The Radiative Return at Φ - and *B*-Meson Factories

1

J.H. KÜHN INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK

KARLSRUHER INSTITUT FÜR TECHNOLOGIE

- Basic Idea
- II Monte Carlo Generators: Status & Perspectives
- III Charge Asymmetry and Radiative Φ -Decays
- IV Nucleon Form Factors at B-Factories
- V Pion and Kaon Form Factors at large Q^2 and $au o
 u K^- K^0$
- VI Experimental Results

VII Conclusions

(with H. Czyż, G. Rodrigo, K. Melnikov;

and S. Binner, A. Grzelinska, E. Nowak, G. Rodrigo, A. Wapienik)

BASIC IDEA

photon radiated off the initial e^+e^- (ISR) reduces the effective energy of the collision $d\sigma(e^+e^- \rightarrow {
m hadrons} + \gamma) = H(Q^2, \theta_\gamma) \ d\sigma(e^+e^- \rightarrow {
m hadrons})$

High precision measurement of the hadronic cross-section at DA Φ NE, CLEO-C, B-factories

DA Φ **NE versus B-factories:**

configurations in the cms - frame

(two step process: $e^+e^-
ightarrow \gamma
ho(
ightarrow \gamma \pi \pi) \Rightarrow$ see below)

J.H. Kühn

Rough estimates (1999) for rates:

 $\pi^{+} \pi^{-} \gamma : E_{\gamma} > 100 MeV$ $\frac{\sqrt{s} [GeV] \left| \int \mathcal{L} [fb^{-1}] \# \text{events}, \ \theta_{min} = 7^{\circ} \right|}{1.02 \qquad 1.35 \qquad 16 \cdot 10^{6}}$ $10.6 \qquad 100 \qquad 3.5 \cdot 10^{6}$

multi-hadron-events (R \equiv 2) $\sqrt{s}=10.6~GeV$

Q^2 -interval $[GeV]$	$\#$ events, $ heta_{min}=7^{\circ}$
$[\ 1.5\ ,\ 2.0\]$	$9.9 \cdot 10^5$
$[\ 2.0\ ,\ 2.5\]$	$7.9 \cdot 10^5$
$[\ 2.5\ ,\ 3.0\]$	$6.6 \cdot 10^5$
$[\ 3.0\ ,\ 3.5\]$	$5.8 \cdot 10^5$

actually (2010):
$$\int \mathcal{L} \sim 3fb^{-1}$$
 (KLOE)
 $\int \mathcal{L} \sim 500fb^{-1}$ (BABAR)
J.H. Kühn The Radiative Return at Φ - and *B*-Meson Factories

4

Lowest order

$$\frac{d\sigma}{dQ^2} \left(e^+ e^- \to \gamma + \operatorname{had}(Q^2) \right) = \sigma \left(e^+ e^- \to \operatorname{had}(Q^2) \right)$$

$$\times \frac{\alpha}{\pi s} \left\{ \begin{array}{c} \frac{s^2 + Q^4}{s(s - Q^2)} \left(\log(s/m_e^2) - 1 \right), \text{ no angular cut} \\ \frac{s^2 + Q^4}{s(s - Q^2)} \log \left(\frac{1 + \cos \theta_{\min}}{1 - \cos \theta_{\min}} \right) - \frac{s - Q^2}{s} \cos \theta_{\min} \end{array} \right\}$$

$$\Rightarrow \text{ differential luminosity:} \quad \frac{dL}{dQ^2} \left(Q^2, s \right) = \frac{\alpha}{\pi s} \left\{ \cdots \right\} L(\text{at } s)$$

all errors dominated by systematics ⇒ Monte Carlo Generator

Basic Ingredients for Pion Formfactor

► ISR

 additional radiation: collinear (EVA MC) (Binner, JK, Melnikov) or NLO calculation (PHOKHARA MC)

II MONTE CARLO GENERATORS

References etc. \rightarrow http://ific.uv.es/~rodrigo/phokhara

J.H. Kühn

QED corrections at leptonic side ⇒ basic building block for all hadronic final states

PHOKHARA 3.0

- ▶ specifically developed for $\pi^+\pi^-$ (plus photons)
- allows for simultaneous emission of photons from initial and final state, including virtual corrections (interference neglected).

Estimates

 $\delta a_\mu ({
m quark},\gamma,m_q=180~{
m MeV}) = 1.880 imes 10^{-10}\ \delta a_\mu ({
m quark},\gamma,m_q=66~{
m MeV}) = 8.577 imes 10^{-10}\ \delta a_\mu (\pi^+\pi^-,\gamma) = 4.309 imes 10^{-10}$

Differential contribution to $a_{\mu}^{\text{had},\gamma}$ from $\pi^{+}\pi^{-}\gamma$ intermediate states for different cutoff values compared with the complete contribution (virtual plus real corrections, labelled 'inclusive') evaluated in sQED (FSR), as well as with the contribution from the $\pi^{+}\pi^{-}$ intermediate state. J.H. Kühn Integrated contribution to $a_{\mu}^{\mathrm{had},\gamma}$ as a function of the cutoff E^{cut} .

Large effect for $Q^2 < m_{ ho}^2\,$ eliminated by suitable cuts on $\pi^+\pi^-$ configuration (suppress 2γ events)

or measure photon

III Charge Asymmetries and Radiative Φ -Decays

(H. Czyż, A. Grzelinska, JK)

 \Rightarrow interference odd under $\pi^+ \leftrightarrow \pi^-$

➡ asymmetric differential distribution: \int interf. = 0

$$A(heta) = rac{N^{\pi^+}(heta) - N^{\pi^-}(heta)}{N^{\pi^+}(heta) + N^{\pi^-}(heta)}$$

Photon coupled to "pointlike" pion additional contribution on top of Φ -resonance (KLOE !) $e^+e^-
ightarrow \Phi
ightarrow \gamma$ f_{0,2} ($ightarrow \pi^+\pi^-$) interference ! J.H. Kühn

The Radiative Return at Φ - and B-Meson Factories 16 Significant influence of scalar resonances on charge asymmetry

 \Rightarrow amplitude for $\Phi
ightarrow \gamma \pi \pi$

J.H. Kühn

The Radiative Return at Φ - and B-Meson Factories 18

IV NUCLEON FORM FACTORS

(PHOKHARA 4.0)

 $Q^2\gtrsim 4m_N^2$ accessible at B-factories \Rightarrow study $e^+e^ightarrow\gamma Nar{N}$ (with N=p or n)

hadronic current:

$$egin{split} J_{\mu} &= -ie \cdot ar{u}(q_2) \left(egin{split} F_1^N(Q^2) \, \gamma_{\mu} - rac{F_2^N(Q^2)}{4m_N} \, [\gamma_{\mu},
otin]
ight) v(q_1) \, , \ Q &= q_1 + q_2 \, , \quad q = (q_1 - q_2)/2 \end{split}$$

or

$$G_M = F_1 + F_2\,, \ \ \ G_E = F_1 + rac{Q^2}{4m^2}\,F_2$$

J.H. Kühn

Result:

$$d\sigma = rac{1}{2s} L_{\mu
u} H^{\mu
u} \, d\Phi_2(p_1+p_2;Q,k) \, d\Phi_2(Q;q_1,q_2) rac{dQ^2}{2\pi},$$

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \bigg\{ \bigg(|G_M^N|^2 - \frac{1}{\tau} |G_E^N|^2 \bigg) \\ &\times \frac{32s}{\beta_N^2(s-Q^2)} \bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \bigg(\frac{(p_1 \cdot q)^2 + (p_2 \cdot q)^2}{s^2} \bigg) \\ &+ 2 \bigg(|G_M^N|^2 + \frac{1}{\tau} |G_E^N|^2 \bigg) \bigg[\bigg(\frac{1}{y_1} + \frac{1}{y_2} \bigg) \frac{(s^2 + Q^4)}{s(s-Q^2)} - 2 \bigg] \bigg\} \,, \end{split}$$

where

$$y_{1,2} = rac{s-Q^2}{2s}(1\mp\cos heta_\gamma)\,, ~~~ au = rac{Q^2}{4m_N^2}, ~~~eta_N^2 = 1 - rac{4m_N^2}{Q^2}$$

Separation of $|G_M|^2$ and $|G_E|^2$ through angular distribution:

$$\begin{split} L_{\mu\nu}H^{\mu\nu} &= \frac{(4\pi\alpha)^3}{Q^2} \frac{(1+\cos^2\theta_{\gamma})}{(1-\cos^2\theta_{\gamma})} \\ &\times 4\left(|{\pmb{G}_M^N}|^2 \left(1+\cos^2\hat{\theta}\right) + \frac{1}{\tau} |{\pmb{G}_E^N}|^2 \, \sin^2\hat{\theta} \right) \end{split}$$

 $\hat{\theta}$ = angle of nucleon with respect to γ -direction in hadronic rest frame (valid for $s/Q^2 \ll 1$, corrections and "optimal frame" \rightarrow EPJ C 35 (2004) 527)

Similarity to $e^+e^-
ightarrow Nar{N}$:

$$rac{d\sigma}{d\Omega} = rac{lpha^2eta_N}{4Q^2}\left(|m{G}_M^{m{N}}|^2\left(1+\cos^2 heta
ight)+rac{1}{ au}\,|m{G}_E^{m{N}}|^2\,\sin^2 heta
ight)$$

Angular distributions of nucleon

lab frame

hadronic rest frame

(two choices for G_M/G_E)

Comments

- similar results for neutron pair or $\Lambda\overline{\Lambda}$ production
- NLO corrections from ISR included (corrections $\sim 1-2\%$)
- no FSR
- $\Lambda\overline{\Lambda}$ can be studied with analysis of Λ -polarization

thousands of events around 4–5 GeV^2 several events up to 7–8 GeV^2

Results (from BABAR)

PRD 73, 012005 (2006)

Recent improvements

- model amplitudes
- Improved formfactors for

 $egin{array}{ll} \pi^+\pi^-2\pi^0, & 2\pi^+2\pi^-, \ \pi^+\pi^- & (ext{high} \ Q^2 ext{ region}) \ K^+K^-, K^0 \overline{K}^0 \end{array}$

• narrow resonances $(J/\psi, \psi')$ (direct vs. indirect amplitudes)

V MESON FORM FACTORS at LARGE Q^2

Khodjamirian, JK, EPJ C 39 (2004) 41 Czyz, Grzelinska, JK, PRD 81, 094014 (2010)

radiative return will explore large Q^2

convenient representation for F_{π} : generalized VDM with ρ , ρ' , ...

combined with Veneziano-type tower of resonances (Dominguez)

$$egin{aligned} m{F}_{\pi}(s) &= \sum_{n=0}^{\infty} c_n rac{m_n^2}{m_n^2 - s}, \ c_n &= rac{(-1)^n \Gamma(eta - 1/2)}{\sqrt{\pi}(rac{1}{2} + n) \Gamma(n+1) \Gamma(eta - 1 - n)}\,, \ m_n^2 &= m_
ho^2(1 + 2n)\,, \ m{eta} &= ext{free parameter} \ \sum c_n &= 1 \end{aligned}$$

Modifications:

- finite widths
- parameters of ho, ho', ho'' fitted to data
- Breit-Wigner for ρ , ρ' , ρ'' with Q^2 -dependent widths \Rightarrow reasonable agreement between model and fit

Parameter	model(fit)	PDG value	model
$m_{ ho_0}$	773.37 ± 0.19	775.49 ± 0.34	input
$\Gamma_{ ho_0}$	147.1 ± 1.0	149.4 ± 1.0	input
m_ω	782.4 ± 0.5	782.41 ± 0.12	-
Γ_{ω}	8.33 ± 0.27	8.49 ± 0.08	-
$m_{ ho_1}$	1490 ± 11	1465 ± 25	1340
$\Gamma_{ ho_1}$	429 ± 27	400 ± 60	256
$m_{ ho_2}$	1870 ± 25	1720 ± 20	1730
$\Gamma_{ ho_2}$	357 ± 46	250 ± 100	330
$m_{ ho_3}$	2120	-	2047
$\Gamma_{ ho_3}$	300	-	391
$m_{ ho_4}$	model	-	2321
$\Gamma_{ ho_4}$	model	-	444
$m_{ ho_5}$	model	-	2567
$\Gamma_{ ho_5}$	model	-	491

Parameter	model(fit)	PDG value	model
$oldsymbol{eta}$	2.148 ± 0.003	-	input
$ c^{\pi}_{\omega} $	$(18.7 \pm 0.5) \cdot 10^{-4}$	-	-
$Arg(c_{\omega}^{\pi})$	0.106 ± 0.020	-	-
$ F_2 $	0.59 ± 0.10	-	-
$Arg(F_2)$	-2.20 ± 0.16	-	-
$ F_3 $	0.048 ± 0.056	-	-
$Arg(F_3)$	$-2. \pm 1.4$	-	-
$ F_4 $	0.40 ± 0.07	-	-
$Arg(F_4)$	-2.9 ± 0.3	-	-
$ F_5 $	0.43 ± 0.05	-	-
$Arg(F_5)$	1.19 ± 0.18	-	-
$\chi^2/d.o.f.$	271/270	-	-

data point at 3.1 GeV $(J/\Psi
ightarrow \pi\pi)$ leads to strong constraints

$$e^+e^-
ightarrow K^+K^-, \ K^0ar{K}^0$$

isospin symmetry:

$$egin{aligned} F_{K^+} &= +F^{(I=1)}+F^{(I=0)}\ F_{K^0} &= -F^{(I=1)}+F^{(I=0)} \end{aligned}$$

resonances:

$$egin{aligned} F_{K^+}(s) &= +rac{1}{2} \Big(c^K_
ho B W_
ho(s) + c^K_{
ho'} B W_{
ho'}(s) + c^K_{
ho''} B W_{
ho''}(s) \Big) \ &+ rac{1}{6} \Big(c^K_\omega B W_\omega(s) + c^K_{\omega'} B W_{\omega'}(s) + c^K_{\omega''} B W_{\omega''}(s)) \ &+ rac{1}{3} \Big(c_\phi B W_\phi(s) + c_{\phi'} B W_{\phi'}(s) \Big) \,, \end{aligned}$$

$$egin{split} F_{K^0}(s) &= -rac{1}{2} \Big(c_{
ho}^K B W_{
ho}(s) + c_{
ho'}^K B W_{
ho'}(s) + c_{
ho''}^K B W_{
ho''}(s) \Big) \ &+ rac{1}{6} \Big(c_{\omega}^K B W_{\omega}(s) + c_{\omega'}^K B W_{\omega'}(s) + c_{\omega''}^K B W_{\omega''}(s) \Big) \ &+ rac{1}{3} \Big(\eta_{\phi} c_{\phi} B W_{\phi}(s) + c_{\phi'} B W_{\phi'}(s) \Big) \end{split}$$

quark model:

constraint: $f_
ho=f_\omega\,,\quad g_{
ho KK}=g_{\omega KK}$

 $\Rightarrow c_{
ho} = c_{\omega}$

fit performed with (solid curves) or without (dashed curves) this constraint

The Radiative Return at Φ - and B-Meson Factories 32

 $au
ightarrow K^- K^0
u$

Predictions based on isospin symmetry and I = 1 part of form factor:

$$egin{split} & \left(rac{1}{BR(au o \mu^- ar
u_\mu
u_ au_ au)}
ight) rac{dBR(au o K^- K^0
u_ au)}{d\sqrt{Q^2}} = \ & rac{|V_{ud}|^2}{2m_ au^2} \left(1+rac{2Q^2}{m_ au^2}
ight) \left(1-rac{Q^2}{m_ au^2}
ight)^2 \left(1-rac{4m_K^2}{Q^2}
ight)^{3/2} \ & imes \sqrt{Q^2} \, |F_{K^- K^0}(Q^2)|^2 \end{split}$$

and
$$F_{K^-K^0} = -F_{K^+} + F_{K^0}$$
 $\Rightarrow BR(au o K^-K^0
u_ au) = 0.135 - 0.190\%$

to be compared with

 $BR(au o K^- K^0
u_ au) = 0.158 \pm 0.016\%.$

Q^2 distribution:

will provide further constraints!

(data from CLEO)

VI Experimental Results

KLOE pion form factor, asymmetry

BABAR, BELLE higher Q^2 available

 \Rightarrow measurement of R(Q^2) from threshold up to at least 5 GeV.

Examples:

Pion Form Factor

VII Conclusions

- continuous development of PHOKHARA
 - \Rightarrow radiative corrections
 - \Rightarrow more channels
 - \Rightarrow cooperation between theory and experiment crucial
- charge asymmetry as analysis tool
- nucleon form factors:

 G_E and G_M can be measured for a wide range of Q^2

• pion form factor: structures at large Q^2

kaon form factors: K^+K^- & $K^0\bar{K}^0 \Rightarrow K^-K^0$ \Rightarrow prediction for $\tau \rightarrow \nu K^-K^0$

\Rightarrow numerous experimental results during past 5 years

J.H. Kühn