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Abstract

We study a class of supersymmetric models where the strong CP problem is
solved through spontaneous CP violation, carried out by a complex scalar field
that determines the Yukawa couplings of the theory. Assuming that one real
component of this field - the CPon - is light, we examine the conditions un-
der which it provides a viable Dark Matter candidate. The CPon couplings
to fermions are largely determined by the field-dependent Yukawa interactions,
and induce couplings to gauge bosons at 1-loop that are suppressed by a special
sum rule. All couplings are suppressed by an undetermined UV scale, which
needs to exceed 1012 GeV in order to satisfy constraints on excessive stellar
cooling and rare Kaon decays. The CPon mass is limited from below by 5th
force experiments and from above by X-ray telescopes looking for CPon decays
to photons, leaving a range roughly between 10 meV and 1 MeV. Everywhere
in the allowed parameter space the CPon can saturate the observed Dark Mat-
ter abundance through an appropriate balance of misalignment and freeze-in
production from heavy SM fermions.

∗E-mail: feruglio@pd.infn.it
§E-mail: robert.ziegler@kit.edu

ar
X

iv
:2

41
1.

08
10

1v
1 

 [
he

p-
ph

] 
 1

2 
N

ov
 2

02
4



1 Introduction

The nature of Dark Matter (DM) represents one of the most intriguing problems in contem-
porary physics [1]. Interpreted in terms of a new still undetected particle, DM has a variety
of possible candidates, which have been the target of numerous experimental searches. For
decades WIMPS have represented a paradigm, supported by both the naturalness in repro-
ducing the DM abundance and by the belief that low-energy supersymmetry could have
offered the solution to the hierarchy problem. While the WIMP search is still very active
today, the failure to detect supersymmetric partners at the LHC and the increasingly se-
vere constraints on the WIMPS-nucleon cross-section have gradually turned the attention
to other candidates.

One of the most appealing possibilities is the QCD axion [2, 3], designed to solve the
strong CP problem [4]. The axion is the pseudo-Goldstone boson of a global U(1)PQ
anomalous symmetry. If infrared-dominated by the QCD interactions, its dynamics relaxes
the physical CP-violating θ̄ parameter to zero, whatever amount of CP violation might be
stored in the quark mass matrices. In a wide range of parameter space, the axion is a
viable candidate for cold DM, whose abundance is guaranteed, among other possibilities,
by the misalignment mechanism [5–7]. A robust program of experimental axion searches
is currently planned or underway [8]. A weak point of the axion solution to the strong CP
problem is the quality problem, i.e. its excessive sensitivity to ultra-violet contributions
to the energy density, particularly threatening in the context of a fundamental theory
including gravity [9]. Also, the axion solution does not shed any light on the origin of
fermion masses and mixing angles, unless the U(1)PQ symmetry is embedded in a larger
flavor symmetry group explaining Yukawa hierarchies, see e.g. Refs. [10–14].

Recently, a new class of solutions to the strong CP problem has been proposed in
Refs. [15,16]. The ultraviolet theory is assumed to enjoy CP-invariance, spontaneously bro-
ken to deliver a nontrivial CKM phase while keeping θ̄ very small. Unlike the Nelson-Barr
solution [17,18], which also relies on the spontaneous breaking of CP, no additional heavy
quark sector is required. Moreover, in their minimal implementation, these solutions as-
sume a supersymmetric realization where the field content of the Minimal Supersymmetric
Standard Model (MSSM) is minimally augmented to include a single extra gauge-invariant
chiral supermultiplet τ 1. A distinctive feature of the new solutions is that they provide a
strict link between the origin of the fermion mass spectrum and the CP properties of both
the weak and strong sectors of the theory.

All physical quantities depend on τ , whose vacuum expectation value (VEV) is the order
parameter for the breaking of an anomaly-free flavour gauge symmetry that incorporates
CP. The strong phase θ̄ vanishes in the supersymmetric limit, independently on the value
of τ that determines the observed fermion masses, mixing angles and the weak CKM phase.
If the mechanism of supersymmetry breaking does not introduce new physical phases or

1Another class of solutions of the strong CP problem relying on spontaneous CP violations makes use
of discrete symmetries within a multiple Higgs doublet extension of the SM [19–21].
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new flavour patterns, the observable θ̄ can remain very small. Supersymmetric particles
have not been detected so far and an interesting possibility that we analyze in this work
is that the only low-energy relict of this framework consists of a single spin-zero particle,
here called CPon (pronounced as cheap-on), which can provide a viable DM candidate if
sufficiently light.

The CPon shares several features with a CP-violating axion-like particle (ALP), with
some important distinctions. Its interactions with all SM particles are non-renormalizable,
suppressed by a large UV scale Λ taken as a free-parameter. For a sufficiently small mass
mξ < MeV and large Λ, the CPon can only decay into photons with a lifetime that
easily exceeds the age of the Universe and can satisfy the stringent constraints on decaying
DM from X-ray telescopes. Crucial for this possibility is a particular sum rule, which
prevents the appearance of the leading dimension-5 operators describing the couplings of
the CPon to the electromagnetic and gluon field strengths, of both CP-conserving and
CP-violating type. Therefore the CPon couplings to photons are additionally suppressed
by a factor at least of order m2

ξ/m
2
e, which results in a decay width to photons scaling as

Γξ→γγ ∝ α2m7
ξ/(Λ

2m4
e). This allows to avoid not only the stringent bounds on decaying

DM from X-ray telescopes, but also renders the limits from photon-CPon conversion in
helio- and haloscopes much less effective than in the axion case. The CPon can be produced
in the early universe by misalignment and thermal freeze-in [22] in a wide region of the
parameter space (mξ,Λ), similar to anomaly-free ALPs [23, 24]. The allowed region is
compact: the CPon mass mξ is bounded from below by precision tests of the gravitational
inverse square law, and from above by limits on decaying DM. The UV scale Λ is limited
from above by the Planck scale and bounded from below from limits on stellar cooling and
SM decays with final state CPons. These limits depend on the CPon-fermion interactions,
which are strictly related to the properties of the fermion mass spectrum, with some degree
of model-dependence on the level of O(1 − 100) numbers.

In our analysis we keep the discussion as general as possible. Most of our results
rely on few general properties and, when quantitative implications are derived, they make
use of reasonable estimates based on dimensional analysis. Nevertheless, the most nat-
ural realization of the above scenario is within the framework of anomaly-free modular
invariant flavour symmetries [15, 16, 25, 26]. Modular-invariant scalar potentials can de-
liver CP-violating minima [27–31] Moreover, modular invariance, CP-invariance, and field
dependence of observable quantities are all features expected in most 4-dimensional super-
string compactifications, which can also allow for the possibility of a light scalar in the
moduli mass spectrum, especially for ALP candidates [32–37]. In the final part of this
work, we will analyze the prediction of a specific modular and CP invariant model, whose
free parameters are fully determined by fitting fermion masses, mixing angle and the CKM
phase.

In the context of modular invariant models, other DM candidates have been proposed,
for instance a light axion [37,38]. Another possible DM candidate is the lowest mass-state
Dirac fermion, a combination of the Weyl components of driving and flavon supermulti-
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plets [39]. Heavy moduli can play the role of DM portal, as discussed in Ref. [40]. In
Nelson-Barr solutions to the strong CP problem, ultralight DM candidates have recently
been studied in Ref. [41]. Models unrelated to the strong CP problem, where a spin-zero
component of the field responsible for spontaneous CP violation is a viable DM candidate
have been discussed in Ref. [42].

This work is organized as follows. In Section 2 we discuss a broad class of models that
solve the strong CP Problem by spontaneous CP violation, and introduce the CPon as the
light real scalar within the CP-breaking field. Readers who are mainly interested in the
CPon couplings to SM field can directly go to Eq. (2.12). In Section 3 we discuss vari-
ous aspects of CPon phenomenology, in particular constraints from X-ray telescopes, rare
flavor-violating SM decays, long range forces, star cooling and the neutron EDM. In Sec-
tion 4 we discuss CPon production in the Early Universe by misalignment and freeze-in,
and associated constraints from Warm DM. In Section 5 we specify two explicit bench-
mark scenarios, and discuss the resulting parameter space, before concluding in Section 6.
In Appendix A we detail a model with modular-invariance as a complete framework for
predicting CPon interactions.

2 A class of models solving strong CP

Our framework consists of a supersymmetric and CP-invariant theory, with the field con-
tent of the MSSM minimally extended to include a dimensionless gauge-invariant chiral
supermultiplet τ [15, 16] 2. The theory depends on the Kähler potential K, a real gauge-
invariant function of the fields and their conjugates, the superpotential w and the gauge
kinetic functions fα (α = 1, 2, 3), both gauge-invariant analytic functions of the chiral su-
permultiplets. All the physical quantities such as masses and coupling constants depend
on the vacuum expectation value (VEV) of τ . Under CP, τ transforms as 3

τ
CP−−→ −τ̄ , (2.1)

so that real values of τ VEV are required to generate the CKM phase, via a spontaneous CP
breaking. Before supersymmetry breaking, the physical angle θ̄, invariant under colored
fermion chiral rotations, is

θ̄ = −8π2Imf3(τ) + arg detYU (τ)YD(τ),

where YU,D(τ) are the matrices of Yukawa couplings in the up and down sectors 4. It has
been shown that, by requiring invariance of the theory under a suitable gauged flavour

2More such multiplets can be present, in general. Here we focus on the most economic realization where
a single multiplet τ occurs.

3Up to possible discrete gauge symmetries of the theory acting on τ non-trivially. An equivalent formu-
lation makes use of the field T = −iτ , transforming as T → T̄ under CP.

4Notice that arg detMUMD = arg detYU (τ)YD(τ), for any Kähler potential K, MU,D denoting the
quark mass matrices [43,44].
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symmetry, we can achieve the conditions [15,16]:

fα(τ) = cα (α = 1, 2, 3)

detYA(τ) = cA (A = U,D,E) (2.2)

where cα and cA are constants, required to be real by CP invariance. As a consequence,
up to supersymmetry-breaking contributions, if cUcD > 0 we get θ̄ = 0. Assuming a
mechanism of supersymmetry breaking that does not generate either new phases or new
flavour patterns, at low energy θ̄ is only corrected by tiny SM contributions [45, 46] and
satisfies the experimental bounds. At the same time, a nontrivial dependence of YU,D(τ) on
τ can deliver the observed CKM phase. No extra matter multiplets charged under the SM
gauge group are needed and the real part of a single complex spin-zero field τ is sufficient
to spontaneously break CP.

Within this general setup, we consider a scenario where the masses of the superpart-
ners, including the fermionic component of the τ supermultiplet, are way bigger than the
electroweak scale and their effects decouple at low energies. At the same time, we allow
for the possibility that one of the two spin-zero components of the τ multiplet remains
light and provides a Dark Matter (DM) candidate. From fα = cα, we see that there are
no tree-level couplings between τ and the SM gauge bosons. These can arise from loop
corrections. All the relevant tree-level interactions are of Yukawa type.

To identify such interactions, we start from the simple case of canonical Kähler poten-
tial. We expand the Yukawa term around the vacuum ⟨τ⟩, keeping the first order in the
fluctuation δτ/Λ, Λ representing a convenient UV scale. Working in the limit of massless
neutrinos, and neglecting a possible dependence of the Higgsino mass on τ , we get:

−
∑
A

ψc
AamAabψAb −

δτ

Λ

∑
A

ψc
AagAabψAb + ... , (2.3)

where vE = vD. The sum extends over the three charge sectors (A = U,D,E) and, by
denoting derivatives by an index, we have defined

mAab = ⟨Y A
ab(τ)⟩vA gAab =

〈
Y A
τab(τ)

〉
vA. (2.4)

The interactions of the complex field δτ are controlled by the scale Λ and by the matrices
gA, which, as a consequence of Eq. (2.2), satisfy the sum rule:

tr(m−1
A gA) = 0 . (2.5)

This sum rule is independent on the basis chosen for the fermion fields and plays a crucial
role for phenomenology. In the following we further analyze its origin and show that it
holds within a more general class of Kähler potentials.
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2.1 A more general class of models

Without losing generality and in a matrix notation, the most general Kähler potential for
quark and lepton supermultiplets φA and φc

A can be parametrized as∑
A

φ̄c
AΩc†

AΩc
Aφ

c
A +

∑
A

φ̄AΩ†
AΩAφA , (2.6)

where Ωc
A and ΩA are matrices that depend on both τ and τ̄ . By expanding the Kähler

metric around the τ VEV, we can recover a canonical Kähler potential up to terms of
second order in the fluctuations δ and δ̄ through the transformation

φc
A → ⟨Ωc−1

A ⟩ (1− ⟨Hc
A⟩δ)φc

A φA → ⟨Ω−1
A ⟩ (1− ⟨HA⟩δ)φA , (2.7)

where

Hc
A = Ωc

AτΩc−1
A + Ωc†−1

A (Ωc
Aτ̄ )†, HA = ΩAτΩ−1

A + Ω†−1
A (ΩAτ̄ )† . (2.8)

In the new basis, the mass matrices mA and couplings gA of Eq. (2.3) read

mA =
〈

Ωc−1T
A Y AΩ−1

A

〉
vA ,

gA =
〈

Ωc−1T
A Y A

τ Ω−1
A

〉
vA − (⟨HcT

A ⟩mA +mA⟨HA⟩) , (2.9)

When Ωc
A = ΩA = 1 the Kähler potential is canonical and we recover the previous case.

In the general case, the first contribution to gA is analogous to the one in Eq. (2.4) and
automatically satisfies the sum rule of Eq. (2.5). The second contribution is due to the
nontrivial dependence of the Kähler metric on τ . It also satisfies Eq. (2.5), provided

det ΩA(τ, τ̄) = det Ωc
A(τ, τ̄) = 1 , (2.10)

which represents the condition for the transformation (2.7) to be non-anomalous and to
leave the gauge kinetic functions fA unaffected. Important examples of this more general
class are modular invariant theories, which will be further discussed in Section 5.2 and Ap-
pendix A. In anomaly-free modular invariant theories, the condition (2.10) can be naturally
satisfied.

2.2 CPon interactions

The complex field δτ describes two real mass eigenstates, which are linear combinations
of δτ and δτ̄ . In the remaining part of this work, we assume that one of the two mass
eigenstates is very heavy, with a mass of order Λ, while the other mass eigenstate, which
we denote by ξ and refer to as CPon, has a mass mξ ≪ Λ that we treat as a free parameter.
An angle α (with 0 ≤ α < π) defines the direction ξ in the (δτ, δτ̄) plane:

ξ =
1√
2

(eiαδτ + e−iαδτ̄) . (2.11)
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After moving to the basis where the fields are canonically normalized, in a four-component
notation, the CPon interactions read:

LF = iΨ̄Aγ
µDµΨA − Ψ̄A m̂AΨA − ξ

Λ
Ψ̄A

(
yAS + i yAP γ5

)
ΨA

(
1 +

h√
2v

)
+ . . . (2.12)

for A = U,D,E and the dots stand for terms of order ξ2/Λ2. As we will see, Λ is bound to
be very large, and terms of order ξ2/Λ2 can be safely neglected. We also show the CPon
couplings to fermions and the Higgs boson h, which are relevant for CPon production in
the early universe (in our conventions v = 174 GeV). The fermion couplings are hermitian
matrices in flavor space and given by

yAS =
1

2
√

2
(e−iαĝA + eiαĝ†A) , yAP =

i

2
√

2
(e−iαĝA − eiαĝ†A) , (2.13)

where the hat denotes matrices evaluated in the mass basis 5. In general, both scalar and
pseudoscalar interactions of ξ are present and the CPon behaves as a CP-violating ALP,
with an important distinctive feature that we discuss in the next sections.

3 CPon Phenomenology

In this Section we analyze the possible CPon decay channels and rates, a key aspect to
account not only for CPon stability but also for the bounds on decaying DM coming from
CMB data and indirect X-ray and gamma-ray searches. We also discuss CPon production
through scattering and decay processes initiated by SM particles, which is particularly
relevant for determining the CPon abundance in the early universe and assessing constraints
from rare flavour-violating decays with the CPon as missing energy. Finally, we analyze
the limits on CPon couplings to ordinary matter (nucleons and electrons) from tests of the
gravitational inverse square law and star cooling.

3.1 CPon decays

If the CPon mass is above the decay threshold into an electron-positron pair, the corre-
sponding decay rate scales approximately as Γξ→ee ∼ m2

emξ/8πΛ2. If this is the dominating

5The hat denotes the quantities evaluated in the mass basis, reached through the unitary transformation:

ΨA =

 ψc
A

ψA

 →

 UAc 0

0 UA

 ψc
A

ψA

 (A = U,D,E),

such that
UT

AcmAUA = m̂A UT
AcgAUA = ĝA ,

where m̂ is diagonal and positive definite.
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decay channel, the CPon has a lifetime of about 1022 sec × (Λ2/M2
Pl) × (10 MeV/mξ). For

Λ close to the Planck scale the CPon is cosmologically stable, but in conflict with CMB
data that set a lower bound of about 1024 sec on the lifetime of a DM candidate decaying
into e+e−, in a mass range from 1 MeV to 1 TeV [47]. We are thus led to restrict the CPon
mass mξ to values smaller than about 1 MeV. Thus, in the limit of massless neutrinos, the
only decay channel is into two photons 6.

At the one-loop order, the amplitude for ξ → γγ receives two contributions: one from
a loop of electrically charged fermions and one from a loop of their scalar superpartners.
If superpartners are very heavy, the latter can be neglected and we get (in agreement with
e.g. Ref. [48–50]):

Γξ→γγ =
α2

1024π3
m3

ξ

Λ2

(
|c|2 + |c̃|2

)
, (3.1)

where 7:

c = − 7

45

∑
A

NA
c Q

2
A

∑
a

yASaa
mAa

m2
ξ

m2
Aa

+ O

(
m4

ξ

m4
Aa

)

c̃ = −1

3

∑
A

NA
c Q

2
A

∑
a

yAPaa

mAa

m2
ξ

m2
Aa

+ O

(
m4

ξ

m4
Aa

)
. (3.2)

Compared to the leading part of the amplitude, the contribution of the scalar superpartners
is suppressed by approximately a factor (m2

ξ/m
2
SUSY)(m2

top/(m
2
e), where mSUSY denotes a

representative superpartner mass. In Eq. (3.2), the sum over the quark sector is restricted
to the heavy flavours c, b and t. The light quarks contribution can be roughtly estimated by
the replacement m2

ξ/m
2
u,d,s → m2

ξ/Λ
2
QCD. Thus, the sums are likely to be saturated by the

lightest charged fermion, the electron. The rate scales as α2m7
ξ/m

4
eΛ

2. This carries an extra

suppression factor m4
ξ/m

4
e compared to the behavior expected on dimensional grounds,

α2m3
ξ/Λ

2, similar to anomaly-free ALP models [23, 51–54]. Indeed, when expanded in
powers of mξ, the leading order contribution to the decay amplitude is proportional either
to ∑

A

NA
c Q

2
Atr(m−1

A gA), (3.3)

or to its complex conjugate. Due to the sum rule in Eq. (2.5), this quantity vanishes,
resulting in an extra m2

ξ/m
2
Aa suppression of the decay amplitude. The CPon-gluon-gluon

amplitude features an analogous suppression.

6In case of massive neutrinos, the CPon will decay mainly to neutrinos for CPon masses roughly above
60 keV. Still, its total lifetime is always larger than 1021sec for mξ ≤ 1MeV [23].

7In this section we omit the hat symbol to denote fermion masses.
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3.2 CPon production

Given the interactions of the CPon with SM fermions in Eq. (2.12), a light CPon can be
produced from SM decays and scatterings, as well as from decays and scatterings of scalar
superpartners. The latter processes are suppressed with respect to the former by at least
mf/mSUSY, and most relevant for CPon production are flavor-violating decays fa → fbξ
and flavor-conserving 2 → 2 scattering processes faγ → faξ and fafa → γξ, and their
QCD counterparts. While the scattering processes are only relevant for CPon production
in the early universe, flavor-violating decays set very stringent bounds on CPon couplings,
to be discussed in the next section. Here we collect the relevant expressions for the decay
rates and cross-sections.

Production from SM decays From the general Lagrangian of Eq. (2.12) the decay
rate for fAa → fAb ξ reads8 in the limit mξ = 0

Γfa→fbξ =
ma

16π

(
1 −

m2
b

m2
a

)[
|ySba|2

Λ2

(
1 +

mb

ma

)2

+
|yPba|2

Λ2

(
1 − mb

ma

)2
]
, (3.4)

valid for charged lepton decays and flavour-violating transitions among heavy quarks. Tak-
ing also mb ≪ ma, one obtains

Γfa→fbξ =
ma

64π

|gab|2 + |gba|2

Λ2
, (3.5)

with couplings gab defined in Eq. (2.9).

Production from SM 2 → 2 scattering processes In two-body scattering processes
we only consider the dominant flavor-diagonal channels, with the following cross-sections:

σfaγ→faξ =
αemQ

2
a

8s(1 − x)3

[
y2Saa
Λ2

(
−x4 + 6x3 + 20x2 − 22x− 2(3x+ 1)2 log x− 3

)
+
y2Paa

Λ2
(1 − x)2

(
−x2 + 4x− 2 log x− 3

)]
, (3.6)

σfafa→γξ =
αemQ

2
a

s

[
y2Saa
Λ2

(
4x√

1 − 4x
+ (1 − 4x) tanh−1(

√
1 − 4x)

)
+
y2Paa

Λ2

tanh−1(
√

1 − 4x)

1 − 4x

]
, (3.7)

where x = m2
a/s and Qa denotes the electric charge of fa. In the limit of ySaa = 0

one recovers the expressions for derivatively coupled axions upon appropriate coupling

8We omit the A index, which is the same for initial and final states.
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identification, see e.g. Refs. [24, 55]. The corresponding scattering processes involving
gluons and quarks, σqag→qaξ and σqaqa→ga, are obtained from these results by replacing
αemQ

2
a → αs/6 in σfaγ→faa and αemQ

2
a → 4αs/9 in σfafa→γa. Also relevant is scattering

involving Higgs bosons, which in the limit of
√
s≫ mH ,mf has the cross-sections

σ0fah→faξ = σ0
fafa→hξ

=
y2Saa + y2Paa

64πv2Λ2
=

|gaa|2

128πv2Λ2
, (3.8)

which are not suppressed in the high-energy limit (as long as
√
s ≪ Λ) in contrast to the

ones involving gauge bosons above.
Also flavour-violating sfermion decays and scattering lead to CPon production, but their

decay rates are suppressed compared to the corresponding processes involving fermions.
The ratio of sfermion to fermions decay rates scales as mf/mSUSY, while the ratio of cross-
sections scales as m2

f/s, with s > m2
SUSY. We thus neglect the SUSY contribution in the

following.

3.3 Constraints from CPon decays

Electromagnetic decays of DM particles in the keV-MeV range are constrained by precision
measurements of CMB temperature and polarization anisotropies, which give a bound on
the lifetime of roughly τγγ ≳ 3 × 1024 sec in the mass range of interest [47, 56]. Even
stronger constraints arise from searches for X-ray and low-energy gamma lines, which at
present give limits on the partial width that are roughly three orders of magnitude more
stringent than the CMB, depending on the precise mass range (with a weak dependence
on the DM density profile [57, 58]). Here we use the results collected in Appendix A of
Ref. [23], which summarizes searches that have been conducted with Chandra [59, 60],
Newton-XMM [61], NuStar [62–65], and INTEGRAL [58]. These constraints are expected
to further strenghten with future X-ray telescopes, and we use the optimistic projections
collected in Ref. [23] for GECCO [66], THESEUS [67] and Athena [68–70], which could
probe lifetimes of order 1030 sec for masses in the relevant mass range.

These limits have to be compared to the prediction of the CPon decay rate into photons
in Eq. (3.1), which is expected to be dominated by the electron contribution 9. The total
CPon decay rate into photons is then given by

Γξ→γγ ≈ 1

2.0 × 1038sec

( mξ

keV

)7(1012 GeV

Λ

)2
[(

yPee

me

)2

+ 0.22

(
ySee
me

)2
]
, (3.9)

where we normalized ySee and yPee to the naive expectation in concrete realizations, cf. Sec-
tion 5. This means that present constraints from the CMB and X-ray searches exclude
CPon masses above roughly 100 keV (for UV scales not too too far from present limits),
with some prospects to probe lower masses with future X-ray telescopes, which are however
limited due to the strong dependence of the partial width on the CPon mass.

9This is indeed the case in the explicit scenarios discussed in Section 5 up to tiny corrections.
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3.4 Constraints from flavor-violating SM decays

As shown in Eq. (3.4), flavour-violating CPon couplings can induce rare decays with a CPon
in the final state, which are severely constrained by current bounds on decays with missing
energy (for a recent overview see Ref. [71]). The most important one is the decay K+ →
π+ξ, which is constrained by the NA62 collaboration [72, 73] at the level of BR(K+ →
π+X) ≤ 5 × 10−11 (90% CL), with X being a massless invisible particle. For the present
scenario with a light CPon the predicted rate reads

ΓK+→π+ξ =

∣∣fKπ
+ (0)

∣∣2
16π

|ySds|2

Λ2

m3
K

(ms −md)2

(
1 − m2

π

m2
K

)3

, (3.10)

where fKπ
+ (0) = 0.9698(17) [74–76], resulting in a branching ratio

BR(K+ → π+ξ) ≈ 5 × 10−11

(
3.6 × 1011 GeV

Λ

|ySds|√
mdms

)2

. (3.11)

Here we have normalized ySds to the natural value expected in simple scenarios, see Sec-
tion 5. Since this value can also be easily enhanced by a numerical factor as large as
O(100), we find that typically one needs Λ ≳ 1011 ÷ 1013 GeV in order to be consistent
with NA62 searches. This result is essentially independent of the CPon mass, as long as it
is below the experimental resolution of about few MeV. With the full data set NA62 will
be sensitive to 2-body branching ratios of about 10−11 [77], which gives a projected limit
on the UV scale that is large by roughly factor two.

Another important channel is the decay µ+ → e+X, which has a signature similar to
the SM decay, but with 2-body kinematics. To distinguish signal from background one
can employ polarized decays, which are sensitive to the ratio of scalar to pseudo-scalar
couplings [78]. Unless these couplings are aligned to the SM (i.e. have a V-A structure),
the most stringent constraint comes from the Iodidio experiment at TRIUMF [79], giving
a 90% CL bound BR(µ+ → e+X) ≤ 2.5 × 10−6 for a massless X boson. For complete
alignment the bound would be loosened to BR(µ+ → e+X) ≤ 5.8 × 10−5, according to
searches by the TWIST collaboration [80]. Interestingly, these bounds may be further
strengthtened in the near future at MEG-II [78,81], Mu3e [82] and Mu2e or COMET [83],
probing 2-body branching ratios up to 7 × 10−8 [78]. In our setup, we get from Eq. (3.5)

BR(µ+ → e+X) ≈ 3π2

G2
Fm

4
µ

|geµ|2 + |gµe|2

Λ2
≈ 2.5 × 10−6

(
2.6 × 108

Λ

geµ,µe√
2memµ

)2

, (3.12)

where we have neglected the electron mass and restricted for simplicity to couplings not
aligned to the SM. We also introduced the shorthand notation geµ,µe ≡

√
|geµ|2 + |gµe|2,

which we have again normalized to the natural value expected in simple scenarios. Even
taking into account large numerical enhancement factors, it is clear that the stringent
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constraints on K+ → π+ξ prevent large effects in µ+ → e+ξ (even at future experimental
facilities), unless there is a pronounced hierarchy between the couplings in the quark and
charged lepton sectors. Similar considerations for other sectors, e.g. flavor-violating τ -
or B-meson decays constrained by Belle II [77, 84, 85], show that such processes are also
strongly limited by the large value of Λ needed to suppress b→ d transitions. Moreover, as
we discuss in the next sections, astrophysical constraints yield limits on Λ on the same level
as NA62, but are somewhat less model-dependent since they involve only flavor-diagonal
couplings. Therefore only K → π decays are relevant, especially if the corresponding
couplings involve large numerical enhancement factors.

3.5 Constraints from long range forces

If the CPon is very light and has sufficiently large couplings to ordinary matter, it can
mediate long-range forces that violate the inverse-square law (ISL), or the equivalence
principle (EP), or both. The relevant interactions are the scalar ones, described by the
yAS terms in Eq. (2.12), inducing spin-independent effects. For pseudoscalars interaction,
described by the yAP parameters, spin-dependent effects would arise from the exchange of
ξ in the non-relativistic limit. Even if the mass of the CPon is very small or exactly zero,
it does not mediate a long-range force between unpolarized bodies 10.

In a system of two static test bodies with masses m1,2 at a distance r, the deviation
from the Newton potential (ISL) are usually parametrized by:

δVISL(r) = −Gm1m2

r
αe−r/λ . (3.13)

The exchange of a light CPon gives rise to a modification to the Newton potential:

δV (r) = −
y2SNN

4πΛ2r
N1N2A1A2e

−Mr + . . . , (3.14)

for two test bodies containing N1,2 atoms of mass numbers A1,2 experiencing a scalar
CPon-nucleus interaction

L ⊃ − ξ

Λ
ySNN N̄N , (3.15)

and the dots above stand for additional smaller contributions arising from CPon-electron
interactions. By making use of the identification

λ =
1

mξ
, α =

y2SNN

4πGΛ2u2
, (3.16)

with u = 0.9315 GeV being the atomic mass unit, we can obtain corresponding upper
bounds on the coupling constant ySNN using the experimental limits on λ and α. For our

10Limits form experiments with polarized bodies can be found in Ref. [86]. They are less costraining than
those discussed here.
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purposes most relevant are the constraints in the mass range meV < mξ < 10 eV (or length
scales 100µm < λ < 10 nm), which have been obtained by test of the ISL, while EP tests
are sensitive only to much smaller CPon masses. Here we use the combined limits from
Ref. [86], obtained from results using a torsional oscillator at the Indiana University-Purdue
University Indianapolis (“IUPUI”) [87], torsion balance tests (“Eöt-Wash”) [88, 89] and
torsion pendula at the Huazhong University of Science and Technology (“HUST”) [90–93].

To convert these limits into constraints in the plane (mξ,Λ), we need the relation
between the scalar CPon-nucleon couplings ySNN and the scalar CPon-quark couplings
yU,DS,aa/Λ, in Eq. (2.12). The leading contribution to the CPon-nucleon coupling, arising
from heavy quarks via the triangle diagram with external gluons, has been evaluated in
Ref. [94], giving:

ySNN =
2mN

27

∑
q=c,b,t

ySqq
mq

. (3.17)

A more refined estimate, including also the contribution of the light quarks, is derived in
Ref. [95]. It modifies the value of ySNN by approximately 30% for the benchmark values of
ySqq in Section 5. For an order-of-magnitude evaluation, we use the relation of Eq. (3.17),
as anyway the limits we obtain on Λ depend on the model-dependent value of ySqq. Within
this approximation, protons and neutrons have the same couplings to the CPon. Taking the
natural value for ySqq ∼ mq, we find ySNN ∼ 0.2 GeV, so that the bounds from ISL tests
restrict Λ to be above (1019÷1013) GeV in the mass range (10−3÷1) eV [86]. As discussed
in Section 5, these limits can easily strenghtened up to two orders of magnitude, to the
presence of large numerical enhancement factors. Requiring Λ to be below the Planck scale
thus means that the CPon has to be heavier than about 10−9 MeV.

In the above discussion we have neglected the contribution to δV (r) arising from
CPon exchange between electrons, which is obtained by replacing y2SNNN1N2A1A2 with
y2SeeN1N2Z1Z2, in Eq. (3.14), with Z1,2 denoting the atomic numbers of the two test bod-
ies. Such a contribution is therefore parametrically suppressed with respect to the one in
Eq. (3.14) by a factor (ySee/yStt)

2(mt/mN )2 ≈ m2
e/m

2
N .

3.6 Constraints from star cooling

For masses much below 1 MeV the CPon is light enough to be thermally produced in
stellar plasmas. Unless the couplings to ordinary matter (electrons and nucleons) are
sufficiently small, this leads to an excessive energy loss in the form of long-lived CPons,
which is strongly constrained by observations of various stellar systems [96]. Here we
use the constraints obtained in Ref. [97] to set limits on scalar couplings to electron and
nucleons, due to CPon production in Red Giants (RG) first studied in Ref. [98]. These
limits are effective up to CPon masses 11 of about 10 keV, where production becomes

11Limits from Horizontal Branch stars extend to larger masses, but are too weak to be relevant in our
scenario.
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Boltzmann-suppressed, and restrict the scalar couplings to electrons to ySee/Λ ≲ 7×10−16

and nucleons to ySNN/Λ ≲ 1 × 10−12. For natural values of the couplings, ySee ∼ me and
ySNN ∼ 0.2 GeV, it is clear that the RG limits require Λ ≳ 1012 GeV for CPon masses
below ∼ 10 keV. Note these limits are much stronger than those from e.g. helioscopes [99],
even ignoring the extra suppression of CPon couplings to photons.

3.7 Constraints from the neutron EDM

As a result of the conditions in Eq. (2.2), θ̄ (and thus the neutron EDM) vanishes as long
as supersymmetry remains unbroken. Small enough corrections to θ̄ from supersymmetry
breaking can be guaranteed under appropriate conditions. Denoting by ΛSUSY the scale
at which supersymmetry breaking is mediated to the observable sector, and by mSUSY the
sparticle mass scale, a favorable framework is achieved when Λ ≫ ΛSUSY ≫ mSUSY [43,
44]. At the UV scale Λ the observable θ̄ vanishes and it receives no quantum corrections
down to ΛSUSY as a consequence of supersymmetric nonrenormalization theorems [100].
Assuming that the whole supermultiplet τ is heavier than ΛSUSY, it can be integrated
out without modifying the quark masses. Corrections below ΛSUSY, due to RG running
of soft terms and from integrating out sparticles at the scale mSUSY are model-dependent
and can be kept below the observable level by assuming that supersymmetry breaking is
gauge-mediated [101] or anomaly-mediated [102–104]. Finally, corrections due to the CKM
phase [45,46] are known to be negligibly small.

In our scenario, these conditions are altered by the fact that one real component of
the τ supermultiplet remains light and the remaining ones have a mass of order mSUSY.
Corrections to θ̄ are then expected by both integrating out the heavy components of τ ,
namely a real spin-zero particle and a Majorana fermion, and by loop corrections involving
a CPon exchange. All these corrections affect θ̄ through a shift of the quark mass matrix,
mq → mq + δmq, which results in the shift

δθ̄ = Im tr(m−1
q δmq) . (3.18)

The most important shift δmq arises at one-loop and is necessarily quadratic in 1/Λ, since
it involves the emission and absorption of a τ component with couplings ∝ 1/Λ. On
dimensional grounds, we expect contributions of the type

δθ̄ ≈ L

16π2

{
v2

Λ2
,
v mSUSY

Λ2
,
m2

SUSY

Λ2

}
, (3.19)

where L denotes a combination of dimensionless coupling constants, mass ratios, and log-
arithms 12. The largest set of corrections comes from the third term in Eq. (3.19). Upper
bounds on the neutron EDM require δθ̄ ≤ 10−10 [106, 107], which translate into an upper

12See, for example, Ref. [105].
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limit on the sparticle mass scale

mSUSY <
1.3 × 108√

L

(
Λ

1012 GeV

)
GeV. (3.20)

At the border of the region allowed by stellar cooling, namely Λ ≈ 1012 GeV, even consider-
ing values of L up to 106, mSUSY can be as large as 105 GeV, without spoiling the solution
to the strong CP problem. This makes also clear that the δθ̄ contributions ∝ v2/Λ2 are
entirely harmless, due to the strong suppression of the UV scale Λ.

4 Dark matter abundance

As discussed in Section 3.1, the CPon has a lifetime that easily exceeds the age of the
universe, and thus is a viable DM candidate. Since its couplings to SM particles are
extremely suppressed (Λ ≳ 1012 GeV from star cooling constraints), the CPon is not in
thermal contact with the SM thermal in the early universe, and thus CPon freeze-out
production via thermal freeze-out is not an option. Instead a CPon abundance can be
produced in the early universe via a variety of mechanisms, here we restrict for simplicity
to thermal freeze-in, which is suggested by the smallness of CPon couplings to the SM, and
vacuum misalignment.

4.1 Vacuum misalignment

Scalar DM fields are generically produced in the early universe through the misalignment
mechanism [108–110], which generalizes the classic scenario for production of the QCD
axion [5–7]. The equation of motion of a scalar field in an expanding universe is given by

ξ̈ + 3H(T )ξ +m2
ξξ = 0 , (4.1)

where we restricted to a quadratic CPon potential, and H is the Hubble parameter. At
early times, the CPon field is frozen at some initial value ξ0 that we parametrize in terms
of the UV scale Λ as ξ0 = Λθ0 (note that the real parameter θ0 is not a periodic variable).
We assume that the CPon is present before inflation, so that the value θ0 is uniform
across the Hubble patch that forms up the observable universe today. As the universe
cools, the CPon starts oscillating, which happens around mξ ∼ H(Tosc). We take the
condition mξ = 1.6H(Tosc) to determined Tosc, which provides a good fit to the results of
a numerical integration [109]. The energy stored in these oscillations behaves just as cold
DM, so that today’s abundance can be obtained from rescaling the energy density at the
onset of oscillations ρξ = 1/2m2

ξΛ
2θ20 by the ratio of entropy densities today and the onset

of oscillations s0/s(Tosc).
The final CPon abundance depends on the cosmological scenario at the time of oscilla-

tions. For sufficiently high reheating temperatures oscillations start during the epoque of
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radiation domination (RD). With HRD = T 2/MPl1.66
√
g∗ one obtains

TRD
osc = 6.7 × 105 GeV

( mξ

keV

)1/2
, (4.2)

where we took g∗(Tosc) = 106.75. The final CPon abundance in RD is then

Ωξh
2|RD
mis ≈ 0.12

(
Λθ0

1.1 × 1011 GeV

)2 ( mξ

keV

)1/2
, (4.3)

and this expressions are valid for TR ≥ TRD
osc . If instead he reheating temperature is

smaller than TRD
osc , we assume a period of early matter domination (EMD), where HEMD =

HRD × T 2/T 2
R

√
g∗/g∗(TR) [111]. In this case CPon oscillations start at

TEMD
osc = 1.2 × 105 GeV

( mξ

keV

)1/4( TR
18 TeV

)1/2

, (4.4)

and the relic abundance is independent of the CPon mass and given by

Ωξh
2|EMD
mis ≈ 0.12

(
Λθ0

6.7 × 1011 GeV

)2( TR
18 TeV

)
. (4.5)

In the following we will treat the reheating temperature as a free parameter above 10 MeV,
which slightly exceeds the lower limit allowed by Big-Bang-Nucleosynthesis (BBN) [112,
113].

4.2 Freeze-in

Even for very weak interactions, unable to keep the CPon in equilibrium with the plasma
in the early universe, DM particles will be produced by cumulative decays and scatterings
of SM particles in the thermal bath. This mechanism for building up a DM abundance of
the observed size goes under the name of “Thermal Freeze-in” [22]. Below we briefly review
the basis formalism that allows to relate the DM relic abundance to the model parameters,
following the original reference [22], see also the appendices in Refs. [114,115].

Boltzmann equation The number density nξ of CPons is determined by the integrated
Boltzmann equation (see e.g. Ref. [116])

dnξ
dt

+ 3Hnξ =
(
neqξ − nξ

)∑
i

Γi , (4.6)

where neqξ = 0.122T 3 is the CPon equilibrium number density, H is the Hubble parameter

H = T 2/MPl1.66
√
g∗(T ) with g∗(T ) denoting the total number of relativistic degrees of

16



freedom and Γi are the specific CPon production rates, which are related to the respective
collision terms Ci by Γi = Ci/neqa .

Entropy conservation (d(sa3)/dt = 0) allows to rewrite the time derivative in terms of a
derivative with respect to temperature as dT/dt = −HT , which is valid when the effective
number of relativistic entropy degrees of freedom is approximately constant, dg∗s(T )/dT ≈
0. This relation can be used to rewriting the Boltzmann equation in terms of the CPon
yield Yξ = nξ/s, giving

dYξ
dT

= −

(
1 −

Yξ
Y eq
ξ

)∑
i

Ci(T )

sTH
, (4.7)

with the entropy density s = 0.439T 3g∗s(T ). In the freeze-in regime the CPons are never
in thermal equilibrium, Yξ ≪ Y eq

ξ , and their initial abundance at TR can be neglected.

Thus the final yield Y 0
ξ of CPons today (at T ≈ 0) is given by the integral

Y 0
ξ =

∑
i

∫ TR

0

Ci(T )

sTH
dT =

∑
i

1.4

g∗s
√
g∗

∫ TR

0

Ci(T )MPl

T 6
dT , (4.8)

where the effective number of relativistic degrees of freedom are evaluated at the character-
istic temperature of the production process, which for decays is the mass of the decaying
particle and for scattering processes the threshold center-of-mass energy (unless the process
is UV sensitive, in which case it is Tmax = TR [22,117]). The final CPon abundance is thus
given by multiplying the yield by mξs0/ρcrit, giving

Ωξh
2 = mξ

∑
i

4.6 × 1027

g∗s
√
g∗

∫ TR

0

Ci(T )

T 6
dT . (4.9)

Collision terms The form of the collision terms depend on the underlying production
process. The relevant process here are flavor-violating decays fa → fbξ, flavor-diagonal
scatterings with photons (or gluons), faγ → faξ, fermion annihilations to CPons and
photons (or gluons) fafa → ξγ, and finally scattering on Higgs bosons, fah → faξ and
fafa → ξh (in the high-energy limit). The respective collision terms read in terms of the
expressions in Section 3.2 (using Maxwell-Boltzmann instead of Fermi-Dirac distributions):

Cfa→fbξ =
Tm2

a

π2
K1

(ma

T

)
Γfa→fbξ , (4.10)

Cfaγ→faξ =
T

8π4

∫ ∞

m2
a

(
1 − m2

a

s

)2

s3/2σfaγ→faξ(s)K1

(√
s

T

)
ds , (4.11)

Cfafa→γξ =
T

8π4

∫ ∞

4m2
a

(
1 − 4m2

a

s

)
s3/2σfafa→γξ(s)K1

(√
s

T

)
ds , (4.12)
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Cfafa→hξ = 2Cfah→faξ =
T

8π4

∫ ∞

0
s3/2σ0

fafa→hξ
K1

(√
s

T

)
ds , (4.13)

where the factor of 2 in the last line is due to the different spin degrees of freedom. Ex-
pressions for gluons instead of photons are analogous.

Relic abundancies The temperature integral for the decays can readily be perfomed,
and are dominated by the region where T ≈ ma, giving

∫
K1(ma/T )/T 5dT ∝ m−4

a for
dimensional reasons (as long as TR ≫ ma). Similarly one can do the temperature integral
for the scatterings involving vector bosons, as the remaining s-integral is convergent in the
UV due to σi ∝ 1/s and can be done analytically. Instead the scattering on Higgs bosons
is UV sensitive as the cross-section is constant, so one has first to perform the s-integral,
giving

∫
s3/2K1(

√
s/T ) ∝ T 5, and then perform the temperature integral which is linearly

divergent and thus given by Tmax (this justifies to work in the limit
√
s ≫ mH ,ma). The

result for the integrated collision terms read∫ ∞

0

Cfa→fbξ(T )

T 6
dT =

3

2π

Γfa→fbξ

m2
a

=
3

128π2maΛ2

(
|gab|2 + |gba|2

)
, (4.14)∫ ∞

0

Cfaγ→faξ(T )

T 6
dT =

αemQ
2
a

168π3maΛ2

(
(63π2 − 600)y2Saa + 16y2Paa

)
, (4.15)∫ ∞

0

Cfafa→γξ(T )

T 6
dT =

αemQ
2
a

160π2maΛ2

(
13y2Saa + 15y2Paa

)
,∫ TR

0

Cfafa→hξ(T )

T 6
dT =

4TR
π4

σ0
fafa→hξ

=
TR

32π5v2Λ2
|gaa|2 . (4.16)

As the couplings scale as yPaa ∼ ySaa ∼ gaa ∼ gab ∼ gba ∼ ma, the dominant contribution
comes from the top quark (provided TR > mt), and the scattering on gluons instead of
photons, which are analogous with αemQ

2 → 24 × αs(mt)/6 in tg → tξ and αemQ
2 →

9× 4αs(mt)/9 in tt→ gξ, where the first factors compensate for the color averaging in the
definition of the cross-section. The effective number of relativistic degrees of freedom in
Eq. (4.9) is then given by g∗ = 106.75 for all processes. Note that CPon production from
SUSY scattering on gauge bosons is suppressed by at least mt/mSUSY, but SUSY scattering
on Higgs bosons is not, provided that TR > mSUSY, i.e. supersymmetric partners are in
thermal equilibrium with the SM bath. Here we neglect this contribution, which depends
on details of the supersymmetric spectrum, having in mind a scenario where this condition
is not satisfied.

Normalizing to the natural values of the couplings (see Section 5), we finally obtain for
the CPon relic abundancies, taking into account a possible factor of two for the charge-
conjugated process,

Ωξh
2|t−decays = 0.12

( mξ

keV

)(9.5 × 109 GeV

Λ

)2
(√

|gct|2 + |gtc|2
300 GeV

)2(
162 GeV

mt

)
,
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Ωξh
2|t−scat(IR) = 0.12

( mξ

keV

)(1.4 × 1011 GeV

Λ

)2( |gtt|
5.2 TeV

)2(162 GeV

mt

)(
αs(mt)

0.11

)
,

Ωξh
2|t−scat(UV) = 0.12

( mξ

keV

)(1.4 × 1011 GeV

Λ

)2( |gtt|
5.2 TeV

)2( TR
3.1 TeV

)
, (4.17)

where we restricted to t→ c decays and took for simplicity yPtt ≈ yStt ≈ |gtt|/2. From these
results it is clear that decays are typically subleading to IR scattering, and UV scattering
dominates over IR scattering if TR ≳ 3.1 TeV. These expressions are valid as long as
mt ≪ TR < Λ, while for reheating temperatures below the EW scale the main contribution
to the freeze-in abundance occurs either from top scattering during the EMD epoch, which
leads to a strong dilution of the resulting abundance (see e.g. Ref. [118]), or from scattering
of lighter fermions, for which the abundance is suppressed by small couplings. For simplicity
we simply set the freeze-in contribution to zero for TR < 200 GeV, since it anyway has no
impact in the relevant region of parameter space, see Section 5.3. Moreover we need to
restrict to TR < Λ, as the EFT we have used to calculate CPon production rates is valid
only for energies below the UV cutoff Λ.

4.3 Limits on Warm Dark Matter

While misalignment produces CPon DM with essentially vanishing momentum, CPons cre-
ated by freeze-in have a large initial velocity and are initially free-streaming. This leads to
a suppression of primordial fluctuations imprinted in the matter power spectrum at small
scales, which can be constrained by looking at the spectra of distant quasars distorted
by absorption in neutral hydrogen filaments that are assumed to trace the matter power
spectrum, usually referred to as the Lyman-α forest (Ly-α) [119,120]. This analysis yields
a stringent lower bound on the warm DM mass mmin

WDM ≈ 5.3 keV [121–123], which can be
relaxed to mmin

WDM ≈ 3.5 keV under more conservative assumptions. These Ly-α limits have
been recasted for different freeze-in processes by computing the exact DM velocity distribu-
tionin Refs. [124–126]. As we will show below, most relevant for our scenario is production
via UV freeze-in which results in the “Warm Dark Matter” (WDM) constraint [125]

mξ ≳ 7 keV

(
mmin

WDM

3 keV

)4/3(
106.75

g∗(TR)

)1/3

, (4.18)

where mWDM ≈ 3.5 keV or 5.3 keV for the conservative and stringent bounds, respectively,
and TR denotes the reheating temperature. This bound gets relaxed if freeze-in gives only
a small fraction of a total abundance, which is mainly produced non-thermally via mis-
alignment. While in this case one should re-asses the WDM bound in the given scenarios,
here we refrain from this analysis (which is clearly beyond the scope of this work), and
rather apply the lower limit in Eq. (4.18) only when the freeze-in fraction of the total
relic abundance exceeds 1%. Typically this happens only for large reheating temperatures
TR ≫ TeV (unless CPon couplings receive extremely large numerical enhancement factors
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with respect to the natural expectation), so that we can take g∗(TR) = 106.75 and use for
concreteness the WDM bound mξ ≥ 10 keV.

Finally we note that if the DM abundance is mainly generated via misalignment, CPons
with sufficiently small masses produced via decays and scattering of SM particles could still
contribute to dark radiation, which is strongly constrained by BBN and CMB observations.
Using these results of Refs. [127, 128], it is however clear that in our scenario these con-
tributions are very efficiently suppressed by the UV scale Λ ≳ 1012 GeV, which makes the
total amount of dark radiation negligible in the phenomenologically relevant regions of
parameter space.

5 Concrete realizations

So far the framework we have considered is rather generic. To assess its capability of
reproducing the DM abundance while respecting all experimental bounds, we need to
specialize our scenario. We consider two realizations, which provide an idea of the stability
of our results against variations in the underlying theory.

5.1 Canonical Kähler potential

We start from the simple possibility of a theory with canonical Kähler potential. A gen-
eral pattern of matrices of Yukawa couplings that automatically verifies the condition in
Eq. (2.2) is

Y A(τ) =


0 0 cA13

0 cA22 cA23(τ)/xA

cA31 cA32(τ)/xA cA33(τ)/x2A

 (A = U,D,E) , (5.1)

where cA13, cA22 and cA31 are real constants and the τ dependence is carried by the lower-
right triangular block. We have included a redundant real parameter xA, one per each
charge sector, that can be eliminated by redefining the 23, 32 and 33 entries. The advantage
of this presentation is that when xA is smaller than one and all constants/functions cAab

are roughly of the same order of magnitude, the singular values of Y A(τ) are approximately
given by mA1 ≈ cAx

2
A, mA2 ≈ cA and mA3 ≈ cA/x

2
A, with a proportionality factor cA ≈

|cAab| of about the same size. This is a good starting point to reproduce the observed
hierarchy in the charged fermion sector. The unitary matrices UT

Ac and UA that diagonalize

Y A via UT
AcY AUA = Ŷ A have the pattern:

UT
Ac ≈ UA ≈


1 xA x2A

xA 1 xA

x2A xA 1

 , (5.2)
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where only the order of magnitude of the entries has been displayed. The coefficients
multiplying the off-diagonal terms are indeed ratios of the quantities cAab, expected to be
of order one if these quantities have approximately the same size. It follows that the generic
pattern of the matrix of the CPon couplings, ĝA = ⟨Ŷ A

τ ⟩vA, evaluated in the basis where
⟨Y A⟩ is diagonal, is

ĝA ≈ cAτ

cA


mA1

√
mA1mA2

√
mA1mA3

√
mA1mA2 mA2

√
mA2mA3

√
mA1mA3

√
mA2mA3 mA3

 , (5.3)

where we kept track of the fact that each entry is linearly proportional to a combination
of the derivatives of the functions cA23(τ), cA32(τ) and cA33(τ), that we have denoted by a
common symbol cAτ . Our estimates depend on the ratio cAτ/cA, describing the steepness
of the functions cA23(τ), cA32(τ) and cA33(τ) evaluated at the minimum of the energy
density. Without further knowledge of these functions, we can adopt the simple-minded
ansatz

cAτ/cA ≈ 1 . (5.4)

Our assumptions are probably inadequate to reproduce, at a given energy scale, the precise
values of the observed fermion masses and mixing angles. For instance, the cAab input
functions/parameters cannot be all exactly of the same size and they need some amount of
tuning to match the experimental precision. Moreover, as we will see in a specific example,
the near equality cAτ/cA ≈ 1 can be easily violated by an order of magnitude. Keeping
in mind all these caveats, here we will adopt eqs. (5.3) and (5.4) to assess the allowed
parameter space of the model. We also make use of the fermion masses evaluated at the
scale of the Z boson mass and listed in Table 1.

5.2 A modular-invariant model

As an alternative example, we consider the modular invariant model of Ref. [15], described
in Appendix A. Each matter supermultiplet carries a weight kAa and we consider the simple
choice:

kHu = kHd
= 0 kQa = kUc

a
= kDc

a
= kLa = kEc

a
= (−6, 0, 6), (5.5)

which enforces the absence of gauge anomalies and guarantees a solution to the strong CP
problem. Such a choice determines both the Yukawa couplings and the Kähler potential, in
its minimal form. The matrices of Yukawa couplings have entries that are modular forms
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md (GeV) (2.8 ± 0.3) × 10−3

ms (GeV) (54 ± 3) × 10−3

mb (GeV) 2.85 ± 0.03

mu (GeV) (1.3 ± 0.5) × 10−3

mc (GeV) 0.63 ± 0.02

mt (GeV) 171.7 ± 1.6

me (GeV) (0.486654 ± 0.000003) × 10−3

mµ (GeV) (10.2735 ± 0.00003) × 10−2

mτ (GeV) 1.74646 ± 0.00002

Table 1: Fermion masses renormalized at the scale mZ , from Ref. [129].

of weight kAc
a

+ kAb
:

Y A(τ) =


0 0 cA13

0 cA22 cA23E6(τ)

cA31 cA32E6(τ) cA33E6(τ)2 + c′A33E4(τ)3

 (A = U,D,E) ,

where cAab and c′A33 are real constants, while E4,6(τ) are the Eisenstein modular forms

of weight 4 and 6, see Appendix A. The minimal Kähler metrics Ωc†
AΩc

A and Ω†
AΩA are

determined by

Ωc
A = y

−kAc
a

2 δab ΩA = y
−kAa

2 δab y = −i(τ − τ̄) . (5.6)

Plugging Y A(τ) and Ωc
A = ΩA into the general expressions of Eq. (2.9) we get the mass

matrices mA and couplings gA of the model. We find

mAab = ⟨ykAc
a
/2Y A

ab y
kAb

/2⟩ . (5.7)

We see that the role of the small parameter xA discussed in the previous section is played
here by 1/y3, common to all charged sectors. The couplings gA read [130]:

gA =
1

y

[
⟨y × ykAc

a
/2Y A

τab y
kAb

/2⟩ − i(kAcamAab +mAabkAb)
]
. (5.8)

Since gA only appears in the combination gA/Λ we will absorb the overall factor 1/y by
redefining Λ → ⟨y⟩Λ. Choosing for convenience τ = 1/8+i, and fixing the input parameters
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cAab and c′A33 from a fit to fermion masses and mixing angles (see Appendix A), we can
compute the matrices ĝA in the fermion mass basis. We get:

ĝU =


0.1189 + 0.085i 0 −3.55 + 28.9i

0 0 0

−88.4 + 42.2i 0 −15817 − 11387i

 GeV

ĝD =


0.168 + 0.531i 0.195 − 1.74i −4.59 + 36.3i

0.862 + 2.22i 0.366 − 7.48i −8.75 + 156i

−4.24 − 0.897i 11.1 + 7.93i −226 − 169i

 GeV (5.9)

ĝE =


−0.00326 + 0.0232i 0 0.00157 − 0.0111i

0 0 0

−24.4 + 173i 0 11.7 − 83.1i

 GeV .

Scalar and pseudoscalar couplings are comparable and CP is violated in CPon interactions.
These couplings are dominated by the contribution proportional to Y A

τab, which is peculiar
to this class of models. This is not the case for ALPs, whose couplings to fermions are
proportional to the PQ charges (the equivalent of kA and kcA). Moreover, if we compare
the couplings of this specific model with those estimated in eqs. (5.3) and (5.4), we see
that the ratio cAτ/cA can be larger than one, reaching values between one and two orders
of magnitude depending on the specific entries.

5.3 Numerical Results

We now discuss the phenomenology of the CPon in the two explicit realizations detailed
above, which we denote by “NAT” (defined by Eq. (5.3) with Eq. (5.4)) and “FIT” (defined
by Eq. (5.10)). To specify the CPon couplings to fermions completely, we also have to fix
the mixing angle α (cf. Eq. (2.13)). In the following we make the simple choice α = 0, other
values change the couplings only marginally. We denote the resulting scenarios by “NAT0”
and “FIT0”, and display the most relevant couplings in Table 2. The limits discussed in
Section 3 from CPon decays (yPee, ySee), flavor constraints (ySds, geµ), inverse square law
tests and star cooling (ySNN , ySee) then only depend on the CPon mass mξ and the UV
scale Λ, and are displayed in the mξ−Λ plane in Fig. 1 and 2, showing the excluded regions
in gray. Note that in both scenarios limits from HB star cooling and µ → eξ searches are
sub-leading to K → πξ constraints. The quantitative difference between the NAT0 and the
FIT0 scenario can be easily understood from the numerical values in Table 2, which are
smaller in the NAT0 by a factor 10-100, which slightly relaxes the experimental constraints
on the parameter space in the mξ − Λ plane.
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|ySee| |yPee| |ySds| |ySNN | |gtt| gct,tc gut,tu

NAT0 3.4 × 10−4 3.4 × 10−4 0.027 0.15 2.4 × 102 21 0.94

FIT0 2.3 × 10−3 1.6 × 10−2 0.29 8.4 1.9 × 104 0 100

Table 2: Values of phenomenologically relevant couplings in the explicit scenarios in units
of GeV. We use the shorthand notation gij,ji ≡

√
|gij |2 + |gji|2.

The CPon relic abundance instead depends on additional parameters. As discussed in
Section 4, we are considering three independent contributions to the DM relic abundance:
misalignment, IR-dominated freeze-in and UV-dominated freeze-in. For given couplings
ĝA, the IR-freeze-in contribution depends only on the CPon mass mξ and the UV scale
Λ, while the UV freeze-in contribution depends also on the reheating temperature TR (see
Eq. (4.17)). The misalignment abundance is independent of fermion couplings, and besides
mξ and Λ is set by the initial displacement θ0 and TR (see Eq. (4.3) and Eq. (4.5)) 13. Thus
the total abundance depends on four parameters for a given realization (NAT0 or FIT0
as defined above). In each scenario and fixed θ0, we can determine the required value
of TR needed to reproduce the observed DM abundance for given mξ and Λ. This value
follows from the total contributions to the relic abundance, which in the relevant scenarios
are given by the following approximate expressions, where we restrict to the dominant
contributions:

Ωξh
2|NAT0
tot =

( mξ

keV

)(1012 GeV

Λ

)2(
5.6 × 10−6 + 0.17

TR
108 GeV

)
+ Ωξh

2|mis , (5.10)

Ωξh
2|FIT0
tot =

( mξ

keV

)(1012 GeV

Λ

)2(
3.6 × 10−2 + 0.11

TR
104 GeV

)
+ Ωξh

2|mis , (5.11)

where the misalignment contribution is scenario-independent and given by 14

Ωξh
2|mis = 0.12 θ20


(

Λ
1.1×1011 GeV

)2 ( mξ

keV

)1/2
TR ≥ 6.7 × 105 GeV

√
mξ/ keV(

Λ
6.7×1011 GeV

)2 (
TR

18TeV

)
TR < 6.7 × 105 GeV

√
mξ/ keV

. (5.12)

In Fig. 1 and 2 we show in blue the contours where the relic abundance can be reproduced
for the shown values of TR, for three representative values of θ0 and the two scenarios.
Dotted contours denote the regions excluded by the Warm DM bound below Eq. (4.18).
In the following we discuss the qualitative feature of these contours.

We start with the simplest scenario with vanishing (or very small) initial field values,
θ0 = 0 (Fig. 1). The CPon field sits near the minimum of the energy density, giving a

13The dependence on Λ and θ0 is through the combination ξ0 = Λθ0.
14In case of TR < 200GeV we only take into account the misalignment contribution, cf. Section 4.2.
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Figure 1: Allowed parameter space for NAT0 (left panel) and FIT0 (right panel) scenarios,
for vanishingly small values of the initial misalignment θ0 = 0. As gray regions we show
the constraints from Section 3, which are set by X-ray telescopes (and CMB observations),
inverse square law tests (”5th Force”) astrophysics (”RG cooling”) and flavor experiments
looking for K → πξ decays (”NA62”). We also denote with black dashed contours the
expected sensitivity using the entire NA62 data set (”Fut. NA62”) and the next generation
of X-ray telescopes (”Fut. X-ray”). With blue contours we indicated the regions of the
parameter space where the observed DM abundance can be reproduced for the shown
value of the reheating temperature TR, with dotted blue lines excluded by the Lyman-α
constraints on Warm DM, which require mξ ≳ 10 keV.
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Figure 2: Allowed parameter space for NAT0 (upper panel) and FIT0 (lower panel) sce-
narios, for indicated values of the initial misalignment θ0 = {0.01, 1}. The gray regions
and black dashed contours are as in Fig. 1. With blue contours we indicated the
regions of the parameter space where the observed DM abundance can be reproduced for
the shown value of the reheating temperature TR, with dotted blue lines by the Lyman-α
constraints on Warm DM, which require mξ ≳ 10 keV unless the dominant production is
through misalignment (freeze-in contribution less than 1%). The leading contribution to

the abundance can be inferred with the scaling of the respective contour: Λ ∝ m
1/2
ξ T

1/2
R

corresponds to freeze-in, Λ ∝ m
−1/4
ξ θ−1

0 to RD misalignment and Λ ∝ T
−1/2
R θ−1

0 (indepen-
dent of mξ) to EMD misalignment.
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limiting case that we discuss to isolate the feature of pure freeze-in. All DM contour lines

follow the scaling Λ ∝ m
1/2
ξ . CPon DM is always produced with a large initial velocity

and thus is constrained by structure formation (cf. Section 4.3), excluding CPon masses
below roughly 10 keV. In order to generate the observed abundance one needs large values
of mξ and/or small values Λ, which are in fact already excluded by a combination of flavor
and X-ray constraints (see lower right contour) in both scenarios. For larger values of
Λ the correct abundance can be obtained by increasing TR, and the parameter space is

viable for values roughly above TR ≈ 106 GeV. In this region Λ ∝ m
1/2
ξ T

1/2
R , so that

all parameter space not excluded by other experiments allows to reproduce the observed
abundance via UV freeze-in for sufficiently large TR < Λ. As can be seen In Fig. 1, the
associated parameter space with TR > Λ is excluded by Lyman-α constraints, so we do not
explicitly impose this upper bound.

On the other hand we can consider θ0 ≈ 1 (right panel of Fig. 2), where the dominant
contribution in the relevant parameter space comes from misalignment, unless for very low
values of Λ, which are in fact already excluded by RG cooling and/or flavor constraints.
For sufficiently low values of TR ≲ TeV the main contribution to the CPon abundance
is due to EMD misalignment. This contribution is then mξ-independent, and correspond

to the horizontal contour lines in Fig. 2, following Λ ∝ T
−1/2
R θ−1

0 . Because of the lower
bound on TR of around 10 MeV from BBN, there is a model-independent upper limit of Λ ≲
1015 GeV/θ0 above which the scenario is excluded by DM overproduction. Larger reheating
temperatures thus require lower values of Λ, and temperatures above TR ∼ 104 GeV (∼
102 GeV) are excluded for the NAT0 (FIT0) scenario. For reheating temperatures in the
allowed window the DM abundance can be reproduced, and there is no WDM bound
because the DM is sufficiently cold. Although already excluded, it is instructive to consider
values of TR above 104 GeV, where the relic abundance can be dominated by UV freeze-in
for large values of mξ (and low Λ), by EDM misalignment for intermediate values of mξ,
and by RD misalignment for low values of mξ. In the latter region the contour line with

the observed relic abundance scale as Λ ∝ m
−1/4
ξ , is TR−independent and not subject to

WDM constraints. However for sufficiently large TR the UV freeze-in contribution starts
to become relevant, providing a second solution to the DM abundance with low Λ. While
for the chosen value of θ0 = 1 the RD misalignment contribution is entirely excluded by
5th force experiments, star cooling and/or flavor constraints, this contribution scales as
Λ ∝ θ−1

0 , so this case can be made viable for slightly smaller values of θ0.
For θ0 = 0.01 (left panel of Fig. 2) indeed RD misalignment can give the dominant

contribution to the observed abundance, without being in conflict with experimental con-
straints. This is particularly interesting, as in this case the abundance is insensitive to
the precise value of TR in a broad range (106 GeV ≲ TR ≲ 1014 GeV for NAT0, and
106 GeV ≲ TR ≲ 109 GeV for FIT0). Also regions in the parameter space with dominant
EMD misalignment are viable, for values of Λ that are larger by factor 100 with respect to
the θ = 1, and an excluded region for DM overproduction that shrinks accordingly. Note
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that region with dominant UV freeze-in are restricted to mξ ≳ 10 keV, and are barely
viable in the NAT0 scenario for TR ≈ 106 GeV, as the misalignment contribution is already
sufficiently suppressed. As in Fig. 1 we do not explicitly impose TR < Λ for the freeze-in
contribution, as the associated parameter space with TR > Λ in the lower left part of the
NAT0 scenario is anyway excluded by Lyman-α constraints.

6 Conclusion

Solutions to the strong CP problem typically require extensions of the Standard Model
that include additional spin-zero particles in the spectrum. In the axion solution, the
θ̄ parameter is promoted to a pseudoscalar field whose VEV is relaxed to zero by QCD
dynamics. This mechanism works independently of the sources of CP violation in the
electroweak sector, whose nature remains unexplored. In a wide range of parameter space,
the axion is a viable candidate for cold DM, currently under intense experimental search.

A different class of solutions assumes that the theory is invariant under CP, sponta-
neously broken to deliver the observed CKM phase without affecting θ̄. Such a breaking
is achieved by the VEV of a (set of) complex spin-zero field(s), upon which the Yukawa
couplings of the theory depend. We have considered this mechanism in the framework
of a supersymmetric theory, where the field content of the MSSM is minimally extended
to include an extra gauge-singlet chiral supermultiplet. Though supersymmetry is not
a mandatory choice, it helps in accommodating the relevant pattern of field-dependent
Yukawa matrices, characterized by a constant determinant. The extra supermultiplet has
nonrenormalizable interactions with the matter fields of the theory, specified by a scale
Λ. Without additional information about the dynamics of the new supermultiplet, we
cannot make any precise statement about the low-energy properties of the theory. If the
supermultiplet is very heavy, we have little hope of testing this scenario.

There are examples from string theory compactifications where CP is a symmetry of
the four-dimensional effective theory and the Yukawa couplings are dynamical quantities
depending on a set of moduli fields, some of which can be very light. Here we adopt the
working assumption, which we are not able to justify in our bottom-up approach, that one
of the two spin-zero components of the extra supermultiplet is light, with a mass mξ that
we treat as a free parameter. We investigate under which circumstances such a light degree
of freedom, the CPon, can act as Dark Matter of our universe.

The CPon has CP-violating couplings to ordinary fermions, suppressed by the scale Λ
and entirely determined by the dynamical Yukawa couplings and by the Kähler potential of
the theory. Moreover, these couplings satisfy an important sum rule, valid for both canon-
ical and non-canonical Kähler potentials in a large class of scenarios. As a consequence,
the amplitude for the decay of the CPon into a pair of photons, the main decay channel if
the CPon mass mξ is between 60 keV and 1 MeV, is suppressed by an additional (mξ/me)

2

factor originating from the sum rule, similar to anomaly-free ALPs. Thereby the CPon
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can evade the stringent bounds from X-ray telescopes on the CPon lifetime into photons
of order τγγ ≲ 1029 sec, if its mass is below an 1 MeV (requiring Λ below the Planck scale).
The scale Λ is bounded from below (typically to be larger than 1012 GeV) by limits on
the energy loss in Red Giants and by constraints on flavour-violating decays with CPon
emission, most notably K+ → π+ξ. Importantly, the CPon mass cannot be arbitrarily
small without affecting too much the inverse square law of gravity, with a typical lower
bound of O(meV).

For CPon production in the early universe, we have considered both misalignment
and freeze-in, with a possible period of early matter domination preceeding the radiated
dominated universe at a temperature TR. In the allowed parameter space, the CPon can
easily saturate the observed Dark Matter abundance for suitable values of TR, depending
on the chosen values of CPon couplings and the inital misalignment.

For a quantitative discussion, we have evaluated the relevant CPon couplings in two
representative cases. First, we have provided an order-of-magnitude estimate, based on
a typical pattern of Yukawa couplings delivering θ̄ = 0. Second, we have computed the
CPon coupling constants in a model where the desired Yukawa matrices are ensured by
modular invariance. In this case, once the value of the CP-violating VEV has been fixed,
all free parameters can be derived from a fit to fermion masses and mixing angles, with
little residual uncertainty.

We have analyzed the Dark Matter abundance in both scenarios, see Fig. 1 and 2.
Freeze-in is always the dominant mechanism when the initial value of the CPon field is
very small. In this case, infrared freeze-in alone falls short to generate the observed relic
abundance due to lower bounds on Λ, so that a large reheating temperature is needed to
have a sufficiently large contribution from UV freeze-in. Given the present limits on warm
Dark Matter and X-ray photons from DM decays, only a little portion of the parameter
space is still available, see Fig. 1, partially in the reach of future X-ray missions (and
searches for rare Kaon decays). Misalignment is the dominant mechanism as soon as the
initial field value of the CPon is sufficiently large. For field values of the order of the
UV scale, the lower bound on Λ implies an upper bound on the reheating temperature
of order 102÷4 GeV, needed for a sufficient dilution of the CPon density in the EMD
scenario. For lower initial field values instead the region of viable reheating temperatures
opens up, allowing also regions in the parameter space where the dominant contribution
to the DM abundance comes from UV freeze-in or usual RD misalignment. The latter
case is then independent of the reheating temperature in a wide range of values between
104 GeV ≲ TR ≲ 109÷14 GeV, for values of Λ around 1013÷14 GeV, for the chosen value of
the initial misalignment of 0.01Λ.

Though our scenario relies on a strong assumption, the lightness of the CPon, it has
the attractive feature of linking three mysteries of fundamental interactions: the flavour
puzzle, the origin of CP violation, and the nature of Dark Matter. Moreover, the presently
allowed parameter space is compact and will be partially explored by a variety of laboratory
experiments in the near future.
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Appendices

A CPon from Modular Invariance

We focus on a supersymmetric modular-invariant [131–133] and CP-invariant [134–136]
theory. The Lagrangian L depends on a set of chiral supermultiplets ϕ comprising one
(dimensionless) modulus τ (Imτ > 0) and the matter superfields ϕi of the MSSM. In a
compact notation, L reads:

L =

∫
d2θd2θ̄ K(e2V φ, φ̄) + [

∫
d2θ w(φ) + h.c.] + [

1

16

∫
d2θ f(φ)W aW a + h.c.], (A.1)

where φ collectively denotes all chiral supermultiplets. The Kähler potential K is a real
gauge-invariant function. The superpotential w(φ) and the gauge kinetic functions fα(φ)
(α = 1, 2, 3) are gauge-invariant analytic functions. The real and imaginary part of f3(φ)
define the strong gauge coupling and the QCD angle 15:

f3 =
1

g2S
− i

θQCD

8π2
. (A.2)

Modular invariance means that L remains unchanged under SL(2,Z) transformations:

τ
γ−→ γτ =

aτ + b

cτ + d
ϕi

γ−→ (cτ + d)−kiϕi V
γ−→ V, (A.3)

where a, b, c, d are integers obeying ad− bc = 1 and ki, the weights, are integer numbers.
Up to modular transformations, under CP the multiplets transform as

τ
CP−−→ −τ̄ ϕi

CP−−→ ϕ̄i V
CP−−→ V̄ . (A.4)

15We normalize the field strength as W a = 2W a
B , where W

a
B is according to the definition in Ref. [137].

It follows that
∫
d2θW aW a = −2F a

µνF
aµν + 2iF a

µν F̃
aµν , where F̃ aµν = 1/2ϵµνρσF a

ρσ. From eqs. (A.1) and

(A.2) we get 1/16
∫
d2θ f(φ)W aW a + h.c. = −1/4g2sF

a
µνF

aµν + θ/32π2F a
µν F̃

aµν .
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The matter superfields ϕi are assumed to have either vanishing or negligible VEVs, com-
pared to the VEV of the modulus τ . Since the theory is CP-invariant, the only source
of CP violation is the VEV of the modulus τ . Its CP conserving values are along the
imaginary τ axis and along the border of the fundamental region ℜ(τ)| ≤ 1/2, |τ | ≥ 1.

Consistently with modular and CP invariance, we can choose (real positive) constant gauge
kinetic functions fα(φ) = f0α, such that the QCD angle θQCD in Eq. (A.2) is zero. We
adopt a minimal Kähler potential:

K(ϕ, ϕ̄) = −Λ2 log y +
∑
i

y−kiϕiϕ
i y = −i(τ − τ) , (A.5)

where Λ is the scale controlling the nonrenormalizable interaction of the modulus. Working
in the limit of massless neutrinos, the relevant part of the superpotential w reads

w(φ) = U c
aHu Y

U
ab (τ) Qb +Dc

aHd Y
D
ab (τ) Qb + Ec

aHd Y
E
ab (τ) Lb + µ(τ)HuHd. (A.6)

Modular invariance requires that the functions Y U,D,E
ab (τ) and µ(τ), assumed to be nonsin-

gular, are modular forms of weight (kUc
a
+kQb

+kHu), (kDc
a
+kQb

+kHd
), (kEc

a
+kLb

+kHd
) and

(kHu +kHd
), respectively. We choose a basis of modular forms satisfying Y A

ab(−τ̄) = Y A
ab(τ)

and µ(−τ̄) = µ(τ), so that any free parameter in the w(φ) is constrained to be real.

In the limit of exact supersymmetry, the physical angle θ̄, invariant under colored fermion
chiral rotations, is

θ̄ = θQCD + arg det MUMD = arg detY U (τ) Y D(τ) ,

where MU,D are the quark mass matrices and we made use of θQCD = 0 and the equality
arg det MUMD = arg detY U (τ) Y D(τ), which follows from the fact that the Kähler poten-
tial does not affect the phase of the determinant of the mass matrices [43] and the VEVs
of Higgs multiplets can be chosen real and positive. The determinant detY U (τ) Y D(τ) is
a modular form of weight

kdet =
∑
a

(kUc
a

+ kDc
a

+ 2kQa) + 3(kHu + kHd
). (A.7)

Modular transformations act as local chiral rotations on canonically normalized fermion
fields and the weights of the matter multiplets should ensure the absence of mixed modular-
gauge anomalies. A simple solution to the set of conditions guaranteeing anomaly cancel-
lation is [15]

kHu + kHd
= 0 kQa = kUc

a
= kDc

a
= kLa = kEc

a
= (−k, 0, k), (A.8)

and we will adopt this choice, which implies kdet = 0. The determinant detY u(τ) Y d(τ) is a
modular form of vanishing weight, which is a constant required to be real by CP invariance.
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If this constant is positive, which can be ensured by a proper choice of the free parameters,
the physical angle θ̄ is zero. This result, valid in the limit of unbroken supersymmetry,
gets corrected by a tolerable amount if the mechanism of supersymmetry breaking does not
introduce new phases and/or new flavour patterns [43, 44]. The determinants of the up,
down and electron mass matrices are also all real constants. We remark that the condition
for the absence of mixed modular-U(1)2QED, also satisfied by the solution (A.8), reads∑

a

[
NcQ

2
u(kQa + kUc

a
) +NcQ

2
d(kQa + kDc

a
) +Q2

e(kLa + kEc
a
)
]

+ (kHu + kHd
) = 0. (A.9)

Such a condition plays a role in the evaluation of the decay width of the modulus into two
photons. In this work, we further specify the choice in Eq. (A.8):

kHu = kHd
= 0 kQa = kUc

a
= kDc

a
= kLa = kEc

a
= (−6, 0, 6) . (A.10)

As a consequence, µ(τ) = µ is a real constant and the Yukawa couplings are given by

Y A(τ) =


0 0 cA13

0 cA22 cA23E6(τ)

cA31 cA32E6(τ) cA33E6(τ)2 + c′A33E4(τ)3

 (A = U,D,E) , (A.11)

where cAab and c′A33 are real constants, while E4,6(τ) are the weight (4, 6) Eisenstein mod-
ular forms:

E4(τ) = 1 + 240
∞∑
n=1

n3 exp(2πinτ)

1 − exp(2πinτ)
E6(τ) = 1 − 504

∞∑
n=1

n5 exp(2πinτ)

1 − exp(2πinτ)
. (A.12)

From Eq. (A.5) we read the minimal Kähler metrics Ωc†
AΩc

A and Ω†
AΩA, determined by

Ωc
A = y

−kAc
a

2 δab ΩA = y
−kAa

2 δab . (A.13)

Plugging Y A(τ) and Ωc
A = ΩA into the general expressions of Eq. (2.9) we get the mass

matrices mA and couplings gA of the model. We find

mA(τ) =


0 0 cA13

0 cA22 y3cA23E6(τ)

cA31 y3cA32E6(τ) y6[cA33E6(τ)2 + c′A33E4(τ)3]

 vA , (A.14)

where vU = v sinβ and vD = vE = v cosβ, v ≈ 174 GeV and τ is evaluated at its VEV.
We see that the role of the small parameter xA discussed in Section 5 is played here by
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1/y3, common to all charged sectors. In this class of models Im(τ) ≥
√

3/2, and we have
1/y3 < 0.2. The couplings gA read:

gAab =
1

y

[
⟨y × ykAc

a
/2Y A

τab y
kAb

/2⟩ − i(kAc
a
mAab +mAabkAb

)
]
. (A.15)

Since gA only appears in the combination gA/Λ we will absorb the overall factor 1/y by
redefining Λ → ⟨y⟩Λ. There are more free parameters than observables. We reduce the
number of free parameters by choosing:

τ = 1/8 + i .

Working in the vicinity of the imaginary unit has proved useful [138–142] in model building.
Moreover, we have simple approximate expressions for the quantities of interest by making
an expansion in the small parameter x = 1/y3 = 0.125. In addition, we choose:

cU23 = cU32 = cE23 = cE32 = 0 tanβ = 10

arg[cU33E6(τ)2 + c′U33E4(τ)3] = arg[cD33E6(τ)2 + c′D33E4(τ)3] at τ = 1/8 + i .

We are left with a total of 16 real parameters (vs. 13 observables), to be determined
by maximizing the agreement with fermion masses, mixing angles and CKM phase. The
experimental data and their errors, renormalized at the scale mZ and taken from Ref. [129],
are collected in Table 4. We show the best fit values of cAab, c

′
Aab in Table 3. In Table

A cA13 cA22 cA23 cA31 cA32 cA33 c′A33

D 1.063 0.541 −1.278 0.143 −0.109 −1.194 −0.395

U 0.148 0.362 0 0.498 0 −7.186 −2.379

E 0.00312 0.593 0 9.09 0 0.756 0.192

Table 3: Coefficients cAab and c′Aab in units 0.01. We choose vU = 173.3 GeV and
vD = 17.3 GeV.

4 we display the model predictions evaluated at the best-fit point and we compare them
with the experimental values. The agreement in the lepton sector is very good, while in the
quark sector is decent, with some discrepancies due to the use of approximate theoretical
expressions for the quantities of interest. Evaluating the modulus coupling constants in
the basis where the mass matrices are diagonal we get we find

ĝU =


0.1189 + 0.085i 0 −3.55 + 28.9i

0 0 0

−88.4 + 42.2i 0 −15817 − 11387i

 GeV
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Experiment Model

md (GeV) (2.8 ± 0.3) × 10−3 2.6 × 10−3

ms (GeV) (54 ± 3) × 10−2 50 × 10−3

mb (GeV) 2.85 ± 0.03 3.19

mu (GeV) (1.3 ± 0.5) × 10−3 1.3 × 10−3

mc (GeV) 0.63 ± 0.02 0.63

mt (GeV) 171.7 ± 1.6 171.7

sin θ12 0.22540 ± 0.00070 0.213

sin θ23 0.0420 ± 0.0006 0.045

sin θ13 0.00364 ± 0.00013 0.0019

sin δ 0.93 ± 0.02 0.88

me (GeV) (0.486654 ± 0.000003) × 10−3 0.486653 × 10−3

mµ (GeV) (10.2735 ± 0.00003) × 10−2 10.2735 × 10−2

mτ (GeV) 1.74646 ± 0.00002 1.74645

Table 4: Left column: fermion masses, mixing angles, and CKM phase, renormalized
at the scale mZ , from Ref. [129]. Right column: model predictions from τ = 1/8 + i,
tanβ = 10 and the input parameters of Table 3.

ĝD =


0.168 + 0.531i 0.195 − 1.74i −4.59 + 36.3i

0.862 + 2.22i 0.366 − 7.48i −8.75 + 156i

−4.24 − 0.897i 11.1 + 7.93i −226 − 169i

 GeV

ĝE =


−0.00326 + 0.0232i 0 0.00157 − 0.0111i

0 0 0

−24.4 + 173i 0 11.7 − 83.1i

 GeV .
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[58] R. Laha, J. B. Muñoz, and T. R. Slatyer, INTEGRAL constraints on primordial
black holes and particle dark matter, Phys. Rev. D 101 (2020), no. 12 123514,
[arXiv:2004.00627].

38

http://arxiv.org/abs/1610.06933
http://arxiv.org/abs/hep-ph/0503172
http://arxiv.org/abs/hep-ph/0503173
http://arxiv.org/abs/1512.04933
http://arxiv.org/abs/2006.10035
http://arxiv.org/abs/2007.08834
http://arxiv.org/abs/2203.16376
http://arxiv.org/abs/2203.17212
http://arxiv.org/abs/2012.04736
http://arxiv.org/abs/2012.07292
http://arxiv.org/abs/1205.5283
http://arxiv.org/abs/2004.00627


[59] C. R. Watson, Z.-Y. Li, and N. K. Polley, Constraining Sterile Neutrino Warm
Dark Matter with Chandra Observations of the Andromeda Galaxy, JCAP 03
(2012) 018, [arXiv:1111.4217].

[60] S. Horiuchi, P. J. Humphrey, J. Onorbe, et al., Sterile neutrino dark matter bounds
from galaxies of the Local Group, Phys. Rev. D 89 (2014), no. 2 025017,
[arXiv:1311.0282].

[61] J. W. Foster, S. Kumar, B. R. Safdi, and Y. Soreq, Dark Grand Unification in the
axiverse: decaying axion dark matter and spontaneous baryogenesis, JHEP 12
(2022) 119, [arXiv:2208.10504].

[62] K. Perez, K. C. Y. Ng, J. F. Beacom, et al., Almost closing the νMSM sterile
neutrino dark matter window with NuSTAR, Phys. Rev. D 95 (2017), no. 12
123002, [arXiv:1609.00667].

[63] B. M. Roach, K. C. Y. Ng, K. Perez, et al., NuSTAR Tests of Sterile-Neutrino Dark
Matter: New Galactic Bulge Observations and Combined Impact, Phys. Rev. D 101
(2020), no. 10 103011, [arXiv:1908.09037].

[64] K. C. Y. Ng, B. M. Roach, K. Perez, et al., New Constraints on Sterile Neutrino
Dark Matter from NuSTAR M31 Observations, Phys. Rev. D 99 (2019) 083005,
[arXiv:1901.01262].

[65] B. M. Roach, S. Rossland, K. C. Y. Ng, et al., Long-exposure NuSTAR constraints
on decaying dark matter in the Galactic halo, Phys. Rev. D 107 (2023), no. 2
023009, [arXiv:2207.04572].

[66] A. Coogan et al., Hunting for dark matter and new physics with GECCO, Phys.
Rev. D 107 (2023), no. 2 023022, [arXiv:2101.10370].

[67] C. Thorpe-Morgan, D. Malyshev, A. Santangelo, et al., THESEUS insights into
axionlike particles, dark photon, and sterile neutrino dark matter, Phys. Rev. D
102 (2020), no. 12 123003, [arXiv:2008.08306].

[68] A. Neronov and D. Malyshev, Toward a full test of the νMSM sterile neutrino dark
matter model with Athena, Phys. Rev. D 93 (2016), no. 6 063518,
[arXiv:1509.02758].

[69] A. Dekker, E. Peerbooms, F. Zimmer, K. C. Y. Ng, and S. Ando, Searches for
sterile neutrinos and axionlike particles from the Galactic halo with eROSITA,
Phys. Rev. D 104 (2021), no. 2 023021, [arXiv:2103.13241].

[70] S. Ando et al., Decaying dark matter in dwarf spheroidal galaxies: Prospects for
x-ray and gamma-ray telescopes, Phys. Rev. D 104 (2021), no. 2 023022,
[arXiv:2103.13242].

39

http://arxiv.org/abs/1111.4217
http://arxiv.org/abs/1311.0282
http://arxiv.org/abs/2208.10504
http://arxiv.org/abs/1609.00667
http://arxiv.org/abs/1908.09037
http://arxiv.org/abs/1901.01262
http://arxiv.org/abs/2207.04572
http://arxiv.org/abs/2101.10370
http://arxiv.org/abs/2008.08306
http://arxiv.org/abs/1509.02758
http://arxiv.org/abs/2103.13241
http://arxiv.org/abs/2103.13242


[71] R. Ziegler, Flavor Probes of Axion Dark Matter, PoS DISCRETE2022 (2024)
086, [arXiv:2303.13353].

[72] NA62 Collaboration, E. Cortina Gil et al., Measurement of the very rare
K+ → π+νν decay, JHEP 06 (2021) 093, [arXiv:2103.15389].

[73] E. Goudzovski et al., New physics searches at kaon and hyperon factories, Rept.
Prog. Phys. 86 (2023), no. 1 016201, [arXiv:2201.07805].

[74] N. Carrasco, P. Lami, V. Lubicz, et al., K → π semileptonic form factors with
Nf = 2 + 1 + 1 twisted mass fermions, Phys. Rev. D 93 (2016), no. 11 114512,
[arXiv:1602.04113].

[75] Fermilab Lattice, MILC Collaboration, A. Bazavov et al., |Vus| from Kℓ3 decay
and four-flavor lattice QCD, Phys. Rev. D 99 (2019), no. 11 114509,
[arXiv:1809.02827].

[76] Flavour Lattice Averaging Group (FLAG) Collaboration, Y. Aoki et al.,
FLAG Review 2021, Eur. Phys. J. C 82 (2022), no. 10 869, [arXiv:2111.09849].

[77] J. Martin Camalich, M. Pospelov, P. N. H. Vuong, R. Ziegler, and J. Zupan, Quark
Flavor Phenomenology of the QCD Axion, Phys. Rev. D 102 (2020), no. 1 015023,
[arXiv:2002.04623].

[78] L. Calibbi, D. Redigolo, R. Ziegler, and J. Zupan, Looking forward to
lepton-flavor-violating ALPs, JHEP 09 (2021) 173, [arXiv:2006.04795].

[79] A. Jodidio et al., Search for Right-Handed Currents in Muon Decay, Phys. Rev. D
34 (1986) 1967. [Erratum: Phys.Rev.D 37, 237 (1988)].

[80] TWIST Collaboration, R. Bayes et al., Search for two body muon decay signals,
Phys. Rev. D 91 (2015), no. 5 052020, [arXiv:1409.0638].

[81] Y. Jho, S. Knapen, and D. Redigolo, Lepton-flavor violating axions at MEG II,
JHEP 10 (2022) 029, [arXiv:2203.11222].

[82] S. Knapen, K. Langhoff, T. Opferkuch, and D. Redigolo, A Robust Search for
Lepton Flavour Violating Axions at Mu3e, arXiv:2311.17915.

[83] R. J. Hill, R. Plestid, and J. Zupan, Searching for new physics at µ→ e facilities
with µ+ and π+ decays at rest, Phys. Rev. D 109 (2024), no. 3 035025,
[arXiv:2310.00043].

[84] Belle-II Collaboration, I. Adachi et al., Search for Lepton-Flavor-Violating τ
Decays to a Lepton and an Invisible Boson at Belle II, Phys. Rev. Lett. 130 (2023),
no. 18 181803, [arXiv:2212.03634].

40

http://arxiv.org/abs/2303.13353
http://arxiv.org/abs/2103.15389
http://arxiv.org/abs/2201.07805
http://arxiv.org/abs/1602.04113
http://arxiv.org/abs/1809.02827
http://arxiv.org/abs/2111.09849
http://arxiv.org/abs/2002.04623
http://arxiv.org/abs/2006.04795
http://arxiv.org/abs/1409.0638
http://arxiv.org/abs/2203.11222
http://arxiv.org/abs/2311.17915
http://arxiv.org/abs/2310.00043
http://arxiv.org/abs/2212.03634


[85] Belle-II Collaboration, I. Adachi et al., Evidence for B+ → K+νν decays, Phys.
Rev. D 109 (2024), no. 11 112006, [arXiv:2311.14647].

[86] C. A. J. O’Hare and E. Vitagliano, Cornering the axion with CP -violating
interactions, Phys. Rev. D 102 (2020), no. 11 115026, [arXiv:2010.03889].

[87] Y. J. Chen, W. K. Tham, D. E. Krause, et al., Stronger Limits on Hypothetical
Yukawa Interactions in the 30–8000 nm Range, Phys. Rev. Lett. 116 (2016), no. 22
221102, [arXiv:1410.7267].

[88] D. J. Kapner, T. S. Cook, E. G. Adelberger, et al., Tests of the gravitational
inverse-square law below the dark-energy length scale, Phys. Rev. Lett. 98 (2007)
021101, [hep-ph/0611184].

[89] J. G. Lee, E. G. Adelberger, T. S. Cook, S. M. Fleischer, and B. R. Heckel, New
Test of the Gravitational 1/r2 Law at Separations down to 52 µm, Phys. Rev. Lett.
124 (2020), no. 10 101101, [arXiv:2002.11761].

[90] S.-Q. Yang, B.-F. Zhan, Q.-L. Wang, et al., Test of the Gravitational Inverse Square
Law at Millimeter Ranges, Phys. Rev. Lett. 108 (2012) 081101.

[91] W.-H. Tan et al., Improvement for Testing the Gravitational Inverse-Square Law at
the Submillimeter Range, Phys. Rev. Lett. 124 (2020), no. 5 051301.

[92] L.-C. Tu, S.-G. Guan, J. Luo, C.-G. Shao, and L.-X. Liu, Null Test of Newtonian
Inverse-Square Law at Submillimeter Range with a Dual-Modulation Torsion
Pendulum, Phys. Rev. Lett. 98 (2007) 201101.

[93] W.-H. Tan, S.-Q. Yang, C.-G. Shao, et al., New Test of the Gravitational
Inverse-Square Law at the Submillimeter Range with Dual Modulation and
Compensation, Phys. Rev. Lett. 116 (2016), no. 13 131101.

[94] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Remarks on Higgs Boson
Interactions with Nucleons, Phys. Lett. B 78 (1978) 443–446.

[95] H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with
Nucleons, JHEP 07 (2012) 009, [arXiv:1202.1292].

[96] G. G. Raffelt, Stars as laboratories for fundamental physics:
The astrophysics of neutrinos, axions, and other weakly interacting particles. 5,
1996.

[97] E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma
mixing effects, JHEP 02 (2017) 033, [arXiv:1611.05852].

41

http://arxiv.org/abs/2311.14647
http://arxiv.org/abs/2010.03889
http://arxiv.org/abs/1410.7267
http://arxiv.org/abs/hep-ph/0611184
http://arxiv.org/abs/2002.11761
http://arxiv.org/abs/1202.1292
http://arxiv.org/abs/1611.05852


[98] J. A. Grifols and E. Masso, Constraints on Finite Range Baryonic and Leptonic
Forces From Stellar Evolution, Phys. Lett. B 173 (1986) 237–240.

[99] CAST Collaboration, V. Anastassopoulos et al., New CAST Limit on the
Axion-Photon Interaction, Nature Phys. 13 (2017) 584–590, [arXiv:1705.02290].

[100] J. R. Ellis, S. Ferrara, and D. V. Nanopoulos, CP Violation and Supersymmetry,
Phys. Lett. B 114 (1982) 231–234.

[101] G. F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry
breaking, Phys. Rept. 322 (1999) 419–499, [hep-ph/9801271].

[102] L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys.
B 557 (1999) 79–118, [hep-th/9810155].

[103] G. F. Giudice, M. A. Luty, H. Murayama, and R. Rattazzi, Gaugino mass without
singlets, JHEP 12 (1998) 027, [hep-ph/9810442].

[104] R. Rattazzi, A. Strumia, and J. D. Wells, Phenomenology of deflected anomaly
mediation, Nucl. Phys. B 576 (2000) 3–28, [hep-ph/9912390].

[105] V. Enguita, B. Gavela, B. Grinstein, and P. Quilez, ALP contribution to the strong
CP problem, Phys. Rev. D 110 (2024), no. 1 015024, [arXiv:2403.12133].

[106] M. Pospelov and A. Ritz, Theta vacua, QCD sum rules, and the neutron electric
dipole moment, Nucl. Phys. B 573 (2000) 177–200, [hep-ph/9908508].

[107] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the
Neutron, Phys. Rev. Lett. 124 (2020), no. 8 081803, [arXiv:2001.11966].

[108] P. Arias, D. Cadamuro, M. Goodsell, et al., WISPy Cold Dark Matter, JCAP 06
(2012) 013, [arXiv:1201.5902].

[109] N. Blinov, M. J. Dolan, P. Draper, and J. Kozaczuk, Dark matter targets for
axionlike particle searches, Phys. Rev. D 100 (2019), no. 1 015049,
[arXiv:1905.06952].

[110] C. A. J. O’Hare, Cosmology of axion dark matter, PoS COSMICWISPers (2024)
040, [arXiv:2403.17697].

[111] L. Visinelli and P. Gondolo, Axion cold dark matter in non-standard cosmologies,
Phys. Rev. D 81 (2010) 063508, [arXiv:0912.0015].

[112] M. Kawasaki, K. Kohri, and N. Sugiyama, MeV scale reheating temperature and
thermalization of neutrino background, Phys. Rev. D 62 (2000) 023506,
[astro-ph/0002127].

42

http://arxiv.org/abs/1705.02290
http://arxiv.org/abs/hep-ph/9801271
http://arxiv.org/abs/hep-th/9810155
http://arxiv.org/abs/hep-ph/9810442
http://arxiv.org/abs/hep-ph/9912390
http://arxiv.org/abs/2403.12133
http://arxiv.org/abs/hep-ph/9908508
http://arxiv.org/abs/2001.11966
http://arxiv.org/abs/1201.5902
http://arxiv.org/abs/1905.06952
http://arxiv.org/abs/2403.17697
http://arxiv.org/abs/0912.0015
http://arxiv.org/abs/astro-ph/0002127


[113] S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70
(2004) 043506, [astro-ph/0403291].

[114] F. D’Eramo, N. Fernandez, and S. Profumo, Dark Matter Freeze-in Production in
Fast-Expanding Universes, JCAP 02 (2018) 046, [arXiv:1712.07453].

[115] M. Badziak, K. Harigaya, M.  Lukawski, and R. Ziegler, Thermal production of
astrophobic axions, JHEP 09 (2024) 136, [arXiv:2403.05621].

[116] D. Cadamuro, S. Hannestad, G. Raffelt, and J. Redondo, Cosmological bounds on
sub-MeV mass axions, JCAP 02 (2011) 003, [arXiv:1011.3694].

[117] F. Elahi, C. Kolda, and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048,
[arXiv:1410.6157].

[118] J. Silva-Malpartida, N. Bernal, J. Jones-Pérez, and R. A. Lineros, From WIMPs to
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