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This talk addresses two topics related to CP asymmetries in D meson decays to two pseudoscalar

mesons. First I discuss how new physics can be distinguished from the Standard Model through

two sum rules relating three direct CP asymmetries each, using the sum rule correlating D0 →
K+K−, D0 → π+π−, and D0 → π0π0 for illustration. The other sum rule involves adir

CP(D
+ →

K̄0K+), adir
CP(D

+
s → K0π+), and adir

CP(D
+
s → K+π0). The second topic is the direct CP asymmetry

in the decay D0 → KSKS, which is expected to be large in the Standard Model for two reasons:

Flavor-SU(3) symmetry suppresses the tree amplitude which enhances the crucial “penguin-to-

tree” ratio and the “penguin” amplitude is dominated by the tree-level W boson exchange between

c and u quarks. We find that |adir
CP(D

0 → KSKS)| can be as large as 1.1% in the Standard Model.

We advocate D0 → KSKS as a discovery channel for charm CP violation.
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1. Introduction

CP asymmetries in the charm system play a special role in the search for new physics, be-

cause they probe flavor-changing transitions among up-type quarks. At present, a prime effort of

experimental charm physics is the discovery of CP violation in charm decays. Within the Standard

Model (SM) charm CP asymmetries are small, because the relevant combination of elements of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix is of order 10−3. Precise theoretical predictions are

very difficult and vary by several orders of magnitude [1–15]. Since experimental sensitivities have

increased to a level that measurements probe the range of SM predictions, we need new ideas to

draw the demarcation line between SM and new physics more precisely. In this talk I discuss two-

body weak decays of D+,D0,D+
s mesons into two pseudoscalar mesons P,P′ = π0,π±,KS,L,K

±.

My two topics are

(i) sum rules relating CP asymmetries in three different D decays

and

(ii) the CP asymmetry in the decay D0 → KSKS.

Topic (i) addresses a test of the Standard Model which will only work, if at least one of the in-

volved CP asymmetries is measured non-zero. On the contrary, topic (ii) is about a discovery mode

for charm CP violation for the case that the Kobayashi-Maskawa phase is the only source of CP

violation.

Charm decay amplitudes are classified in terms of powers of the Wolfenstein parameter

λ ≃ |Vus| ≃ |Vcd | ≃ 0.22. (1.1)

Amplitudes with A ∝
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. In SCS ampli-

tudes three CKM structures appear,

λd =V ∗
cdVud , λs =V ∗

csVus, λb =V ∗
cbVub,

and CKM unitarity λd +λs+λb = 0 is invoked to eliminate one combination of CKM elements. A

common choice for the decomposition of an SCS decay amplitude is

A
SCS ≡ λsdAsd − λb

2
Ab, (1.2)

with

λsd =
λs −λd

2
and − λb

2
=

λs +λd

2
. (1.3)

In view of |λb|/|λsd | ∼ 10−3 only Asd is relevant for branching ratios. Within the SM a non-

vanishing direct CP asymmetry involves the interference of λbAb with λsdAsd . Neglecting quadratic

(and higher) terms in λb/λsd the direct CP asymmetry reads

adir
CP = Im

λb

λsd

Im
Ab

Asd

. (1.4)
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Using A
SCS ≃ λsdAsd and the standard CKM phase convention with (essentially) λsd > 0 Eq. (1.4)

becomes

adir
CP =

Imλb

|A SCS| Im
Ab

Asd

|Asd|. (1.5)

Recalling that |A SCS| is determined by the well-measured branching ratio of the considered decay

we realize from Eq. (1.5) that two non-trivial imputs are needed to predict adir
CP: |Ab| and the relative

phase between Ab and Asd. The latter is a CP-conserving (strong) phase; the CP-violating (weak)

phase is arg(λb/λsd).

It is not possible to calculate |Ab| and arg(Ab/Asd) from first principles. The theoretical method

of choice in charm physics is the approximate SU(3)F symmetry of QCD, which permits to cor-

relate the amplitudes of different decays with each other. SU(3)F symmetry refers to unitary rota-

tions among up, down, and strange fields and would be exact in the limit mu = md = ms of equal

light-quark masses. The parameter determining the size of SU(3)F breaking is (ms −md)/ΛQCD =

O(30%), where ΛQCD is the fundamental scale of QCD. The actual accuracy of SU(3)F symmetry

varies among different observables and it is desirable to include first-order (linear) SU(3)F break-

ing.

2. Sum rules of CP asymmetries

SU(3)F analyses can be done in two ways: First, one may express the physical decay ampli-

tudes in terms of group-theoretical objects, the reduced amplitudes, which correspond to different

representations of SU(3). It is possible to include first-order SU(3)F breaking at the expense of

having to deal with more reduced amplitudes (see e.g. [1, 7, 16]). Second, one can instead express

the D decay amplitudes in terms of topological amplitudes, which are classified by the flavour

flow [18–20]. Also this method allows for the inclusion of first-order SU(3)F breaking [21, 22].

The topological amplitudes are ilustrated in Fig. 1. At this stage both methods are mathematically

equivalent, one can express the SU(3)F amplitudes as linear combinations of the topological ampli-

tudes and vice versa [22].1 However, the topogical-amplitude method has the advantage that it can

be combined with large-Nc counting [23, 24] to sharpen the theoretical predictions. Here Nc = 3

is the number of colors and to leading order in the 1/Nc expansion the T and A amplitudes can be

expressed in terms of form factors and decay constants.

Armed with this formalism we can study branching fractions and CP asymmetries of D →
PP′ decays. These observables play very different roles in charm physics: Branching ratios of

hadronic charm decays are “dull” tree-level quantities dominated by a single CKM amplitude and

are therefore insensitive to new physics. They are useful to test the calculational framework and

experimentally determine |Asd |, which is one of the ingredients to predict CP asymmetries. On

the contrary, CP asymmetries of hadronic charm decays are suppressed by Im λb

λsd
= −6 · 10−4 in

the Standard Model and therefore probe new physics in flavour transitions of up-type quarks.

When exploiting the experimental information on 16 D → PP′ branching fractions and the D0 →
K±π∓ strong-phase difference to predict CP asymmetries, one faces a fundamental problem: CP

asymmetries involve topological amplitudes (equivalently, reduced SU(3)F amplitudes) which do

1In both methods one first has to remove redundant SU(3)F or topological amplitudes to obtain a minimal set which

constitutes a basis for the physical decay amplitudes.
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Figure 1: First row: SU(3)F limit topological amplitudes “tree” (T), “color-suppressed tree” (C), “exchange”

(E), “annihilation” (A). Second row: penguin annhilation (PA) diagram and examples of topological ampli-

tudes describing SU(3)F -breaking effects (with the cross distinguishing an s from a d or u line); the depicted

diagrams are T1 and T2. Third row: depiction of Pbreak ≡ Ps −Pd , which is also an SU(3)F -breaking ampli-

tude.

not enter branching ratios and are therefore unconstrained by any global fit to the corresponding

data. The most prominent example is the penguin amplitude: Denoting the penguin with internal

quark q by Pq, the branching fractions only constrain the (SU(3)F -breaking) combination Pbreak ≡
Ps −Pd. CP asymmetries, however, involve not only Pbreak but also P ≡ Ps+Pd −2Pb.

Since we cannot predict individual CP asymmetries, we may next try to predict relations (sum

rules) between different CP asymmetries. In the limit of exact SU(3)F symmetry there are two sum

rules among two direct CP asymmetries each [13]:

adir
CP(D

0 → K+K−)+adir
CP(D

0 → π+π−) = 0 , (2.1)

adir
CP(D

+ → K̄0K+)+adir
CP(D

+
s → K0π+) = 0 . (2.2)

In Ref. [17] it has been shown that there are no sum rules among CP asymmetries which hold

to first order in SU(3)F breaking. Can we improve on Eqs. (2.1) and (2.2) anyway? To this end

consider, for example,

Asd(D
0 → π+π−) =−T −E +Pbreak, Ab(D

0 → π+π−) = T +E +P+PA, (2.3)

which entails Ab(D
0 → π+π−) =−Asd(D

0 → π+π−)+Pbreak+P+PA. (PA is defined analogously

to P.) Then Eq. (1.4) reads

adir
CP(D

0 → π+π−) = Im
λb

λsd

Im
Pbreak +P+PA

Asd(D0 → π+π−)
. (2.4)

In the SU(3)F limit the corresponding expression for adir
CP(D

0 → K+K−) is indeed equal in mag-

nitude and opposite in sign. One can next use the global branching-ratio analysis of Ref. [22] to

3
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Figure 2: The solid (dashed) lines delimit the 95% (68%) CL region. Red: direct measurements. Blue:

prediction of sum rule with present data. Green: sum rule if branching ratios were improved by a factor of√
50 compared to today. Plot from Ref. [25].

determine all ingredients of adir
CP(D

0 → π+π−) and adir
CP(D

0 → K+K−) including first-order SU(3)F

breaking, except for P+PA which is unconstrained. I.e. we are left with two quantities depending

on two unknowns, which are real and imaginary part of P+PA. In order to make a prediction we

therefore need a third a quantity, adir
CP(D

0 → π0π0). By eliminating P+PA we find the desired sum

rule. The global fit à la Ref. [22] determines all topological amplitudes entering Asd for the three

decay modes (which are T , E , C, T1,2, E1,2, and Pbreak), so that the troublesome SU(3)F -breaking

terms causing B(D0 → K+K−) 6= B(D0 → π+π−) are taken care of. However, P+PA cannot be

treated beyond the SU(3)F limit. Fig. 2 shows the impact of the sum rule. Similarly, we can im-

prove Eq. (2.2) to a sum rule involving also the third decay mode D+
s → K+π0. With current data

the sum rule has much larger errors than the one for D0 → K+K−,π+π−,π0π0.

In the discussion after the talk the issue of final state interactions was raised. In our formalism

all amplitudes T , E, . . . are understood to comprise all effects of the strong interaction, including

final-state rescattering. There are several attempts in the literature to separate final-state interactions

from other QCD effects, see e.g. [30–32]. A commonly used ansatz for some decay amplitude

A j ≡ A(D → f j) is [31, 32]

A j = ∑
k

S
1/2

jk A
(0)
k , (2.5)

where S1/2 is the matrix describing the scattering of the final state fk into f j and A
(0)
k denotes the

amplitude in the absence of any rescattering. Here we remark that in general the establishment of

a formula like Eq. (2.5) requires assumptions on the underlying dynamics, otherwise the definition

4
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of A
(0)
k and S

1/2

jk is ambiguous. Remarkably, one can prove Eq. (2.5) for K → ππ decays using

solely the isospin symmetry of the strong interaction (Watson’s theorem [33]). In the case of D or

B decays one can justify Eq. (2.5) for the absorptive part2 of A j with the optical theorem. However,

the dispersive part does not obey Eq. (2.5) with the S
1/2

jk inferred from the optical theorem, because

it also involves a summation over virtual (off-shell) states and not just the real states label by

k in Eq. (2.5). We emphasize that a decomposition like Eq. (2.5) is not necessary for an analysis

employing only SU(3)F symmetry and 1/Nc counting, since it permits to treat all strong-interaction

effects (whether stemming from final-state interaction or not) on the same footing.

3. CP asymmetry in D0 → KSKS

D0 → KSKS has the special feature that Asd vanishes in the SU(3)F limit. The smallness of

|Asd | enhances Ab/Asd , so that adir
CP in Eq. (1.4) is expected to be larger than in other decays. Con-

cerning statistical errors this observation does not help, because the gain in statistical significance

is cancelled by the smaller number of events, which scale with the branching ratio proportional to

|Asd |2. In our case we have B(D0 → KSKS) = (1.7±0.4) ·10−4 . Still, a larger CP asymmetry may

help to fight systematic errors. Another special feature of the considered decay mode is way more

interesting: The numerator Ab in Eq. (1.4) receives contributions from the exchange diagram E , so

that the CP asymmetry persists even if the loop-induced amplitudes P and PA (which induce the

CP asymmetries in essentially all other decay modes) turn out to be tiny. Moreover, the global fit

of Ref. [22] points to a large E and definitely excludes E = 0. The sensitivity to E stems from the

feature that in D0 → KSKS the transitions cū → ss̄ and cū → dd̄ can interfere, because both ss̄ and

dd̄ can hadronize into a KSKS pair. In Ref. [26] we find

−1.1 ·10−2 ≤ adir
CP ≤ 1.1 ·10−2. (3.1)

This number assumes that the CP asymmetry related to Kaon mixing is properly subtracted. Un-

fortunately, the global fit to all D → PP′ data presently does not rule out that |adir
CP| is much smaller

than 1.1 · 10−2. One source of uncertainty is the strong phase arg(Ab/Asd) which is currently un-

constrained. To eliminate this source of uncertainty, one must also measure the mixing-induced

CP asymmetry [26], with a time-dependent measurement or through CP-tagged decays. Currently

experiments determine

ACP = adir
CP −AΓ

〈t〉
τ
, (3.2)

where 〈t〉 is the average decay time and τ is the D0 lifetime. AΓ involves the mixing-induced

CP asymmetry and is small, because D0 mesons oscillate very slowly. The experimental results

are [27–29]

ACLEO 2001
CP = −0.23±0.19, ALHCb 2015

CP =−0.029±0.052±0.022,

ABelle 2016
CP = −0.0002±0.0153±0.0017.

2In the limit of real CKM elements the absorptive and dispersive parts of a weak decay amplitude simply equal the

imaginary and real parts of the amplitude, respectively.
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4. Summary

CP asymmetries in D decays involve topological amplitudes which are not constrained by fits

to branching ratio data. These can be eliminated by forming judicious combinations (sum rules) of

several CP asymmetries. Within the limits of expected SU(3)F breaking in penguin (and penguin

annihilation) amplitudes these sum rules probe new physics. Within the Standard Model the direct

CP asymmetry in D0 → KSKS can be as large as 1.1%. adir
CP(D

0 → KSKS) is dominated by the

exchange diagram, which involves no loop suppression. We advocate D0 → KSKS as a potential

discovery channel for charm CP violation.
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