Charm and Bottom Quark Masses, the Strong Coupling Constant and Multi-Loop Results

Johann H. Kühn

- I. Recent Multi-Loop Results
- II. Quark Masses from Low Moments
- III. The Strong Coupling

I. Recent Multi-Loop Results

Massive tadpole integrals to 4-loops

One-scale integrals: M(Propagator) = 0 or m

⇒ reduction to master integrals (Laporta-algorithm) analytic results for masters

applications:

non-diagonal current $\Rightarrow \rho$ -parameter

diagonal current \Rightarrow $m_{\rm b}$ and $m_{\rm C}$ from sum rules

Four-loop results for vector, axial, scalar, pseudoscalar correlators at $q^2 = 0$ and increasingly higher derivatives wrt. q^2 .

- * Chetyrkin, JK, Sturm NPB744, 121 (2006); Eur. Phys. J48, 107 (2006)
- * Chetyrkin, Faisst, Sturm, Tentyukov NPB742, 208 (2006)
- * Chetyrkin, Faisst, JK, Maierhöfer, Sturm PRL97 102003 (2006)
 Boughezal, Czakon, Schutzmeier PRD74,074006 (2006)
 Boughezal, Czakon NPB755, 221 (2006)
 - Czakon, Schutzmeier JHEP0807,001 (2008)
- * Maier, Maierhöfer, Marquard NPB797, 218 (2008); arXiv: 0806.3405[hep-ph]
- * Sturm arXiv:0807.1646[hep-ph]

*Karlsruhe see also P.Marquard; Formal theory, Talk 359

- Massless propagator integrals to 4-loops (including finite part)
 - \Rightarrow massless propagator integrals,

absorptive parts to 5-loops.

 \Rightarrow R(s) in order $\alpha_{\rm S}^{\rm 4}$!

*Baikov,Chetyrkin,JK PRL 101(2008) 012002;

*Karlsruhe

II. Quark Masses from Low Moments

WHY precise masses?

B-decays: $\Gamma(B \to X_{u} l \bar{\nu}) \sim G_{\mathsf{F}}^{2} m_{\mathsf{b}}^{5} |V_{ub}|^{2}$ $\Gamma(B \to X_{\mathsf{c}} l \bar{\nu}) \sim G_{\mathsf{F}}^{2} m_{\mathsf{b}}^{5} f(m_{\mathsf{c}}^{2}/m_{\mathsf{b}}^{2}) |V_{\mathsf{cb}}|^{2}$ $B \to X_{\mathsf{S}} \gamma$

 $\Upsilon\text{-spectroscopy:}$ $m(\Upsilon(1s)) = 2M_{b} - \left(\frac{4}{3}\alpha_{s}\right)^{2}\frac{M_{b}}{4} + \dots$

Higgs decay (ILC)

$$\Gamma(H \to b\bar{b}) = \frac{G_{\mathsf{F}} M_{\mathsf{H}}}{4\sqrt{2}\pi} m_{\mathsf{b}}^2(M_{\mathsf{H}}) \tilde{R}$$

 $\tilde{R} = 1 + 5.6667a_{s} + 29.147a_{s}^{2} + 41.758a_{s}^{3} - 825.7a_{s}^{4}$ $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)^{4}$ a_{s}^{4} -term = 5-loop calculation [Baikov,...]

Yukawa Unification

 $\lambda_{\tau} \sim \lambda_{b}$ or $\lambda_{\tau} \sim \lambda_{b} \sim \lambda_{t}$ at GUT scale top-bottom $\rightarrow m_{t} / m_{b} \sim$ ratio of vacuum expectation values request $\frac{\delta m_{b}}{m_{b}} \sim \frac{\delta m_{t}}{m_{t}} \Rightarrow \delta m_{t} \approx 1 \text{ GeV} \Rightarrow \delta m_{b} \approx 25 \text{ MeV}$

m_Q from

SVZ Sum Rules, Moments and Tadpoles

Some definitions:

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$
$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu} \right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \overline{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

$$\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s}{\pi} \bar{C}_n^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}_n^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}_n^{(3)} + \dots$$

Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2 [Chetyrkin, JK, Steinhauser, 1996]

up to high $n(\sim 30)$; VV, AA, PP, SS correlators [Czakon et al., 2006], [Maierhöfer, Maier, Marquard, 2007]

Coefficients \overline{C}_0 and \overline{C}_1 in order α_s^3 (four-loop) \Rightarrow reduction to master integrals through Laporta algorithm [Chetyrkin,JK,Sturm], [Boughezal,Czakon,Schutzmeier] 2006

evaluation of master integrals numerically through difference equations (30 digits) or Padé method or analytically in terms of transcendentals [Schröder+Vuorinen, Chetyrkin et al., Schröder+Steinhauser, Laporta,Broadhurst,Kniehl et al.]

 \bar{C}_2 very recently [Maier, Maierhöfer, Marquard]

 \bar{C}_3 would be desirable!

Using calculated moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{d}{dq^{2}}\right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4}Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \bar{C}_{n}$$

and experiment

$$\mathcal{M}_n^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s)$$

constraint:

$$\mathcal{M}_n^{\mathsf{exp}} = \mathcal{M}_n^{\mathsf{th}}$$

 $\Rightarrow m_{\mathsf{C}}$

Ingredients

experiment:

- $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & Babar
- $\psi(3770)$ and R(s) from BES
- $\alpha_{\rm S} = 0.1187 \pm 0.0020$

theory:

- $N^{3}LO$ for n=1 and n=2 (new)
- $N^{3}LO$ estimate for n =3,4
- include condensates

$$\delta \mathcal{M}_n^{\mathsf{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_{\mathsf{S}}}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha_{\mathsf{S}}}{\pi} \overline{b}_n \right)$$

- estimate of non-perturbative terms (oscillations, based on Shifman)
- careful extrapolation of R_{uds}
- careful definition of R_c

Results $(m_{\rm C})$

n	$m_{\rm C}(3~{\rm GeV})$	exp	$lpha_{\sf S}$	μ	np	total	$\delta ar{C}_n^{ m 30}$	$m_{C}(m_{C})$
1	0.986	0.009	0.009	0.002	0.001	0.013		1.286
2	0.976	0.006	0.014	0.005	0.000	0.016		1.277
3	0.982	0.005	0.014	0.007	0.002	0.016	0.010	1.282
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309

n = 1:

- $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm C}(m_{\rm C}) = 1286 \pm 13 \,{\rm MeV}$

$$n = 2:$$
• $m_{\rm C}(3 \,{\rm GeV}) = \begin{cases} 979 \pm 25 \,{\rm MeV} \,{\rm old}, \ C_2^{(3)} {\rm estimated} \\ 976 \pm 16 \,{\rm MeV} \,{\rm new}, \ C_2^{(3)} {\rm calculated} \end{cases}$

• $m_{\rm C}(m_{\rm C}) = 1277 \pm 16 \,{\rm MeV}$

n

Results (m_b)

n	$m_{b}(10 \text{ GeV})$	exp	$lpha_{\sf S}$	μ	total	$\delta ar{C}_n^{30}$	$m_{b}(m_{b})$
1	3.593	0.020	0.007	0.002	0.021		4.149
2	3.607	0.014	0.012	0.003	0.019		4.162
3	3.618	0.010	0.014	0.006	0.019	0.008	4.173
4	3.631	0.008	0.015	0.021	0.027	0.012	4.185

n = 2:

•
$$m_{\rm b}(10{\rm GeV}) = \begin{cases} 3609 \pm 25 \,{\rm MeV}$$
 old, $C_2^{(3)}$ estimated
3607 $\pm 19 \,{\rm MeV}$ new, $C_2^{(3)}$ calculated

- $m_{\rm b}(m_{\rm b}) = 4162 \pm 19 \,{\rm MeV}$
- $m_{\rm b}(m_{\rm t}) = 2701 \pm 18 \pm 14 \,{\rm MeV}$

•
$$m_{\rm t}/m_{\rm b} = 59.8 \pm 1.3$$

recent analysis: lattice & pQCD

(HPQCD + Karlsruhe, arXiv:0805.2999[hep-lat])

 \Rightarrow C.Davies (Heavy Quarks, Talk 421) lattice evaluation of pseudoscalar correlator \Rightarrow replace experimental moments by lattice simulation pQCD for pseudoscalar correlator available: "all" moments in $\mathcal{O}(\alpha_s^2)$ three lowest moments in $\mathcal{O}(\alpha_{s}^{3})$. lowest moment: dimensionless: $\sim \left(\bar{C}^{(0)} + \frac{\alpha_s}{\pi}\bar{C}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}^{(3)} + \dots\right)$ $\Rightarrow \alpha_{s}(3\text{GeV}) \Rightarrow \alpha_{s}(M_{Z}) = 0.113(4) \text{ arXiv:} 0805.2999[hep-lat]$ 0.1174(12) new, preliminary higher moments: $\sim m_{\rm C}^2 \times \left(1 + ... \frac{\alpha_{\rm S}}{\pi} ...\right)$ $m_{\rm C}(3 {\rm GeV}) = 984(16) {\rm MeV} {\rm arXiv:} 0805.2999[{\rm hep-lat}]$ \Rightarrow 986(10) MeV new, preliminary

to be compared with 986(13) MeV from e^+e^- !

$$m_{\rm C}(3 \text{ GeV}) = 0.986(13) \text{ GeV}$$

$$e^+e^-$$
 + pQCD

 $m_{\rm C}(3 \,\,{\rm GeV}) = 0.986(10) \,\,{\rm GeV}$

lattice + pQCD

$$m_{\rm b}(10~{\rm GeV}) = 3.607(19)~{\rm GeV}$$

$$e^+e^- + pQCD + \bar{C}_2^{(3)}$$

III. The Strong Coupling Constant in N³LO

 $\alpha_{\rm S} = 0.1183 \pm 0.0027$ vs. ± 0.0009

$\alpha_{\rm S}$ from LEP

 $\begin{array}{ll} \text{SM-fit:} & \alpha_{\text{S}} = 0.1185 \pm 0.0026 & (2007) \\ & \text{based on} \sim 10^7 \text{ Z-events/experiment} \end{array}$

GIGA-Z: 10⁹ events $\Rightarrow \delta \alpha_{s} = 0.0009$

 $\alpha_{\rm S}$ based on

$$\Gamma_{\text{had}} = \Gamma_0 \left(1 + a_s + 1.409 \ a_s^2 - 12.767 \ a_s^3 \right)$$
$$+ \text{ small corrections}$$
$$\left(a_s \equiv \frac{\alpha_s}{\pi} \right)$$

$$\alpha_{s}$$
 from τ -decays

one of the most precise results for $\alpha_{\rm S}$

$$\frac{\Gamma(\tau \to h_{s=0}\nu)}{\Gamma(\tau \to l\overline{\nu}\nu)} = |V_{ud}|^2 S_{\mathsf{EW}}R_{\tau} = 3.471 \pm 0.011$$

$$R_{\tau} = 3 \left(1 + \delta_P + \underbrace{\delta_{\text{EW}}}_{\text{small}} + \underbrace{\delta_{\text{NP}}}_{0.003 \pm 0.003}\right)$$

 $\delta_P = 0.1998 \pm 0.043 \;(\text{exp})$

• previous fixed order perturbation theory: $\delta_P = a_s + 5.202 a_s^2 + 26.37 a_s^3 + ?$

• previous contour improved perturbation theory: $\delta_P = 1.364 a_s + 2.54 a_s^2 + 9.71 a_s^3 + ?$ previously:

estimates for α_s^4 (and α_s^5) terms only (FAC, PMS)

questions:

- are FAC/PMS supported by higher order calculations ?
- does the difference between fixed order (FOPT) and CIPT decrease upon inclusion of $\alpha_{\rm S}^4$?

aim: evaluate $\alpha_{\rm S}^{\rm 4}$

 \Rightarrow absorptive part of 5-loop correlators

Baikov, Chetyrkin, JK PRL 101(2008) 012002

consider
$$D_1(Q^2) \equiv -12\pi^2 Q^2 \frac{d}{dQ^2} \Pi_1 = \int_0^\infty ds \frac{Q^2}{(Q^2+s)^2} R(s)$$

(Adler function, μ independent)

$$D_1(q^2) = 1 + a_s + a_s^2 (-0.1153 n_f + 1.968)$$

+ $a_s^3 (0.08621 n_f^2 - 4.216 n_f + 18.24)$
+ $a_s^4 (-0.010 n_f^3 + 1.88 n_f^2 - 34.4 n_f + 135.8)$

impact on α_s from Z-decays

$$R(s) = D(s) - \pi^2 \beta_0^2 \left\{ d_1 / 3a_s^3 + \left(d_2 + \frac{5\beta_1}{6\beta_0} d_1 \right) a_s^4 \right\}$$

$$\Rightarrow \delta \alpha_{\rm S}(M_Z) = 0.0005$$

$$\alpha_{\rm S}(M_Z)^{\rm NNNLO} = 0.1190 \pm 0.0026$$

(Baikov,Chetyrkin,JK)

impact on α_{s} from τ -decays

uncertainty from higher orders dominant

$$\frac{\Gamma(\tau \to h_{s=0}\nu)}{\Gamma(\tau \to l\overline{\nu}\nu)} = |V_{ud}|^2 S_{\text{EW}} \Im (1 + \delta_P + \underbrace{\delta_{\text{EW}}}_{\text{small}} + \underbrace{\delta_{\text{NP}}}_{0.003\pm 0.003})$$

 $R_{\tau} = 3.471 \pm 0.011$

 $\delta_P = 0.1998 \pm 0.043$ (exp)

	$\alpha_{s}^{FO}(m_{\tau})$	$\alpha_{\sf S}^{\sf CI}(m_{ au})$
no α_s^4	$0.337 \pm 0.004 \pm 0.03$	$0.354 \pm 0.006 \pm 0.002$
$d_4 = 25$	$0.325 \pm 0.004 \pm 0.02$	$0.347 \pm 0.006 \pm 0.009$
$d_4 = 49.08$	$0.322 \pm 0.004 \pm 0.02$	$0.342 \pm 0.005 \pm 0.01$

scale $\mu^2/m_{\tau}^2 = 0.4 - 2$

use mean value between FOPT and CIPT

four-loop running (β_0 , β_1 , β_2 , β_3) four-loop matching at quark thresholds ($m_c(m_c) = 1.286(13) \text{ GeV}, m_b(m_b) = 4.164(25) \text{ GeV}$)

 $\alpha_{s}(M_Z) = 0.1202 \pm 0.006_{exp} \pm 0.018_{theo} \pm 0.0003_{evol}$ = 0.1202 \pm 0.0019

consistent with α_{s} from Z

 $\delta \alpha_{\rm S}$ from τ dominated by theory. $\delta \alpha_{\rm S}$ from Z dominated by statistics. significant difference between FO and CI also in higher orders (anticipated in Baikov,Chetyrkin,JK PRD67(2003)074026)

 \Rightarrow three recent studies of τ -decays,

using the new exact result for d_4 .

Davier, Descotes-Genon, Hoecker, Malaescu, Zhang (arXiv 0803.0979[hep-ph])

starting point $\delta_P = 0.2066 \pm 0.0070$ (slight shift due to inclusion of recent BABAR data)

contour-improved analysis only (claim: FO "exhibits problems of convergence")

partial resummation of higher orders;

 μ -dependence artificially small \Rightarrow small!! (probably underestimated) theory error

 $\alpha_{\rm S}(m_{\tau}) = 0.344 \pm 0.005 \pm 0.007$

problems:

- specific assumptions about higher order behaviour of Adler function
- perturbative series is asymptotic anyhow, exclusion of FO not convincing
- probable underestimate of theory error (μ -dependence)
- dominance of π^2 -terms doubtful

Beneke, Jamin (arXiv 0806.3156[hep-ph])

starting point $\delta_P = 0.2042 \pm 0.0050$ (slight differences in non-perturbative terms)

- careful analysis of differences between FO and CI
- model for higher order terms of Adler function (renormalon series,...)
- large cancelations between π^2 -terms and Adler function terms

 \Rightarrow FO provides optimal description

$$\alpha_{\rm S}(m_{\tau}) = \begin{cases} 0.320^{+0.012}_{-0.007} & \text{FO up to "} \alpha_{\rm S}^{5}" \\ 0.3156 \pm 0.0059 & \text{FO+model for higher orders} \end{cases}$$

Maltman, Yavin (arXiv 0807.0650[hep-ph])

sum rules for spectral functions with weights to suppress higher dimensional operators

• important contributions from D = 10 - 16? (comparison of vector and axial spectral function!)

• use
$$w_N(y) = 1 - \frac{N}{N-1}y + \frac{1}{N-1}y^N$$

and contour improvement

 $\alpha_{\rm S}(m_{\tau}) = 0.3209 \pm 0.0046 \pm 0.0118$

(shift relative to Davier et al. attributed to D > 8)

compilation of $\alpha_{s}(M_{Z})$ from Z and τ

- 0.1190 ± 0.0026 BCK (Z-decays)
- 0.1202 ± 0.0019 BCK (τ -decays, FO& CI)
- 0.1212 ± 0.0011 Davier+... (τ -decays, CI)
- 0.1180 ± 0.0008 BJ (τ -decays, FO+...)
- 0.1187 ± 0.0016 MY (τ -decays, CI, D > 8)

our evaluation: $Z \& \tau \Rightarrow 0.1198 \pm 0.0015$ at NNNLO

comparison: α_s from lattice

 $\alpha_{s}(M_{Z}) = 0.1170 \pm 0.0012$ (HPQCD & UKQCD, PRL95(2005) 052002)

update using finer lattices

 $\alpha_{s}(M_{Z}) = 0.1183 \pm 0.0007$ (HPQCD, arXiv 0807.1687[hep-lat])

alternative perturb. analysis (Maltman et al.: 2008, arXiv 0807.2020[hep-lat])

 $\alpha_{\rm S}(M_Z) = 0.1192 \pm 0.0011$

to be compared with

 $\alpha_{s}(M_{Z}) = 0.1174 \pm 0.0012$ (HPQCD & Karlsruhe 2008, preliminary)

Summary on α_s

- Adler function, R(s), R_{τ} available to $\mathcal{O}(\alpha_s^4)$
- First and only N^3LO results
- α_s^4 terms move Z and τ closer together

combined ($\tau \& Z$): $\alpha_s(M_Z) = 0.1198 \pm 0.0015$

consistent with lattice + pQCD:

 $\alpha_s(M_Z) = 0.1174 \pm 0.0012$