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1 Introduction

The dependence of the quark masses on the renormalization scale is governed by the quark

mass anomalous dimension, defined as

µ2
d

dµ2
m|g0,m0

= mγm(as) ≡ −m
∑

i≥0

γi a
i+1
s , (1.1)

where as = αs/π = g2/(4π2), g is the renormalized strong coupling constant and µ is the

normalization scale in the customarily used MS renormalization scheme.

Up to and including four-loop level the anomalous dimension is known since 20 years

[2–6]. Some time ago this result has been pushed to five-loop order, albeit for the spe-

cial case of an SU(3) theory with nf species of quarks [1, 7]. In the present paper the

corresponding result will be given for an arbitrary compact simple Lie group.

The quark mass anomalous dimension has important implications: the Higgs boson

decay rate into charm and bottom quarks, respectively, is proportional to the square of

the respective quark mass at the scale of mH , which, for given on-shell mass, depends on

the fore-mentioned anomalous dimension (see, e.g., recent discussions in [1, 7–11]). The

generalization of the result from SU(3) to an arbitrary compact semi simple Lie group, as

presented in this paper, gives additional insight into the structure of the result.

This paper is organized as follows: technical preliminaries will be presented in Section

2. The next Section 3 briefly discusses master formulas for the two relevant renormalization

constants which define quark mass anomalous dimension. The main result, the general-

ization of the O(α5
s) expression for γm from SU(3) to an arbitrary compact simple Lie

group will be presented subsequently in Section 4, together with the special case of QED.

In Section 5 we will discuss in some detail the structure of irrational contributions to the

result for γm. Our short conclusions will be given in Section 6.

– 1 –



2 Technical preliminaries

The quark mass renormalization constant, Zm, is defined as the ratio of the bare and

renormalized quark masses, viz.

Zm =
m0

m
= 1 +

0<j≤i∑

i,j

(Zm)ij
ais
ǫj
. (2.1)

Within the MS scheme [12, 13] the coefficients (Zm)ij are just numbers; ǫ ≡ 2−D/2 and D

stands for the space-time dimension. Combining eqs. (1.1,2.1) and using the RG-invariance

of m0, one arrives at the following formula for γm:

γm =
∑

i≥0

(Zm)i1 i a
i
s. (2.2)

One possibility to obtain Zm is to use the well-known relation (see, e.g. Section 2.2 of

[14])

Zm = Zψ̄ψ/Z2, (2.3)

where Zψ̄ψ is the renormalization constant of the quark mass operator1

[ψ̄ψ] = Zψ̄ψ ψ̄ψ = Zψ̄ψ/Z2 ψ̄0ψ0 (2.4)

and Z2 is the quark field renormalization constant

ψ0 = Z
1/2
2
ψ. (2.5)

The QEDWard identity implies that Z2 ≡ ZV , with ZV being the renormalization constant

of the quark vector current:

[ψ̄γαψ] = ZV ψ̄γαψ = ZV /Z2 ψ̄0γαψ0 = ψ̄0γαψ0. (2.6)

To compute Z2 and Zψ̄ψ one starts from the corresponding bare vertex functions (we

assume that the only external momentum, q ,is flowing in and out through the fermion

legs)

γα Γ
V
B(a

0
s, q

2) = γα
(
1 + δΓVB(a

0
s, q

2)
)

(2.7)

and

ΓSB(a
0
s, q

2) = 1 + δΓSB(a
0
s, q

2). (2.8)

Requiring the finiteness of the renormalized versions of both vertex functions

[ΓV ](as, q
2) = ZV ΓB(a

0
s, q

2) = ZV + ZV δΓB(a
0
s, q

2), (2.9)

[ΓS](as, q
2) = Zψ̄ψ ΓB(a

0
s, q

2) = Zψ̄ψ + Zψ̄ψ δΓ
S
B(a

0
s, q

2) (2.10)

1We use square brackets to refer to completely UV renormalized quantities; for simplicity we also do not

write explicitly the MS renormalization scale µ.
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we arrive at the following recursive equations for Z2 = 1 + δZ2 and Zψ̄ψ = 1 + δZψ̄ψ

δZ2 = −Kǫ Z2 δΓB(a
0
s, q

2), (2.11)

δZψ̄ψ = −Ke Zψ̄ψ δΓ
S
B(a

0
s, q

2). (2.12)

Eqs. (2.3,2.11,2.12) directly express Zm through massless propagator-type (that is de-

pendent on one external momentum only) Feynman integrals (FI), denoted as p-integrals

below.

There exists currently no direct way to analytically evaluate five-loop p-integrals. How-

ever, for a given five-loop p-integral we need to know only its pole part in ǫ in the limit of

ǫ → 0. The proper use of this fact can significantly simplify our task. The corresponding

method—the so-called Infrared Rearrangement (IRR)—first suggested in [15] and elabo-

rated further in [16–18] allows to effectively decrease the number of loops to be computed

by one2. In its initial version IRR was not really universal; it was not applicable in some

(though rather rare) cases of complicated FI’s. The problem was solved by elaborating a

special technique of combined recursive subtraction of both IR and UV divergences — the

R∗-operation [19, 20]. Formally, the R∗-operation is defined as a product

R∗ = R R̃ = R̃ R, (2.13)

where R stands for the Bogoliubov-Parasiuk R-operation [21, 22] and R̃ refers to a kind of

IR R-operation which subtracts recursively all IR divergences from a given (Euclidean) FI.

A detailed discussion of the R−, R̃− and R∗-operations and their interplay can be found

in [23, 24]. The technique of the R∗-operation succeeds in expressing the UV counterterm

of every L-loop FI in terms of divergent and finite parts of some (L − 1)-loop massless

propagators.

In our case L = 5 and, using IRR, one arrives at around 105 four-loop p-integrals

(all Feynman diagrams have been generated with the use of QGRAF [25]). These were

reduced to 28 four-loop master p-integrals, which are known analytically, including their

finite parts, from [26, 27] as well as numerically from [28].

We have computed the necessary p-integrals with a special version of reduction3 which

is based on evaluating sufficiently many terms of the 1/D expansion [33] of the corre-

sponding coefficient functions [34]. The algorithm was implemented in a dedicated FORM

[35, 36] program.

3 Explicit formulas for L-loop Z2 and Zψ̄ψ via (L− 1) p-integrals

Let us start from eq. (2.10) by rewriting it as follows

Zψ̄ψ = 1−KǫR
′δΓS(as, q

2), (3.1)

2With the price that the resulting p-integrals with one loop less should be evaluated up to and including

their constant part in the small ǫ-expansion.
3Note, that very recently there has been significant progress in developing direct reduction algorithms

(not using 1/D expansion) [29–32].
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where Kǫ {f(ǫ)} is the singular part of the Laurent expansion of f(ǫ) in ǫ near ǫ = 0 and

R′ stands for the “incomplete” R operation which, when applied to a FI, subtracts only

all its UV subdivergences not touching the UV divergence of the FI as whole (for a good

introductory text about renormalization theory and R-operation see [37]).

From a purely formal point of view eq. (3.1) is equivalent to (2.12), however the first

relation is significantly more flexible as it does not change its form if, for instance, some

(or, even, all) propagators in FI’s contributing to δΓS(as, q
2) are made massive. To avoid

any confusion: by making a propagator Gi(p) massive we mean its multiplication by a

factor p2

p2−m2

i

. The factor smoothes the behavior of the corresponding Feynman integrands

in the region of small momenta of order m. It does not contribute in the only integration

region relevant for the UV counterm of a given diagram as whole (modulo power suppressed

terms of order m2
i /p

2
i and higher) namely the region where all loop momenta are large.

This is an obvious consequence of the following statement [38]: any UV counterterm for

any logarithmically divergent FI integral does not depend on momenta and masses.

As a result we can transform eq. (3.1) to

Zψ̄ψ = 1−KǫR
′δΓS(as,m, q

2), (3.2)

where m = m1, . . . . The choice of masses in eq. (3.2) and q2 is constrained by only one

requirement: there should be no IR divergences in its right hand side. The condition of IR

safety can removed completely if one lets the R̃-operation remove all IR divergences from

the rhs of (3.2).

To proceed we first ignore any IR divergences and choose the m-propagators (that

is those which are massive in (3.2)) in such a way that the resulting FI’s get simpler for

calculation (the necessary IR subtractions (if any) will be dealt with later).

A popular possibility is to make all propagators massive with the help of one and the

same mass and nullify q. The resulting completely massive vacuum graphs are then com-

puted with one or another version of IBP reduction4. The advantages of this “maximally

massive” approach are that (i) no IR singularities may appear, (ii) global (unlike local)

gauge symmetry stays untouched and, finally, the global renormalization with the help of

Z-factors is not very different from the standard one. There is also a price: to compute Zψ̄ψ
on L-loop level one should deal with L-loop massive vacuum graphs which are significantly

more complicated for calculation than (L− 1)-loop p-integrals.

We will employ a “minimally massive” way, that is the choice of q = 0 and m =

m, 0, 0, 0, . . . which means that only one line in every FI contributing to ΓS is provided

with a mass.

In principle, a particular choice of an m-propagator could be tuned (diagramwise!) in

many cases in such a way to avoid any IR singularities5 and, thus, to avoid any use of R̃

operation. However, such a tuning essentially prevents any possibility to solve combinatoric

of both R and R̃ operations globally in terms of corresponding Z-factors. This, in turn,

forces us either to perform an extremely tedious manual diagram-wise renormalization

4 The method is actively used since long [39–41]. Very recent impressive results obtained with the

method can be found in [42, 43].
5That was exactly the strategy used in the pioneering calculations within IRR method [16, 18, 44–46].
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Figure 1: All distinguished fermion propagators available for a generic vector (and scalar)

vertex functon.

of UV/IR divergences or to develop highly non-trivial computer algebra routines for its

automatization6 .

Every diagram contributing to ΓS has only four internal propagators which could be

specified globally without referencing to particular graphs. (This is a necessary requirement

allowing us to resolve combinatorics of both UV and IR subtractions in terms of global Z-

factors). These are shown on Fig. 1. Let us choose the fermion line which flows into

the scalar current vertex (marked by 1 on Fig. 1) and make the corresponding propagator

massive by multiplying it by p2/(p2 − m2). The result of applying the R′ operation to

the corresponding vertex function δΓS(as,m) can be expressed in terms of the bare vertex

function and relevant Z-factors as

R′δΓS(as,m) = δΓS(a0s,m) + δZψ̄ψ δΓ
S(a0s,m = 0). (3.3)

The rhs of the above equation is contaminated by IR singularities; they appear not only

in the second term but also in the first one. The application of R̃ operation to remove all

IR divergent pieces from (3.3) leads to:

R̃ R′δΓS(as,m) = δΓS(a0s,m) +
(
δΓS(a0s,m) + δZψ̄ψ

)
·

(
1

Zψ̄ψ
− 1

)
, (3.4)

where we have boxed the IR Z-factor. The considerations for the vector case follow the

same pattern with Zψ̄ψ replaced by ZV .

Thus, the final formulas for δZV and δZψ̄ψ are:

δZ2 = −δΓV (a0s,m)
1

ZV
+

(ZV − 1)2

ZV
, (3.5)

δZψ̄ψ = −δΓS(a0s,m)
1

Zψ̄ψ
+

(Zψ̄ψ − 1)2

Zψ̄ψ
. (3.6)

6Very recently such routines implementing automatic UV and IR renormalization on the level of separate

diagrams have been developed [47].
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4 Results

Our result for the anomalous dimension

γm = −
∑

i

(γm)ia
i+1
s , (4.1)

reads (for completeness we also present the lower order terms [2–4, 6])

γm = −
∑

i

(γm)ia
i+1
s (4.2)

(γm)0 =
3

4
CF , (γm)1 =

1

42

{
3

2
C2
F −

10

3
CF Tf nf +

97

6
CF CA

}
,

(γm)2 =
1

43

{
129

2
C3
F− [46− 48ζ3]C

2
F Tf nf −

140

27
CF T

2
f n

2
f −

129

4
C2
F CA

−

[
556

27
+ 48ζ3

]
CF Tf nf CA +

11413

108
CF C

2
A

}
,

(γm)3 =
1

44

{
C4
F

[
−
1261

8
− 336ζ3

]
+C3

F Tf nf

[
−
280

3
+ 552ζ3 − 480ζ5

]

+ C2
F T

2
f n

2
f

[
304

27
− 160ζ3 + 96ζ4

]
+CF T

3
f n

3
f

[
−
664

81
+

128

9
ζ3

]

+ C3
F CA

[
15349

12
+ 316ζ3

]
+C2

F CA Tf nf

[
−
8819

27
+ 368ζ3 − 264ζ4 + 80ζ5

]

+ CF T
2
f n

2
f CA

[
1342

81
+ 160ζ3 − 96ζ4

]
+C2

F C
2
A

[
−
34045

36
− 152ζ3 + 440ζ5

]

+ CF Tf nf C
2
A

[
−
65459

162
−

2684

3
ζ3 + 264ζ4 + 400ζ5

]
+CF C

3
A

[
70055

72
+

1418

9
ζ3 − 440ζ5

]

+ nf
dabcdF dabcdF

dR
[64− 480ζ3] +

dabcdF dabcdA

dR
[−32 + 240ζ3]

}
,

(γm)4 =
1

45

{
C5
F

[
50995

8
+ 848ζ3 + 2080ζ5

]

+ C4
F Tf nf

[
−
48797

36
+ 6888ζ3 − 672ζ4 −

37000

3
ζ5 + 6720ζ7

]

+ C3
F T

2
f n

2
f

[
45253

54
−

38416

9
ζ3 + 896 ζ23 + 1304ζ4 +

8000

3
ζ5 − 1600ζ6

]

+ C2
F T

3
f n

3
f

[
8966

81
+

352

3
ζ3 − 320ζ4 +

512

3
ζ5

]

+ C4
F CA

[
−
2565029

144
− 13060ζ3 + 1848ζ4 +

29600

3
ζ5

]
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+ C3
F Tf nf CA

[
−
406861

108
−

18013

9
ζ3 + 1760 ζ23 − 2360ζ4 + 5620ζ5 + 4400ζ6 − 3360ζ7

]

+ C3
F C

2
A

[
2625197

72
+ 24174ζ3 − 1738ζ4 −

99140

3
ζ5 − 9240ζ7

]

+ C2
F T

2
f n

2
f CA

[
375373

486
+

5996

9
ζ3 −

6976

3
ζ23 + 1864ζ4 −

12448

9
ζ5 +

800

3
ζ6

]

+ C2
F Tf nf C

2
A

[
753557

1944
+

72194

9
ζ3 −

5456

3
ζ23 − 3226ζ4 −

81464

9
ζ5 +

2200

3
ζ6 + 560ζ7

]

+ C2
F C

3
A

[
−
25256617

972
−

50642

3
ζ3 −

1936

3
ζ23 + 836ζ4 +

374180

9
ζ5 −

12100

3
ζ6 + 6160ζ7

]

+ CF T
4
f n

4
f

[
−
1040

81
−

1280

81
ζ3 +

256

9
ζ4

]

+ CF T
3
f n

3
f CA

[
18667

243
+

21472

81
ζ3 +

2176

9
ζ4 −

4096

9
ζ5

]

+ CF T
2
f n

2
f C

2
A

[
27418

243
+

87722

27
ζ3 +

4288

3
ζ23 −

9364

3
ζ4 −

2944

3
ζ5 +

4000

3
ζ6

]

+ CF Tf nf C
3
A

[
−
4994047

972
−

959759

81
ζ3 +

176

3
ζ23 +

54925

9
ζ4 +

139234

9
ζ5 −

15400

3
ζ6 − 3920ζ7

]

+ CF C
4
A

[
22663417

1944
+

418936

81
ζ3 +

1936

3
ζ23 −

15697

18
ζ4 −

64405

3
ζ5 +

12100

3
ζ6 + 3080ζ7

]

+ CF nf
dabcdF dabcdF

dR
[−352− 4928ζ3 + 11840ζ5]

+
CF d

abcd
F dabcdA

dR
[6768 + 3840ζ3 − 25440ζ5]

+ Tf n
2
f

dabcdF dabcdF

dR

[
−
6896

9
+

7312

3
ζ3 − 768ζ4 −

2240

3
ζ5

]

+ Tf nf
dabcdF dabcdA

dR

[
3040

9
−

14920

3
ζ3 − 1408 ζ23 − 144ζ4 +

3520

3
ζ5

]

+ nf CA
dabcdF dabcdF

dR

[
25384

9
−

16720

3
ζ3 + 1408 ζ23 + 2640ζ4 −

35680

3
ζ5

]

+ CA
dabcdF dabcdA

dR

[
−
76784

9
−

1208

3
ζ3 − 3872 ζ23 − 1320ζ4 + 23200ζ5 + 1232ζ7

]

+ Tf
dabcdA dabcdA

dR

[
358 +

4988

3
ζ3 + 3872 ζ23 + 264ζ4 −

15640

3
ζ5 − 1232ζ7

]}
. (4.3)

Here ζ is the Riemann zeta-function (with ζ3 = 1.2020569 . . . , ζ4 = 1.0823232 . . . , ζ5 =

1.0369278 . . . , ζ6 = 1.0173431 . . . , ζ7 = 1.0083493 . . . ). CF and CA are the quadratic

Casimir operators of the quark [T aT a]ij = CF δij and the adjoint [CaCa]bd = CA δbd,

(Ca)bc = −ifabc representations of the Lie algebra. nf stands for the number of quark

flavors, dR is dimension of the quark repesenation of the gauge group and Tf refers to the

trace normalization tr (T aT b) = Tf δ
ab. The higher order group invariants are defined as
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contraction between the following (symmetrical) tensors (see [6, 48])

dabcdF =
1

6
Tr
[
T aT bT cT d + T aT bT dT c + T aT cT bT d

+T aT cT dT b + T aT dT bT c + T aT dT cT b
]
, (4.4)

dabcdA =
1

6
Tr
[
CaCbCcCd +CaCbCdCc + CaCcCbCd

+CaCcCdCb +CaCdCbCc + CaCdCcCb
]
. (4.5)

Note that for the gauge group SU(3), after setting CF = 4/3, CA = 3, Tf = 1/2,

dabcdF dabcdF = 5/6, dabcdF dabcdA = 15/2, dabcdA dabcdA = 135 we exactly reproduce the SU(3) re-

sult for γm given in [1].

For the special case of QED, setting CF = 1, TF = 1, CA = 0, dabcdA = 0, dabcdF dabcdF = 1,

and dR = 1 we arrive at

(γQEDm )0 =
3

4
, (γQEDm )1 =

3

32
−

5

24
nf ,

(γQEDm )2 =
1

43

{
129

2
−nf [46− 48ζ3]−

140

27
n2f

}
,

(γQEDm )3 =
1

44

{
−

[
1261

8
+ 336ζ3

]
−nf

[
88

3
− 72ζ3 + 480ζ5

]
+n2f

[
304

27
− 160ζ3 + 96ζ4

]

− n3f

[
664

81
−

128

9
ζ3

]}
,

(γQEDm )4 =
1

45

{[
50995

8
+ 848ζ3 + 2080ζ5

]
+nf

[
−
61469

36
+ 1960ζ3 − 672ζ4 −

1480

3
ζ5 + 6720ζ7

]

+ n2f

[
3877

54
−

16480

9
ζ3 + 896 ζ23 + 536ζ4 + 1920ζ5 − 1600ζ6

]

+ n3f

[
8966

81
+

352

3
ζ3 − 320ζ4 +

512

3
ζ5

]
+n4f

[
−
1040

81
−

1280

81
ζ3 +

256

9
ζ4

]}
. (4.6)

5 The puzzle of ζ4 and ζ6

In this Section we will consider exclusively “quantities” expressible (read computable) in

terms of massless propagators (p-integrals). For any such quantity computed up to some

number of loops the result always contains some quite limited number of the irrational

constants.

More precisely, if a quantity, say, P (Q2) can be expressed in terms of p-integrals with

the loop number L not exceeding four, then the complete list of the irrational constants
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reads ζ3, ζ4, ζ
2
3 , ζ3ζ4, ζ6 and, finally, ζ7. The reason is obvious, these and only these irrational

constants appear in all 4-loop master p-integrals [26]. If we consider L ≤ 3 then only ζ3, ζ4
and ζ5 survive [17]. Finally, for L ≤ 2 there remains only ζ3.

It was already observed long ago that in practice the real pattern of appearance of the

irrational constants is somewhat more limited than the one described above.

Indeed, up to now the result of the explicit calculation of any “physical” (in the sense of

having no anomalous dimension) quantity P has never contained even zetas, that is ζ4 and

ζ6. Note that statement is applicable only to Euclidean quantities; it is very well known

that terms proportional π2 are routinely generated during the procedure of analytical

continuation to the Minkowskian (negative) values of the momentum transfer Q2.

Two most prominent examples are: the Adler function D(Q2) and the coefficient

function CBjp in the Wilson expansion of two vector currents related to the Bjorken sum

rules from polarized electron-nucleon scattering (both known up to oder α4
s [49]).

Some reason behind this remarkable pattern of absence of even zetas from physical

quantities P (Q2) was provided by an analysis of the transcendental structure of the corre-

sponding master p-integrals at the level of three [50] and four [26] loops correspondingly.

In particular, in [26] the following theorem has been proven (by “any” p-integral in its

formulation we mean arbitrary p-integral with the number of loops not exceeding four):

Theorem

1. Any p-integral, finite at ǫ→ 0, does not contain even zetas {ζ2n | n ≥ 2} in the limit

of ǫ→ 0.

2. Any combination of p-integrals, finite at ǫ→ 0, like

∑
Ci(ǫ)pi, Ci =

∑

j

Cijǫ
j,

with the coefficient functions being functions (not necessarily finite at ǫ → 0) with

purely rational coefficients Cij , will not contain even zetas in the limit of ǫ→ 0 (while

odd zetas {ζ2n+1 | n ≥ 1} are expected and indeed appear in general).

3. Let F (ǫ) be any renormalized (and, thus, finite in the limit of ǫ→ 0) combination of

any p-integrals. The sole source of possible even zetas in F (0) is the appearance of

zetas (not necessarily even) in the renormalization factors involved in carrying out

the renormalization of F.

The theorem is a direct consequence of the following observation: all explicit results

for 4-loop master p-integrals do depend on only the following three combinations of zetas:

ζ̂3 = ζ3 +
3ǫ

2
ζ4 −

5ǫ3

2
ζ6, ζ̂5 = ζ5 +

5ǫ

2
ζ6 and ζ7. (5.1)

The third point of the theorem provides the reason behind the absence of even zetas in

the Adler function at order α3
s and in the coefficient function CBjp at at order α4

s. Indeed,

both quantities are
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(i) a finite combination of four-loop p-integrals;

(ii) the corresponding renormalizations require only the charge coupling renormaliza-

tion at maximum three-loop order which is free from any zetas.

The fact that the Adler function at order α4
s is also free from even zetas is not explained

by the theorem. The reason is that in this order the Adler function is directly expressible

in terms of five-loop p-integrals. The fact could be understood if the five-loop master

p-integrals would obey a property similar to (5.1).

The hypothesis (suggested in [26]) is supported by another 5-loop physical quantity

related to the scalar correlator. The corresponding Adler function is defined as follows:

D̃(Q2) =
Q2

6

d

dQ2

Π̃(Q2)

Q2
=

∫ ∞

0

Q2 R̃(s)ds

(s+Q2)2
, (5.2)

D̃(Q2) = 1 +

∞∑

i=1

d̃i(ℓQ) a
i
s(µ),

where µ is the MS renormalization scale and ℓQ = ℓQ2/µ2 . The available results for d̃i read

[51] (note that in order to save some space we set the number of quark flavours nf = 3

everywhere in this Section):

d̃1 =
17

3
− 2 lQ, d̃2 =

9631

144
−

35

2
ζ3 −

95

3
ℓQ +

17

4
l2Q, (5.3)

d̃3 =
4748953

5184
−

91519

216
ζ3 −

5

2
ζ4 +

715

12
ζ5

+ lQ

[
−
4781

9
+

475

4
ζ3

]
+
229

2
l2Q −

221

24
l3Q, (5.4)

d̃4 =
7055935615

497664
−

46217501

5184
ζ3 +

192155

216
ζ23 −

17455

576
ζ4

+
455725

432
ζ5 −

625

48
ζ6 −

52255

256
ζ7

+ lQ

[
−
97804997

10368
+

1166815

288
ζ3 + 5ζ4 −

24025

48
ζ5

]

+ l2Q

[
3008729

1152
−

16785

32
ζ3

]
+ l3Q

[
−
51269

144

]
+ l4Q

[
7735

384

]
. (5.5)

Unlike the vector case the scalar Adler function is full of even zetas starting already from

three loops (the coefficient d̃3). This is a natural consequence of the two facts

(i) the quantity by itself is not scale invariant but meets the following evolution equation

µ2
d

dµ2
D̃(µ2/Q2, αs(µ)) = −2 γm (5.6)

or, equivalently,

µ2
∂

∂µ2
D̃(µ2/Q2, αs(µ)) = −

(
2 γm + β(as)

∂

∂as

)
D̃. (5.7)
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(ii) the quark mass anomalous dimension starts to depend on ζ3 at 3 loops and on ζ4 at 4

loops.

Let us now consider a related quantity, namely,

S̃(µ2/Q2, αs(µ)) ≡ Q2 ∂

∂Q2
ln D̃, (5.8)

which, obviously, is scale-invariant and meets the evolution equation:

µ2
d

dµ2
S̃(µ2/Q2, αs(µ)) = 0. (5.9)

Direct calculation gives:

S̃ =
∑

i=1,∞

s̃i(ℓµQ) a
i
s(µ), (5.10)

with ℓµQ = ln µ2

Q2 and

s̃1 = −2, s̃2 =−
61

3
+
9

2
lQ, s̃3 = −

20321

72
+

335

4
ζ3+ lQ

[
199

2

]
−

81

8
l2Q,

s̃4 = −
48127465

10368
+

2050813

864
ζ3 −

18305

48
ζ5

+ lQ

[
400873

192
−

9045

16
ζ3

]
+−

5661

16
l2Q+

729

32
l3Q. (5.11)

We observe that within the physical quantity S all even zetas abounding in D̃ neatly cancel

each other not only in orders a2s, a
3
s (as guaranteed by the theorem) but in order α4

s, too.

In fact, the absence of the even zetas in S at order a4s was discovered in [6] ten years

before the result for d̃4 became available. Indeed, as S depends on µ and Q2 only via the

combination µ2/Q2, the evolution equation allows to construct the derivative ∂
∂Q2 D̃ at

(L + 1)-loop level merely from the knowledge of D̃ at L loops, the γm and the β-function

at (L+ 1) loops.

As a result the expression (5.12) for S was constructed7 by the authors of [6] from D̃

at three loops and the quark mass anomalous dimension at four loops (the latter was the

main result of their publication). In fact, the absence of ζ4 in S was considered there as

an extra cross-check for the both calculations of γm and S.

Now, with the 5-loop γm at hands we can easily construct the function S at six-loop

level (that is to order α5
s!) The result for S5 read

s̃5 = −
43177218695

497664
+

3589509737

62208
ζ3 −

20395

3
ζ23 −

1335

128
ζ4 −

200406415

31104
ζ5 +

3285415

2304
ζ7

+ lQ

[
105141365

2304
−

2144623

96
ζ3 +

54915

16
ζ5

]
+ l2Q

[
−
2569659

256
+

81405

32
ζ3

]

+ l3Q

[
17631

16

]
+ l4Q

[
−
6561

128

]
(5.12)

and it indeed contains ζ4.

7 To be honest, the authors of this work were dealing not with the function S but with a closely related

one; the difference is not essential for our reasonings.
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6 Conclusions

We have presented the result for the five-loop quark mass anomalous dimension γm for the

case of a generic gauge group as well as explicit formulas which we have used. We have

demonstrated that that at the level α5
s the even zetas do appear in physical observables

expressible in terms of massless propagators.

The work by K. G. Chetykin and J. H. Kühn was supported by the Deutsche Forschungs-

gemeinschaft through CH1479/1-1. The work of P. A. Baikov was supported in part by

grant NSh-7989.2016.2 of the President of Russian Federation.

Note added: the calculation of γm presented here was about its completion when we

were informed about the existence of a result [42] (not then yet submitted to the Archive)

for the same quantity. After a few days we have got our result (4.3) which happens to be

in full agreement with that from [42]. We thank the authors of [42] for informing us on

their results.
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s
), Higgs decay into

b- quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003,

[hep-ph/0511063].

– 14 –

http://dx.doi.org/10.1016/0370-2693(96)00835-0
https://arxiv.org/abs/hep-ph/9603267
https://arxiv.org/abs/math-ph/0010025
http://dx.doi.org/10.1016/j.nuclphysbps.2015.03.006
https://arxiv.org/abs/1501.07119
http://dx.doi.org/10.1103/PhysRevD.25.392
http://dx.doi.org/10.1016/S0550-3213(75)80010-1
http://dx.doi.org/10.1016/0370-2693(94)01553-O
https://arxiv.org/abs/hep-ph/9409454
http://dx.doi.org/10.1016/S0370-2693(97)00370-5
https://arxiv.org/abs/hep-ph/9701390
http://dx.doi.org/10.1016/S0550-3213(98)00122-9
https://arxiv.org/abs/hep-ph/9711266
https://arxiv.org/abs/1612.05512
https://arxiv.org/abs/1701.07068
http://dx.doi.org/10.1016/0370-2693(79)90596-3
http://dx.doi.org/10.1016/0370-2693(91)90149-K
https://arxiv.org/abs/1701.01404
https://arxiv.org/abs/hep-ph/9802376
http://dx.doi.org/10.1103/PhysRevLett.104.132004
https://arxiv.org/abs/1001.3606
https://arxiv.org/abs/hep-th/9909185
http://dx.doi.org/10.1103/PhysRevLett.96.012003
https://arxiv.org/abs/hep-ph/0511063

	1 Introduction 
	2 Technical preliminaries
	3 Explicit formulas for L-loop Z2 and Z  via (L-1) p-integrals
	4 Results
	5 The puzzle of 4 and 6
	6 Conclusions

