TWO TOPICS on TOP QUARKS

A. CHARGE ASYMMETRY in HADROPRODUCTION and AXIGLUONS

B. WEAK CORRECTIONS and SUDAKOV LOGARITHMS

J.H. Kühn

A. CHARGE ASYMMETRY in HADROPRODUCTION and AXIGLUONS

J.K., G. Rodrigo: PRL 81, 49 (1998) PRD 59, 054017 (1999) O. Antuñano, J.K., G. Rodrigo: PRD 77, 014003 (2008)

I. Motivation and Main Idea

II. Results at Partonic Level

III. Asymmetries at Tevatron and LHC

IV. Limits on Axigluons

I MOTIVATION and MAIN IDEA

dominant process for $t\overline{t}$ production . . .

 \bar{q}

... is symmetric:

 $\mathcal{O}(\alpha_{s})$ corrections: virtual gluons

real emission

Interference between C = +1 and C = -1 amplitudes

⇒ charge asymmetry similar to QED!

$$d\sigma(q\bar{q} \rightarrow QX) - d\sigma(q\bar{q} \rightarrow \bar{Q}X) \neq 0$$

Nonabelian terms:

similarly ("flavour excitation")
numerically unimportant

$$\mathsf{d}\sigma(qg\to QX)-\mathsf{d}\sigma(qg\to \bar{Q}X)\neq 0$$

real and virtual corrections must be combined to obtain sensible (=IR-finite) result

forward–backward asymmetry of top quarks in $p\bar{p}$ collisions (TEVATRON)

difference in rapidity distributions between tand \bar{t} in pp collisions (LHC)

 \Rightarrow

 \Rightarrow

test of production mechanism

potential confusion with asymmetry fromweak production avoided

Intuitive picture

inclusive cross section

top and light quark in same direction preferred coherence with gluon field!

⇒ positive asymmetry for inclusive cross section

$t\overline{t}g$

propability for gluon emission enhanced if t and q in opposite direction

 $\Rightarrow negative asymmetry for t \bar{t} g$ (tagged events)

II PARTONIC LEVEL

integrated asymmetry (parton level)

$$\hat{A}(\cos\hat{\Theta}) = \frac{N_t(\cos\hat{\Theta} \ge 0) - N_{\overline{t}}(\cos\hat{\Theta} \ge 0)}{N_t(\cos\hat{\Theta} \ge 0) + N_{\overline{t}}(\cos\hat{\Theta} \ge 0)} = \frac{N_t(\cos\hat{\Theta} \ge 0) - N_t(\cos\hat{\Theta} \le 0)}{N_t(\cos\hat{\Theta} \ge 0) + N_t(\cos\hat{\Theta} \le 0)}$$

as function of $\sqrt{\hat{s}}$:

III HADRONIC COLLISIONS

$$par{p}$$
 – 1.96 TeV

dominantly central production: $q \overline{q} \rightarrow t \overline{t}$

 \Rightarrow Integrated asymmetry

 $\bar{A}_{fb} = 4.5 - 5.7 \%$ (1.96 TeV)

Differential asymmetry: $\mathcal{A}(Y)$

top rapidity y_+ and anti-top rapidity y_- are known (in one event)

Average: $Y \equiv \frac{1}{2}(y_{+} + y_{-})$

$$\mathcal{A}(Y) = \frac{N_{ev}(y_+ > y_-) - N_{ev}(y_+ < y_-)}{N_{ev}(y_+ > y_-) + N_{ev}(y_+ < y_-)}$$

nearly equivalent to partonic asymmetry

Y = partonic rest frame!

$$\mathcal{A}_{total} \equiv \frac{N_{ev}(y_+ > y_-) - N_{ev}(y_+ < y_-)}{N_{ev}}$$

preliminary Tevatron results:

$$A_{FB} = 0.20 \pm 0.11 \pm 0.05$$

 $A_{total} = 0.23 \pm 0.12 \pm 0.06$

- no forward backward asymmetry
- slight difference between rapidity distributions of Q and \overline{Q} from (small) admixture of $q\overline{q}$ processes

- \Rightarrow more t at large rapidity
- \Rightarrow more \overline{t} at small rapidity

main effect in regions of small cross section

IV Limits on Axigluons

 $\Rightarrow \text{ modified } t\overline{t} \text{ production}$ (resonance for $m(t\overline{t}) = m_A$)

 \Rightarrow interference with gluon \rightarrow forward backward asymmetry

	QCD	$m_A = 1 \text{ TeV}$	$m_A = 2 \text{ TeV}$	$m_A = 5 \text{ TeV}$
A _{FB}	0.051(6)	-0.133(9)	-0.027(2)	-0.0041(3)
\mathcal{A}	0.078(9)	-0.181(11)	-0.038(3)	-0.0058(4)

Preliminary Tevatron results

 $m_A > 1.2 \text{ TeV}$ at 2σ

Summary

forward backward asymmetry for t productionat TEVATRON $\sim 7\%$

- ★ important test of production mechanism
- \star unique possibility for $p\bar{p}$ collider

*

*

differences between t and \overline{t} distributions at LHC mainly in regions of small cross section (large rapidity!)

★ access to "new physics" signal for axigluons

B. WEAK CORRECTIONS TO TOP PRODUCTION

J.K., Scharf, Uwer: Eur. Phys. J. C45(2006) 139 Eur. Phys. J. C51(2007) 37

I. Results at Partonic Level II. Tevatron and LHC

I. Results at Partonic Level

 $\mathcal{O}(\alpha_s^2 \alpha_{weak})$ weak corrections $(q \, \overline{q} \rightarrow t \, \overline{t})$

cuts of second group individually IR-divergent

 $\mathcal{O}(\alpha_s^2 \alpha_{weak})$ weak corrections $(g g \rightarrow t \bar{t})$

 analytical & numerical results available (earlier partial results by Beenakker *et al.*, some disagreements) independent evaluation by Bernreuther & Fücker

- (box contribution) $_{up-quark} = -(box contribution)_{down-quark}$ \Rightarrow suppression
- box contribution moderately \hat{s} -dependent
- strong increase with \widehat{s}
- sizable $M_{\rm h}$ -dependence, large effect close to threshold

II. Tevatron and LHC

Small effects for total cross section (dominated by $\sqrt{\hat{s}} \sim 360\text{-}380 \text{ GeV}$)

large corrections for large $\sqrt{\hat{s}}$

sizable M_h -dependence

(relative weak corrections [%])

Transverse momentum dependence (LHC)

$M_{t\bar{t}}$ -dependence (LHC)

IV. Conclusions on weak corrections

- LHC will explore the TeV-region: $\hat{s}/M_W^2 \gg 1$
- electroweak corrections amount to $\mathcal{O}(10\% 20\%)$ in the interesting kinematic region
- top-quark distributions at large \hat{s} are strongly modified
- sizable $M_{\rm h}$ -dependence for small $p_{\rm T}$