minimal background to understand the following

discussion of NLO and NNLO subtraction-based calculations in this scheme. To this end, we need to explain how

we identify, manipulate, and isolate singular contributions that arise from emissions of soft and collinear partons.

Below we summarize the important steps required to accomplish this in the NSC scheme.

i) As the name of the subtraction scheme suggests, the singular limits of the real-emission contributions are

removed sequentially, starting with the soft ones, and continuing with subtracting the collinear singularities

from the soft-regulated expressions.

ii) To isolate singularities, we define soft and collinear operators that act on functions FLM. We denote them as

Si, Cij , Sij and Cij,k, where the indices identify partons that become soft (in case of Si and Sij) or collinear

to each other (in case of Cij and Cij,k). When these operators act on the product of the matrix element

squared, the observable, and the phase space, they pick up the leading asymptotic behavior of this product

in the respective limit that is non-integrable in four dimensions.2 Hence, if any of these operators acts on a

quantity that does not possess a non-integrable singularity, the result vanishes.

iii) When considering processes with a large number of final-state partons, one needs to account for the fact that

all partons can contribute to singular limits of matrix elements. However, since we work at a particular order

in perturbation theory, we need to ensure that the number of hard partons does not drop below the number of

jets in the LO processes. Hence, the observable O that is contained in FLM vanishes if more than one parton

at NLO, and more than two partons at NNLO, are “lost” to various infrared limits (i.e., become unresolved).

2We use dimensional regularization throughout this paper, working in d = 4− 2ϵ dimensional space-time.
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Figure 1: Illustration of soft and collinear factorizations for real emissions and of virtual contributions. The

unresolved parton m, shown in red, is either soft or collinear. The first pane illustrates the single-soft limit Em → 0,

as defined in Eq. (2.5). The second pane shows the final-state collinear splitting [im]∗ → i(z) + m(1 − z), with

z = 1−Em/E[im], described in Eq. (2.8). The third pane depicts the initial-state collinear splitting a → [am̄]∗ +m,

where z = 1 − Em/Ea, from Eq. (2.9). Finally, the fourth pane represents the virtual contributions described in

point vii).

We need to find a way to divide the final-state partons into those that can become unresolved, causing

singularities, and those that remain resolved and define physical jets. To accomplish this, we introduce

damping factors. They are constructed in such a way that they vanish if a resolved parton becomes soft or

collinear to another resolved parton, and thus the integrand (which includes a damping factor) is not singular.

On the contrary, if a potentially unresolved parton becomes soft, or collinear to any of the resolved partons

or to another unresolved parton, the integrand remains singular.

We will refer to the unresolved partons as m and n, and to the damping factors as ∆(m) if only one parton is

potentially-unresolved, or ∆(mn) if two are unresolved. We can use the symmetry of the matrix elements with

respect to different types of partons (gluons, quarks, antiquarks etc.), to minimize the number of unresolved
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partons that we have to consider. We then write the cross section as a sum over the contributions with different

unresolved partons, i.e.

dσ ∼
∑

m∈{q,q̄,g}

〈
∆(m)F ab

LM[Hf |m]
〉
, or dσ ∼

∑
m,n∈{q,q̄,g}

〈
∆(mn)F ab

LM[Hf |m, n]
〉
, (2.4)

where Hf represents the list of final-state resolved partons. We note that the damping factors are explicitly

constructed in Appendix B of Ref. [65].

iv) At NLO, soft singularities in Eq. (2.4) appear when m = g, while at NNLO, they arise when m = g and/or

n = g, as well as when m = q, n = q̄. In the NNLO case, when both m and n become soft, it is important

to order them in energy, as this makes the approach of the double-soft limit unambiguous. Therefore, when

double-soft singularities are present, we require the energy of the parton n to be smaller than the energy of

the parton m, En < Em, and introduce double- and single-soft operators Smn and Sn. The former extracts the

soft limit Em,n → 0 with the ratio En/Em fixed, while the latter extracts the soft limit En → 0 at fixed Em.

The action of the soft operators on the function FLM can be described by compact formulas. The single-soft

operator acting on ∆(m)FLM[m] returns the phase-space element of the gluonm and an eikonal factor, multiplied

with the FLM function that does not depend on m anymore. Integrating over the soft gluon momentum with

an upper cut-off on the gluon energy Emax, we find〈
Sm∆

(m)F ab
LM[m]

〉
= δmg [αs]

〈
IS(ϵ, Emax) · F ab

LM

〉
. (2.5)

Here, [αs] is defined as

[αs] =
αs(µ)

2π

eϵγE

Γ(1− ϵ)
, (2.6)

and IS is an operator in color space that contains sums over color matrices T i · T j . Its explicit expression

can be found in Eq. (A.38) of Ref. [66]. The relation in Eq. (2.5) is shown schematically in the first pane of

Fig. 1; we will use it extensively throughout this paper. We note that Eq. (2.5) can also be used to describe

single-soft limits in NNLO contributions with the unresolved parton n. In this case, if the energy ordering

En < Em is present, one needs to replace Emax in the expression for IS with Em.

We can write a similar formula for the double-soft limits that appear at NNLO. It reads〈
SmnΘmn∆

(mn)F ab
LM[mn]

〉
∼ [αs]

2
〈
IDS(ϵ, Emax) · F ab

LM

〉
, (2.7)

where the IDS-operator on the right-hand side can be extracted from Ref. [73] for both gg and qq̄ unresolved

partons.

v) Once the soft singularities are removed, one needs to extract the hard-collinear ones. These arise when an

unresolved parton m or a pair of unresolved partons (m, n) becomes collinear to initial-state or hard final-state

partons, or they become collinear to each other.

To ensure that we can focus on a minimal subset of collinear singularities at a time, we partition the phase space

by means of angular functions. We refer to them as ωmi at NLO, and ωmi,nj at NNLO. Their properties and

definitions are reported in Appendix B of Ref. [65]. Here we only mention that Cmj ω
mi = δij , ∀ i, j ∈ {a, b,Hf}.

In the case of the NNLO partitions with i = j, i.e. ωmi,ni, we need to further divide the angular phase space

into sectors in order to fully isolate the collinear divergences. A parametrization of the angular phase space

that achieves this sectoring is given in Refs [12, 13].

vi) At NLO, the hard-collinear divergences are extracted by acting with the operator SmCim ≡ (1 − Sm)Cim on

the product of the relevant function FLM, the damping factor ∆(m) and the partition functions. Depending

on whether i belongs to the final state, i ∈ Hf , or to the initial state, i.e. i ∈ {a, b}, the hard-collinear limits

evaluate to 〈
SmCim∆

(m)ωmiF ab
LM[... , i, ...|m]

〉
=

[αs]

ϵ

〈
Γ[im],f[im]→fifm F ab

LM[... , [im], ...]
〉
, (2.8)

– 5 –



〈
SmCam∆

(m)ωma F ab
LM[m]

〉
=

[αs]

ϵ
δgm

〈
Γa,faF

ab
LM

〉
+

[αs]

ϵ

〈
Pgen
f[am̄]fa

⊗ F
[am̄]b
LM

〉
, (2.9)

where [im] and [am̄] are the final- and initial-state clustered partons, respectively, and m̄ is the anti-particle

corresponding to m (i.e. q̄ for q, q for q̄ and g for g). The explicit definition of the various functions appearing

in Eqs (2.8, 2.9) can be found in Ref. [66]. In particular, the generalized splitting functions Pgen are given

in Eq. (A.18), the generalized collinear anomalous dimensions Γi,fi are reported in Eq. (A.17), the weighted

anomalous dimensions Γ[im],f[im]→fifm are given in Eq. (A.19), and the convolution denoted by ⊗ is defined in

Eq. (3.13) of that reference. We emphasize that the order of the partons in the weighted anomalous dimension

Γi,f1→f2f3 is important, with f2 being the hard parton, and f3 being the potentially-unresolved one. The

action of the hard-collinear operators on FLM in Eqs (2.8, 2.9) is illustrated by the second and third panes in

Fig. 1.

It is clear from Eqs. (2.8) and (2.9) that there is a peculiar difference between initial- and final-state collinear

limits, in that the latter give rise to weighted anomalous dimensions, while the former lead directly to gen-

eralized anomalous dimensions. This is due to the behavior of the damping factors under the action of the

collinear operators. Indeed, we have [66]

Cam∆
(m) = 1 , Cim∆

(m) = Ei/(Ei + Em) ≡ zi,m , (2.10)

where a(i) is the initial-state (resolved final-state) parton. The additional factor of zi,m leads to the weighted

anomalous dimensions when one integrates over energies in the case of final-state collinear limits. However,

we showed in Ref. [66] that collinear splittings arising from different potentially-unresolved partons can be

combined to obtain generalized anomalous dimensions, and that it is advantageous to do so before integrating

over partonic energies. In particular, to obtain the generalized anomalous dimension for a quark, we need to

combine cases where m = q becomes collinear to a hard gluon with those where m = g becomes collinear to a

hard quark. In fact, in the combination

Γi,q = Γi,q→qg + Γi,q→gq , (2.11)

which appears naturally in our set-up, the weight factors zi,m disappear, leading to a standard quark collinear

anomalous dimensions, related to the integral of a splitting function. Similarly, by accounting for g → gg and

g → qq̄ splitting, we obtain

Γi,g = Γi,g→gg + 2nf Γi,g→qq̄ , (2.12)

which is directly related to the collinear anomalous dimension of a gluon.

At NNLO one has to consider the joint action of two soft-subtracted collinear operators CimCjn which,

depending on the partition function, may either be applied to different hard legs (i ̸= j) or to the same leg

(i = j). The treatment of such combinations of collinear limits is complicated for two reasons. First, when the

limits are applied to the same resolved parton, the phase spaces for partons m and n become intertwined, and

care is needed in order to extract the relevant (generalized or weighted) anomalous dimensions [65]. Second,

one needs to properly account for the many possible types of clustered partons that may appear in those cases;

this is one of the problems that we discuss in detail in this paper. This issue is particularly important for the

reconstruction of the generalized anomalous dimensions, discussed above. Indeed, the different splittings that

lead to various weighted anomalous dimensions of the form Γi,f1→f2 f3 can only be combined into generalized

anomalous dimensions, as shown in Eqs (2.11, 2.12), if they multiply the same FLM function. Since one starts

with FLM functions with different partonic configuration as arguments, showing that they become the same

under the action of collinear operators is essential. While it is relatively straightforward to demonstrate this

at NLO, it becomes highly nontrivial to do so when dealing with arbitrary processes at NNLO. Finally, once

generalized anomalous dimensions are extracted, we combine them into the NLO collinear operator

IC(ϵ) =
∑
i

Γi,fi

ϵ
, (2.13)
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or its NNLO counterparts I2C(ϵ) and IC(2ϵ).

In addition to generalized collinear anomalous dimensions, hard-collinear configurations also give rise to boosted

contributions, see Eq. (2.9). This happens for the initial-state splittings, since in such cases the energy flowing

into the hard processes is rescaled by a factor z = 1 − Em/Ea. When z = 1, the integrated hard-collinear

subtraction term corresponds to the generalized anomalous dimension functions, Γi,fi , i ∈ (a, b). However, if

z < 1, which implies the emission of an unresolved parton with non-vanishing energy, a hard-collinear limit

leads to a convolution denoted by the symbol ⊗ in Eq. (2.9). Such structures do not occur in the case of

final-state splittings, as the energy of the underlying hard process remains unchanged.

vii) In addition to the real-emission contributions, one has to consider one- and two-loop virtual corrections, one-

loop virtual corrections to single-parton emissions, and the renormalization of parton distribution functions.

The divergences of virtual corrections can be written as operators in color space acting on LO matrix elements

squared. For example, at NLO we refer to such operators as IV(ϵ), see the fourth pane in Fig. 1. We note that

IV is defined in Eq. (A.36) of Ref. [66] and is closely related to Catani’s operator I1(ϵ) introduced in Ref. [70].

At NNLO, the singular contributions of the double-virtual corrections through O
(
ϵ−2

)
can be written in

terms of IV(ϵ) and IV(2ϵ), and the commutator [I1(ϵ), I
†
1(ϵ)] (see Section 4.3 in Ref. [65]). The collinear

renormalization of parton distribution functions at NLO leads to the convolution of tree-level Altarelli-Parisi

(AP) splitting functions, P̂
(0)
ij , and Born-level matrix elements. At NNLO, further contributions appear, for

example the convolution of the one-loop AP splitting functions, P̂
(1)
ij , with LO matrix elements squared, and

convolutions of P̂
(0)
ij with NLO partonic cross sections.

viii) At NNLO, we also need to account for triple-collinear singular limits. Due to the iterative nature of the

NSC subtraction scheme, we require such limits with all single-collinear and soft divergences removed. After

integrating over the unresolved phase space, these terms contribute at 1/ϵ and are given in Ref. [74]. We note

that the results of this reference need to be modified slightly for our purposes; we discuss this in Section 4.2.2.

ix) For the processes that we considered in Refs [65, 66], we were able to demonstrate the cancellation of 1/ϵ poles

analytically and to derive finite remainders. As noted in Ref. [65], to achieve this it is useful to separately

consider contributions with different final-state kinematics (double-boosted, single-boosted, unboosted), as

well as other distinguishing features of the FLM functions (color-correlated pieces, spin-correlated pieces, etc.)

to identify subsets of integrated subtraction terms where the cancellation of divergences occurs independently.

In this paper we will show that such a procedure is sufficiently flexible and can be used for an analysis of

arbitrary processes. We note that

– at NLO, the 1/ϵ poles proportional to the boosted matrix elements do not involve color-correlated matrix

elements, and have to cancel among themselves. As we will see in Section 3, this is achieved upon

combining the terms from the initial-state hard-collinear limits with those from the pdf renormalization,

using the relation Pgen
αβ = −P̂

(0)
αβ +O(ϵ) between the generalized splitting functions and the Altarelli-Parisi

collinear splitting kernels. At NNLO the combination of pdf renormalization and hard-collinear limits

has to be supplemented by the one-loop collinear splitting functions, contributing to the real-virtual

integrated subtraction terms. This leads to the appearance of divergent boosted terms that are also

color-correlated.

– at NLO, the 1/ϵ poles proportional to the unboosted LO matrix elements feature both color-correlated and

color-uncorrelated contributions. The former cancel in the combination IV(ϵ)+ IS(ϵ), which however still

contains color-uncorrelated 1/ϵ divergences. These divergences cancel upon accounting for the collinear

contribution IC(ϵ), defined in Eq. (2.13). We then introduce an operator

IT(ϵ) = IV(ϵ) + IS(ϵ) + IC(ϵ) , (2.14)

which has a finite ϵ → 0 limit. Its first non-vanishing contribution in the ϵ-expansion, I
(0)
T , contains

color-correlated terms proportional to T i · T j (see Appendix A in Ref. [66]). It turns out that many
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NNLO singularities are captured by the operators IS, IC and IV or their iterations, and that frequently

they can be combined into iterations of the IT operator. Identifying such structures early on in the

calculation substantially streamlines both the cancellation of the ϵ-poles, and the derivation of the finite

remainders at NNLO.

3 NLO QCD corrections to a general process at a hadron collider

In this section, we discuss the computation of next-to-leading order QCD corrections to the process pp → X+N jets,

where X is an arbitrary color-singlet state. At leading order, such a process is obtained from Eq. (2.3), where the

partonic cross sections can be written as

2sabdσ
LO
ab =

∑
n

〈
F ab
LM[BN,n]

〉
. (3.1)

Here, BN,n denotes a particular final state with N QCD partons, each associated with an identified jet, that can be

produced together with the color-singlet X in the collision of partons a and b. The index n enumerates all QCD final

states which may contribute to the partonic process, including all combinations of flavors consistent with the initial

state (a, b) and the color-singlet X in the final state. In what follows, we assume that such final states have been

enumerated for arbitrary jet multiplicity N .3 We also note that FLM contains all the symmetry factors associated

with a particular final state BN,n.

At NLO, several contributions are required. We will focus on the analysis of a real-emission process with initial

state a and b, which corresponds to the LO partonic process ab → (N + 1) partons +X. The cross section reads

2sab dσ̂
R
ab =

∑
n

〈
F ab
LM[BN+1,n]

〉
. (3.2)

The sum appearing on the right-hand side of Eq. (3.2) has the same meaning as in Eq. (3.1). Proceeding as in

Refs [65, 66], we insert a partition of unity for each term in the sum in Eq. (3.2)∑
i∈BN+1,n

∆(i) = 1 , (3.3)

where the sum over the index i runs over all final-state partons in the list BN+1,n. As mentioned in Section 2,

each damping factor ∆(i) vanishes if any parton other than parton i becomes unresolved. For convenience, we

relabel the partons entering BN+1,n in such a way that the potentially-unresolved parton i is always identified by

m. Furthermore, we use the symmetry of FLM to write dσ̂R
ab in terms of three contributions, distinguishing the cases

where m is a gluon from those where m is a quark or an antiquark. We find

2sab dσ̂
R
ab =

∑
n

〈
∆(m)F ab

LM[BN+1,n(mg)]
〉
+
∑
n

nf∑
ρ=1

〈
∆(m)F ab

LM[BN+1,n(mqρ)]
〉

+
∑
n

nf∑
ρ=1

〈
∆(m)F ab

LM[BN+1,n(mq̄ρ)]
〉
,

(3.4)

where we have made explicit the sum over nf quark flavors. The notation BN+1,n(m), introduced in the above

equation, indicates a list of N + 1 partons where parton m has been identified as potentially-unresolved. We use

the convention that the symmetry factors in F ab
LM[BN+1,n(m)] are determined by all final-state partons except the

marked one, m. We also note that to identify a parton of a particular type as potentially-unresolved, BN+1,n must

contain at least one such parton. This trivial remark implies that the sum over n in the first term on the right-hand

side of Eq. (3.4) runs over all QCD final states that contain at least one gluon and can be produced in collisions of

partons a+b together with X. Analogously, the sum over n in the second term runs over all possible final states with

3We demonstrate how this can be achieved in a toy model with one quark flavor in Appendix A.
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at least one quark of flavor ρ, and the same applies to the third term with respect to the antiquark q̄ρ. Therefore,

although we always sum over same index n to lighten the notation, the three sums in Eq. (3.4) run over different

final states.

We can now apply the subtraction procedure introduced in Ref. [16] and outlined in Section 2 to dσ̂R
ab, by

multiplying each contribution in Eq. (3.4) with an identity operator written in the following way

1 = Sm +
∑
i∈H

SmCim +O(m)
NLO , (3.5)

where O(m)
NLO is defined as

O(m)
NLO =

∑
i∈H

SmCim ωmi , (3.6)

and depends on the partition functions ωmi introduced in Section 2. The sums are taken over sets H, which include

both the initial- and final-state partons specified by the arguments of the FLM functions upon which the above

operators act, excluding the parton m.

We need to understand what happens when the operators in Eq. (3.5) act on the function FLM and, in particular,

how a list BN+1,n(m) changes once the parton m becomes soft or collinear to another parton. We begin by considering

a potentially-unresolved gluon, which can be emitted by either of the initial-state partons, or by any of the resolved

final-state partons, without changing the identity of the emitter. It follows that the action of the soft operator Sm

is described by the formula (cf. Eq. (2.5))∑
n

〈
Sm ∆(m)F ab

LM[BN+1,n(mg)]
〉
=

∑
n′

〈
IS(ϵ) · F ab

LM[BN,n′ ]
〉
, (3.7)

where the sum on the right-hand side extends over all sets with N hard partons that can be produced in the process

ab → N jets +X.

We now move on to the hard-collinear limit SmgCimg . As we already mentioned, the potentially-unresolved gluon

can be emitted from, or clustered with, any hard parton without changing the hard parton’s identity. Therefore,

under the action of the hard-collinear operator, the list BN+1,n(mg) becomes a list composed of resolved partons

taken from the same list. Accordingly, no changes in the FLM symmetry factors occur and, in analogy to Eqs. (2.8,

2.9), we obtain∑
n

〈
SmCam∆

(m)F ab
LM[BN+1,n(mg)]

〉
=

∑
n′

[
[αs]

ϵ

〈
Γa,faF

ab
LM[BN,n′ ]

〉
+

[αs]

ϵ

〈
Pgen
aa ⊗ F ab

LM[BN,n′ ]
〉]
, (3.8)

for the initial-state radiation and∑
n

∑
i∈BN+1,n(mg)

〈
SmCim∆

(m) F ab
LM[BN+1,n(mg)]

〉
=

∑
n′

∑
i∈B

N,n′

[αs]

〈
Γi,fi→fig

ϵ
F ab
LM[BN,n′ ]

〉
, (3.9)

for the final-state radiation. The sum over i on the right-hand side of Eq. (3.9) runs over all final-state partons

in the configuration BN,n′ , while the sums over n′ on the right-hand sides of Eqs. (3.8) and (3.9) indicate that all

partonic channels consistent with the final-state color-singlet X and the initial state given by the associated FLM

function have to be included.

We now turn to the case where the potentially-unresolved parton is a quark of flavor ρ, mqρ . Then, infrared

singularities arise if mqρ becomes collinear to an initial-state gluon, or to an initial-state quark of the same flavor,

qρ, or if it becomes collinear to a final-state gluon or an antiquark of the same flavor, q̄ρ. Therefore, we need to

understand what happens to the partonic final state BN+1,n(mqρ) in these limits.

Suppose mqρ becomes collinear to an initial state gluon, which we identify with parton a for concreteness. The

singular contribution arises from diagrams where the initial-state gluon splits into a qρq̄ρ pair, with the q̄ρ entering

the scattering process and producing color-singlet X as well as all partons in the list BN+1,n(mqρ) other than qρ.
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Figure 2: Examples of contributions to initial- and final-state collinear limits.

This is shown in Fig. 2a. In this collinear limit, the resolved final-state partons are unchanged, while the initial

state of the hard process changes to q̄ρb. Thus, in this limit, summing over the contributions of all processes with

(a, b) in the initial state and final states denoted by BN+1,n(mqρ) is equivalent to summing over all processes with

the initial state q̄ρb and N partons in the final state. We will refer to final states in such processes as BN,n′ . Thus,

we can write ∑
n

δag
〈
Cam∆

(m)F ab
LM[BN+1,n(mqρ)]

〉
=

∑
n′

[αs]

ϵ

〈
Pgen
q̄g ⊗ F

q̄ρb
LM [BN,n′ ]

〉
. (3.10)

We note that, since the symmetry factor of a function FLM is determined solely by the “unmarked” (i.e., resolved)

final-state partons (thus excluding m), and since a collinear limit with the initial state always leaves the list of hard

final-state partons unchanged, the symmetry factors on the left-hand side and the right-hand side of Eq. (3.10) are

identical. This statement holds in general, independently of the flavors of a and m. We note that the spin degrees

of freedom as well as the color factors in the initial state do change; these changes are absorbed in the definition of

Pgen
q̄g .

The argument used to obtain Eq. (3.10) can be repeated verbatim if we consider the other singular initial-state

collinear limit, which occurs when a = qρ. This contribution arises from diagrams where the initial state qρ splits

into a final-state quark mqρ and a gluon that becomes an initial-state parton for the hard process, see Fig. 2b.

Exploiting the (by now clear) connection between final states with N+1 and N partons, we write the hard-collinear

initial state term for an unresolved quark as∑
n

〈
Cam∆

(m)F ab
LM[BN+1,n(mqρ)]

〉
=

∑
n′

δag
[αs]

ϵ

〈
Pgen
q̄g ⊗ F

q̄ρb
LM [BN,n′ ]

〉
+

∑
n′

δaqρ
[αs]

ϵ

〈
Pgen
gq ⊗ F gb

LM[BN,n′ ]
〉
, (3.11)

where, again, the summation goes over all final states with N partons and a modified initial state.

This argument can be extended to final-state hard-collinear limits, described by operators SmCimqρ
, in a fairly

simple way. These limits are singular if the parton i is either a gluon or an antiquark q̄ρ. In the former case,

singularities reside in the Feynman diagrams where the quark line qρ radiates the gluon i, with all other particles

emerging separately (see Fig. 2c). We write∑
n

∑
i∈BN+1,n(mqρ )

δig
〈
SmCim∆

(m)F ab
LM[BN+1,n(mqρ)]

〉
=

∑
n′

∑
i∈B

N,n′

δiqρ
[αs]

ϵ

〈
Γi,q→gqF

ab
LM[BN,n′ ]

〉
, (3.12)
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where the sum on the right-hand side runs over all processes with N final-state partons produced in the collisions

of initial-state partons a, b.

An important aspect of the final-state collinear limits that needs to be understood to ensure the validity of

Eq. (3.12) is the symmetry factors. To this end, consider a term on the left-hand side of Eq. (3.12) that describes

a process with the final state BN+1,n(mqρ). We assume that it contains Ng gluons, Nqρ quarks of flavor ρ (not

including mqρ into the quark count), and other partons that are not important for our purposes. The symmetry

factor included in F ab
LM[BN+1,n(mqρ)] is 1/(Ng!×Nqρ !×...), where the ellipses stand for contributions to the symmetry

factor from other final-state partons. In the limit ig ∥ mqρ , these two partons are removed from the list BN+1,n(mqρ)

and replaced by the clustered parton [im]qρ . This results in a final state with Ng −1 gluons, Nqρ +1 quarks of flavor

ρ and everything else unchanged. Denoting the corresponding final state as BN,n′ , the symmetry factor associated

with the function F ab
LM[BN,n′ ] on the right-hand side of Eq. (3.12) is 1/((Ng − 1)!× (Nqρ + 1)!× ...). This apparent

mismatch is easy to understand. Indeed, the sum over i on the left-hand side of Eq. (3.12) gives a factor Ng in the

numerator, owing to the symmetry of FLM under permutations of the gluons. For the same reason, the sum over

quarks on the right-hand side of Eq. (3.12) compensates for the factor (Nqρ + 1) in the denominator.

The reasoning used to obtain Eq. (3.12) can be applied to the other final-state limit, where the singularities

arise from a gluon splitting into a qρq̄ρ pair, displayed in Fig. 2d. Combining these, we obtain

∑
n

∑
i∈BN+1,n(mqρ )

〈
SmCim∆

(m)F ab
LM[BN+1,n(mqρ)]

〉
=

∑
n′

∑
i∈B

N,n′

[αs]

ϵ

〈 (
δigΓi,g→qq̄ + δiqρΓi,q→gq

)
F ab
LM[BN,n′ ]

〉
. (3.13)

Thus we see that the summation over the relevant underlying Born processes with N partons emerges quite naturally,

allowing us to combine Eq. (3.13) with the weighted anomalous dimensions present in Eq. (3.9). We can repeat this

argument for the last term in Eq. (3.4) where the potentially-unresolved parton is an antiquark mq̄ρ . Combining these

contributions, we reconstruct the collinear anomalous dimensions for all hard partons and hence the IC operator,

introduced in Section 2. Putting everything together, we obtain4

2sab dσ̂
R
ab =

∑
n

〈
O(m)

NLO∆
(m)

[
F ab
LM[BN+1,n(mg)] +

nf∑
ρ=1

[
F ab
LM[BN+1,n(mqρ)] + F ab

LM[BN+1,n(mq̄ρ)]
]]〉

+
∑
n

[αs]
〈[
IS(ϵ) + IC(ϵ)

]
· F ab

LM[BN,n]
〉
+

[αs]

ϵ

∑
x

∑
n

〈
Pgen
xa ⊗ F xb

LM[BN,n] + F ax
LM[BN,n]⊗ Pgen

xb

〉
.

(3.14)

The treatment of the lists of LO and NLO partonic configurations that we have presented is necessarily quite

abstract, as any enumeration of such lists is process-specific. Nevertheless, we can explicitly construct all lists of

allowed partonic processes if we limit ourselves to the case of a single quark flavor nf = 1, and therefore chargeless

color-singlet states X. Such a construction is described in Appendix A, which is useful to understand the details

and subtleties of our approach.

For an NLO computation, the real-emission cross section in Eq. (3.14) has to be supplemented with the virtual

corrections to the LO cross section, and the contribution from the collinear renormalization of pdfs. We write them

as

2sab dσ̂
V
ab =

∑
n

[
[αs]

〈
IV(ϵ) · F ab

LM[BN,n]
〉
+

〈
F ab
LV,fin[BN,n]

〉]
, (3.15)

2sab dσ̂
pdf
ab =

αs(µ
2)

2π

1

ϵ

∑
x

∑
n

〈
P̂ (0)
xa ⊗ F xb

LM[BN,n] + F ax
LM[BN,n]⊗ P̂

(0)
xb

〉
, (3.16)

4We emphasize one more time that, for the sake of compactness, we use one label n to describe sums over all possible final states

consistent with a particular partonic initial state. However, in reality these sums can be quite different, including their summation

ranges.
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where FLV,fin is the ϵ-finite remainder of the one-loop amplitude. Combining Eqs (3.14, 3.15, 3.16), we find the

finite NLO partonic cross section

2sab dσ̂
NLO
ab =

∑
n

〈
O(m)

NLO∆
(m)

[
F ab
LM[BN,n(mg)] +

nf∑
ρ=1

[
F ab
LM[BN,n(mqρ)] + F ab

LM[BN,n(mq̄ρ)]
]]〉

+
∑
n

[
[αs]

〈
I
(0)
T · F ab

LM[BN,n]
〉
+
〈
F ab
LV,fin[BN,n]

〉]
+

∑
x

∑
n

[αs]
〈
PNLO
xa ⊗ F xb

LM[BN,n] + F ax
LM[BN,n]⊗ PNLO

xb

〉
,

(3.17)

where I
(0)
T is the O

(
ϵ0
)
term of IT(ϵ) defined in Eq. (2.14); its explicit expression is given in Eq. (A.45) of Ref. [66].

The functions PNLO
αβ arise from the combination of generalized splitting functions Pgen

αβ and the Altarelli-Parisi

splitting kernels, thanks to the following relation

Pgen
αβ (z, Ei) + P̂

(0)
αβ (z) = ϵPNLO

αβ (z, Ei) +O
(
ϵ2
)
. (3.18)

The energy arguments of the functions Pgen
αβ and PNLO

αβ should be taken to be Ea for left convolutions (as in the

second-last term of Eq. (3.17)) and Eb for right convolutions (as in the final term of Eq. (3.17)). This convention

applies to all the splitting functions that are used in this paper. We conclude by noting that the hadronic cross

section at NLO at scales µR = µF = µ is obtained by convoluting the partonic cross sections with parton distribution

functions

dσNLO =
∑
a,b

(fa ⊗ fb)⊗ dσ̂NLO
ab . (3.19)

4 NNLO QCD corrections to an arbitrary process at colliders

The goal of this section is to present formulas for the NNLO QCD corrections to pp → X + N jets and ℓ+ℓ− →
X + N jets, where X is an arbitrary color-singlet state. The underlying ideas behind these results closely follow

Refs [65, 66]; the novelty is that here we deal with arbitrary initial and final states. In Section 3, we have explained

how this aspect of the problem is addressed, using NLO as an example. The NNLO case is obviously more complex

and requires more attention.

We begin in Section 4.1 with a brief discussion of the general framework, followed by the presentation of the

final results in Eqs. (4.9 – 4.24). Then, in Section 4.2, we discuss details of the calculation that we found challenging

when extending the results of Refs [65, 66] to general processes.

4.1 General setup and the final formula

To compute the NNLO corrections to the production of N jets and a color-singlet X in hadron collisions, three

contributions need to be considered – the double-virtual, the real-virtual, and the double-real. We begin with the

double-real contribution and write the partonic cross section as (cf. Eq. (3.2))

2sab dσ̂
RR
ab =

∑
n

〈
F ab
LM[BN+2,n]

〉
. (4.1)

As in the NLO case, the index n parametrizes a particular final state with N+2 QCD partons that can be produced

in the collision of partons (a, b) in association with X, and the sum over n indicates that all such final states have

to be included. We note that Eq. (4.1) can also be used to describe the production of N +2 jets in association with

X, provided of course the measurement function is modified.

Following Refs [65, 66] (see also the discussion in Section 2), we insert the partition of unity∑
(ij)∈BN+2,n

∆(ij) = 1 , (4.2)

into Eq. (4.1). The sum over the indices i, j in Eq. (4.2) runs over all final-state partons in the list BN+2,n, and

each damping factor ∆(ij) vanishes if any parton other than partons i, j becomes unresolved. Then, similarly to the
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NLO case, we label the potentially-unresolved partons as m and n, and use the symmetry of the gluon, quark, and

antiquark lists within BN+2,n to write the double-real emission partonic cross section as

2sab dσ
RR
ab =

〈
∆(mn)ΘmnFab,DS

LM [m, n]
〉
+
〈
∆(mn)Fab,��DS

LM [m, n]
〉
. (4.3)

The functions FLM in the above equation are defined as follows

Fab,DS
LM [m, n] =

∑
n

F ab
LM[BN+2,n(mg, ng)] +

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(m(qρ , nq̄ρ))], (4.4)

and

Fab,��DS
LM [m, n] = Fab,��DS

LM,1 [m, n] + Fab,��DS
LM,2 [m, n] , (4.5)

with

Fab,��DS
LM,1 [m, n] =

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(mqρ , ng)] +

∑
n

nf∑
ρ=1

F ab
LM[BN+2,n(mq̄ρ , ng)]

+
∑
n

nf∑
ρ=1

1

2
F ab
LM[BN+2,n(mqρ , nqρ)] +

∑
n

nf∑
ρ=1

1

2
F ab
LM[BN+2,n(mq̄ρ , nq̄ρ)]

]
,

(4.6)

Fab,��DS
LM,2 [m, n] =

∑
n

nf∑
ρ,τ=1
τ>ρ

F ab
LM[BN+2,n(mqρ , nqτ )] +

∑
n

nf∑
ρ,τ=1
τ>ρ

F ab
LM[BN+2,n(mq̄ρ , nq̄τ )]

+
∑
n

nf∑
ρ,τ=1
τ ̸=ρ

F ab
LM[BN+2,n(mqρ , nq̄τ )] .

(4.7)

In writing Eq. (4.4), we adopted the shorthand notation

F ab
LM[BN+2,n(m(qρ , nq̄ρ))] = F ab

LM[BN+2,n(mqρ , nq̄ρ)] + F ab
LM[BN+2,n(mq̄ρ , nqρ)] , (4.8)

which was already introduced in Ref. [66].

The above representation of the FLM functions has several important features that we would like to comment

upon. First, the DS contribution in Eq. (4.4) collects combinations of unresolved partons that possess a singular

double-soft limit (i.e. Em,n → 0 with Em/En fixed), whereas the��DS terms in Eqs (4.5 – 4.7) contain those that do

not. In both cases, the symmetry factors included in the definition of the FLM functions are determined entirely by

the final-state partons in BN+2,n(m, n) that do not carry labels m or n.

The last two terms in Eq. (4.6) contain factors 1/2, which account for the symmetry of the FLM functions under

the exchange mqρ ↔ nqρ or mq̄ρ ↔ nq̄ρ . A similar factor for the (mg, ng) unresolved final states is absent due to the

energy ordering enforced by the function Θmn = Θ(Em − En) in Eq. (4.3). Finally, in Eqs (4.4 – 4.7), each FLM

function depends on its own list of final-state partons BN+2,n(m, n), and the sum over n runs over all possible states

consistent with the initial partonic state ab.

Using Eqs (4.4 – 4.7) as the starting point, we follow the steps described in Refs [65, 66] to extract the 1/ϵ poles

in the double-real contribution. We then combine these with the divergences arising from the virtual corrections

in order to cancel all 1/ϵ singularities and extract the finite remainders which can be evaluated in four dimensions.

We do so separately for the fully-resolved (FR), single-unresolved (SU), and double-unresolved (DU) contributions,

which we specify below. In terms of these three contributions the result reads

2sab dσ̂
NNLO
ab = 2sab

[
dσ̂FR

ab + dσ̂SU
ab + dσ̂DU

ab

]
. (4.9)

The first term in Eq. (4.9) is the fully-resolved contribution, which contains N + 2 resolved partons in the final

state and subtraction terms that make it finite. This contribution reads

dσ̂FR
ab =

〈
SmnSnΩ1∆

(mn)ΘmnFab,DS
LM [m, n]

〉
+

〈
SmnSnΩ1∆

(mn)Fab,��DS
LM [m, n]

〉
. (4.10)
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Table 1: List of functions collected in the ancillary file FinalResult.m. The first column shows the names of the

functions that are used in the final result, the second column indicates the equation in which they appear, and the

third provides their names in the file FinalResult.m. For brevity, in the second block of the table, the splitting

kernels P ...
gg , P ...

qg , etc., are collectively denoted by P ...
xy . Further information can be found in the README.txt file

provided with the ancillary file. We recall that the energy arguments of the initial-state splittings should be taken

to be Ea when the splitting appears on the left-hand side of the ⊗ or ⊗̄ symbols, and Eb when on the right (see the

comment below Eq. (3.18)).

Functions collected in the ancillary file FinalResult.m

Function Eq. number Name in the ancillary file

Quantities in spin-correlated contributions

γ⊥
g Eq. (4.16) γgPerp

γ⊥,r
g Eq. (4.16) γgPerpR

δ(0) Eq. (4.22) δzero

δ⊥,(0) Eq. (4.22) δPerpzero

Splitting functions

P̂
(0)
xy (z) Eqs (4.13, 4.14) PxyAP[z ]

PNLO
xy (z, E) Eqs (4.13, 4.14, 4.18 – 4.20) PxyNLO[z ,En ]

PW
xx(z, E) Eqs (4.19, 4.20) PxxW[z ,En ]

PNNLO
xy (z, E) Eqs (4.19, 4.20) PxyNNLO[z ,En ]

Elastic functions

γW
z,g→gg(E) Eq. (4.22) γWgTOgg[En ]

γW
z,q→qg(E) Eq. (4.22) γWqTOqg[En ]

DT 2 Eq. (4.24) DT2

DISR
g (E) Eq. (4.24) DgISR[En ]

DISR
q (E) Eq. (4.24) DqISR[En ]

DFSR
g (E) Eq. (4.24) DgFSR[En ]

DFSR
q (E) Eq. (4.24) DqFSR[En ]

Double-soft finite remainders

DSfinij Eq. (4.23) DSfin[i ,j ]

The Ω1 operator reads

Ω1 =
∑
(ij)

CimCjn[dpm][dpn]ω
mi,nj +

∑
i

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]Cmn,i ω

mi,ni . (4.11)

In Eq. (4.11), the sum over i runs over all resolved partons, while the sum over (ij) runs over all unordered pairs

of resolved partons with i ̸= j (i.e. this sum would include both i = 1, j = 2 and i = 2, j = 1, and so forth).

The calculation of dσ̂FR
ab is performed numerically, and the discussion of how this is done in practice is beyond

the scope of this paper. We note, however, that the angular partition functions ωmi,nj and ωmi,ni and the sector

– 14 –



functions θ(a,...,d) identify the distinct ways in which two partons can approach collinear singularities.5 Each sector

is treated separately, using the parameterization of the unresolved angular phase space proposed in Refs. [12, 13].

For each external leg, only four distinct sectors are required to implement the fully-resolved contribution with the

partition ωmi,ni. The total number of double-collinear partitions ωmi,nj with i ̸= j is (N + 2)(N + 1), and each can

be parameterized independently, allowing the integration variables to be optimally adapted to the relevant singular

limits. Furthermore, for consistency with the computation of the integrated triple-collinear subtraction terms (see

the comment below Eq. (4.34)), the Cmn,i operator does not act on the unresolved phase space.

The second term in Eq. (4.9) is the single-unresolved contribution, which contains N + 1 resolved final-state

partons and subtraction terms that make it finite. It is written as

dσ̂SU
ab = dσ̂SU,sb,a

ab + dσ̂SU,sb,b
ab + dσ̂SU,el

ab . (4.12)

The first two terms on the right-hand side are the single-boosted contributions. They read

dσ̂SU,sb,a
ab = [αs]

∑
x

∑
m

∑
n

{〈
O(a,m)

NLO ωma,na
a∥n ∆(m) log

(ηam
2

)
P̂ (0)
xa ⊗ F xb

LM[BN+1,n(m)]
〉

+
〈
O(m)

NLO ∆(m)PNLO
xa ⊗ F xb

LM[BN+1,n(m)]
〉}

,

(4.13)

and

dσ̂SU,sb,b
ab = [αs]

∑
x

∑
m

∑
n

{〈
O(b,m)

NLO ωmb,nb
b∥n ∆(m) log

(ηbm
2

)
F ax
LM[BN+1,n(m)]⊗ P̂

(0)
xb

〉
+
〈
O(m)

NLO ∆(m)F ax
LM[BN+1,n(m)]⊗ PNLO

xb

〉}
.

(4.14)

We note that the sum over m is understood as the sum over different species of potentially-unresolved partons, i.e.

g, qρ, q̄ρ, with ρ running over distinct quark flavors, and that each species provides exactly one representative to the

sum. The sum over n accommodates all final states with a given m that can be produced in a particular partonic

collision, and therefore it can have a different meaning for each term in the above equations, in spite of the fact that

we use just one sum to keep equations more compact. Finally, the sum over x runs over the subset of partons that

can be produced by the parton a or the parton b upon considering all possible collinear splittings.

The ONLO operators are defined as

O(i,m)
NLO = SmCim , O(m)

NLO =
∑
i∈H

O(i,m)
NLO ωmi , (4.15)

where, as before, H denotes the list of initial- and final-state partons associated with a given FLM, excluding the

potentially-unresolved parton m, and ωmi are the NLO partition functions discussed in item v) of Section 2. The

functions ωmi,ni
i∥n are the NNLO partition functions (also referenced in item v) of Section 2) upon which the collinear

operator Cin has been applied. The variable ηim is defined as ηim = (1− cos θim)/2, where θim is the relative angle

between the directions of parton i and m, computed in the preselected reference frame (e.g., the center-of-mass

frame of the partonic collision).

5The sector functions are defined as θ(a) = Θ(ηin < ηim/2), θ(b) = Θ(ηim/2 < ηin < ηim), θ(c) = Θ(ηim < ηin/2), θ(d) =

Θ(ηin/2 < ηim < ηin), where ηij = (1− cos θij)/2.
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The last term on the right-hand side of Eq. (4.12) is the elastic contribution, which reads

dσ̂SU,el
ab =

∑
m

∑
n

{
[αs]

〈
O(m)

NLO ∆(m)
[
δmgI

(0)
T (Em) + δmgI

(0)
T (Emax)

]
· F ab

LM[BN+1,n(m)]
〉

−
∑
i∈H

[αs]
〈
O(i,m)

NLO ωmi,ni
i∥n log

(ηim
2

)
∆(m)

[
δmg

(
γi + 2T 2

iLi(Em)
)
+ δmg

(
γi + 2T 2

iLi

)]
F ab
LM[BN+1,n(m)]

〉
−

∑
i∈H

[αs]
〈
O(i,m)

NLO ωmi,ni
m∥n log

(
ηim

4(1− ηim)

)
∆(m)

[
γm + 2T 2

qLmδmg

]
F ab
LM[BN+1,n(m)]

〉
+
〈
O(m)

NLO ∆(m)F ab
RV,fin[BN+1,n(m)]

〉}
+
∑
n

∑
i∈H

[αs]

2

〈
O(i,m)

NLO ωmi,ni
m∥n ∆(m)

[
γ⊥,r
g F ab

LM[BN+1,n(mg)]

+ γ⊥
g (rµi r

ν
i + gµν)F ab

LM,µν [BN+1,n(mg)]
]〉

.

(4.16)

In the above equation, δij = 1− δij , and the quantity I
(0)
T denotes the O

(
ϵ0
)
expansion coefficient of the infrared-

finite operator IT(ϵ); one should replace Emax with Em in that equation to obtain I
(0)
T (Em). In the second line of

Eq. (4.16), Li = log(Emax/Ei), Li(Em) = log(Em/Ei), and γi is the collinear anomalous dimension of parton i, with

γq = γq̄ = 3/2CF and γg = β0 = 11/6CA−2/3TRnf . In the third line, the functions ωmi,ni
m∥n are the NNLO partition

functions computed in the collinear limit m ∥ n, and Lm = log(Emax/Em). The vector rµi that appears in the last

line of Eq. (4.16) is defined in Appendix E of Ref. [65]. All remaining quantities can be found in an ancillary file,

as summarized in Table 1. We note that the sums over the index i ∈ H in the second, third, and fourth lines of

Eq. (4.16) run over all partons in the corresponding FLM functions, excluding the unresolved parton m, and that

sums over n have the usual meaning.

Next, the double-unresolved contribution in Eq. (4.9) contains N resolved partons in the final state, which

equals the number of jets in the LO process. We can write it as a sum of four terms, each having distinct kinematics

dσ̂DU
ab = dσ̂DU,db

ab + dσ̂DU,sb,a
ab + dσ̂DU,sb,b

ab + dσ̂DU,el
ab . (4.17)

The first term is the double-boosted contribution

dσ̂DU,db
ab =

∑
x,y

∑
n

[αs]
2
〈
PNLO
xa ⊗ F xy

LM[BN,n]⊗ PNLO
yb

〉
, (4.18)

where x, y include all partons that can be obtained from the collinear splittings of partons a, b. The second and the

third terms are the single-boosted contributions which describe collinear splittings of partons a and b, respectively.

They read

dσ̂DU,sb,a
ab =

∑
x

∑
n

[
[αs]

〈
PNLO
xa ⊗Fxb[BN,n]

〉
+ [αs]

2
〈
PNNLO
xa ⊗ F xb

LM[BN,n]
〉]

+
∑
n′

[αs]
2
〈
PW
aa ⊗

[
Wa∥n,fin

a · F ab
LM[BN,n′ ]

]〉
,

(4.19)

and

dσ̂DU,sb,b
ab =

∑
x

∑
n

[
[αs]

〈
Fax[BN,n]⊗ PNLO

xb

〉
+ [αs]

2
〈
F ax
LM[BN,n]⊗ PNNLO

xb

〉]
+
∑
n′

[αs]
2
〈[
Wb∥n,fin

b · F ab
LM[BN,n′ ]

]
⊗ PW

bb

〉
,

(4.20)

where

F ij [BN,n] = [αs] I
(0)
T · F ij

LM[BN,n] + F ij
LV,fin[BN,n] . (4.21)
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The functions PNNLO
αβ

6 and PW
αα can be found in Table 1, and we will comment on the operators Wa∥n,fin

a and

Wb∥n,fin
b shortly. We note that Eqs (4.18 – 4.20) are a natural extension of formulas reported in Refs. [65, 66], except

that in those references collinear splittings that change the type of the initial-state parton were omitted.

Finally, the double-unresolved contribution corresponding to N -jet final states without additional boosts reads

dσ̂DU,el
ab =

∑
n

{
[αs]

2
〈[
Ifincc + Ifinss + Ifintri + Ifinunc

]
· F ab

LM[BN,n]
〉

+ [αs]
2
∑
i∈H

〈[
θHf

γW
z,fi→fig(Li)Wi∥n,fin

i + δ(0)Wm∥n,fin
i + δ⊥,(0)W(i)

r

]
· F ab

LM[BN,n]
〉

+ [αs]
〈
I
(0)
T · F ab

LV,fin[BN,n]
〉
+
〈
F ab
LV2,fin[BN,n]

〉
+

〈
F ab
VV,fin[BN,n]

〉}
,

(4.22)

where H = {a, b} ∪ BN,n. In the second line of Eq. (4.22), we use the function θHf
which evaluates to θHf

= 1 if

i ∈ Hf (final-state parton) and θHf
= 0 otherwise. We note that all limits that contribute to the elastic contribution

dσ̂DU,el
ab were considered in Refs. [65, 66]. Consequently, the structure of this result is identical to those discussed

in these references, and the functions appearing in Eq. (4.22) have already been defined there. Nevertheless, for

completeness, we briefly describe the various terms that appear in this equation.

The operator Ifincc in the first line of Eq. (4.22) is defined in Eq. (7.13) of Ref. [66]. It contains terms with two

and four color-charge operators T i as well as various remnants of virtual IV, soft IS and collinear IC operators. The

quantity Ifinss denotes a particular finite remainder of the double-soft integrated subtraction term. It is defined as7

Ifinss =
∑

(ij)∈H

DSfinij (T i · T j) , (4.23)

and the coefficients DSfinij can be obtained from an ancillary file, see Table 1. Here, the notation (ij) ∈ H means that

one sums over unordered pairs of initial- and final-state particles, i.e. H = {a, b}∪BN,n, with i ̸= j. The operator Ifintri

represents the component proportional to the product of three color-charge operators. In Ref. [65], we have shown

that such triple-color correlators originate from three distinct sources: i) double-virtual corrections [70, 75, 76], ii)

commutators of the soft IS and virtual IV operators, and iii) the soft limit of the real-virtual contributions [72].

The triple color-correlated contribution was computed in Ref. [65] in full generality, c.f. Eq. (I.9) in that reference.

For this reason, it can be used for calculating NNLO QCD corrections to arbitrary processes without further ado.

All remaining color-uncorrelated contributions are collected into the term Ifinunc. It is defined as

Ifinunc =
∑
i∈H

[
T 2

i DT 2 +Dfi(Ei)
]
, (4.24)

where, in the first function DT 2 , we have collected all the color-uncorrelated terms that depend on the external legs

only via the relevant Casimir factor. The remainder Dfi depends on the type of parton, i.e. i being a quark or a

gluon. These quantities can be extracted from the ancillary file as explained in Table 1 (note that in the Table 1

the Dfi functions are reported with superscripts ISR and FSR added to distinguish between initial- and final-state

radiation contributions).

In the second line of Eq. (4.22), the partition-dependent operators Wi∥n,fin
i , Wm∥n,fin

i , and W(i)
r appear. They

arise from spin-correlated singular contributions, which are discussed extensively in Refs [65, 66]. The quantities

δ(0), δ⊥,(0), and γW
z,fi→fig

can be extracted from the ancillary file as explained in Table 1. Finally, the quantities

FLV2,fin and FVV,fin that appear in the final line of Eq. (4.22) are the process-dependent finite remainders of the

one-loop squared and two-loop virtual amplitudes, respectively.

6In Eqs (4.19, 4.20), the αβ pairs in PNLO
αβ that yield non-vanishing results are qq, qg, gq, gg, together with the same pairs where

q is replaced by q̄. For the functions PNNLO
αβ , in addition to the pairs listed above, the combinations qq̄, qq′, and qq̄′ also contribute.

Moreover, one finds that PNNLO
qq̄ = PNNLO

q̄q and PNNLO
qq′ = PNNLO

qq̄′ .
7These terms are given in the third line of Eq. (7.12) of Ref. [66].
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Eqs (4.9 – 4.24) provide finite remainders of the integrated NNLO QCD subtraction terms for hadron collider

processes, pp → X + N jets. However, since these formulas are written as expressions that are applied to each

of the resolved partons, they can accommodate processes at lepton-hadron or lepton-lepton colliders with minimal

adjustments. Taking the latter case as an example, we explain how to modify Eqs (4.9 – 4.24) to arrive at the finite

remainders for ℓ+ℓ− → X +N jets.

i) The fully-regulated contribution in Eq. (4.10) remains unchanged. However, the sums over the indices i and

j in Eq. (4.11) should include initial-state particles only if they have color charge; hence, in the case of a

lepton-lepton collider, these sums should run over final-state partons only.

ii) In the single-unresolved contribution in Eq. (4.12), the boosted terms, defined in Eqs (4.13, 4.14), must be set

to zero.

iii) In the elastic single-unresolved contribution given in Eq. (4.16), all terms involving initial states must be

discarded. Hence, in the operators I
(0)
T , O(m)

NLO and O(i,m)
NLO , as well as in the sums over i ∈ H, only final-state

partons should be considered.

iv) In the double-unresolved contribution of Eq. (4.17), the first three initial-state-boosted terms, defined in

Eqs (4.18 – 4.20), must be set to zero.

v) For the elastic double-unresolved contribution in Eq. (4.22), the comments from point iii) apply, i.e. all

terms involving a initial state must be dropped. Furthermore, the operator Ifintri , which encodes triple-color

correlations, can be discarded. A detailed explanation of why this happens can be found, for example, in

Section 5.2 of Ref. [65].

4.2 Important aspects of the calculation

Having presented the final result in Section 4.1, we would like to discuss those aspects of the derivation that are new

with respect to Refs [65, 66]. In particular, we describe the emergence of complete sums over intermediate (clustered)

partons in the collinear limits involving initial states, the appearance of full collinear anomalous dimensions, and the

triple-collinear integrated subtraction terms. Additional technical details pertinent to these problems are provided

in Appendices B and C.

4.2.1 Double-collinear contribution

We begin with the discussion of the double-collinear soft-subtracted contributions. We find it convenient to treat

terms arising from the double-collinear and triple-collinear partitions separately. Thus, we define

Σdc
DC =

∑
n

∑
(ij)∈H

〈
SmSnCimCjn∆

(mn)

[
1

2
Fab,DS
LM [m, n] + Fab,��DS

LM [m, n]

]〉
, (4.25)

Σtc
DC =

1

2

∑
n

∑
i∈H

[〈
SmSnCimCin∆

(mn)Fab,DS
LM [m, n]

〉
+
〈
Sn

(
CinCim + CimCin

)
∆(mn)Fab,��DS

LM [m, n]
〉]

, (4.26)

where the functions FLM[m, n] are given in Eqs (4.4, 4.5). The sets H in Eqs (4.25, 4.26) include partons {a, b} and

the resolved partons in the lists BN+2,n(m, n) present in the FLM[m, n] functions, whereas in Eq. (4.25), the second

sum runs over all unordered pairs of i, j ∈ H with i ̸= j.

We need to rewrite Σdc
DC and Σtc

DC in such a way that their collinear singularities are made explicit, and their

finite remainders are clearly defined. The calculation of the DS terms on the right-hand side of Eqs (4.25, 4.26) was

discussed in detail in Section 5.4 of Ref. [65],8 while the��DS terms were partially addressed in Section 5.2 of Ref. [66],

and we complete the analysis here. Hence, in this section we briefly summarize the key steps of the calculation

without repeating all technical details. Additional technical aspects relevant to the simplification of Eq. (4.26) can

be found in Appendix B.

8Specifically, the discussion in this reference focuses on the case of an FLM function whose unresolved partons m, n are a pair of

gluons. As noted in Ref. [66], the same procedure can be straightforwardly extended for an unresolved qq̄ pair of the same flavor.
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The double-collinear sector

We begin with the discussion of the double-collinear partition, Eq. (4.25). Since i ̸= j, these terms, essentially, are

the product or convolution of two NLO-like contributions that appear because of the action of the soft-regulated

collinear operators SmCim and SnCjn. Their analysis results in a simple, natural formula that reads

Σdc
DC =

∑
n

∑
(ij)∈H

[αs]
2

〈
Γi,fi Γj,fj

2ϵ2
F ab
LM[BN,n]

〉
+
∑
x,y

∑
n

[αs]
2

ϵ2
〈
Pgen
xa ⊗ F xy

LM[BN,n]⊗ Pgen
yb

〉
+
∑
x

∑
n

[αs]
2

ϵ

[〈
Pgen
xa ⊗

[(
IC(ϵ)−

Γa,x

ϵ

)
· F xb

LM[BN,n]
]〉

+
〈[(

IC(ϵ)−
Γb,x

ϵ

)
· F ax

LM[BN,n]
]
⊗ Pgen

xb

〉]
.

(4.27)

The equation above shares several important features with the results for finite remainders presented in the previous

subsection. In particular, it includes the double-boosted contributions, the convolutions of collinear operators with

splitting functions Pgen
xy , and pair-wise products of collinear anomalous dimensions of external partons. Furthermore,

we also observe the summation over relevant Born processes.

The derivation of Eq. (4.27) is conceptually straightforward but somewhat tedious. Hence, we will outline how

its features arise from Eq. (4.25), where Σdc
DC is written in terms of soft and collinear operators. There are three

cases to consider: i) partons i and j are in the initial state, ii) parton i is in the initial and parton j in the final

state (or vice versa), and iii) partons i and j are in the final state.

We begin with the first case, where the unresolved partons become collinear to different incoming partons.

Then, hard final-state partons are not affected, but the initial-state partons undergo clustering and may change

their types. Since this clustering occurs independently on each initial-state leg, the NLO analysis can be repeated

by considering the simultaneous action of the operators CamCbn and CanCbm on an FLM function (cf. Eqs (3.10,

3.11)). Among other things, this leads to a double-boosted contribution (the second term on the right-hand side

of Eq. (4.27)) where the sums over all intermediate parton types (x and y) emerge. This happens because the

potentially-unresolved partons m and n can be of all possible flavors, so that the sum over all types of m, n naturally

becomes a sum over all possible types of clustered partons.

Initial-state collinear limits also produce collinear anomalous dimensions if the unresolved parton is a gluon

(cf. Eq. (3.8)). Thus, the case where the unresolved partons m and n both become collinear to distinct initial-state

partons leads, in addition to the double-boosted contribution, to terms that contain Γa,faΓb,fb , Pgen
xa ⊗ Γb,fb , and

Γa,fa ⊗ Pgen
xb . These contributions appear in the first term of Eq. (4.27) and in the IC operators in the second line

of that equation, respectively. We note that the initial-state anomalous dimensions Γa,x and Γb,x are subtracted

from these IC operators. This happens because terms such as Pgen
xa ⊗ Γa,fa and Γb,fb ⊗ Pgen

xb cannot appear in the

double-collinear sectors, because the two collinear operators are applied to different external partons.

We continue with the case where one of the partons m and n becomes collinear to an initial-state parton, while

the other becomes collinear to a final-state parton. This case can be analyzed following the NLO calculation, leading

to the remaining products of an initial- and a final-state anomalous dimension in the first term of Eq. (4.27), as

well as the remaining terms in the IC operators in the second line of that equation.

Finally, we consider the case where the two partons m and n become collinear to different final-state partons.

Here, the calculation is more involved, because hard final-state partons are affected by clustering with the unresolved

partons m and n, which can change their types. Such a clustering removes two partons from the final state; the list

BN+2,n(m, n) then becomes one of the LO-like lists. The challenge is to make sure that a proper LO-like list appears

at the right place. Furthermore, one also needs to reconstruct all generalized anomalous dimensions by combining

incomplete contributions, since the latter are standard outcomes of individual collinear limits (cf. Eqs (2.11, 2.12)).

Although a detailed analysis of final-state collinear limits requires significant care, at its core, it is again an

iterative extension of what has already been discussed in Section 3. Nevertheless, we find it instructive to discuss

an explicit example of how complete anomalous dimensions arise. To this end, we consider the term Γi,gΓj,qρ/(2ϵ
2)

in Eq. (4.27) and, for simplicity, ignore the 2nf Γi,g→qq̄ contribution to Γi,g. To obtain this term, we focus first on

Fab,DS
LM [m, n] (cf. Eq. (4.4)) with the (mg, ng) pair, and consider the collinear limits mg ∥ ig and ng ∥ jqρ . Applying
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Eq. (3.9) separately to the two legs i and j, we obtain∑
(ij)∈BN,n

δigδjqρ Γi,g→gg Γj,q→qg F
ab
LM[BN,n] . (4.28)

As anticipated, the quark anomalous dimension Γj,q→qg in this expression is incomplete, as it lacks the contribution

Γj,q→gq. To complete it, we focus on the term with the unresolved partonic state (mqρ , ng) appearing in Fab,��DS
LM [m, n]

(cf. Eq. (4.4)), and we consider final states with at least two distinct hard gluons, so that both unresolved partons

can independently become collinear to a hard gluon. To identify all singular contributions of this type, the NLO

construction that we described in Section 3 is particularly helpful. Indeed, a sequential application of Eq. (3.9) and

Eq. (3.12)9 automatically yields the following result∑
(ij)∈BN,n

δigδjqρ Γi,g→gg Γj,q→gq F
ab
LM[BN,n] . (4.29)

This complements the collinear anomalous dimension in Eq. (4.28), since the sum of the two equations gives Γj,qρ ,

as desired. Proceeding in the same way while considering all possible pairs of collinear limits acting on different

final-state legs of the FLM functions in Fab,DS
LM [m, n] and Fab,��DS

LM [m, n], one obtains the first term on the right-hand

side of Eq. (4.27) when i and j are two final-state partons.

The triple-collinear sector

The triple-collinear partition contribution, defined in Eq. (4.26), involves sequential soft-regulated collinear limits

where partons m and n become collinear to a single hard parton i. This calculation is more complicated than the

one for the double-collinear partitions, and we describe it in detail in Appendix B. Combining the results of this

appendix, we find10

Σtc
DC =

[αs]
2

2ϵ2

∑
x

∑
n

{〈[∑
y

[
Pgen
xy ⊗̄ Pgen

ya

]
+Gxa

]
⊗ F xb

LM[BN,n]

〉
+

〈
F ax
LM[BN,n]⊗

[∑
y

[
Pgen
xy ⊗̄ Pgen

yb

]
+Gxb

]〉}

+
[αs]

2

ϵ

∑
x

∑
n

{〈
Pgen
xa ⊗

[
Γa,x

ϵ
F xb
LM[BN,n]

]〉
+

〈[
Γb,x

ϵ
F ax
LM[BN,n]

]
⊗ Pgen

xb

〉}
(4.30)

+
[αs]

2

2ϵ2

∑
n

〈[∑
i∈H

Γ2
i,fi +

∑
i∈BN,n

(
δig

[
2nf Γi,g→qq̄

(
Γi,q − Γi,g

)
+Gi

∣∣g
z,g→gg + 2nf Gi

∣∣q
z,g→qq̄

]

+

nf∑
ρ=1

(δiqρ + δiq̄ρ)
[
Γi,q→gq

(
Γi,g − Γi,q

)
+Gi

∣∣q
z,q→qg +Gi

∣∣g
z,q→gq

])]
F ab
LM[BN,n]

〉
.

Even without an in-depth discussion of the derivation of the above equation, we can still explain how some of its

features follow from Eq. (4.26). In the first line of Eq. (4.30), the convolutions of two generalized splitting functions

and F xb
LM[BN,n] are present. Such terms arise from the initial-state collinear limits, which lead to two sequential

clusterings of partons. In the first step, we cluster partons a and n to form [an̄], and in the second step, we cluster

it with parton m to produce [am̄n̄]. Schematically, the following equation holds〈
SmSnCamCanF

ab
LM[...|m, n]

〉
∼ P[am̄n̄][an̄] ⊗̄ P[an̄]a ⊗ F

[am̄n̄]b
LM . (4.31)

One can check that summing over all types of partons m and n, encoded in the function FLM[m, n], is equivalent

to summing over all types of clustered partons x and y. Furthermore, as explained in detail in Refs [65, 66], the

collinear limits i ∥ m and i ∥ n are not fully independent because of phase-space constraints. This gives rise to the

functions Gxa and Gxb that appear in Eq. (4.30).

9These hard-collinear operators may be applied in either order, since the two collinear limits commute when acting on different legs.
10We note that the ⊗̄ convolution that we use here is defined differently (cf. Eq. (B.11)) compared to what we have used earlier in

Refs [65, 66].
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In the second line of Eq. (4.30) terms appear that allow the completion of the IC operators present in the second

line of Eq. (4.27). We recall that such contributions are due to initial-state collinear limits. In particular, if m or n

is a gluon, these limits lead to diagonal transitions which introduce anomalous dimensions, as shown in Eq. (2.9).

Convolutions between these terms and the splitting functions lead to terms on the second line of Eq. (4.30), whereas

the product of initial-state anomalous dimensions forms part of the first term on the third line of Eq. (4.30).

The remaining terms in the last two lines in Eq. (4.30) describe final-state collinear limits. By analogy with the

initial-state contribution, we expect two sequential final-state collinear limits to give rise to products of weighted

anomalous dimensions, i.e.〈
SmSnCimCinF

ab
LM[... , i, ...|m, n]

〉
∼ Γ[imn]→[in]m Γ[in]→in F

ab
LM[... , [imn] , ...] , (4.32)

as well as some functions Gi which, as mentioned previously, take into account the phase-space intertwinement of

partons m and n. Finally, moving from Eq. (4.32) to the last two lines in Eq. (4.30) requires an explicit enumeration

of all possibilities for the clustered partons, an analysis of the transformation of the final-state hard partons under

the action of the collinear limits, and the reconstruction of the squares of the complete anomalous dimensions, which

will be needed for the I2C operator.

4.2.2 Triple-collinear subtraction contribution

We now turn to the triple-collinear limits, which correspond to the situation in which the two unresolved partons

m, n become simultaneously collinear to a resolved parton. In the context of the nested soft-collinear subtraction

scheme, the relevant terms are obtained as integrals of the triple-collinear limits of the double-real matrix elements

squared, followed by the subtraction of the double-soft, single-soft, as well as single-collinear singularities. Hence,

such contributions are written as∑
n

∑
i∈H

〈
SmnSnΩ

(i)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
, (4.33)

where the two FLM[m, n] functions can be found in Eqs (4.4) and (4.5), while the operator Ω
(i)
2 reads

Ω
(i)
2 =

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]Cmn,i ω

mi,ni . (4.34)

The functions θ(a,b,c,d) define the phase-space sector, restricting the number of possible singular collinear limits that

one needs to consider. We note that the triple-collinear operator Cmn,i does not act on the phase-space measure of

the unresolved gluons, while operators Cij do. For further details, see the discussion below Eq. (4.11) as well as

Refs [65–67].

All triple-collinear splitting functions were computed in Ref. [72]. They were integrated over the appropriate

phase spaces in Ref. [74], for both initial- and final-state splittings. However, as we already pointed in Ref. [66], the

integrated triple-collinear subtraction terms in Eq. (4.33) differ slightly from the quantities computed in Ref. [74] for

some final-state splittings. This happens because some integrals were calculated in this reference without the damp-

ing factors ∆(mn), which produce additional energy-dependent weights in the triple-collinear limits. Furthermore, in

Ref. [74], all unresolved partons were energy-ordered when considering final-state splittings, whereas here we do not

employ energy ordering for the combinations of unresolved partons that cannot produce double-soft singular limits.

These differences lead to very minor modifications to the soft and strongly-ordered collinear subtraction terms, while

the unsubtracted integrals of the triple-collinear splitting functions over the phase space of the unresolved partons

remain unchanged.

We discuss the required changes in Appendix C. Here, we sketch them briefly by considering the g∗ → gqq̄

splitting. Using the definitions of functions FLM, we find that the following quantity is required∑
n

∑
i∈Hf

〈
SmnSnΩ

(i)
2 ∆(mn)

[
δigΘmnF

ab
LM[BN+2,n(m(qτ , nq̄τ ))]

+

nf∑
ρ=1

(
δiq̄ρF

ab
LM[BN+2,n(mqρ , ng)] + δiqρF

ab
LM[BN+2,n(mq̄ρ , ng)]

)]〉
.

(4.35)
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A similar but not identical quantity was computed in Ref. [74], where the energy-ordering Θmn function was applied

to all three FLM functions in Eq. (4.35). One can show that the difference between the two calculations is given by

−
∑
n

∑
i∈Hf

〈
ΘnmSnΩ

(i)
2 ∆(mn)

nf∑
ρ=1

[
δiq̄ρF

ab
LM[BN+2,n(mqρ , ng)] + δiqρF

ab
LM[BN+2,n(mq̄ρ , ng)]

]〉
. (4.36)

The important point is that the difference involves the soft operator Sn, which implies that a simplified version of

the triple-collinear splitting function is needed to compute the difference. We note that similar simplifications occur

for all other splitting functions where modifications are required.

We find it convenient to define triple-collinear terms in the following way. For the final-state gluon splitting, we

combine the g∗ → ggg and g∗ → gqq̄ processes, and write

∑
n

∑
i∈Hf

δ[imn]g

〈
SmnSnΩ

(i)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
=

∑
n

∑
i∈BN,n

δig
[αs]

2

ϵ

〈
ΓTC
i,g F ab

LM[BN,n]
〉
. (4.37)

For the final-state quark splitting, q∗ → qgg and q∗ → qq′q̄′ (with q′ running over all flavors including q′ = q), we

define∑
n

∑
i∈Hf

δ[imn]q

〈
SmnSnΩ

(i)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
=

∑
n

∑
i∈BN,n

δiq
[αs]

2

ϵ

〈
ΓTC
i,q F ab

LM[BN,n]
〉
, (4.38)

where we have suppressed the flavor index of q to simplify the notation. We note that the case [imn] = q̄ is identical

to the one just described, so that ΓTC
i,q̄ ≡ ΓTC

i,q . The explicit expressions for all relevant integrated triple-collinear

terms ΓTC
i,fi

are reported in the ancillary file TripleCollinearSplittings.m provided with this paper (see Table 2).

Next, we consider the initial-state triple-collinear splittings, i.e. i ∈ {a, b}. For definiteness, we focus on the

case i = a; then, the splitting process we are interested in is a → [am̄n̄]∗ +m+ n. We have to sum over all possible

types of partons m and n, keeping [am̄n̄] fixed, and collect all contributions to the integrated triple-collinear splitting

function PTC
[am̄n̄]a. Accounting for all the relevant terms with appropriate parton permutations and averaging factors,

we arrive at the following formula for the integrated initial-state triple-collinear subtraction terms

∑
n

〈
SmnSnΩ

(a)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
=

∑
x

∑
n

[αs]
2

ϵ

〈
PTC
xa ⊗ F xb

LM[BN,n]
〉
. (4.39)

Similar to cases discussed earlier, the sum over x runs over all parton types, and the triple-collinear splitting

functions PTC
xa accommodate the allowed a → x splittings. Explicit expressions for these splitting functions are

reported in the ancillary file TripleCollinearSplittings.m, see Table 2. We conclude this section by writing the

final expression for Eq. (4.33) that takes into account all initial- and final-state splittings∑
n

∑
i∈H

〈
SmnSnΩ

(i)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
=

∑
x

∑
n

[αs]
2

ϵ

[〈
PTC
xa ⊗ F xb

LM[BN,n]
〉
+
〈
F ax
LM[BN,n]⊗ PTC

xb

〉]
+

∑
n

∑
i∈BN,n

[αs]
2

ϵ

〈
ΓTC
i,fi F

ab
LM[BN,n]

〉
.

(4.40)

5 Conclusions

In this paper, we have presented a fully general derivation of the finite remainders of the integrated NNLO sub-

traction terms within the nested soft-collinear framework. Our results are applicable to arbitrary processes with

massless QCD partons at lepton and hadron colliders. In the process, we verify the analytic cancellation of all

infrared divergences for infrared-safe observables in a process-independent manner, confirming the consistency of

the subtraction scheme at NNLO.
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Our analysis focused on the process pp → X +N jets, where X represents a generic color-singlet system, and

the number of jets N is a free parameter. The finite remainders for this process at NNLO QCD accuracy are given

in Section 4.1. We also discuss there the required (minor) modifications to make our results applicable to processes

at lepton colliders.

The calculation of finite remainders at NNLO QCD accuracy for arbitrary processes required us to overcome two

central challenges. The first one involved developing a systematic understanding of the singular limits of radiative

scattering amplitudes at NNLO, including their interplay, and finding a suitable way to combine the corresponding

subtraction terms with divergent contributions from virtual corrections. In Ref. [65], this problem was addressed

by adopting, as the guiding principle, the idea of expressing the integrated subtraction terms in a form closely

resembling that of Catani’s operator [70], which describes the 1/ϵ poles from virtual corrections. This approach

enabled the cancellation of such poles through the combination of process-independent soft and collinear operators.

The analysis in Ref. [65] showed that, in this way, the apparent mismatch between the “simple” form of the (double-)

virtual singularities and the increasing complexity of the real-virtual and double-real contributions can be resolved

through a careful combination of contributions that share certain functional properties, such as color correlations.

The method introduced in Ref. [65] was proven to be valid in the specific case of quark-antiquark annihilation into

an arbitrary number of gluons.

The second challenge concerned the combinatorial complexity of bookkeeping. This can be understood as

the need for a systematic enumeration of all relevant partonic channels contributing to a given process at fixed

perturbative order, as well as their modifications induced by soft and collinear limits. This step is essential to

the subtraction procedure, as the cancellation of collinear singularities requires precise control over all initial- and

final-state divergent components. To investigate how these cancellations occur, the method introduced in Ref. [65]

was extended in Ref. [66] to a more complex process that includes a quark in the Born-level final state. This study

revealed important structural patterns, and highlighted the main combinatorial challenges. The main conclusion of

Ref. [66] was that the nested soft-collinear subtraction scheme, in its revised formulation introduced in Ref. [65], is

sufficiently robust to be applied to complex final states involving both quarks and gluons. It was also shown that

physically relevant quantities, such as collinear anomalous dimensions, emerge naturally when singular configurations

are combined prior to integration over the unresolved phase space. These findings indicated that the method not

only facilitated the computation of NNLO corrections but also improved the physical transparency of the results.

Before concluding, we provide an overview of the main results of this paper. The master formulas for partonic and

hadronic NLO cross sections within the nested soft-collinear subtraction scheme are given in Eqs. (3.17) and (3.19),

respectively. The NNLO master formula, the central result of this work, is distributed across Section 4.1. While

it mirrors the structure of the NLO expression, the additional complexity of the singular limits at this order leads

to a more intricate decomposition. Thus, we divide the result into three parts: fully-resolved, single-unresolved,

and double-unresolved, whose highest-multiplicity contributions involve (N + 2), (N + 1), and N jets, respectively.

Each part is made finite by virtue of dedicated subtraction terms. The fully-resolved term appears in Eq. (4.10).

A thorough discussion of its numerical implementation goes beyond the scope of this paper. We simply comment

that it requires enumerating all possible partonic channels and singular configurations for a given process, together

with an appropriate sector-by-sector phase-space parametrization, similar in spirit to the FKS construction at NLO

[1]. In the triple-collinear limit, this becomes subtle since new overlapping singularities appear, making further

partitioning necessary. A suitable phase-space parametrization for this partitioning was presented in Ref. [12].

Particular attention must be paid to spin correlations in triple-collinear splittings. The single- and double-unresolved

contributions arise from integrating the subtraction terms over the unresolved phase space. The single-unresolved

contributions, residing in the (N +1)-parton phase space, are given in Eqs. (4.13), (4.14), and (4.16). The first two

involve boosted kinematics, arising due to collinear radiation by the initial state partons, while the latter exhibits

kinematics identical to that of the NLO real-emission contributions.

The double-unresolved term lives in the N -parton phase space and is decomposed into four parts, as summarized

in Eq. (4.17). The first contribution, Eq. (4.18), involves a double convolution and hence double-boosted kinematics.

The single-boosted terms are given in Eqs. (4.19) and (4.20), resembling the NLO boosted contributions. The elastic

contribution appears in Eq. (4.22). Despite containing the most intricate functions from the double-soft limits, it is
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the simplest to implement in a numerical code due to its LO-like kinematics.

In summary, building on the findings of Refs. [65, 66], we have extended the approach developed in these

references to arbitrary final states, completing the construction of a general NNLO subtraction scheme. In this

paper, we have addressed and resolved the two challenges described above, organizing all unresolved limits and

their integrated counterparts into a compact expression. Its modular structure enables its application to any

process with an X + N jets final state without requiring process-specific modifications. Furthermore, the formula

separates final-state and initial-state contributions, making it directly applicable to non-hadronic collisions, such as

ℓ+ℓ− → X + N jets, thereby extending its applicability beyond the current LHC program. Future developments

include the treatment of massive final-state quarks, embedding this scheme in parton-level event generators, and

exploring its extension to N3LO QCD accuracy.

Acknowledgments

K.M. and C.S-S. wish to thank the CERN Theoretical Physics Department for hospitality during work on this

paper. The research of M.T. is supported by a grant from Deutscher Akademischer Austauschdienst (DAAD).

The research of K.M. and D.M.T. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under grant no. 396021762 - TRR 257. F.D. is supported by the United States Department of Energy,

Contract DE-AC02-76SF00515. R.R. is partially supported by the Italian Ministry of Universities and Research

(MUR) through grant PRIN2022BCXSW9. This research was supported in part by grant NSF PHY-2309135 to

the Kavli Institute for Theoretical Physics (KITP).

– 24 –



A Operations with lists

In Section 3, we discussed how to derive the finite remainders of subtraction terms for NLO QCD corrections

to a generic process of the type pp → X + N jets. Focusing on a given partonic channel (a, b), we introduced

abstract representations of the final-state N -parton configurations BN,n where index n parametrizes different final

states at fixed N and (a, b). We then examined how soft and collinear operators act on these lists, and showed

that applying such operators to a complete set of FLM functions – each depending on a given higher-multiplicity

final-state configuration – leads to a complete sum of FLM functions involving lists with lower final-state multiplicity.

In this Appendix, we will construct such lists explicitly for a toy example – a process pp → N jets in QCD with

gluons and a single quark flavor. The explicit construction of these list is useful for checking the general statements

made in the main body of the paper.

Given an initial state (a, b), we can describe the corresponding final states with N jets in terms of the lists

B =
(
{g}Ng

, {q}Nq
, {q̄}Nq̄

)
. (A.1)

Here, Ng, Nq, and Nq̄ denote the numbers of final-state gluons, quarks, and antiquarks, respectively. These multi-

plicities must be such that the process ab → B is allowed in QCD. This implies that the possible combinations of

gluons, quarks, and antiquarks for a given jet multiplicity N depend on the initial-state baryon charge Qab. In the

toy model with a single quark flavor, the baryon charge of the initial partonic state can take values Qab = 0,±1,±2,

and we will now examine the possible final-state configurations corresponding to each of these cases.

We begin by considering the initial states with the vanishing baryon charge, Qab = 0. They are (a, b) ∈
{(q, q̄), (q̄, q), (g, g)}. Such initial-state configurations are compatible with N -gluon final states, as well as with all

the partonic channels that can be obtained by replacing 2n of these gluons with n qq̄ pairs. Upon doing this, we

find the following possible final-state configurations

N even :



{g}N {q}0 {q̄}0
{g}N−2 {q}1 {q̄}1
{g}N−4 {q}2 {q̄}2

...
...

...

{g}0 {q}N
2

{q̄}N
2


N odd :



{g}N {q}0 {q̄}0
{g}N−2 {q}1 {q̄}1
{g}N−4 {q}2 {q̄}2

...
...

...

{g}1 {q}N−1
2

{q̄}N−1
2


, (A.2)

which differ for even and odd N . We can unify the two cases by using the so-called floor function ⌊x⌋ which is

defined as the largest integer n such that n ≤ x. Then, it is easy to see that all N -jet partonic final states that can

be produced from a Qab = 0 initial state are described by the following list

B0
N,n =

(
{g}N−2n, {q}n, {q̄}n

)
, n ∈

[
0,

⌊
N

2

⌋]
, (A.3)

where the superscript in B0
N,n refers to the baryon charge. To give a concrete example of this notation, we note

that in Ref. [65] we considered the case B0
N,0, i.e. the process qq̄ → X +N g.

We continue with the initial states that carry baryon charge Qab = ±1, namely (a, b) ∈ {(g, q), (q, g), (g, q̄),
(q̄, g)}. Considering for definiteness the (g, q) initial state which has Qab = +1, the allowed partonic final states are

given by the following lists

N even :



{g}N−1 {q}1 {q̄}0
{g}N−3 {q}2 {q̄}1
{g}N−5 {q}3 {q̄}2

...
...

...

{g}1 {q}N
2

{q̄}N−2
2


, N odd :



{g}N−1 {q}1 {q̄}0
{g}N−3 {q}2 {q̄}1
{g}N−5 {q}3 {q̄}2

...
...

...

{g}0 {q}N+1
2

{q̄}N−1
2


, (A.4)
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which can be summarized as

B+1
N,n =

(
{g}N−1−2n, {q}n+1, {q̄}n

)
, n ∈

[
0,

⌊
N − 1

2

⌋]
. (A.5)

We note that in Ref. [66] we analyzed the case B+1
N,0, i.e. the process gq → X + (N − 1)g + q. The final states

compatible with Qab = −1 are obtained from Eq. (A.4) and Eq. (A.5) by replacing quarks with antiquarks and vice

versa.

Finally, initial states with baryon charge Qab = ±2 include (a, b) = {(q, q), (q̄, q̄)}. Focusing for definiteness on

the Qab = +2 case, we find

N even :



{g}N−2 {q}2 {q̄}0
{g}N−4 {q}3 {q̄}1
{g}N−6 {q}4 {q̄}2

...
...

...

{g}0 {q}N+2
2

{q̄}N−2
2


, N odd :



{g}N−2 {q}2 {q̄}0
{g}N−4 {q}3 {q̄}1
{g}N−6 {q}4 {q̄}2

...
...

...

{g}1 {q}N+1
2

{q̄}N−3
2


. (A.6)

We write the above lists as

B+2
N,n =

(
{g}N−2−2n, {q}n+2, {q̄}n

)
, n ∈

[
0,

⌊
N − 2

2

⌋]
. (A.7)

The final state with Qab = −2 are easily obtained from the above formula by exchanging q ↔ q̄.

It is clear that all the final-state lists in Eqs. (A.3), (A.5), and (A.7) can be unified by writing

Qab ≥ 0 : BQab

N,n =
(
{g}N−Qab−2n, {q}n+Qab

, {q̄}n
)
,

Qab < 0 : BQab

N,n =
(
{g}N−|Qab|−2n, {q}n, {q̄}n+|Qab|

)
,

n ∈ [0, ξ(N,Qab)] , ξ(N,Qab) =

⌊
N − |Qab|

2

⌋
. (A.8)

The upper bound in Eq. (A.8) satisfies ξ(N,Qab) ≥ 0, which implies N ≥ |Qab| for any BQab

N,n.

Through the parametrization in Eq. (A.8), the sum over n that appears in Eq. (3.1) becomes explicit. Indeed,

fixing the initial state (a, b) determines the baryon charge Qab, which is used in the parametrization of Eq. (A.8)

to write the lists BQab

B,n enumerating the possible final states. In this way, the sum over all possible configurations

in Eq. (3.1) becomes a sum over the parameter n ∈ [0, ξ(N,Qab)]. One can use the explicit parametrizations

constructed in this appendix to check all the statements made in the main text of the paper concerning the behavior

of various lists in different limits and, especially, how they transform into each other.

B Details on the double-collinear contribution in the triple-collinear sector

In Eq. (4.26) we introduced the double-collinear contribution which occurs when partons m and n simultaneously

become collinear to one of the hard partons i. For convenience, we repeat the expression here

Σtc
DC =

1

2

∑
n

∑
i∈H

[〈
SmSnCimCin∆

(mn)Fab,DS
LM [m, n]

〉
+
〈
Sn

(
CinCim + CimCin

)
∆(mn)Fab,��DS

LM [m, n]
〉]

. (B.1)

The functions FLM are defined in Eqs (4.4 – 4.7). We presented the result for Σtc
DC in Eq. (4.30) without providing

a derivation. Here we explain in detail how to obtain it, considering the initial state first and then the final state.

Before proceeding with the calculation, it is useful to write Eq. (B.1) in a more suitable way. Specifically, we

would like to write the ��DS contribution in the same way as the DS part, using a single pair of operators CimCin.

This is achieved by first symmetrizing Fab,��DS
LM,1 [m, n] with respect to m and n. We write

Sn

(
CinCim + CimCin

)
∆(mn)F ab

LM[BN+2,n(mq, ng)]

= SmSn

(
CinCim + CimCin

)
∆(mn) 1

2

[
F ab
LM[BN+2,n(mq, ng)|+]F ab

LM[BN+2,n(mg, nq)]
]
,

(B.2)
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and do the same for the (mq̄, ng) term. We note that on the right-hand side of Eq. (B.2), we have added the operator

Sm, which coincides with the identity operator for m ̸= g. Therefore, it can also be inserted into Eq. (B.1) for the

remaining terms of Fab,��DS
LM,1 [m, n], since in all such cases m is not a gluon. Finally, we symmetrize Fab,��DS

LM,2 [m, n] by

writing

Fab,��DS
LM,2 [m, n] =

∑
n

nf∑
ρ,τ=1
τ ̸=ρ

1

2
F ab
LM[BN+2,n(mqρ , nqτ )] +

∑
n

nf∑
ρ,τ=1
τ ̸=ρ

1

2
F ab
LM[BN+2,n(mq̄ρ , nq̄τ )]

+
∑
n

nf∑
ρ,τ=1
τ ̸=ρ

1

2

(
F ab
LM[BN+2,n(mqρ , nq̄τ )] + F ab

LM[BN+2,n(mq̄τ , nqρ)]
)
.

(B.3)

Again, in this case we can insert the operator Sm in front of Fab,��DS
LM,2 [m, n], since it acts as the identity operator.

After these changes, the function Fab,��DS
LM [m, n] becomes symmetric under the exchange m ↔ n, allowing us to

replace the sum of operators SmSn

(
CinCim + CimCin

)
with 2SmSnCimCin. Combining this result with the DS

contribution, we can write Eq. (B.1) as

Σtc
DC =

1

2

∑
n

∑
m,n

∑
i∈H

〈
SmSnCimCin∆

(mn)F ab
LM[BN,n(m, n)]

〉
, (B.4)

where m, n ∈ {g, q̄ρ, q̄′ρ} with ρ = 1, ... , nf . Eq. (B.4) is our starting point for our discussion. We note that definitions

of several quantities that appear below are given in Appendix A of Ref. [66].

Initial-state

We begin with the initial-state case, and assume i = a for definiteness. The action of the operators SnSmCamCan

on a generic function FLM gives

SmSnCamCan∆
(mn)F ab

LM[m, n] =

(
g2s,bµ

2ϵ
0

)2
E2

mE
2
n ρamρan

[
P[an̄]a,i(zn)

(1− zn)−1

P[am̄n̄][an̄],i(zm)

(1− zm)−1

F
(zmzn·[am̄n̄])b
LM

zmzn

− δ[an̄]a2T
2
[an̄]

P[am̄n̄][an̄],i(wm)

(1− wm)−1

F
(wm·[am̄n̄])b
LM

wm
− δ[am̄n̄][an̄]2T

2
[am̄n̄]

P[an̄]a,i(zn)

(1− zn)−1

F
(zn·[am̄n̄])b
LM

zn

+ δ[an̄]aδ[am̄n̄][an̄]4T
2
[an̄]T

2
[am̄n̄]F

[am̄n̄]b
LM

]
,

(B.5)

where the Pαβ,i splitting functions are reported in Eq. (A.12) of Ref. [66], and

Em,n ∈ [0, Emax] , zn = 1− En

Ea
, zm = 1− Em

znEa
, wm = 1− Em

Ea
. (B.6)

The arguments of the FLM functions on the right-hand side – which we do not display for simplicity – are lists that

are obtained from those on the left-hand side by removing partons m and n.

Since the integration over the angular phase space in Eq. (B.5) is straightforward, we focus on the energy

integrals. We will discuss the first term on the right-hand side, which is the most complicated. First, we change

the integration variables from (Em, En) to (zn, ξ = zmzn), where zn ∈ [1− Emax/Ea, 1] and ξ ∈ [zn − Emax/Ea, zn].

Since Ea < Emax, and the physical integration region of a splitting function requires zn ≥ 0, we can restrict the

values of this variable to zn ∈ [0, 1]. In the case of the variable ξ, we have zn ≤ 1 and Emax/Ea > 1, which implies

zn −Emax/Ea < 0. However, since the function F
(ξ·[am̄n̄])b
LM has no support for ξ < 0, we can assume ξ ∈ [0, zn]. The

integral over the energies therefore reads∫ Emax

0

dEn E
1−2ϵ
n

∫ Emax

0

dEm E1−2ϵ
m

1

E2
mE

2
n

P[an̄]a,i(zn)

(1− zn)−1

P[am̄n̄][an̄],i(zm)

(1− zm)−1

F
(zmzn·[am̄n̄])b
LM

zmzn

= E−4ϵ
a

∫ 1

0

dzn
zn

z−2ϵ
n

P[an̄]a,i(zn)

(1− zn)2ϵ

∫ zn

0

dξ
P[am̄n̄][an̄],i(ξ/zn)

(1− ξ/zn)2ϵ
F

(ξ·[am̄n̄])b
LM

ξ
.

(B.7)
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We change the order of integration and rename the integration variables as ξ 7→ z and zn 7→ t to obtain a convolution,

and then use the definition of the splitting function P(2)
αβ given in Eq. (A.15) of Ref. [66] to rewrite Eq. (B.7) as

E−4ϵ
a

∫ 1

0

dz

[[∫ 1

z

dt

t
t−2ϵP(2)

[an̄]a,i(t, Ea)P(2)
[am̄n̄][an̄],i(z/t, Ea)

]
− δ[an̄]a

T 2
[an̄]

ϵ
e−2ϵLaP(2)

[am̄n̄][an̄](z, Ea)

− δ[am̄n̄][an̄]

T 2
[am̄n̄]

ϵ
e−2ϵLaz−2ϵP(2)

[an̄]a(z, Ea) + δ[an̄]aδ[am̄n̄][an̄]

T 2
[an̄]T

2
[am̄n̄]

ϵ2
e−4ϵLaδ(1− z)

]
F

(z·[am̄n̄])b
LM

z
,

(B.8)

where La = log(Emax/Ea). Treating the remaining terms in Eq. (B.5) in the same manner, and including the

integral over the angular phase space leads to the following expression〈
SmSnCamCan∆

(mn)F ab
LM[m, n]

〉
=

[αs]
2

ϵ2

[(
2Ea

µ

)−2ϵ
Γ2(1− ϵ)

Γ(1− 2ϵ)

]2 ∫ 1

0

dz

〈[(∫ 1

z

dt

t
t−2ϵP(2)

[an̄]a,i(t, Ea)P(2)
[am̄n̄][an̄],i(z/t, Ea)

)
+ δ[am̄n̄][an̄]

T 2
[am̄n̄]

ϵ
e−2ϵLa(1− z−2ϵ)P(2)

[an̄]a(z, Ea)

]
F

(z·[am̄n̄])b
LM

z

〉
.

(B.9)

The next step consists of rewriting the splitting functions P(2)
αβ in Eq. (B.9) using Eq. (A.16) of Ref. [65] and

expressing P(2)
αβ in terms of the quantities Pgen

αβ and Γa,α. From this, we obtain

〈
SmSnCamCan∆

(mn)F ab
LM[m, n]

〉
=

[αs]
2

ϵ2

∫ 1

0

dz

〈{[
Pgen
[am̄n̄][an̄] ⊗̄ Pgen

[an̄]a

]
(z, Ea) + δ[an̄]aΓa,[an̄]Pgen

[am̄n̄][an̄](z, Ea)

+ δ[am̄n̄][an̄]z
−2ϵΓa,[am̄n̄]Pgen

[an̄]a(z, Ea) + δ[an̄]aδ[am̄n̄][an̄]Γa,[an̄]Γa,[am̄n̄]δ(1− z) (B.10)

− δ[am̄n̄][an̄]

T 2
[am̄n̄]

ϵ
e−2ϵLa(1− z−2ϵ)

[
Γa,[an̄]δ(1− z) + Pgen

[an̄]a(z, Ea)
](2Ea

µ

)−2ϵ
Γ2(1− ϵ)

Γ(1− 2ϵ)

}
F

(z·[am̄n̄])b
LM

z

〉
.

In Eq. (B.10) we have defined the ⊗̄ convolution as[
fxy ⊗̄ gya](z, Ea)

def
=

∫ 1

z

dt

t
fxy(z/t, Ea)× t−2ϵgya(t, Ea) , (B.11)

which differs from the one used in Ref. [66] by the order in which the convoluted functions are written. This ensures

that the indices appear in the same order as in the terms arising from the renormalization of the pdfs. The long

expression in the curly brackets in Eq. (B.10) can be simplified by noting that

z−2ϵΓa,[am̄n̄] −
T 2

[am̄n̄]

ϵ
e−2ϵLa(1− z−2ϵ)

(
2Ea

µ

)−2ϵ
Γ2(1− ϵ)

Γ(1− 2ϵ)
= Γz·a,[am̄n̄] , where Γz·a,α

def
= Γa,α

∣∣
Ea 7→zEa

, (B.12)

and also that (1− z−2ϵ)δ(1− z)F (z) = 0. Employing these relations, we obtain〈
SmSnCamCan∆

(mn)F ab
LM[m, n]

〉
=

[αs]
2

ϵ2

∫ 1

0

dz

〈{[
Pgen
[am̄n̄][an̄] ⊗̄ Pgen

[an̄]a

]
(z, Ea) + δ[an̄]aΓa,[an̄]Pgen

[am̄n̄][an̄](z, Ea)

+ δ[am̄n̄][an̄]Γz·a,[am̄n̄]Pgen
[an̄]a(z, Ea) + δ[an̄]aδ[am̄n̄][an̄]Γa,[an̄]Γa,[am̄n̄]δ(1− z)

}
F

(z·[am̄n̄])b
LM

z

〉
.

(B.13)

Finally, we include the sum over the unresolved partons m, n, which allows us to write the i = a term of Eq. (B.4)

as

1

2

∑
n

∑
mn

〈
SmSnCamCan∆

(mn)F ab
LM[BN+2,n(m, n)]

〉
= [αs]

2
∑
n

〈
Γ2
a,fa

2ϵ2
F ab
LM[BN,n]

〉
+

[αs]
2

2ϵ2

∑
x

∑
n

〈[∑
y

[
Pgen
xy ⊗̄ Pgen

ya

]
+Gxa

]
⊗ F xb

LM[BN,n]

〉
+

[αs]
2

ϵ

∑
x

∑
n

〈
Pgen
xa ⊗

[
Γa,x

ϵ
F xb
LM[BN,n]

]〉
,

(B.14)
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where

Gxa(z, Ea) ≡
∑
y

[
δayΓa,yPgen

xy (z, Ea)− δxyΓz·a,xPgen
ya (z, Ea)

]
=

[
Γa,fa − Γz·a,x]Pgen

xa (z, Ea) . (B.15)

Note that we already encountered the function G in Eq. (5.15) of Ref. [66] in the case of identical flavors, i.e. x = a.

Eq. (B.15) generalizes the earlier definition to the case of different flavors, x ̸= a. Eq. (B.14) corresponds to the

initial-state contribution in Eq. (4.30).

Final-state

We proceed with the calculation of the expression in Eq. (B.4) for the final-state case, i.e. i ∈ BN+2,n(m, n). We

first consider the action of the operator Cin. It yields〈
SnSmCimCin∆

(mn)F ab
LM[... , i, ...|m, n]

〉
=

[αs]

ϵ

Γ2(1− ϵ)

Γ(1− 2ϵ)

〈
SmC[in]m∆

(m)(2E[in]/µ)
−2ϵγ22

z,[in]→in(L[in])F
ab
LM[... , [in], ...|m]

〉
.

(B.16)

Eq. (B.16) has the form of an NLO-like expression with the second collinear operator yet to be applied. The

quantities γ22 are defined in Eq. (A.20) of Ref. [66]. They depend on the logarithm L[in] = log
(
Emax/E[in]

)
, where

E[in] = Ei + En. Furthermore, in Eq. (B.16) we have left the lists of resolved partons in the arguments of the two

FLM functions implicit.

Before applying the second collinear operator, it is convenient to rewrite γ22 in a way that separates the terms

that depend on the energy E[in] from those that do not. Substituting

γ22
z,[in]→in(L[in]) =

(
γ22
z,[in]→in(0) + δ[in]i

T 2
[in]

ϵ

)
− δ[in]i

T 2
[in]

ϵ

(
Emax

E[in]

)−2ϵ

, (B.17)

into Eq. (B.16), we obtain〈
SnSmCimCin∆

(mn)F ab
LM[... , i, ...|m, n]

〉
=

[αs]

ϵ

Γ2(1− ϵ)

Γ(1− 2ϵ)

〈
SmC[in]m∆

(m)

[
(2E[in]/µ)

−2ϵ

(
γ22
z,[in]→in(0)

+ δ[in]i
T 2

[in]

ϵ

)
− (2Emax/µ)

−2ϵδ[in]i
T 2

[in]

ϵ

]
F ab
LM[... , [in], ...|m]

〉
.

(B.18)

At this point, we can apply the collinear operator C[in]m, which identifies the clustered parton [imn] with energy

E[imn] = Em/(1− z) = E[in]/z, where E[imn] = Ei +Em +En. Under its action, the term in Eq. (B.18) multiplying

(2E[in]/µ)
−2ϵ gives rise to an anomalous dimension of the type γ42, rather than the NLO-like γ22, due to the

additional factor z−2ϵ contained in E−2ϵ
[in] = z−2ϵE−2ϵ

[imn]. The term in Eq. (B.18) that does not contain E[in], on the

other hand, leads to the usual anomalous dimension γ22. Therefore, we find

〈
SnSmCimCin∆

(mn)F ab
LM[... , i, ...|m, n]

〉
=

[αs]
2

ϵ2

〈[(
2E[imn]

µ

)−2ϵ
Γ2(1− ϵ)

Γ(1− 2ϵ)

]2[(
γ22
z,[in]→in(0) + δ[in]i

T 2
[in]

ϵ

)
× γ42

z,[imn]→[in]m(L[imn])− δ[in]i
T 2

[in]

ϵ
e−2ϵL[imn]γ22

z,[imn]→[in]m(L[imn])

]
F ab
LM[... , [imn], ...]

〉
.

(B.19)

Finally, to simplify the expression in Eq. (B.19), we introduce a quantity which is the final-state counterpart of

the G-function defined in Eq. (B.15). It reads11

G[imn]

∣∣ f(z),[in]→in

f̃(z),[imn]→[in]m
=

[(
2E[imn]

µ

)−2ϵ
Γ2(1− ϵ)

Γ(1− 2ϵ)

]2[
γ22
f(z),[in]→in(L[imn]) + δ[in]i

T 2
[in]

ϵ
e−2ϵL[imn]

]
×
[
γ42
f̃(z),[imn]→[in]m

(L[imn])− γ22
f̃(z),[imn]→[in]m

(L[imn])

]
.

(B.20)

11The final-state G-function has already appeared in Eq. (5.21) of Ref. [66].
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Using this quantity, we can finally rewrite Eq. (B.16) as

〈
SnSmCimCin∆

(mn)F ab
LM[... , i, ...|m, n]

〉
=

[αs]
2

ϵ2

〈[
Γ[imn],[in]→in Γ[imn],[imn]→[in]m

+G[imn]

∣∣z,[in]→in
z,[imn]→[in]m

]
F ab
LM[... , [imn], ...]

〉
.

(B.21)

The expression in Eq. (B.21) can now be inserted into Eq. (B.4). Summing over the indices i, m, and n, and

relabeling the clustered parton [imn] as i, we obtain the final result

1

2

∑
n

∑
mn

∑
i∈Hf

〈
SmSnCimCin∆

(mn)F ab
LM[BN+2,n(m, n)]

〉
=

[αs]
2

2ϵ2

∑
n

∑
i∈BN,n

〈[
δig

[
Γ2
i,g + 2nf Γi,g→qq̄

(
Γi,q − Γi,g

)
+Gi

∣∣g
z,g→gg + 2nf Gi

∣∣q
z,g→qq̄

]

+

nf∑
ρ=1

(
δiqρ + δiq̄ρ

)[
Γ2
i,q + Γi,q→gq

(
Γi,g − Γi,q

)
+Gi

∣∣q
z,q→qg +Gi

∣∣g
z,q→gq

]]
F ab
LM[BN,n]

〉
.

(B.22)

We note that, in order to obtain Eq. (B.22), we used the two properties of the G-functions described in Eqs (5.22,

5.23) of Ref. [66]. Combining Eq. (B.22) with Eq. (B.14) and the analogous result for the initial-state parton b gives

the final formula for the triple-collinear partitions, shown in Eq. (4.30).

C Integrated triple-collinear counterterms

In Section 4.2.2 we explained why the integrated triple-collinear terms computed in Ref. [74] need to be modified

to accommodate our current setup. The goal of this Appendix is to make the relationship between the two results

explicit.

The required triple-collinear contributions read (c.f. Eq. (4.33))∑
n

∑
i∈H

〈
SmnSnΩ

(i)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
, (C.1)

where the operator Ω
(i)
2 is defined as

Ω
(i)
2 =

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]Cmn,i ω

mi,ni . (C.2)

The functions FLM[m, n] in Eq. (C.1) are given in Eqs (4.4 – 4.7).

We first consider the splitting g∗ → ggg. In this case, only the function F ab
LM[BN+2,n(mg, ng)] in Eq. (4.4)

contributes, and we further require that the hard parton i is a final-state gluon. In this case, the unresolved partons

m and n are energy-ordered, and the damping factor ∆(mn) is included. This is identical to what has been done in

Ref. [74], so that no modifications are needed. Hence, we write

∑
n

∑
i∈Hf

δig

〈
SmnSnΩ

(i)
2 ∆(mn)ΘmnF

ab
LM[BN+2,n(mg, ng)]

〉
=

∑
n

∑
i∈BN,n

δig
[αs]

2

ϵ

〈
ΓTC
i,g→ggg F

ab
LM[BN,n]

〉
. (C.3)

Here, Hf is the list of the hard final-state particles in BN+2,n(mg, ng),

ΓTC
i,g→ggg = (Ei/µ)

−4ϵϵFSR5(Ei) , (C.4)

and FSR5 is defined in Table 2 of Ref. [74].
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Next, we consider the splitting g∗ → gqτ q̄τ . As already discussed in Section 4.2.2, this triple-collinear final-state

contribution reads∑
n

∑
i∈Hf

〈
SmnSnΩ

(i)
2 ∆(mn)

nf∑
τ=1

[
δigΘmnF

ab
LM[BN+2,n(m(qτ , nq̄τ ))] + δiq̄τF

ab
LM[BN+2,n(mqτ , ng)]

+ δiqτF
ab
LM[BN+2,n(mq̄τ , ng)]

]〉
=

∑
n

∑
i∈BN,n

δig
[αs]

2

ϵ

〈
2nfΓ

TC
i,g→gqq̄ F

ab
LM[BN,n]

〉
.

(C.5)

The integrated triple-collinear function ΓTC
i,g→gqq̄ is written as

ΓTC
i,g→gqq̄ = (Ei/µ)

−4ϵϵ F̃SR4(Ei) , (C.6)

where the function F̃SR4 in Eq. (C.6) is related, but is not identical to the function FSR4 in Ref. [74]. The difference is

due to the fact that in the current framework we do not employ the energy-ordering in all FLM functions in Eq. (C.5).

To match the two calculations, we multiply the second and third terms on the right-hand side of the first line of

Eq. (C.5) with 1 = Θmn + Θnm. This allows us to identify the quantity computed in Ref. [74] and an additional

term that reads

−
∑
n

∑
i∈Hf

〈
ΘnmSnΩ

(i)
2 ∆(mn)

nf∑
τ=1

[
δiq̄τF

ab
LM[BN+2,n(mqτ , ng)] + δiqτF

ab
LM[BN+2,n(mq̄τ , ng)]

]〉
. (C.7)

Compared to the integral of the triple-collinear splitting function, this term is simpler to compute because it contains

an operator Sn. Combining FSR4 from Ref. [74] with the above term, we obtain the function F̃SR4 that appeared

in Eq. (C.6).

The two contributions in Eqs (C.4, C.6) can be combined in a single term (cf. Eq. (4.37))

ΓTC
i,g = ΓTC

i,g→ggg + 2nfΓ
TC
i,g→gqq̄ , (C.8)

which defines the triple-collinear subtraction term for a final-state gluon leg.

Cases where the mother parton is a quark or an antiquark can be analyzed in a similar manner. For definiteness,

we consider the quark splittings q∗ρ → qρgg and q∗ρ → qρqτ q̄τ , where qτ can have any flavor, including that of qρ. We

can write the term due to the first splitting as

∑
n

∑
i∈Hf

〈
SmnSnΩ

(i)
2 ∆(mn)

nf∑
ρ=1

[
δiqρΘmnF

ab
LM[BN+2,n(mg, ng)] + δigF

ab
LM[BN+2,n(mqρ , ng)]

]〉
=

∑
n

∑
i∈BN,n

nf∑
ρ=1

δiqρ
[αs]

2

ϵ

〈
ΓTC
i,q→qgg F

ab
LM[BN,n]

〉
,

(C.9)

where

ΓTC
i,q→qgg = (Ei/µ)

−4ϵϵ F̃SR1(Ei) . (C.10)

This time F̃SR1 differs from FSR1 of Ref. [74] both due to the use of energy-ordering, and because the latter was

calculated without a damping factor, unlike the term in Eq. (C.9).

The last final-state splitting that we need to consider is q∗ρ → qρqτ q̄τ . In this case, many contributions come

from the terms in Eqs (4.5 – 4.7) that, for simplicity, we do not write. We collect these terms and find that

ΓTC
i,q→qq′q̄′ = (Ei/µ)

−4ϵ ϵ

2

[
FSR3(Ei) + 2nf F̃SR2(Ei)

]
, (C.11)

where the function F̃SR2 can be obtained similarly to F̃SR1, while FSR3 can be taken directly from Ref. [74]. We

note that both functions FSR2 and FSR3 were previously defined with no damping factors but with energy-ordering
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Table 2: Functions collected in the ancillary file TripleCollinearSplittings.m. The first column identifies the

functions; the second indicates splittings that contribute to each function; the third provides the names of the

functions in the ancillary file. We note that, in the listed splittings, the sum over the flavor index τ runs over the

interval τ ∈ [1, nf ] and accounts for the appearance of nf prefactors. For initial-state radiation, such an nf factor

can only arise if the incoming parton and the parton entering the hard scattering are the same. Therefore, in the

case of the function PTC
qq′ , since q ̸= q′, no contribution proportional to nf arises.

Integrated triple-collinear subtraction functions
collected in TripleCollinearSplittings.m

Function Splitting Name in the ancillary file

Initial-state splitting functions

PTC
gg (z, E) g → ggg∗ +

∑
τ (qτ q̄τ )g

∗ PTCgg[z ,En ]

PTC
gq (z, E) q → qgg∗ PTCgq[z ,En ]

PTC
qq (z, E) q → ggq∗ +

∑
τ (qτ q̄τ )q

∗ PTCqq[z ,En ]

PTC
qg (z, E) g → gq̄q∗ PTCqg[z ,En ]

PTC
qq̄ (z, E) q → qqq̄∗ PTCqqb[z ,En ]

PTC
qq′ (z, E) q → qq̄′q′

∗
with q ̸= q′ PTCqqp[z ,En ]

Final-state splitting functions

ΓTC
g (E) g∗ → ggg +

∑
τ g(qτ q̄τ ) ΓTCg[En ]

ΓTC
q (E) q∗ → qgg +

∑
τ q(qτ q̄τ ) ΓTCq[En ]

ΓTC
q̄ (E) q̄∗ → q̄gg +

∑
τ q̄(qτ q̄τ ) ΓTCqb[En ]

for all terms. However, for the latter quantity, one can prove that the two definitions are in fact equivalent. We also

note that Eq. (C.11) contains an extra factor 1/2 with respect to Eq. (C.10), which arises because this factor has

been incorporated into the definition of FSR1, but not into that of FSR2,3, as can be seen in Table 2 of Ref. [74].

Similarly to the gluon case, the two contributions in Eqs (C.10, C.11) can be combined in a single term (cf.

Eq. (4.38))

ΓTC
i,q = ΓTC

i,q→qgg + ΓTC
i,q→qq′q̄′ , (C.12)

which defines the triple-collinear subtraction term for a final-state quark leg. We note that the contribution for the

antiquark final state leg is identical to the one just described, so that ΓTC
i,q̄ = ΓTC

i,q .

Finally, we consider the initial-state triple-collinear limits. These cases are somewhat simpler because a) damping

factors ∆(mn) always reduce to 1 and b) as reported in Table 1 of Ref. [74], energy ordering was only used there

for cases with double-soft singularities. This is identical to what we do in this paper, so that all result of Ref. [74]

pertinent to initial-state limits can be used. We reorganize these terms and write the result for leg i = a as∑
n

〈
SmnSnΩ

(a)
2 ∆(mn)

[
ΘmnFab,DS

LM [m, n] + Fab,��DS
LM [m, n]

]〉
=

∑
x

∑
n

[αs]
2

ϵ

〈
PTC
xa ⊗ F xb

LM[BN,n]
〉
. (C.13)

The PTC
xy functions have the following properties

PTC
gq̄ρ (z, Ei) ≡ PTC

gqρ (z, Ei) ≡ PTC
gq (z, Ei) ,

PTC
q̄ρg(z, Ei) ≡ PTC

qρg(z, Ei) ≡ PTC
qg (z, Ei) ,

PTC
q̄ρq̄ρ(z, Ei) ≡ PTC

qρqρ(z, Ei) ≡ PTC
qq (z, Ei) , (C.14)
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PTC
q̄ρqρ(z, Ei) ≡ PTC

qρq̄ρ(z, Ei) ≡ PTC
qq̄ (z, Ei) ,

PTC
q̄ρqυ (z, Ei) ≡ PTC

qρq̄υ (z, Ei) ≡ PTC
q̄ρq̄υ (z, Ei) ≡ PTC

qρqυ (z, Ei) ≡ PTC
qq′ (z, Ei) , with q ̸= q′ ,

where quark flavors ρ, v are assumed to be different. In terms of quantities computed in Ref. [74], the functions on

the right-hand side of the above equation read

PTC
gg (z, Ei) = (Ei/µ)

−4ϵϵ

[
ISR2(z, Ei) +

2nf

2
ISR7(z, Ei)

]
,

PTC
gq (z, Ei) = − (1− ϵ)CF

TR
(Ei/µ)

−4ϵϵ ISR8(z, Ei) ,

PTC
qg (z, Ei) = − TR

(1− ϵ)CF
(Ei/µ)

−4ϵϵ ISR9(z, Ei) ,

PTC
qq (z, Ei) = (Ei/µ)

−4ϵϵ

[
ISR1(z, Ei) +

2nf

2
ISR3(z, Ei) + ISR5(z, Ei) + ISR4(z, Ei)

]
,

PTC
qq̄ (z, Ei) = (Ei/µ)

−4ϵϵ

[
ISR6(z, Ei) + ISR4(z, Ei)

]
,

PTC
qq′ (z, Ei) = (Ei/µ)

−4ϵϵ ISR4(z, Ei) .

(C.15)

The functions ISR1...9 are listed in Table 1 of Ref. [74].
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