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Abstract

Inclusive semileptonic B → Xc`ν̄` decays, where ` = µ, e, are by now standard can-
dles in the determination of the CKM element |Vcb|. These determinations rely on
the heavy-quark expansion and use moments of decay spectra to extract the non-
perturbative parameters directly from data under the standard model assumption.

At the same time, new physics could influence the moments of the inclusive decay.
In this paper, we compute power-corrections and next-to-leading order corrections
in the strong coupling constant using the full basis of dimension-six new physics
operators for the inclusive B → Xc`ν̄ decay. We provide predictions for lepton energy,
hadronic and leptonic invariant mass moments, and perform a phenomenological study
to show the possible impact of new physics. Our results could be used to perform a
global fit including new physics contributions.
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1 Introduction

Semileptonic b→ c decays provide important tests of the Standard Model (SM) of particle
physics as they are mediated by a tree-level weak transition. As such, both the inclusive
B → Xc`ν̄` and exclusive B → D(∗)`ν̄` decays, where ` = µ, e, are clean probes of the CKM
element |Vcb|. For the exclusive decays, this requires information on the B → D(∗) form
factors, while the inclusive decay relies fully on the heavy quark expansion (HQE) and the
extraction of non-perturbative parameters from data. Thanks to a combined theoretical and
experimental effort, the inclusive determination of |Vcb| has reached an impressive 1.2−1.5%
relative uncertainty [1, 2].

Despite this progress, the puzzling tension between the exclusive and inclusive deter-
mination of Vcb persists and has received quite some attention recently (see e.g. [3–9]). At
the same time the possible New Physics (NP) origin of this discrepancy has been investi-
gated (see [10–12]). The search for such NP has been boosted by the recent finding of the
B anomalies, discrepancies between experimental data and theoretical SM predictions in
both the neutral (b→ s``) and charged (b→ cτ ν̄τ ) current decay of B mesons.

In this paper, we consider the effect of possible new physics interactions on moments
of the inclusive B → Xc`ν̄` decay, for light leptons. The effect of NP on the moments of
the b→ c spectrum have so far only been studied in [13,14], where a subset of possible NP
operators was included. NP contributions to the total inclusive rate were included in the
analysis of Ref. [11], while new tensor interactions were discussed in [10].

Using the framework of the HQE, we consider the B → Xc`ν̄` spectra including the
full set of NP dimension-six operators appearing in the weak effective theory (WET) below
the electroweak (EW) scale. We provide predictions for lepton energy (E`), hadronic (M2

X)
and leptonic (q2) invariant mass moments. Moreover we study also NP effects in forward-
backward asymmetries which were proposed in [15] and recently reconsidered in [16]. When
considering the most general effective Hamiltonian for b→ c`ν̄` transition with dimension-
six operators, we have three expansion parameters in the HQE: the inverse of the EW scale
GF = 1/(

√
2v2), 1/mb and αs(mb). In order to properly catch the leading effects in the

various moments, we compute the following kind of contributions:

• NP contributions at tree level in the free-quark approximation. These terms scale like
G2
F × α0

s × ( 1
mb

)0 in the prediction for the differential rate. Note that the interference
between SM and NP operators vanishes for scalar and tensor currents when the leptons
are considered massless.

• Power suppressed contributions up to order 1/m3
b also for the NP operator contri-

butions. These corrections scale like G2
F × α0

s × ( 1
mb

)2,3. Since the prediction for q2

and M2
X central moments receive large contributions from power corrections, it is

important to consider also the power suppressed terms for the NP effects.

• Perturbative QCD NLO corrections to the NP effective interactions in the free quark
approximation, which scale like G2

F × α1
s × ( 1

mb
)0. For the second and third central
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moments of M2
X , the αs corrections are effectively a leading-order contribution since

the partonic invariant mass differs from mc only starting at O(αs).

In the end, our results could be included in a fit to the experimental data to constrain
possible NP contributions. We plan to implement this in the EOS software [17]. In the
mean time, to show the impact of such an analysis, we illustrate the effect of different NP
scenarios with some phenomenological studies. Finally, we present a toy fit to show the
effect on the Vcb extraction, as the HQE parameters could mimic the effect of NP.

This work is organised as follows. In Section 2 we introduce the set of dimension-
six operators which can contribute to the inclusive semileptonic B decay and discuss the
derivation of the NLO corrections for the NP operators. In Sec. 3 we present the results for
the NP contributions to moments, illustrate their effects using three benchmark scenarios
and study their impact on the extraction of the HQE parameters in global fits via a toy fit.
In Sec. 4 we discuss the effects of NP in the forward-backward asymmetries. We conclude
in Sec. 5. In Appendix A, we give the contribution to the total rate, while in Appendix B
we give our results for the different contributions to the moments.

2 Effective NP contributions to b → c`ν̄`

We consider NP effects in b→ c`ν̄` decays arising from

Heff =
4GFVcb√

2

[
(1 + CVL)OVL +

∑
i=VR,SL,SR,T

CiOi

]
, (1)

where the effective dimension-six operators are

OVL(R)
=
(
c̄γµPL(R)b

) (
¯̀γµPLν`

)
, (2)

OSL(R)
=
(
c̄PL(R)b

) (
¯̀PLν`

)
(3)

OT = (c̄ σµνPLb)
(
¯̀σµνPLν`

)
. (4)

with PL(R) = 1/2 (1 ∓ γ5) and σµν = i
2
[γµ, γν ]. In the SM only OVL contributes. We

have written out this contribution explicitly, such that all Wilson coefficients Ci are zero
in the SM. We do not consider interactions with right handed neutrinos (see e.g. [18] for a
discussion of these effects on exclusive B → D(∗)`ν̄` decays).

Note that if one would consider NP effects in the SMEFT framework [19], there would
be an additional expansion in powers of 1/Λ, where Λ corresponds to the NP scale above
the EW scale. The tree-level matching of SMEFT operators onto the effective Hamiltonian
can be obtained from [20]. In the WET the expansion parameter is 1/v, therefore from the
SMEFT point of view the Wilson coefficients in Eq. (1) would be further suppressed by the
small ratio (v/Λ)2.

To study the effects of the NP operators on moments of the spectrum, we calculate the
triple differential decay rate in terms of the lepton (neutrino) energy E`(ν) and the dilepton
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invariant mass q2 = (p` + pν)
2. We write

dΓSM+NP

dE`dq2dEν
=
G2
F |Vcb|2
16π3

W̃ ⊗ L̃ , (5)

where

W̃ ⊗ L̃ ≡ |1 + CVL|2 (WµνL
µν)VL,VL + |CVR |2 (WµνL

µν)VR,VR + |CSL|2 (WL)SL,SL

+ |CSR |2 (WL)SR,SR + |CT |2 (WµνρσL
µνρσ)T,T + Re((1 + CVL)C∗VR) (WµνL

µν)VL,VR

+ Re(CSLC
∗
SR

) (WL)SL,SR + Re(CSLC
∗
T )(WµνL

µν)SL,T

+ Re(CSRC
∗
T )(WµνL

µν)SR,T . (6)

We split the contributions into the lepton (L) and hadronic (W ) tensors. We define

L =
∑

lepton spin

〈0| J†L |`ν̄`〉 〈`ν̄`| JL′ |0〉 , (7)

where we suppressed the Lorenz indices in the leptonic tensor. The indices L and L′ can
take the values SL,R, VL,R and T with

JSL,R = (¯̀PLν`), JµVL,R = (¯̀γµPLν`), JµαT = (¯̀σµαPLν`). (8)

We define the hadronic tensor in the following way:

W =
∑
Xc

1

2mB

(2π)3 〈B̄| J†H |Xc〉 〈Xc| JH′ |B̄〉 δ(4)(pB − q − pXc) , (9)

where pXc is the total momentum of the Xc state and also in this case we suppressed the
Lorenz indices. In the presence of NP interactions, the index H and H ′ can take the values
SL,R, VL,R and T where

JSL(R)
= (c̄PL(R)b) , JµVL(R)

= (c̄γµPL(R)b) , JµαT = (c̄σµαPLb) . (10)

In Eq. (6) we neglected combinations of the form (WµL
µ)VL(R),SL(R)

and (WµρσL
µρσ)VL(R),T

since they do not contribute in the limit m` → 0 considered in this work. The hadronic
tensors W can now be calculated using the heavy quark expansion (HQE) (see e.g. [21]), ex-
pressing them in pertubatively calculable coefficients and hadronic matrix elements scaling
with inverse powers of mb. The number of matrix elements proliferates at each higher order
in 1/mb (see [22–24]). Here we only consider terms up to 1/m3

b defined as: (see e.g. [25])

2mB (µ2
π)⊥ ≡ −〈B|b̄v(iDρ)(iDσ)bv|B〉Πρσ ,

2mB (µ2
G)⊥ ≡ 1

2
〈B|b̄v [iDρ, iDλ] (−iσαβ)bv|B〉ΠαρΠβλ,
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2mB (ρ3
D)⊥ ≡ 1

2
〈B|b̄v [iDρ, [iDσ, iDλ]] bv|B〉Πρλvσ,

2mB (ρ3
LS)⊥ ≡ 1

2
〈B|b̄v {iDρ, [iDσ, iDλ]} (−iσαβ)bv|B〉ΠαρΠβλvσ , (11)

where vµ = pµB/mB is the velocity of the B meson and

Πµν = gµν − vµvν . (12)

In the following, we drop the “perp” superscript for simplicity. Alternative, the HQE
parameters can be defined with the full covariant derivative, related to the spatial com-
ponent via iDµ = vµ(iv · D) + Dµ

⊥. These definitions were used in Refs. [2, 23, 24] as, in
the reparametrization invariant (RPI) basis, it is beneficial to use the full derivative (see
discussion in Appendix A of [24] for the relation between these two bases). In principle, the
1/m4

b terms can be included as recently done for the q2 moment analysis [2]. The two 1/m4
b

parameter extracted were found to be consistent with zero. These higher-order corrections
were also studied in [26] using the lowest-lying state approximation. Therefore, for this
study of NP effects, we only consider terms up to 1/m3

b .

2.1 Next-to-leading order corrections

Besides these power-corrections, we also compute the NLO corrections to the triple dif-
ferential rate for the full NP operator basis in (1). For scalar NP interactions, the NLO
corrections to the q2 spectrum are already given in [27], using results from [28]. The NLO
corrections for the SM are well known for both the massive and massless leptons in the
semileptonic decay b→ c`ν̄` [29–34].

We compute the O(αs) for the structure functions of the hadronic tensor W for the
different currents which enter the fully differential decay width. We note that it turns out to
be more convenient to express the triple differential rate with respect to u ≡ p2

Xc
−m2

c instead
of Eν as in [33]. We then extract the predictions for the various moments and forward-
backward asymmetries with arbitrary cuts via numerical integration of the differential rate
over the allowed phase space, following the approach described in [35].

In general we can express the structure functions as:

WHH′(q2, (v · q)) = W
(0)
HH′(q

2, (v · q)) +
αs(µ)

π

[
W

(1)
HH′,virt(q

2, (v · q)) +W
(1)
HH′,real(q

2, (v · q))
]
,

(13)

where “virt” and “real” stand for virtual and real contributions, respectively. The indices
HH ′ run over all possible pairs of NP interactions, e.g. VLVR, SLSR, etc.

For the ultraviolet and infrared divergences, we use dimensional regularization and de-
fine ε = (4 − d)/2, where d is the space-time dimensions. For the calculation we use the
Mathematica package FeynCalc [36]. The ultraviolet divergences in the one-loop virtual
diagrams are removed by using on-shell quark mass and wave function renormalization.
Furthermore, there are additional ultraviolet divergences for the scalar and tensor currents.
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(a) (b)

(c) (d)

Figure 1: One-loop forward scattering diagrams which contribute to the b→ Xc`ν̄` differen-
tial rate at NLO. The black boxes represents one of the currents JH defined in (10). Solid
lines represent the quarks, curly lines the gluons and wavy lines the color-singlet external
current mediating the weak decay.

We therefore apply a renormalization of these currents according to their one-loop anoma-
lous dimension (see e.g. [37]). For the computation of real emission we employed the inverse
unitarity approach [38]. This method allows us to rewrite the real emission diagram inte-
grated over the gluon phase-space as a multi-loop integral with cut propagators. We can
then apply the usual IBP reduction to reduce the real emission contribution to phase-space
master integrals which are then calculated explicitly. In the process of the reduction to
master integrals we take into account the cut in the gluon and charm intermediate state.
For the real emission we encounter the following integral family:

I(a, b, c) =
(
4π e−γE

)−ε
Disc

∫
ddk

(2π)d
1

[k2]a[(pb − k)2 −m2
b ]
b[(pb − q − k)2 −m2

c ]
c

(14)

By applying the Cutkosky’s rules for the gluon and charm intermediate state:

1

k2
→ (−2πi) δ(k2) ,

1

(pb − q − k)2 −m2
c

→ (−2πi) δ((pb − q − k)2 −m2
c) , (15)

we obtain the following master integrals:

I(1, 0, 1) =
(
4π e−γE

)−ε ∫ ddk

(2π)d
(−2πi)2δ(k2)δ((pb − q − k)2 −m2

c)Θ(k0)

= − û

4πŝ

(
û√
ŝ

)−2ε(
1

2
+ ε+O(ε2)

)
, (16)
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I(1, 1, 1) =
(
4π e−γE

)−ε ∫ ddk

(2π)d
1

(pb + k)2 −m2
b

(−2πi)2δ(k2)δ((pb − q − k)2 −m2
c)Θ(k0)

=

(
û√
ŝ

)−2ε
{

1

8π
√
λ

log

(
1− q̂2 + ŝ+

√
λ

1− q̂2 + ŝ−
√
λ

)

+
ε

4π
√
λ

[
Li2

(
2
√
λ

1− q̂2 + ŝ+
√
λ

)
+

1

4
log2

(
1− q̂2 + ŝ+

√
λ

1− q̂2 + ŝ−
√
λ

)]
+O(ε2)

}
,

(17)

where ŝ = ρ+ û, λ = λ(1, q̂2, ŝ) and λ(x, y, z) = x2 +y2 + z2−2xy−2xz−2yz is the Källen
function. The singularities of the real emissions are located at û = 0 with:

û = (1− q̂)2 − ρ , 0 ≤ û ≤ ûmax = (1−
√
q̂2)2 − ρ . (18)

We have to extract the singular behavior of the master integrals around û = 0 before
expanding in ε. The infrared divergences are extracted explicitly by using the plus distri-
bution:

û−1+aε =
1

aε
δ(û) ûmax +

[
1

û

]
+

+O(ε) . (19)

The integration of the plus distribution over a test function is defined as:∫ ûmax

0

f(û)

[
1

û

]
+

dû =

∫ ûmax

0

f(û)− f(0)

û
dû . (20)

In the sum between real and virtual corrections all the infrared divergences cancel. For the
γ5 definition in dimensional regularization we use the Larin prescription [39], i.e.

γ5 =
i

12
εµ1µ2µ3µ4γ

µ1γµ2γµ3γµ4 , (21)

which requires an additional finite renormalization constant in order to restore the correct
Ward identity.

Note that, our method to compute the one-loop diagrams differs from [33] where they
regularize IR divergences via a finite gluon mass. Ref. [33] presented also the corrections of
O(αnsβ

n−1
0 ) (the so-called large-β0 limit). This can be also done in our approach, however, we

do not include them in this analysis. To summarize, in this work we consider leading order,
power-corrections up to O(1/m3

b) and next-to-leading order corrections. Schematically:

dΓSM+NP

dE`dq2dEν
=

dΓLO
SM+NP

dE`dq2dEν
+

dΓPow
SM+NP

dE`dq2dEν
+
(αs
π

) dΓNLO
SM+NP

dE`dq2dEν
. (22)
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2.2 Moments of the spectrum

In the following, we consider the lepton energy moments, dilepton invariant mass (q2)
moments and hadronic invariant mass moments of the b → c spectrum. The first two can
be easily obtained from the triple differential rate defined as in (5). The hadronic invariant
mass is related to these variables via

M2
X ≡ (pB − q)2 = (m2

B + q2 − 2mB(v · q)) . (23)

The normalized moments for observable M are then defined

〈Mn〉E`>Ecut
`

=

∫
E`>E

cut
`

dMMn dΓ
dM∫

E`>E
cut
`

dM dΓ
dM

, (24)

where Ecut
` is the energy cut of the lepton ` = (e, µ) and n denotes the n-th order of

moment. Similarly, for q2 moments, we consider moments with minimum cut q2
cut on the

value of q2. As is customary, we also calculate central moments defined as

〈(M− 〈M〉)n〉 =
n∑
i=0

(
n

i

)
〈(M)i〉 (−〈M〉)n−i . (25)

The moments can be obtained using Eq. (24) and by integrating the triple differential rate
over the allowed phase space.

3 New physics in moments of B → Xc`ν̄`

The moments can now be obtained from the triple differential rate in (5). We write

〈M〉 = ξSM + |CVR |2 ξ〈VR,VR〉NP + |CSL|2 ξ〈SL,SL〉NP + |CSR |2 ξ〈SR,SR〉NP + |CT |2 ξ〈T,T 〉NP

+ Re((CVL − 1)C∗VR) ξ
〈VL,VR〉
NP + Re(CSLC

∗
SR

) ξ
〈SL,SR〉
NP + Re(CSLC

∗
T ) ξ

〈SL,T 〉
NP

+ Re(CSRC
∗
T ) ξ

〈SR,T 〉
NP , (26)

where we assume that the NP Wilson coefficients are smaller than one so that we can
expand the ratios in Eq. (24) up to quadratic NP couplings. The contribution CVLξ

〈VL〉
NP

drops out for normalized moments and in the branching ratio it is equivalent to a rescaling
of Vcb. The coefficients denoted by ξ depend on the bottom and charm quark masses, the
HQE parameters and the lepton energy cut or the q2 cut. For ξSM, we agree with the
numerical results at O(αs) given in [40] for the electron energy and MX moments. The NP
coefficients with NLO corrections are lengthy and require numerical integration depending
on the lepton energy (or q2) cut. Therefore, we do not report explicitly our results. They
can be obtained in Mathematica format from the authors. However, to illustrate the effect
of the NP contributions, we report our predictions for the various central moments for
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mkin
b (4.573 ± 0.012) GeV

mc(2 GeV) (1.092 ± 0.008) GeV

(µ2
π(µ))kin (0.477 ± 0.056) GeV2

(µ2
G(µ))kin (0.306 ± 0.050) GeV2

(ρ3
D(µ))kin (0.185 ± 0.031) GeV3

(ρ3
LS(µ))kin (-0.130 ± 0.092) GeV3

Table 1: Numerical inputs from [1]. The HQE parameters and the b-quark mass are given
in the kinetic scheme at µ = 1 GeV.

benchmark values of the cuts. We consider Ecut
` = 1 GeV in case of the lepton energy

and hadronic invariant mass moments. For the q2 moments, we present results for q2
cut = 4

GeV2. In the next section, we also illustrate the lepton energy or q2 cut dependence for
specific NP scenarios.

In Appendix B we report our predictions for the different moments. We work in the
kinetic scheme [28,41–43]. We fix the value of the scale µ in mkin

b (µ) at 1 GeV. For the charm
quark mass we use the MS scheme and fix mc(2 GeV). For the strong coupling constant
we use αs(m

kin
b ) = 0.2184 [44]. In addition, we use the input values in Table 1. These are

obtained from a global fit to lepton energy and hadronic invariant mass moments of the
B → Xc`ν̄` spectra in [1] (which updates the fit of [26]). Interestingly, the value of ρ3

D in
Table 1 differs from the determination of ρ3

D = (0.03± 0.02) GeV3 found in [2]. The latter
uses q2 moments, which depend on a reduced RPI basis of HQE elements. Specifically,
ρ3
LS does not enter into the prediction of RPI quantities and the dependence on µ2

π is
very much reduced for normalized q2 moments. The difference between the values for ρ3

D

obtained from these two data sets requires further study, preferably via a combined fit to
all available data. These studies are in progress. On the contrary, the lepton and hadronic
mass moments depends on ρ3

LS and µ2
π, so we cannot use the HQE parameter values from [2]

for these moments. However, for the q2 moments both determinations of HQE parameters
can be used. We comment on this in the next section.

Our results in Appendix B show the impact of different NP contributions. As stated
already in the introduction, especially for the MX and q2 moments, the inclusion of 1/mb

power corrections is crucial, while in addition for the former also αs numerically plays an
important role. In principle, the coefficients have an uncertainty stemming from the input
parameters. However, here we refrain from giving those. We include them in the next
section when discussing different NP scenarios.

From our results, we observe that for all moments the contribution proportional to C2
T is

sizable compared to ξSM. Especially for the third E` and q2 moments, tensor contributions
can be as large as ten times the SM prediction or more (for order one coefficients). Therefore,
a moment analysis is expected to be able to strongly constrain such contributions. It is
also interesting to consider the case of contributions from both CSL and CT , because due
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to RGE running (see e.g. [45, 46]), tensor interactions always generate left-handed scalar
interactions. We note that q2 moments are only sensitive to the quadratic contributions,
while lepton and hadronic mass moments are also sensitive to interference. Assuming real
couplings and CSL > CT (see discussion in [11]), we observe that the q2 moments mainly
constrain CSL , while the lepton moments constrain the tensor part. Clearly, the situation
for the inclusive decay is not as straightforward as for the exclusive case, because our
current “SM prediction” depends on the input of the HQE elements that are extracted
from data. Nevertheless, we can visualize and investigate the potential NP bounds for
different scenarios by assuming that the SM prediction is known (namely ξSM). We then
define

δ 〈M〉 ≡ 〈M〉 − 〈M〉SM

〈M〉SM

(27)

where MSM = ξSM for the specific moment under consideration. Considering then a 10%
measurement of the moments, i.e. δ 〈M〉 = ±0.1, leads to a constraint on the NP parame-
ters. Specifically, for the SL − T contributions we obtain

− 0.1 < |CSL|2ξ̂〈SL,SL〉NP + |CT |2ξ̂〈T,T 〉NP + Re(CSLC
∗
T )ξ̂
〈SL,T 〉
NP < 0.1 , (28)

where

ξ̂i ≡
ξi
ξSM

, (29)

and the ξi can be found in Appendix B for the different moments and NP scenarios. In order
to illustrate the effects, we use these ξ’s, which are re-expanded in the Wilson coefficients.
The constraints obtained from (28) are illustrated in Fig. 2. Interestingly, we see that
the different moments give complementary bounds on NP, similar as the B → D versus
B → D∗ constraints in the exclusive case (for the latter see [11]).

Similarly, in Fig. 3, we illustrate the possible bounds on CVL and CVR (left) and CSL
and CSR (right). In these cases, we see that the MX moments give much weaker constraints
than the lepton energy and q2 moments. We should stress that the uncertainties on the
MX moments are in general also larger as they are more sensitive to higher-order HQE
corrections. Comparing with the exclusive constraints on CSL versus CSR in [11], we observe
that such a SM measurement would constrain NP along the CSL = −CSR plane, similar as
the B → D exclusive mode, while B → D∗ gives constraints orthogonal to that.

Finally, we note that the CSL,RCT coefficient vanishes for q2 moments because the dif-
ferential rate has only a parity-odd contribution while q2 moments with a cut on q2 are
parity even observables. For lepton energy and hadronic mass moments, the contribution
proportional to CSRCT is non-zero only due to power corrections. Therefore, the sensitivity
to these types of NP is limited.

3.1 Illustration for specific NP scenarios

To visualize the effect of possible NP in the moments of the B → Xc`ν̄` spectrum as a
function of the lepton energy cut (or q2 cut), we consider three NP scenarios specified
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Figure 2: Illustration of complementarity of constraints on CSL and CT from lepton energy
moments and q2 moments, assuming δ〈M〉 = ±0.1.
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Figure 3: Illustration of the possible bounds on (left) CVL versus CVR and (right) CSL versus
CSR assuming a 10% SM measurement.

in Table 2 allowing for either new scalar interactions (Scen. I), new tensor and scalar
interactions interactions (Scen. II) and new vector interactions (Scen. III). These scenarios
are just to illustrate how the NP contributions depend on the cut and to the SM uncertainty.
We stress that these scenarios may not be realistic in light of current data on exclusive
B → D(∗) decays, were the same NP operators would contribute. Specifically Scenario
II, where we allow for a rather large tensor contribution, may be already excluded by the
exclusive decays (see [11]). For the scalar contributions, we pick CSR = CSL , based on Fig. 3
as we see that this would give a large effect on the spectrum. Finally, as here we consider
rather large Wilson coefficients we do not re-expand the expression for the moments in
the Wilson coefficients. We observe in Figs. 4, 5 and 6 that the prediction for all central
moments are modified by the presence of NP contributions, but that the cut-dependence
remains similar as that of the SM prediction. For all cases, we observe that the third central
moment is most sensitive to NP effects.
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NP Scenarios CVL CVR CSR CSL CT

I 0 0 1 1 0

II 0 0 0 -1 0.5

III 1 0.5 0 0 0

Table 2: Three NP scenarios that we consider to visualize the effect of the NP parameters
in the moments. All Wilson coefficients are defined at the scale µ = mb.

Electron energy moments:

Figure 4 shows the lepton energy moments as a function of the lepton energy cut for the SM
and the three NP scenarios. In order to qualitatively understand the sensitivity on possible
NP effects, we show in these plots the experimental results from Belle [47] and BaBar [48].
On the right-hand side, we show the impact of the NP scenarios by showing the absolute
value of δ 〈M〉 defined in (27).

For simplicity, we only show an uncertainty band for the SM prediction obtained by
varying the inputs in Table 1 within their 1σ ranges. To account for missing αs corrections,
we vary the scale of αs(µ) in the range mb/2 < µ < 2mb. We observe for electron energy
moments, Scen. I is rather close to the SM, while Scen. II and III cause a shift much larger
than the SM uncertainty. These lepton energy moments therefore seem rather sensitive to
NP effects and it would be potentially able to constrain NP via a full global analysis of
these moments. Note also that the contribution from power corrections are in general small
for this kind of moments, reducing the dependence on the value of the HQE parameters.

M2
X moments:

Results for the hadronic invariant mass moments are shown in Fig. 5. We observe that
these moments are sensitive to new scalar couplings, as Scen. I shows the largest deviation
from the SM prediction. On the other hand, both Scen. II and III lie within the uncertainty
of the SM error band, which is rather large. This happens because for the MX moments
the contribution from power corrections is very important and the αs corrections are much
larger compared to the partonic LO. The dependence of the MX moments on the scale of
αs is therefore much larger compared for instance to the electron energy moments and so
prevents a precise SM determination of these kind of observables.

For the experimental data points we use the results of CLEO [49], Belle [50] and
BaBar [51]. The latter does not provide the central moments but only 〈(M2

X)i=1,2,3〉. We
have calculated the central moments using (25). We do not show the recent results of Belle
II [52] since the uncertainties are still rather large.
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B(B → Xc`ν̄) in %

ξSM 12.983|LO − 0.962|pow −
(
αs
π

)
16.101

ξ
〈VR,VR〉
NP 12.983|LO − 0.962|pow −

(
αs
π

)
16.101

ξ
〈SL,SL〉
NP 3.245|LO + 0.067|pow +

(
αs
π

)
2.783

ξ
〈SR,SR〉
NP 3.245|LO + 0.067|pow +

(
αs
π

)
2.783

ξ
〈T,T 〉
NP 155.802|LO − 16.493|pow −

(
αs
π

)
163.665

ξ
〈VL,VR〉
NP −8.453|LO + 1.332|pow +

(
αs
π

)
13.375

ξ
〈SL,SR〉
NP 4.226|LO + 0.380|pow +

(
αs
π

)
4.550

ξ
〈SL,T 〉
NP 0

ξ
〈SR,T 〉
NP 0

Table 3: Numerical values of the parameters for the branching ratio without lepton energy
cut for fixed B meson lifetime.

q2 moments:

For the q2 moments, we consider the SM and NP predictions at different values of the q2

cut shown in Figure 6. For the plots on the left-hand side, we used the HQE parameters
from Table 1 from [1]. Comparing with the experimental data points of Belle [53] and Belle
II [54], we find large deviations. Interestingly, these deviations cannot be accommodated
by the three NP scenarios we consider. As mentioned before, in [2], where these data were
used to extract the HQE parameters and Vcb, a value of ρ3

D incompatible with that in
Table 1 was found. The mismatch in Fig. 6 is a consequence of this: the q2 data pull ρ3

D

to much smaller value. To illustrate this, we show on the right-hand side of Fig. 6 the SM
predictions using the HQE parameters obtained in [2]. We observe good agreement with the
data points. In addition, the uncertainty of the SM prediction is rather large, reflecting that
these moments are more sensitive to the power corrections than the lepton energy moments.
This was already observed in [55]. Note that the ξ coefficients in Appendix B are obtained
using Table 1. As the goal of these scenarios is merely to demonstrate the effect of different
NP parameters, we do not present ξ’s using the HQE parameters from [2]. We observed
the q2 moments are most sensitive to Scen. I, while Scen. III has basically no effect. This is
because for this scenario there is a cancellation between the Wilson coefficients, rendering
the effect almost unobservable. For smaller values of CVL , there is an effect on the moments
and in fact the q2 moments can put rather strong constraints as seen in Fig. 3.

3.2 Lepton Flavor Universality Ratios

In order to study NP in Lepton Flavor Universality Ratios of light leptons, we give the
analytic expression for the total rate in Appendix A.
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Figure 6: Dilepton invariant mass moments (q2) for the B → Xc`ν̄` decay in comparison
with Belle [53] and Belle II data [54]. (Left) Using the inputs in Table 1 from [1](Right)
using the inputs from [2].
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For completeness, we also give the numerical coefficients including NLO correction.
Writing the branching ratio in terms of ξi as in (26), with the only difference that the ξSM

term gets multiplied with |1 + CVL|2, we find the coefficients listed in Table 3. We used
the iputs in Table 1 and a fixed value for the B meson lifetime τB = 1.579 ps [56] and
|Vcb| = (42.16 ± 0.51) · 10−3 [1]. However, we note that NP would also affect the total
lifetime of the B meson.

The expressions in the Appendix and our numerical results can be used to study ratios of
electron versus muon rates under the assumption of lepton-flavour universality violating new
physics. Note that a lepton-flavour universal and diagonal NP effect in CL can in principle
be absorbed by a shift in Vcb. Recently, the SM predictions for lepton-flavour universality
ratios were studied [57]. Because the current data (see for example the q2 moments split
up for electron and muon contributions in [53]) do not indicate any deviation from lepton
universality in the charged light modes, we do not study these effects here further.

3.3 HQE parameters versus NP

The HQE parameters are extracted from moments of the b → c spectrum under the as-
sumption of the SM. However, it can be that NP mimics the effect of the HQE parameters
shifting the spectrum up or down. In fact, Fig. 6 shows that shifting ρ3

D seems to be able to
mimic the effect that NP may have on the spectrum. It would therefore be interesting to
perform a full analysis of the moments including NP. Such an analysis lies beyond the scope
of the current paper. However, we can illustrate the possible effect with a simplified toy fit.
To this extend, we generate pseudo data points for the three NP scenarios in Table 2 for
lepton energy and hadronic invariant mass moments at different lepton energy cuts as well
as q2 moments with q2

cut. For this, we use the HQE parameters in Table 1. We generate 9
data points per scenario: the first, second and third central moments with Ecut

` = 1.0 GeV
for the lepton energy and hadronic invariant mass moments and with q2

cut = 4 GeV2 for
q2 moments. For the uncertainty on these points, we vary the contribution of ρ3

D by 30%,
µ2
G by 20% and αs between its value at µ = mb/2 and µ = mb, based on [1, 2]. As this

render the uncertainty for the lepton energy moments rather small, we add an additional
uncertainty based on the current experimental uncertainty. In addition, we also include
the current experimental uncertainty for the third q2 and MX moments as these are rather
large.

In principle, these pseudo data points can then be used to fit for the HQE parameters
µ2
G, µ

2
π, ρ

3
LS, ρ

3
D using the SM expressions. In this way, our toy fit mimics a situation that

may happen in reality: i.e. NP is present but the extraction of HQE parameters is done
assuming the SM. We observe that for the three NP scenarios in Table 2, our simple toy
fit yields large χ2. The reason for this is that it is challenging to accommodate the third
moments, which are sensitive to NP, and first lepton energy moments, which drives the
fit due to its small uncertainty, at the same time. Turning the argumentation around this
may indicate that a full simultaneous fit of the HQE parameters and NP parameters would
give rather good constraints on NP. In this endeavour, it seems crucial to improve the
experimental inputs especially on the third moments.
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Finally, we may also consider a more realistic scenario taken from the analysis of [11]:
CT = 0.05 and CSL = −0.5. Assuming no correlations between the pseudo data points, we
obtain a χ2/d.o.f. ' 2.4 and

µ2
G|toy = 0.40 GeV2, µ2

π|toy = 0.45 GeV2, ρ3
LS|toy = 0.09 GeV3, ρ3

D|toy = 0.11 GeV3.
(30)

Comparing with the values in Table 1, we find 1 − 2σ shifts, with a rather poor fit
quality. We note that this toy fit merely serves to illustrate how NP could be hidden in the
HQE extraction, because the fit is rather flexible in accounting for such variations. Strong
conclusions should not be made from this fit, except that it may be worth performing a full
analysis on data. On the other hand, we also note that this may be challenging due to the
large number of extra parameters.

4 Forward-backward asymmetry

In this section, we consider the forward-backward asymmetry discussed in [15] and more
recently in [16]. The asymmetry is defined as

AFB ≡

∫ 0

−1

dz
dΓ

dz
−
∫ 1

0

dz
dΓ

dz∫ 1

−1

dz
dΓ

dz

, (31)

where

z ≡ cos θ =
v · pν̄` − v · p`√

(v · q)2 − q2
, (32)

and θ is the angle between spacial momenta of the lepton and the B meson in the rest-frame
of the dilepton pair.

As discussed in [16], including a lepton energy cut Ecut
` in the AFB definition leads to a

cusp in the differential spectrum in the variable z, which can be problematic in experimental
analysis. To circumvent this issue, Ref. [16] proposed to study AFB with a minimum cut
on q2 instead of E`. We therefore consider only q2 cuts, which also considerably simplifies
the calculation. We refer to [16] for details of the calculation.

Writing our results as in (26), we find the ξ’s listed in Table 4. We consider for the first
time the αs-corrections, both for the SM and for NP scenarios. In the upper part of Fig. 7,
we show the differential distribution in z normalized to 1/Γ0 as defined in Appendix A
for the SM and our three NP scenarios in Table 2. Our normalization, i.e. using only
1/Γ0, differs from that used by [15, 16], but our results for the SM are in agreement. In
the lower panel of Fig. 7, we show the prediction for AFB as a function of q2

cut where we
plot the different SM contributions for illustration. The plots shows that forward-backward
asymmetry and the differential distribution are sensitive the NP contributions and can
distinguish among our three different scenarios. The forward-backward asymmetry has not
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been measured so far, but our analysis shows the potential for understanding the SM and
possibly to constrain NP contributions.

AFB · 10−2

ξSM 24.603|LO − 2.928|pow −
(
αs
π

)
6.63

ξ
〈VR,VR〉
NP −25.387|LO + 0.769|pow +

(
αs
π

)
4.47

ξ
〈SL,SL〉
NP −8.683|LO − 0.333|pow −

(
αs
π

)
15.91

ξ
〈SR,SR〉
NP −8.683|LO − 0.333|pow −

(
αs
π

)
15.91

ξ
〈T,T 〉
NP −254.730|LO + 40.911|pow +

(
αs
π

)
2.13

ξ
〈VL,VR〉
NP −24.208|LO + 4.025|pow +

(
αs
π

)
7.53

ξ
〈SL,SR〉
NP 12.104|LO − 1.415|pow −

(
αs
π

)
24.67

ξ
〈SL,T 〉
NP 49.207|LO + 0.954|pow +

(
αs
π

)
51.17

ξ
〈SR,T 〉
NP 2.20|pow

Table 4: Numerical values of the parameters for the AFB given in Eq. (26). We consider
q2

cut = 4 GeV2.
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Figure 7: (Upper part) The differential rate for B → Xc`ν̄` as a function of z without
lepton energy cut and relative size of the NP scenarios w.r.t. the SM prediction. (Lower
part) Forward-backward asymmetry as a function of the q2 cut for the three NP scenarios
in Table 2 and their relative size w.r.t. the SM.

5 Conclusion

We investigated New Physics effects on the semileptonic channel B → Xc`ν̄`. For the first
time, we compute power-corrections up to O(1/m3

b) and αs-corrections for the full basis
of the New Physics operators in the WET over the full differential decay width. These
corrections are necessary to properly describe the dominant NP contributions to central
moments of dilepton invariant mass q2 and hadronic invariant mass M2

X .
We compared SM predictions, using HQE parameters obtained from experimental data,

and experimental measurements to the moments of lepton energy, hadronic invariant mass
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and dilepton momentum for different toy New Physics scenarios. In addition, we also
computed the forward-backward asymmetry. The main goal of this work is to pave the way
for a global fit analysis, which includes the full base of NP operators. To further constrain
such global fit, one may take advantage of lattice results for the HQE parameters, extracted
from meson mass calculations at different quark mass values [58], and scattering matrix for
B → Xc`ν̄` [59, 60]. Such results, even if preliminary, could enhance the predictive power
of the HQE by better assessing the non-perturbative inputs. We aim to perform such a fit
using the EOS software [17].
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A NP contributions to the total rate

We decompose the prediction of the total rate in two parts:

Γ(B → Xc`ν̄) = Γ0

(
ΓLO

NP(B → Xc`ν̄) + ΓPow
NP (B → Xc`ν̄)

)
(33)

where

Γ0 =
G2
F |Vcb|2m5

b

192π3
(1 + Aew) (34)

and Aew = 0.014 [61]. The LO result in the free quark approximation is given by

ΓLO
NP(B → Xc`ν̄) = ΓLO

SM(B → Xc`ν̄)

(
|1 + CVL|2 + |CVR |2 +

1

4

(
|CSL|2 + |CSR |2

)
+ 12|CT |2

)
+ ΓLO

mix(B → Xc`ν̄)

(
Re((1 + CVL)CVR)− 1

2
Re(CSLCSR)

)
, (35)

with

ΓLO
SM = (1− 8ρ− 12ρ2 log(ρ) + 8ρ3 − ρ4) , (36)

ΓLO
mix = −4

√
ρ (1 + 9ρ+ 6ρ(1 + ρ) log(ρ)− 9ρ2 − ρ3) . (37)

Our result agrees with the leading-order (LO) results from [11]. The contribution from the
power corrections is

ΓPow
NP (B → Xc`ν̄) =

µ2
π

m2
b

Γ
µ2π
SM

(
|1 + CVL|2 + |CVR |2 +

1

4
(|CSL|2 + |CSR |2) + 12|CT |2

−2
√
ρ
(
ρ3 + 9ρ2 − 9ρ− 6(ρ+ 1)ρ log(ρ)− 1

)(
Re((1 + CVL)C∗VR)
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−1

2
Re(CSLC

∗
SR

)
))

+

(
µ2
G

m2
b

− ρ3
LS

m3
b

)(
Γ
µ2G
SM

(
|1 + CVL|2 + |CVR |2

)
−1

8

(
5ρ4 − 32ρ3 + 72ρ2 − 32ρ+ 12(ρ− 4)ρ log(ρ)− 13

)
(|CSL|2 + |CSR |2)

−2
(
15ρ4 − 64ρ3 + 24ρ2 + 12(3ρ+ 4)ρ log(ρ) + 25

)
|CT |2

+
2
√
ρ

3

(
13ρ3 − 27ρ2 − 6(3ρ2 − 3ρ+ 2) log(ρ) + 27ρ− 13

)
Re((1 + CVL)C∗VR)

−3
√
ρ
(
ρ3 − 3ρ2 − 2(ρ2 − 5ρ− 2) log(ρ)− 9ρ+ 11

)
Re(CSLC

∗
SR

)
)

+
ρ3
D

m3
b

(
Γ
ρ3D
SM

(
|1 + CVL|2 + |CVR |2

)
+

1

24

(
− 5ρ4 − 8ρ3 + 12(3ρ2 + 8ρ+ 8) log(ρ)

−184ρ+ 197
) (
|CSL|2 + |CSR |2

)
+ 2
(
− 5ρ4 − 8ρ3 + 32ρ2 + 4(9ρ2 − 8ρ+ 8) log(ρ)

−56ρ+ 37
)
|CT |2 + 2

(
ρ3 − 15ρ2 + 6(ρ2 − ρ− 2) log(ρ) + 39ρ− 25

)
×Re((1 + CVL)C∗VR) +

2
√
ρ

6

(
ρ3 + 9ρ2 + (−18ρ2 + 90ρ+ 60) log(ρ)

−153ρ+ 143
)

Re(CSLC
∗
SR

)
)

(38)

with

Γ
µ2π
SM = −1

2
ΓLO

SM , (39)

Γ
µ2G
SM = −1

2
(5ρ4 − 24ρ3 + 24ρ2 + 12ρ2 log(ρ)− 8ρ+ 3) , (40)

Γ
ρ3LS
SM =

1

2

(
5ρ4 − 24ρ3 + 24ρ2 + 12ρ2 log(ρ)− 8ρ+ 3

)
, (41)

Γ
ρ3D
SM =

1

6

(
−5ρ4 − 8ρ3 + 24ρ2 + 12(3ρ2 + 4) log(ρ)− 88ρ+ 77

)
. (42)

For the power-corrections O(1/m2
b) of (1 + CVL)CVR our result agrees with [14] cLcR term.

B NP effects on the moments

In this Appendix, we list the coefficients ξ defined in 26. We categorize the contributions
of leading-order, power-corrections and αs corrections.
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