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Abstract: In this work we complete the investigation of the recently introduced energy-
energy correlation (EEC) function in hadronic Higgs decays at next-to-leading order (NLO)
in fixed-order perturbation theory in the limit of vanishing light quark masses. The full
analytic NLO result for the previously unknown EEC in the H → qq̄+X channel is given
in terms of classical polylogarithms and cross-checked against a numerical calculation. In
addition to that, we discuss further corrections to predictions of the Higgs EEC event shape
variable, including quark mass corrections, effects of parton shower and hadronization. We
also estimate the statistical error on the measurements of the Higgs EEC at future Higgs
factories and compare with the current perturbative uncertainty.

ar
X

iv
:2

01
2.

14
18

8v
1 

 [
he

p-
ph

] 
 2

8 
D

ec
 2

02
0

mailto:jung49@sjtu.edu.cn
mailto:v.shtabovenko@kit.edu
mailto:tongzhi.yang@physik.uzh.ch


Contents

1 Introduction 1

2 Technical framework 4

3 Analytic results at NLO 7

4 Phenomenological applications 11

5 Summary 14

A Asymptotics of the NLO color components 15
A.1 Collinear limit 15
A.2 Back-to-back limit 15

B Identical-quark interference contributions 16

1 Introduction

In the era of the Large Electron Positron (LEP) collider [1–4] at CERN and the Stanford
Linear Collider (SLC) [5] at SLAC, energy-energy correlation function (EEC) [6] never
enjoyed the same amount of popularity as the six famous event shape variables, which are
thrust [7, 8], heavy jet mass [9], wide and total jet broadening [10–12], C parameter [13, 14]
and the jet transition variable Y23 [15].

Nonetheless, we are currently experiencing an unprecedented amount of theoretical
work directed towards a better understanding of this observable in the context of pertur-
bative QCD. One could even go as far as claiming that we are now living in the “golden
age of EEC”. Analytic results obtained for EEC in N = 4 Supersymmetric Yang-Mills
(SYM) and QCD evolve hand in hand, with the former making maximal use of exceptional
amount of symmetries encoded in the N = 4 SYM Lagrangian and the latter relying on
more conventional calculational techniques. The relevance of N = 4 SYM calculations for
QCD and collider physics is thoroughly explained in [16].

A casual bystander might wonder what makes EEC and EEC-like observables so ex-
ceptionally well suited for higher-order analytic investigations, including, but not limited
to, fixed-order calculations. After all, as of now none of the six famous event shape vari-
ables is known analytically at NLO, while in the case of EEC we already have two QCD
NLO [17, 18] and one N = 4 SYM NNLO [19–22] fixed-order results. Collinear and back-
to-back regions of EEC in N = 4 SYM were investigated in [23, 24], while [25] introduced a
formalism for the subleading power resummation of rapidity logarithms. Furthermore, it is
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worth noting that by making use of the AdS/CFT duality in N = 4 SYM one can also ob-
tain a strong-coupling limit result for the EEC [26, 27]. In QCD, the collinear limit of EEC
can be understood by using the recently available factorization theorem [28], which also
improves the resummation beyond the leading logarithmic (LL) accuracy [29, 30]. The
back-to-back limit features an all-order factorization formula [31] that makes use of the
transverse-momentum dependent (TMD) factorization [32–34]. In this limit, resummed
predictions are currently known at the N3LL′ accuracy [31, 35–37].

The answer to the question raised in the above paragraph lies in the very definition
of the energy-energy correlator. As we will see below, the Dirac delta that introduces
correlations between energies of partons or final state hadrons can be straightforwardly
converted to a loop-momentum dependent (albeit nonlinear) propagator and subjected to
the standard methods of computing higher-order corrections, such as integration-by-parts
(IBP) reduction [38, 39] and differential equations [40–45]. Moreover, these steps can be
carried out using off-the-shelf software packages for loop computations: The specifics of our
observable (e.g. custom IBP equations for loop integrals with nonlinear propagators) can
be encoded in the Mathematica scripts used to invoke the existing tools, so that the tools
themselves do not require any modifications. The existence of numerical NNLO results [36,
46] (making use of the CoLoRFulNNLO method [47–49]) as well as the availability of public
codes (e.g. Event 2 [50, 51], NLOJet++ [52, 53], Eerad3 [54]) capable of evaluating
the EEC numerically greatly facilitate the cross-checks of new analytic results.

It is important to stress that when speaking of “EEC” we do not limit ourselves to the
original definition of this event shape variable for electron-positron annihilation to partons
via the reaction e+e− → qq̄ + X. For example, Transverse-Energy-Energy Correlations
(TEEC) [55] have already been studied in the context of proton-proton [56] and electron-
proton [57] collisions. The back-to-back limit of TEEC can be investigated using recently
obtained factorization theorems for hadron-hadron [58] and electron-hadron [59] colliders.

Recent considerations of the three-point [60, 61], four-point [62] and multi-point en-
ergy correlators [63, 64] as well as two-point gravitational energy correlators [65] represent
further exciting extensions of the original EEC concept and signalize an increased interest
of the theorist community in such novel event shape variables.

For phenomenological purposes, EEC can be employed as a tool to determine the value
of the strong coupling constant (cf. e.g. [66] for a recent study) by comparing the available
theoretical predictions to the existing electron-positron collider measurements. In [18] it
was suggested that a new event shape variable, denoted as the Higgs EEC, could provide an
intriguing connection between the strong and the Higgs sectors by defining an observable
equally accessible to experimentalists analyzing the data from a future Higgs factory and
to theorists calculating the corresponding predictions. Furthermore, this observable could
be potentially used for the purpose of αs determinations from hadronic Higgs decays. A
high-energy lepton collider, be it CEPC [67, 68], ILC [69, 70], FCC-ee [71] or CLIC [72, 73],
would be capable of copious production of Higgs bosons in the clean environment of e+e−-
annihilations. It is, therefore, not unreasonable to expect that in the future we might
witness a high precision measurement of the Higgs EEC using data collected at a leptonic
Higgs factory.

– 2 –



The analytic NLO results presented in [18] concerned only the H → gg + X channel
calculated in the Higgs Effective Theory (HEFT) [74–77] with massless quarks. The goal
of this work is to present analytic results also for the channel H → qq̄+X, thus completing
the fixed-order investigation of the Higgs EEC at NLO. Being the largest Higgs decay
branching ratio, Higgs decaying into bottom quarks has received much attention from the
theory community. For example, the partial decay width of H → qq̄ has been calculated
to N4LO [78–80], and the fully differential decay width for the same process is known to
N3LO [81–83] for massless quarks and to NNLO [84] for massive quarks. Some interesting
results obtained very recently are the calculation of Higgs decaying into two bottom quarks
and an additional jet at NNLO [85], the study of the Higgs decay into four bottom quarks
at NLO [86] and the investigation of the thrust distribution for Higgs going into a pair of
bottom quarks or gluons plus an additional jet at NLO and approximate NNLO [87].

For the sake of clarity, in the following we will denote the H → gg+X and H → qq̄+X
contributions as Hgg EEC and Hqq̄ EEC respectively. The Higgs EEC is then understood
to contain both channels. The original observable from [6] will be referred to as the standard
EEC.

Following [18], we define the Higgs EEC as

1
Γtot

dΣH(χ)
d cosχ =

∑
a,b

∫ 2EaEb
m2
H

δ(cos θab − cosχ) dΓa+b+X , (1.1)

with Γtot being the total decay width for H → hardons, whereas dΓa+b+X describes the
differential decay rate of a Higgs decaying into two hadrons plus anything else. Further-
more, we have cos θab = p̂a · p̂b, where (Ea,pa)T and (Eb,pb)T denote the 4-vectors of the
hadrons a and b respectively. Finally, χ is the angle between two calorimeters measuring
the energies of a and b, while mH stands for the Higgs boson mass. By summing over
all available final state hadron pairs (a, b) and weighting their contributions to the energy
flow by the product of their energies divided by the square of the Higgs mass, we obtain a
differential angular distribution normalized to unit area.

To calculate the Higgs EEC in perturbation theory we replace the hadrons by partons
and exclude self-correlations, so that the contributions with a = b are removed from the
summation in eq. (1.1). The interacting part of the relevant Lagrangian reads

Lint = −1
4λHTr(GµνGµν) +

∑
q

yq√
2
Hψ̄qψq, (1.2)

where the first term stems from the HEFT with λ being the correspondingWilson coefficient
(known up to N4LO [88]). The second term is the Standard Model Yukawa interaction for
quarks, with yq being the Yukawa coupling for the quark flavor q.

To facilitate the analytic calculation we choose to work in the massless quark limit,
while keeping nonvanishing Yukawa couplings. The top quark contributions are thus omit-
ted and we have only 5 active quark flavors. As has already been observed in [87], the
chiral symmetry of massless QCD ensures that in this approximation there is no interfer-
ence between the H → gg+X and H → qq̄+X channels. The respective operators also do
not mix under the renormalization so that both pieces can be treated separately. Since the
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gluonic channel has already been computed in [18], our sole remaining task is to calculate
the contribution from Higgs decaying to a quark-antiquark pair and one or two additional
partons. The 3-parton final state corresponds to the LO result, while the 4-parton states
are needed for the NLO.

We normalize the Hqq̄ EEC contribution with respect to the total decay width for
H → qq̄ given by

Γtot =
y2
q (µ)mHCA

16π K(µ), (1.3)

where CA stands for the number of colors and K(µ) encodes higher order corrections in
αs. The K-factor for H → bb̄ in the limit where the bottom mass is set to zero is currently
known at O(α4

s) [78–80], and the full scale dependence up to O(α3
s) can be found in [89].

This normalization prescription ensures that Hqq̄ EEC does not depend on yq, while the
dependence on mH enters only through log(µ/mH) and vanishes for the renormalization
scale choice µ = mH .

Our paper is organized as follows. We describe the technical details of our Higgs
EEC calculation for the H → qq̄ + X channel in section 2 and subsequently present the
obtained analytic results (including the asymptotic behavior in the collinear and back-to-
back limits) in section 3. Section 4 explores the phenomenological implications of the Hqq̄
EEC observable. Finally, our conclusions and possible future extensions of this work are
summarized in section 5.

2 Technical framework

Our calculation essentially follows the path that has already been outlined in [17] and
explained in details in [18], so that we keep the following description short.

First of all, we need to obtain matrix elements squared |M(H → qq̄ + X)|2 for real,
double-real and real-virtual corrections to the Higgs decaying into a quark-antiquark pair.
The real and double-real contributions follow directly from squaring the corresponding
tree-level amplitudes with 3- or 4-parton final states respectively

H(Q)→ q(p1)q̄(p2)g(p3), (2.1a)
H(Q)→ q(p1)q̄(p2)q′(p3)q̄′(p4), (2.1b)
H(Q)→ q(p1)q̄(p2)q(p3)q̄(p4), (2.1c)
H(Q)→ q(p1)q̄(p2)g(p3)g(p4). (2.1d)

A visualization of the double-real contributions using the cut diagram notation is shown
in figure 1. Working in the rest frame of the decaying Higgs particle, we have Q =
(mH , 0, 0, 0)T .

The real-virtual piece follows from the interference of the tree-level and 1-loop 3-parton
final states. The Higgs EEC observable without the overall normalization factor is obtained
by multiplying |M(H → qq̄ +X)|2 with the measurement function

EaEb δ(cos θab − cosχ) = (pa ·Q)2(pb ·Q)2δ
(
2z pa ·Qpb ·Q− pa · pbQ2

)
, (2.2)
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where we introduced
2z ≡ 1− cosχ. (2.3)

Since the real-virtual piece involves only a massless 3-particle phase space, it is suffi-
ciently simple to be integrated directly via HyperInt [90]. However, the NLO double-real
contribution leaves us with a large number of complicated and badly divergent1 phase-space
integrals. We choose to handle them by employing the method of reverse unitarity [91, 92]
which effectively trades the measurement function for the following nonlinear cut propaga-
tor

1
2z pa ·Qpb ·Q− pa · pbQ2

∣∣
cut. (2.4)

The occurring loop integrals can then be reduced using IBP techniques. The resulting
master integrals can be solved via differential equations by finding a canonical form [93] for
each of the systems and then determining the integration constants using suitable boundary
conditions.

In practice, we generate the Higgs decay amplitudes using QGRAF [94] and Fey-
nArts [95]. FeynCalc [96–98], FORM [99] and Color [100] are used to prepare the
squared matrix elements, evaluate them in d-dimensions and carry out the color algebra.
We also employ FeynHelpers [101] and Package-X [102, 103] for the calculation of the
real-virtual matrix element. To avoid dealing with ghost contributions we make use of the
axial gauge

2∑
λ=1

εµ(pi, λ)ε∗ν(pi, λ) = −gµν + (pµi nν + pνi n
µ)

pi · n
− n2pµi p

ν
i

(pi · n)2 , (2.5)

when summing over the gluon polarizations.
The obligatory topology identification step proceeds by considering all possible ways

to exchange loop momenta pa ↔ pb or to perform a shift pa → Q −
∑
b6=a pb. Notice that

the invariance of the sum of the measurement functions for different partons under these
manipulations lead to a significant simplification of this task. In the first step, instead of
looking at the full integrand(∏

k

δ+(p2
k)
)
|M(H → qq̄ +X)|2

∑
a<b

2EaEb δ(cos θab − cosχ) (2.6)

it is convenient to omit the Dirac delta from the measurement function and enumerate
the occurring subtopologies. In the second step we augment each identified subtopology
with the corresponding nonlinear cut propagator. In the case of a 4-parton final state,
one subtopology gives rise to 6 integral families, stemming from the parton pairs (1, 2),
(1, 3), (1, 4), (2, 3), (2, 4) and (3, 4). The subprocesses with qq̄g, qq̄qq̄ and qq̄q′q̄′ final states
contain only one subtopology each, given by

{p1, p2, Q− p1 − p2, Q− p1, Q− p2}, (2.7)
1The IR safety of the EEC observable guarantees the absence of 1/εIR poles in the final result but not

in the intermediate results.
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H H

(a) qqgg

H H

(b) qq̄q′q̄′

H H

(c) qq̄qq̄

H H

(d) qq̄qq̄

Figure 1: Representative cut diagrams for real corrections to the Hqq̄ EEC at NLO.

{p1, p2, p3, Q− p1 − p2 − p3, Q− p1 − p2, Q− p1, Q− p2, p1 + p3, p2 + p3} (2.8)

and

{p1, p2, p3, Q− p1 − p2 − p3, Q− p1, Q− p3, p1 + p2 + p3, p1 + p2, p1 + p3} (2.9)

respectively. The most complicated double-real piece stemming from the qq̄gg final state
involves 3 following subtopologies

{p1, p2, p3, Q− p1 − p2 − p3, Q− p1 − p2, Q− p2, Q− p1, p1 + p3, p2 + p3}, (2.10a)
{p1, p2, p3, Q− p1 − p2 − p3, Q− p1 − p3, Q− p2, Q− p1, p1 + p3, p1 + p2}, (2.10b)
{p1, p2, p3, Q− p1 − p2 − p3, Q− p1 − p3, Q− p2 − p3, Q− p2, p1 + p3, p2 + p3} (2.10c)

that lead to 18 integral families. The search for a minimal set of subtopologies as well as
the generation of the final integral families is done using in-house Mathematica scripts.
Custom codes written on top of FeynCalc and LiteRed [104] are used to handle linearly
dependent propagators via partial fraction decomposition and to derive symbolic equations
for the IBP reduction. Then, the IBP-reduction is carried out with FIRE [105, 106], where
we submit our custom IBP equations to the program via the variable startinglist and
mark all cut propagators through the RESTRICTIONS setting.

Finally, we map the obtained master integrals to the set of integrals that was calculated
in [17]. Just as in the case of the Hgg EEC, we find no new master integrals that cannot
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be expressed as a linear combination of masters from the standard EEC integral basis at
NLO.

Upon adding all contributions together and carrying out the UV-renormalization of
the real-virtual contribution, we end up with a manifestly finite result, as expected from
the IR-safe property of the EEC event shape variables.

3 Analytic results at NLO

The main result of this work is the analytic expression for the Hqq̄ EEC at O(α2
s) given

by

1
Γtot

dΣHqq̄(χ)
d cosχ

= 1
K(µ)

[
αs(µ)

2π AHqq̄(z) +
(
αs(µ)

2π

)2 (
(β0 + 6CF ) log µ

mH
AHqq̄(z) +BHqq̄(z)

)]
, (3.1)

where β0 = 11/3CA − 4/3NfTf and Nf stands for the number of quark flavors. The QCD
color factors read CA = Nc = 3, CF = (N2

c − 1)/(2Nc) = 4/3 and Tf = 1/2 with Nc being
the number of colors. The overall prefactor 1/K(µ) stems from the normalization prescrip-
tion given in eq. (1.3), while AHqq̄(z) and BHqq̄(z) denote the LO and NLO coefficients
respectively. One may wonder why the coefficient of log µ

mH
in the numerator of eq. (3.1)

is proportional to β0 + 6CF . The origin of this term can be traced back to the usual strong
coupling constant renormalization and the additional Yukawa renormalization [87, 107],

ybq = yq(µ)
(

1− 3CF
2ε

αs
2π +O(α2

s)
)
. (3.2)

Notice that K(µ) to order O(αs) is given by

K(µ) = 1 + αs
2πCF

(17
2 + 6 log µ

mH

)
+O(α2

s) . (3.3)

Using eq. (3.3), one could expand eq. (3.1) to O(α2
s), obtaining a result with the coefficient

of log µ
mH

being exactly proportional to β0.
The LO piece is directly proportional to CF and can be written as

AHqq̄(z) = CF

(
−18 + 15z
4(1− z)z4 +

(
−9 + 12z − 3z2 − z3) log(1− z)

2(1− z)z5

)
. (3.4)

The NLO coefficient BHqq̄(z) can be decomposed into

BHqq̄(z) = C2
FBHqq̄,lc(z) + CF (CA − 2CF )BHqq̄,nlc(z) + CFNfTfBHqq̄,Nf

(z), (3.5)

where BHqq̄,lc(z), BHqq̄,nlc(z) and BHqq̄,Nf
(z) stand for the leading color, next-to-leading

color and the Nf pieces respectively. The color structure of the NLO coefficient is identical
to the one observed in the standard EEC. This is not surprising, as both observables are
quark-initiated quantities.

– 7 –



The analytic structure of the color coefficients precisely follows the pattern known
from the standard EEC and the Hgg EEC. We again find the same set of building block
functions g(j)

i , were j denotes the pure transcendental weight

g
(1)
1 = log(1− z) ,

g
(1)
2 = log(z) ,

g
(2)
1 = 2(Li2(z) + ζ2) + log2(1− z) ,

g
(2)
2 = Li2(1− z)− Li2(z) ,

g
(2)
3 = −2Li2

(
−
√
z
)

+ 2Li2
(√
z
)

+ log
(

1−
√
z

1 +
√
z

)
log(z) ,

g
(2)
4 = ζ2 ,

g
(3)
1 = −6

[
Li3

(
− z

1− z

)
− ζ3

]
− log

(
z

1− z

)(
2(Li2(z) + ζ2) + log2(1− z)

)
,

g
(3)
2 = −12

[
Li3(z) + Li3

(
− z

1− z

)]
+ 6Li2(z) log(1− z) + log3(1− z) ,

g
(3)
3 = 6 log(1− z) (Li2(z)− ζ2)− 12Li3(z) + log3(1− z) ,

g
(3)
4 = Li3

(
− z

1− z

)
− 3 ζ2 log(z) + 8 ζ3 ,

g
(3)
5 = −8

[
Li3

(
−
√
z

1−
√
z

)
+ Li3

( √
z

1 +
√
z

)]
+ 2Li3

(
− z

1− z

)
+ 4ζ2 log(1− z)

+ log
(1− z

z

)
log2

(
1 +
√
z

1−
√
z

)
. (3.6)

The coefficients of these functions (except for some coefficients multiplying g(2)
3 ) are rational

polynomials of the form∑7
i=1 ciz

i

(1− z)mzk , with ci ∈ Z, 0 ≤ m ≤ 1, 0 ≤ k ≤ 5 and m, k ∈ N0. (3.7)

Every color component also contains a term proportional to 1/z7/2g
(2)
3 and those pieces are

symmetric under
√
z → −

√
z, which appears to be a universal feature of EEC observables

at NLO [17, 18, 21]. On the other hand, it is interesting to observe that the highest power
of z in the numerators of the rational polynomials is only 7, at variance with 8 in the case
of the Hgg EEC and 9 for the standard EEC at NLO. Furthermore, the largest value of
the power k being 5 is true also for the standard EEC, while it can go up to 6 for the Hgg
EEC. Presumably, these small differences between the Hqq̄ EEC and the standard EEC
can be largely attributed to the different vertex structures of Lint: the former is initiated
through a scalar-fermion coupling, while the latter starts via a vector-fermion interaction.

The analytic results for the separate color components at NLO read as follows

BHqq̄,lc(z) = −17422− 15003z − 369z2 − 304z3 + 576z4 − 576z5

288(1− z)z4
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−
(
4775− 9637z + 5189z2 − 387z3 + 436z4 − 1280z5 + 2016z6 − 1152z7)

144(1− z)z5 g
(1)
1

+
(
195 + 321z − 472z2 + 44z3 − 352z4 + 720z5 − 576z6)

72(1− z)z4 g
(1)
2

+
(
263− 195z − 32z2 + 50z3 + 33z4 − 21z5)

24(1− z)z5 g
(2)
1

−
(
65 + 138z − 94z2 + 32z3 + 64z4 − 96z5 + 192z6)

24z5 g
(2)
2 + (3 + 35z)

96z7/2 g
(2)
3

− 2
(
1− 2z + 2z2

)
g

(3)
1 −

(
19− 27z + 10z2)

6(1− z)z5 g
(3)
2 + 1

6(1− z)g
(3)
3

−
(
461− 463z + 168z2 − 26z3 + 48z4)

24(1− z)z5 g
(2)
4 , (3.8a)

BHqq̄,nlc(z) = −4082− 4101z + 471z2 − 137z3 + 288z4 − 288z5

144(1− z)z4

−
(
4610− 9529z + 5813z2 − 859z3 + 775z4 − 1604z5 + 2016z6 − 1152z7)

144(1− z)z5 g
(1)
1

−
(
2496− 4245z + 1207z2 − 338z3 + 2056z4 − 2880z5 + 2304z6)

288(1− z)z4 g
(1)
2

+
(
328− 435z + 53z2 + 117z3 − 9z4 − 10z5)

48(1− z)z5 g
(2)
1

+
(
208− 213z + 36z2 − 11z3 − 118z4 + 96z5 − 192z6)

24z5 g
(2)
2 +

(
291 + 175z + 384z2)

192z7/2 g
(2)
3

−
(
268− 428z + 169z2 + 26z3 − 24z4)

12(1− z)z5 g
(2)
4

+
(
6− 33z + 57z2 − 64z3 + 32z4)

8(1− z)z g
(3)
1 −

(
22− 39z + 25z2 − 8z3 + 2z4 − 4z5)

24(1− z)z5 g
(3)
2

− (1− 2z)g(3)
4

2(1− z)z −
(
3 + 2z2 + 4z3)

8z4 g
(3)
5 , (3.8b)

BHqq̄,Nf
(z) = −10− 277z + 215z2 + 16z3

48(1− z)z4 +
(
381− 621z + 321z2 − 53z3 − 24z4)

72(1− z)z5 g
(1)
1

+
(
204− 273z + 101z2)

48(1− z)z4 g
(1)
2 −

(
9− 12z + 3z2 + z3 + z5)

6(1− z)z5 g
(2)
1 −

(
51− 42z + 16z2)

12z5 g
(2)
2

− (1 + 5z)
32z7/2 g

(2)
3 +

(
87− 141z + 70z2 − 12z3)

12(1− z)z5 g
(2)
4 . (3.8c)

A plot of BHqq̄(z) showing the size of contributions from the three different color compo-
nents is shown in figure 2.

The collinear limit of the Hqq̄ EEC is easily obtained by expanding the fixed order
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Figure 2: NLO coefficient BHqq̄ and its color components BHqq̄,lc, BHqq̄,nlc and BHqq̄,Nf

for Nf = 5 and Nc = 3. Only the Nf piece yields a negative contribution, while both other
components contribute positively.

result around z = 0. Up to O(z) this yields

AHqq̄(z) = 1
z

3CF
8 + 21CF

40 +O(z), (3.9a)

BHqq̄(z) = 1
z

[
log(z)

(
−107CACF

120 + 53
240CFNfTf + 25C2

F

32

)

+
(
−25ζ2

12 + ζ3
2 + 71677

10800

)
CACF −

1217
900 CFNfTf +

(43ζ2
12 − ζ3 −

4051
1728

)
C2
F

]
+ log(z)

[(21ζ2
4 − 32089

3360

)
CACF + 803CFNfTf

2520 +
(2029

180 −
13ζ2

2

)
C2
F

]
+
(151ζ2

24 − 65ζ3
4 + 20108803

1411200

)
CACF +

(
−ζ2

3 −
90047
66150

)
CFNfTf

+
(
−33ζ2

4 + 41ζ3
2 − 319489

43200

)
C2
F +O(z). (3.9b)

In the same manner we can also explore the back-to-back limit. Notice that the presence
of large logarithms from soft and collinear emissions signals the necessity of a proper
resummation using the existing techniques [31, 32, 58, 108]. Expanding around z = 1 we
find

AH(z) = 1
1− z

[
−1

2CF log(1− z)− 3CF
4

]
− 4CF log(1− z)− 27CF

4 +O(1− z), (3.10a)

BH(z) = 1
1− z

[1
2C

2
F log3(1− z) + log2(1− z)

(
11CACF

12 − 1
3CFNfTf + 9C2

F

4

)
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+ log(1− z)
((

ζ2
2 −

35
72

)
CACF + 1

18CFNfTf +
(
ζ2 + 5

4

)
C2
F

)
+
(11ζ2

4 + 3ζ3
2 −

35
16

)
CACF +

(3
4 − ζ2

)
CFNfTf +

(
3ζ2 − ζ3 −

27
16

)
C2
F

]
+ log3(1− z)

[
13CACF

24 + 7C2
F

4

]
+ log2(1− z)

[
37CACF

6 − 4
3CFNfTf + 25C2

F

2

]

+ log(1− z)
[(41ζ2

4 − 727
72

)
CACF + 103

36 CFNfTf +
(
ζ2
2 + 47

2

)
C2
F

]
+
(3259ζ2

96 − 23ζ3
8 − 27

2 ζ2 log(2)− 871
24

)
CACF +

(15ζ2
16 + 115

16

)
CFNfTf

+
(83ζ2

24 + 111ζ3
4 + 27ζ2 log(2)− 2111

96

)
C2
F +O(1− z), (3.10b)

where the leading power terms can be also obtained using the formalism of [31].

4 Phenomenological applications

In the following we present a brief discussion on phenomenological applications of the Hqq̄
EEC event shape variable in Higgs boson decays.

We verify our analytic formulas by comparing them to a numerical result that was
obtained using Monte Carlo (MC) integration. In the numerical calculation we used inde-
pendent matrix elements that were automatically generated with GoSam 2.0 [109], while
the real corrections were treated using the dipole subtraction method [110]. We set the
strong coupling constant to αs(MZ) = 0.1181 in the calculations. Analytic and numerical
results for the Hqq̄ EEC at LO and NLO are shown in figure 3, where the underlying
process is the decay of the Higgs into massless quarks and all distributions are normalized
to the total partial width at LO. To simplify the comparison and improve the visual quality
of the plot, we choose slightly different cosχ values for the curves describing the analytical
and numerical distributions. As can be inferred from the plot, within the MC errors we
find a perfect agreement between our analytic and numerical predictions both at LO and
NLO.

A direct comparison to the future experimental data requires additional corrections to
the fixed-order theory prediction, which we discuss below.

First of all, the effect of the finite bottom-quark mass mb can be nonnegligible in a
fixed-order calculation. Since bottom quarks are treated as massless in our analytic result,
it is important to estimate the impact of this simplification. To this end, we performed
another NLO numerical calculation of the Hqq̄ EEC, where the bottom-quark was treated
as massive with mb = 4.78 GeV. The ratio of the Hqq̄ EEC results with massive and
massless quarks is shown in the upper panel of figure 4. We observe that in the range of
| cosχ| < 0.95 the bottom-quark mass corrections reduce the distribution by about 4% in
the bulk region and can reach 10% to 20% in the back-to-back and collinear regions. The
latter is not surprising, as it is well known that collinear radiations are suppressed due to
the finite quark mass.
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Figure 3: Comparisons between full analytic LO and NLO results for the Hqq̄ EEC and
the corresponding numerical calculations using MC integrations. We consider only Higgs
bosons decaying into massless quarks and normalize each distribution to the total partial
width at LO. The MC errors are much smaller than the size of the markers.

Second, for a meaningful Higgs EEC prediction we must also include parton shower and
hadronization corrections. To account for that, we match our NLO calculation with massive
bottom quarks to parton shower using POWHEG-BOX-V2 [111, 112] and PYTHIA
8.2 [113]. In the PYTHIA setup we use the Monash tune [114] and, for the sake of
simplicity, force all B hadrons to be stable. Figure 4 shows that the parton shower can
substantially enhance the EEC distribution in the whole cosχ range, with the corrections
amounting to almost 40% in the collinear region. This observation hints that fixed-order
NNLO QCD corrections to the Hqq̄ EEC could be potentially large. Furthermore, the
hadronization corrections are equally significant and can reach more than 10%.

Finally, we estimate the perturbative uncertainty of the matched NLO predictions by
varying the renormalization scale and the square of the parton shower scale independently
by a factor of two around their nominal values, chosen as mH for the renormalization scale
and k2

T for the square of the shower scale. We add the two scale variations in quadrature
and plot the uncertainty band in the lower panel of figure 4. The total uncertainty from
the scale variations lies between 5% and 10% in the plotted region. Given the existence
of NNLO numerical calculations for massless bottom quarks [85], we expect that this
uncertainty can be, in principle, significantly reduced in the future.

In addition to that, the lower panel of figure 4 also contains the projected experimental
uncertainties. In this case we incorporate only the statistical errors and assume the total
number of events being 4× 105, which corresponds to the number of H → bb̄ decays that
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Figure 4: Upper panel: different NLO results for the Hqq̄ EEC, where everything is
normalized to the fixed-order NLO prediction for massless quarks (solid red curve). The
dashed green curve shows the same calculation done with massive quarks, while the dot-
dashed blue curve also includes matching to parton shower (but no hadronization). The
effects of massive quarks, parton shower and hadronization are simultaneously incorporated
into the cyan solid curve. Lower panel: scale variations of the NLO prediction with massive
bottom quarks matched to parton shower and hadronization and the projected experimental
uncertainty. The latter includes only statistical errors assuming a total number of 4× 105

events.

CEPC [115] is expected to collect during its first 7 year data taking period. We estimate
the statistical errors by first generating 40 ensembles of events and then calculating the
standard deviation of the EEC in each bin from the values predicted by all ensembles. This
procedure is meant to account for the strong statistical correlations among different bins
that typically arise when studying EEC-like observables: a single event generates multiple
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histogram entries, hence simultaneously contributing to many bins. In our case, for all bins
the observed uncertainties constitute at most 0.5%.

Experimental systematic errors, that we choose to ignore here, can be attributed to
the signal extraction from the SM background as well as event reconstruction and detec-
tor resolution. Although they are expected to be dominant over the statistical errors, a
thorough estimation of these uncertainties is beyond the scope of the present paper.

5 Summary

Higgs EEC is a novel event shape variable that can be measured by reconstructing 4-
vectors of the final state particles originating from hadronic Higgs decays. This observable
opens an interesting perspective of αs determinations from Higgs precision measurements
at future Higgs factories and is therefore of great relevance for experimentalists interested
in exploring Higgs phenomenology at high-energy lepton colliders.

In this work we employed methods pioneered in [17] to calculate Higgs EEC in the
H → qq̄ + X channel at NLO in the fixed-order perturbation theory. This result can be
combined with the already available computation in the H → gg+X channel [18] to obtain
the full Higgs EEC in the limit of vanishing light quark masses. The analytical structure of
the Hqq̄ EEC is very similar to that of the Hgg EEC and the standard EEC: All 3 results
can be calculated using the same set of master integrals and written in terms of the same
building block functions that involve classical polylogarithms up to weight 3.

As far as the phenomenology of the Hqq̄ EEC is concerned, we employed numerical
methods to study the importance of the effects missing in the analytic calculation: finite
bottom-quark mass, parton shower and hadronization. On the one hand, the corrections
due to the finite bottom-quark mass turn out to be numerically rather small, apart from the
collinear and back-to-back regions. On the other hand, parton shower and hadronization
effects can lead to enhancements of tens of percents beyond the NLO fixed-order predic-
tions. The remaining scale variations are at the level of 5% to 10%. At the same time, the
projected statistical uncertainties on the measurements of the Higgs EEC at future Higgs
factories are at sub-percent level. Therefore, we conclude that improved perturbative cal-
culations and a more accurate modeling of the hadronization are mandatory in order to
match the future experimental precision.

Theoretical investigations of EEC-like observables continue to expand our understand-
ing of the mathematical underpinning of perturbative QCD. The multitude of results made
available in the recent years corroborate that the study of EEC has become a very active
field of research within the phenomenology of the strong interactions at high energies. Even
though every new calculation raises the bar a bit higher, there is obviously still a lot of
work left to be done. At NLO one could consider other underlying processes that lead to
hadronic decays or try to incorporate effects of massive quarks, while at NNLO we still
lack the full fixed-order result even for the standard EEC. Taking a broader view, it would
be very rewarding to search for techniques that could enable us to obtain NLO analytic
results for event shape variables other than the EEC. Given the amount of progress in the
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field made in the last few years, we may very well expect to witness even more exciting
findings in the years to come.
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A Asymptotics of the NLO color components

A.1 Collinear limit

BHqq̄,lc(z) = 13ζ2
3 − 12ζ3 + 1

z

[
−481

480 log(z)− 7ζ2
12 + 472141

43200

]
+
[
4ζ2 −

7891
1008

]
log(z)

+ 5583931
264600 +O(z), (A.1a)

BHqq̄,nlc(z) = 151ζ2
24 − 65ζ3

4 + 1
z

[
−107

120 log(z)− 25ζ2
12 + ζ3

2 + 71677
10800

]
+
[21ζ2

4 − 32089
3360

]
log(z) + 20108803

1411200 +O(z), (A.1b)

BHqq̄,Nf
(z) = 1

z

[ 53
240 log(z)− 1217

900

]
+ 803

2520 log(z)− ζ2
3 +−90047

66150 +O(z). (A.1c)

A.2 Back-to-back limit

BHqq̄,lc(z) = 1
1− z

[1
2 log3(1− z) + 49

12 log2(1− z) +
(

2ζ2 + 5
18

)
log(1− z) + 2ζ3

+ 17ζ2
2 − 97

16

]
+ 17

6 log3(1− z) + 149
6 log2(1− z) +

[
21ζ2 + 119

36

]
log(1− z)

+ 22ζ3 + 3425ζ2
48 − 9079

96 +O(1− z), (A.2a)

BHqq̄,nlc(z) = 1
1− z

[11
12 log2(1− z) +

(
ζ2
2 −

35
72

)
log(1− z) + 3ζ3

2 + 11ζ2
4 − 35

16

]
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+ 13
24 log3(1− z) + 37

6 log2(1− z) +
[41ζ2

4 − 727
72

]
log(1− z)

− 23ζ3
8 − 27

2 ζ2 log(2) + 3259ζ2
96 − 871

24 +O(1− z), (A.2b)

BHqq̄,Nf
(z) = 1

1− z

[
−1

3 log2(1− z) + 1
18 log(1− z)− ζ2 + 3

4

]
− 4

3 log2(1− z)

+ 103
36 log(1− z) + 15ζ2

16 + 115
16 +O(1− z). (A.2c)

B Identical-quark interference contributions

In this section we provide results for the identical-quark interference contribution to the
Hqq̄ EEC at NLO. Such results are already available for the standard EEC [17] and the
Hgg EEC [18], so that it is useful to have them also for the Hqq̄ EEC. The interference
terms correspond to the qq̄qq̄ cut diagram from figure 1c, which contributes to BHqq̄ ,nlc.
In addition to that, BHqq̄ ,nlc also receives contributions from the qq̄gg cut diagram from
figure 1a (denoted as BHqq̄, g) and the real-virtual diagrams BHqq̄,V. We can, therefore,
decompose BHqq̄ ,nlc as

BHqq̄,nlc(z) = BHqq̄, g +BHqq̄,V +BHqq̄, qqint . (B.1)

Since BHqq̄ ,qqint receives no virtual corrections at NLO, this piece is separately gauge in-
variant and IR finite. It can be written as

BHqq̄,qqint = −1726 + 991z + 347z2 + 136z3 − 558z4 + 576z5

288(1− z)z4

+
(
373− 938z + 548z2 + 28z3 − 785z4 + 828z5 − 1152z6)

144z5 g
(1)
1

−
(
−1398 + 1161z − 589z2 − 111z3 + 1055z4 − 1404z5 + 1152z6)

144(1− z)z4 g
(1)
2

+
(
−8 + 26z − 47z2 + 24z3 + 23z4)

48z5 g
(2)
1 +

(
12 + 16z + 35z2 + 48z3)

24z9/2 g
(2)
3

−
(
−19 + 126z + 7z2 + 28z3 + 127z4 − 90z5 + 192z6)

24z5 g
(2)
2

−
(
11− 99z + 52z2 + 66z3 − 48z4)

24(1− z)z5 g
(2)
4 + 2

(
30− 25z + 7z2)
3
√

1− zz9/2 g
(2)
5

+ 1
8

(
−26 + 6

z
+ 31z − 32z2

)
g

(3)
1 −

(1− 2z)
2(1− z)z

(1
6g

(3)
2 + g

(3)
4 + 1

2g
(3)
5

)
+
(
19− 11z + 2z2)

8z5

(
−1

2g
(3)
2 + g

(3)
5 −

1
2g

(3)
6 + g

(3)
7

)
−
(
−10 + 15z − 7z2 + z3)

12(1− z)z5

(
−3g(3)

5 − 33g(3)
8 + g

(3)
9

)
, (B.2)
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where we introduced some additional building block functions beyond those given in eq. (3.6).
These functions are defined as follows

g
(2)
5 = 1

i

[
Li2(ir)− Li2(−ir)− log(r) log

(1 + ir

1− ir

)]
,

g
(3)
6 = log3(1− z)− 15ζ2 log(1− z) ,

g
(3)
7 = log(1− z)

(
Li2(z) + log(1− z) log(z)− 15ζ2

2

)
,

g
(3)
8 = ζ3 ,

g
(3)
9 = − 12

[
− Li3

(1
2(1− ir)

)
− Li3

(1
2(1 + ir)

)
+ Li3(−ir) + Li3(ir) + Li3

(
− 2r
i− r

)
+ Li3

( 2r
i+ r

)
− ζ3

]
+ 3Li3

(
− z

1− z

)
+ 2

[
log3

(1
2(1− ir)

)
+ log3

(1
2(1 + ir)

)]
− 3 (2 log(ir)− iπ) log2

(1− ir
1 + ir

)
− π2

(
log

(1
2(1− ir)

)
+ log

(1
2(1 + ir)

))
,

(B.3)

where r =
√
z/
√

1− z . The function g
(2)
5 is real-valued in z = ir, z̄ = −ir and is known

as the Bloch-Wigner function. The building block functions in eq. (B.3) and their specific
combinations in eq. (B.2) are identical to those appearing in the Bqqint term of the standard
EEC [17]. This is not surprising, since both the standard EEC and theHqq̄ EEC are quark-
initiated observables.

As far as the asymptotics is concerned, in the collinear limit BHqq̄ ,qqint reads

BHqq̄ ,qqint = 1
z

(
ζ3
2 −

43ζ2
24 + 8011

3456

)
+
(

5ζ2 −
59011
7200

)
log(z)

− 31ζ3
2 + 727ζ2

120 + 3711491
432000 +O(z). (B.4)

We observe that the leading power terms (i.e. the coefficient of 1/z in eq. (B.4)) are the
same as the corresponding terms of the standard EEC [17]. These terms can be predicted
by the jet calculus approach at the next-to-leading logarithm (NLL) accuracy [116].

Looking at the back-to-back limit by expanding BHqq̄ ,qqint up to next-to-leading power

BHqq̄ ,qqint = 1
1− z

(
−ζ3

2 + 3ζ2
4 −

13
16

)
+
(51ζ2

4 − 137
8

)
log(1− z) + 5

8 log2(1− z)

− 34ζ3 − 15ζ2 log(2) + 889ζ2
24 + 557

96 +O(1− z) , (B.5)

we again find that the coefficient of 1/(1−z) precisely reproduces the corresponding results
for the standard EEC [17].
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