TWO TOPICS on TOP QUARKS

A. CHARGE ASYMMETRY in HADROPRODUCTION and AXIGLUONS

B. WEAK CORRECTIONS and SUDAKOV LOGARITHMS

J. H. Kühn
A. CHARGE ASYMMETRY in HADROPRODUCTION and AXIGLUONS

PRD 59, 054017 (1999)

I. Motivation and Main Idea
II. Results at Partonic Level
III. Asymmetries at Tevatron and LHC
IV. Limits on Axigluons
I MOTIVATION and MAIN IDEA

dominant process for $t\bar{t}$ production . . .

. . . is symmetric:

$$\frac{d\sigma}{d\cos\hat{\Theta}} \propto \left(1 + \frac{4m^2}{Q^2}\right) + \left(1 - \frac{4m^2}{Q^2}\right)\cos^2\hat{\Theta}$$

$O(\alpha_s)$ corrections:

virtual gluons

real emission
Interference between $C = +1$ and $C = -1$ amplitudes

\Rightarrow charge asymmetry similar to QED!

Nonabelian terms:

similarly ("flavour excitation")
numerically unimportant
real and virtual corrections must be combined to obtain sensible (=IR–finite) result

⇒ forward–backward asymmetry of top quarks in $p\bar{p}$ collisions (TEVATRON)

⇒ difference in rapidity distributions between t and \bar{t} in pp collisions (LHC)

⇒ test of production mechanism

⇒ potential confusion with asymmetry from weak production avoided
Intuitive picture

inclusive cross section

top and light quark in same direction
preferred coherence with gluon field!

⇒ positive asymmetry for
inclusive cross section

$\bar{t}\bar{t}g$

probability for gluon emission enhanced
if t and q in opposite direction

⇒ negative asymmetry for $t\bar{t}g$
(tagged events)
II PARTONIC LEVEL

differential asymmetry
($q\bar{q}$ induced)

\[
\hat{A}(\cos \hat{\Theta}) = \frac{N_t(\cos \hat{\Theta}) - N\bar{t}(\cos \hat{\Theta})}{N_t(\cos \hat{\Theta}) + N\bar{t}(\cos \hat{\Theta})} - \frac{N_t(\cos \hat{\Theta}) - N\bar{t}(-\cos \hat{\Theta})}{N_t(\cos \hat{\Theta}) + N\bar{t}(-\cos \hat{\Theta})}
\]
integrated asymmetry
(parton level)

\[\hat{A}(\cos \hat{\Theta}) = \frac{N_t(\cos \hat{\Theta} \geq 0) - N_{\bar{t}}(\cos \hat{\Theta} \geq 0)}{N_t(\cos \hat{\Theta} \geq 0) + N_{\bar{t}}(\cos \hat{\Theta} \geq 0)} \]

as function of \(\sqrt{s} \):

![Graph showing \(\hat{A}(\%) \) vs. \(\sqrt{s} \) (GeV)]
III HADRONIC COLLISIONS

$p\bar{p} - 1.96 \text{ TeV}$

dominantly central production:

$q\bar{q} \rightarrow t\bar{t}$

partonic asymmetry

\downarrow

hadronic asymmetry

\Rightarrow Integrated asymmetry

$\bar{A}_{fb} = 4.5 - 5.7 \% \quad (1.96 \text{ TeV})$
Differential asymmetry: $\mathcal{A}(Y)$

top rapidity y_+ and anti-top rapidity y_- are known (in one event)

Average: $Y \equiv \frac{1}{2}(y_+ + y_-)$

\[
\mathcal{A}(Y) = \frac{N_{ev}(y_+ > y_-) - N_{ev}(y_+ < y_-)}{N_{ev}(y_+ > y_-) + N_{ev}(y_+ < y_-)}
\]

nearly equivalent to partonic asymmetry

$Y \approx$ partonic rest frame!
\[A_{total} \equiv \frac{N_{ev}(y_+ > y_-) - N_{ev}(y_+ < y_-)}{N_{ev}} \]

preliminary Tevatron results:

\[A_{FB} = 0.20 \pm 0.11 \pm 0.05 \]
\[A_{total} = 0.23 \pm 0.12 \pm 0.06 \]
Comments

• inclusive asymmetry hardly affected by radiative corrections (Almeida, Sterman, Vogelsang)

• $t\bar{t}g$ asymmetry strongly affected by radiative corrections, sensitive to cuts (Dittmaier, Uwer, Weinzierl)
no forward backward asymmetry

slight difference between rapidity distributions of Q and \bar{Q} from (small) admixture of $q\bar{q}$ processes

\Rightarrow more t at large rapidity
\Rightarrow more \bar{t} at small rapidity

main effect in regions of small cross section
$t\bar{t}$ production in proton-proton collisions (LHC) is forward-backward symmetric in the laboratory frame.

- Select the invariant mass of the $t\bar{t}(+g)$ system and its longitudinal momentum.
 - For some extreme kinematic regions, large x and/or large \hat{s} (in practice $\hat{s} < 2\text{TeV}$), sizable asymmetry reconstruction of the $t\bar{t}(+g)$ rest frame required!!!
Leading order!
IV Limits on Axigluons

\[q, \bar{q}, \gamma \mu \gamma^5, A, m_A, t, \bar{t} \]

\[\Rightarrow \text{modified } t\bar{t} \text{ production} \]

(resonance for \(m(t\bar{t}) = m_A \))

\[\Rightarrow \text{interference with gluon} \]

\[\rightarrow \text{forward backward asymmetry} \]
\[Y = \frac{y_{1} + y_{2}}{2} \]

<table>
<thead>
<tr>
<th>m_A (TeV)</th>
<th>QCD</th>
<th>$m_A = 1$ TeV</th>
<th>$m_A = 2$ TeV</th>
<th>$m_A = 5$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{FB}</td>
<td>0.051(6)</td>
<td>$-0.133(9)$</td>
<td>$-0.027(2)$</td>
<td>$-0.0041(3)$</td>
</tr>
<tr>
<td>A</td>
<td>0.078(9)</td>
<td>$-0.181(11)$</td>
<td>$-0.038(3)$</td>
<td>$-0.0058(4)$</td>
</tr>
</tbody>
</table>
Preliminary Tevatron results

$m_A > 1.2$ TeV at 2σ
Summary

- Forward backward asymmetry for t production at TEVATRON $\sim 7\%$
- Important test of production mechanism
- Unique possibility for $p\bar{p}$ collider
- Differences between t and \bar{t} distributions at LHC mainly in regions of small cross section (large rapidity!)
- Access to “new physics” signal for axigluons
B. **WEAK CORRECTIONS TO TOP PRODUCTION**

I. Results at Partonic Level
II. Tevatron and LHC
I. Results at Partonic Level

$q \bar{q} \rightarrow t \bar{t}$:

$\sim \mathcal{O}(\alpha_s)$

no interference with

$Z \sim \mathcal{O}(\alpha_{\text{weak}})$

$gg \rightarrow t \bar{t}$:

$\sim \mathcal{O}(\alpha_s)$
$\mathcal{O}(\alpha_s^2 \alpha_{\text{weak}})$ weak corrections ($q \bar{q} \rightarrow t \bar{t}$)

cuts of second group individually IR-divergent
$\mathcal{O}(\alpha_s^2\alpha_{\text{weak}})$ weak corrections ($gg \to t\bar{t}$)
• analytical & numerical results available
 (earlier partial results by Beenakker et al., some disagreements)
 independent evaluation by Bernreuther & Fücker

• \((\text{box contribution})_{\text{up–quark}} = -(\text{box contribution})_{\text{down–quark}}\)
 \(\Rightarrow\) suppression

• box contribution moderately \(\hat{s}\)-dependent

• strong increase with \(\hat{s}\)

• sizable \(M_h\)-dependence, large effect close to threshold
II. Tevatron and LHC

Small effects for total cross section
(dominated by $\sqrt{s} \sim 360-380$ GeV)
Sizeable effects for differential distribution

\[\frac{d\sigma_{\text{NLO}}}{dp_T} / \frac{d\sigma_{\text{LO}}}{dp_T} \] [\%]

\[\frac{d\sigma_{\text{NLO}}}{dM_{tt}} / \frac{d\sigma_{\text{LO}}}{dM_{tt}} \] [\%]

Tevatron

\(m_H = 1000 \text{ GeV} \)

\(m_H = 120 \text{ GeV} \)
large corrections for large \sqrt{s}

sizable M_h-dependence

(relative weak corrections [%])
Transverse momentum dependence (LHC)

relative composition

\[\sigma_{\text{LO}}(p_T > p_{T\text{cut}}) / \sigma_T \]

- gg → tt
- qq → tt
- sum

relative weak corrections \(\sigma(p_T > p_{T\text{cut}}) \) [%]

- \(M_h = 120 \text{ GeV} \)
- \(M_h = 1000 \text{ GeV} \)
- stat. error
$M_{t\bar{t}}$ -dependence (LHC)

Relative weak corrections $\sigma(M_{t\bar{t}} > M_{t\bar{t}\text{cut}})[\%]$ as a function of $M_{tt\text{cut}}$ [GeV].

- $M_h = 120$ GeV
- $M_h = 1000$ GeV
- Stat. error

$M_{h} = 120$ GeV
$M_{h} = 1000$ GeV
Stat. error
IV. Conclusions on weak corrections

- LHC will explore the TeV-region: $\hat{s}/M_W^2 \gg 1$

- Electroweak corrections amount to $\mathcal{O}(10\% - 20\%)$ in the interesting kinematic region

- Top-quark distributions at large \hat{s} are strongly modified

- Sizable M_h-dependence for small p_T