QUARK MASSES AND α_{s} FROM $\sigma(e^+e^- \rightarrow had)$

JK, Steinhauser, Sturm NPB JK, Steinhauser, Teubner PRD

Data

pQCD and data agree well in the regions 2 - 3.73 GeV and 5 - 10.52 GeV

experiment	energy [GeV]	date	systematic error
BES	2 — 5	2001	4 %
MD-1	7.2 — 10.34	1996	4 %
CLEO	10.52	1998	2 %
PDG	J/ψ		(7%) 2.5%
PDG	ψ'		(9%) 2.4%
PDG	ψ''		(15%)
BES	ψ'' region	2006	4 %

Future improvements:

charm region (CLEO) 3%

bottom region ?? (CLEO)

m_Q from

SVZ Sum Rules, Moments and Tadpoles

Some definitions:

$$R(s) = 12\pi \operatorname{Im}\left[\Pi(q^2 = s + i\epsilon)\right]$$

$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu}\right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2 [Chetyrkin, JK, Steinhauser, 1996]

up to high $n(\sim 30)$; VV, AA, PP, SS correlators [Czakon et al., 2006], [Maierhöfer, Maier, Marquard, 2007]

reduction to master integrals through Laporta algorithm [Chetyrkin, JK, Sturm]; confirmed by [Boughezal, Czakon, Schutzmeier]

evaluation of master integrals numerically through difference equations (30 digits) or Padé method or analytically in terms of transcendentals [Schröder + Vuorinen, Chetyrkin et al., Schröder + Steinhauser, Laporta, Broadhurst, Kniehl et al.]

 \bar{C}_2 would be desirable!

Define the moments

$$\mathcal{M}_{n}^{\mathsf{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathsf{d}}{\mathsf{d}q^{2}} \right)^{n} \Pi_{c}(q^{2}) \Big|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}} \right)^{n} \bar{C}_{n}$$
$$\mathcal{M}_{n}^{\mathsf{exp}} = \int \frac{\mathsf{d}s}{s^{n+1}} R_{c}(s)$$

constraint:

$$\mathcal{M}_n^{\mathsf{exp}} = \mathcal{M}_n^{\mathsf{th}}$$

 $\Rightarrow m_c$

update compared to NPB619 (2001)

experiment:

- $\alpha_{\rm S} = 0.1187 \pm 0.0020$
- $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & Babar
- ψ (3770) from BES

theory:

- $N^{3}LO$ for n=1
- $N^{3}LO$ estimate for n =2,3,4
- include condensates

$$\delta \mathcal{M}_n^{\mathsf{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_{\mathsf{s}}}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha_{\mathsf{s}}}{\pi} \overline{b}_n \right)$$

- estimate of non-perturbative terms (oscillations, based on Shifman)
- careful extrapolation of R_{uds}
- careful definition of R_c

Contributions from

- narrow resonances: $R = \frac{9 \prod M_R \Gamma_e}{\alpha^2(s)} \delta(s M_R^2)$
- threshold region $(2 m_D 4.8 \text{ GeV})$
- perturbative continuum ($E \ge 4.8 \text{ GeV}$)

Results (m_c)

n	m_c (3 GeV)	ехр	$lpha_{\sf S}$	μ	np	total	$\delta ar{C}_n^{30}$	$m_c(m_c)$
1	0.986	0.009	0.009	0.002	0.001	0.013		1.286
2	0.979	0.006	0.014	0.005	0.000	0.016	0.006	1.280
3	0.982	0.005	0.014	0.007	0.002	0.016	0.010	1.282
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309

n = 1:

• $m_c(3 \,\text{GeV}) = 986 \pm 13 \,\text{MeV}$

• $m_c(m_c) = 1286 \pm 13 \, \text{MeV}$

Knowledge of C_n^{30} for n = 2, 3 !? other ("experimental") determinations of \mathcal{M}_n ?

n

Results (m_b)

n	$m_b(10 \text{ GeV})$	ехр	$lpha_{\sf S}$	μ	total	$\delta \bar{C}_n^{30}$	$m_b(m_b)$
1	3.593	0.020	0.007	0.002	0.021		4.149
2	3.609	0.014	0.012	0.003	0.019	0.006	4.164
3	3.618	0.010	0.014	0.006	0.019	0.008	4.173
4	3.631	0.008	0.015	0.021	0.027	0.012	4.185

n = 2:

- $m_b(m_b) = 4164 \pm 25 \, {\rm MeV}$
- $m_b(10 \text{GeV}) = 3609 \pm 25 \text{ MeV}$
- $m_b(m_t) = 2703 \pm 18 \pm 19 \, {\rm MeV}$

• $m_t/m_b = 59.8 \pm 1.3$

Knowledge of C_n^{30} for n = 2, 3 to confirm estimate!? data above 11GeV?

n

$m_c(3 \text{ GeV}) = 0.986(13) \text{ GeV}$	$m_b(10 \text{ GeV}) = 3.609(25) \text{ GeV}$
$m_c(m_c) = 1.286(13) \text{ GeV}$	$m_b(m_b) = 4.164(25) \text{ GeV}$

(old result: $m_c(m_c) = 1.304(27) \text{GeV}, \quad m_b(m_b) = 4.191(51) \text{GeV})$

R measurement and α_s

$\alpha_{\rm S}$ and ${\it R}$

basic idea: $R^{exp} = R^{th}(\alpha_s, m_q) \Rightarrow \alpha_s$ (weak dependence on variation of m_q)

eak dependence on variation of m_q) rhad: [Harlander,Steinhauser'02]

 $R^{\mathsf{th}}(s)$:

. . .

• full quark mass dependence up to $\mathcal{O}(\alpha_{s}^{2})$

•
$$\mathcal{O}(lpha_{ extsf{s}}^3)$$
: $(m_q^2/s)^0$, $(m_q^2/s)^1$, $(m_q^2/s)^2$

consistent running and decoupling of α_S
 [v. Ritbergen,Larin,Vermaseren'97,Czakon'05]
 [Chetyrkin,Kniehl,Steinhauser'97]

α_{s} and R

basic idea: $R^{exp} = R^{th}(\alpha_s, m_q) \Rightarrow \alpha_s$ (weak dependence on variation of m_q) rhad: [Harlander, Steinhauser'02]

$$R^{\exp}(s) \Leftrightarrow \alpha_{\mathsf{S}}^{(4)}(s) \qquad (n_f = 4)$$

\sqrt{s} (GeV)	$\alpha_{\sf S}^{(4)}(s)$	$\delta lpha_{\sf S}^{\sf stat}$	$\delta lpha_{ m S}^{ m Sys, cor}$	$\delta lpha_{ m S}^{ m Sys,uncor}$	$\alpha_{s}^{(4)}(s) _{CLEO}$
10.538	0.2113	0.0026	0.0618	0.0444	0.232
10.330	0.1280	0.0048	0.0469	0.0445	0.142
9.996	0.1321	0.0032	0.0516	0.0344	0.147
9.432	0.1408	0.0039	0.0526	0.0291	0.159
8.380	0.1868	0.0187	0.0461	0.0195	0.218
7.380	0.1604	0.0131	0.0404	0.0138	0.195
6.964	0.1881	0.0221	0.0386	0.0134	0.237
	•				↑
					massless

approx.!!!

$\alpha_{\rm S} ~{\rm and}~ R$

basic idea: $R^{exp} = R^{th}(\alpha_s, m_q) \Rightarrow \alpha_s$ (weak dependence on variation of m_q)

weak dependence on variation of m_q) rhad: [Harlander,Steinhauser'02]

 $R^{\exp}(s) \Leftrightarrow \alpha_{\mathsf{S}}^{(4)}(s) \qquad (n_f = 4)$

• Evolve to common scale and combine

 $\Rightarrow \alpha_{\rm s}^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$

$\alpha_{\rm S}$ and ${\it R}$

basic idea: $R^{exp} = R^{th}(\alpha_s, m_q) \Rightarrow \alpha_s$ (weak dependence on variation of m_q)

weak dependence on variation of m_q) rhad: [Harlander,Steinhauser'02]

 $R^{\exp}(s) \Leftrightarrow \alpha_{\mathsf{S}}^{(4)}(s) \qquad (n_f = 4)$

• Evolve to common scale and combine

 $\Rightarrow \alpha_{\rm s}^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$

• $\alpha_{s}^{(4)}(9 \text{ GeV}) \rightarrow \alpha_{s}^{(4)}(\mu_{b}^{dec}) \rightarrow \alpha_{s}^{(5)}(\mu_{b}^{dec}) \rightarrow \alpha_{s}^{(5)}(M_{Z})$ (practically) independent from μ_{b}^{dec} (4-loop running and 3-loop decoupling) RunDec: [Chetyrkin,JK,Steinhauser'00]

 $\Rightarrow \alpha_{\rm s}^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$ [JK,Steinhauser,Teubner'07]

$\alpha_{\rm S}$ and ${\it R}$

basic idea: $R^{exp} = R^{th}(\alpha_s, m_q) \Rightarrow \alpha_s$ (weak dependence on variation of m_q)

weak dependence on variation of m_q) rhad: [Harlander,Steinhauser'02]

 $R^{\exp}(s) \Leftrightarrow \alpha_{\mathsf{S}}^{(4)}(s) \qquad (n_f = 4)$

• Evolve to common scale and combine

 $\Rightarrow \alpha_{\rm S}^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$

• $\alpha_{s}^{(4)}(9 \text{ GeV}) \rightarrow \alpha_{s}^{(4)}(\mu_{b}^{dec}) \rightarrow \alpha_{s}^{(5)}(\mu_{b}^{dec}) \rightarrow \alpha_{s}^{(5)}(M_{Z})$ (practically) independent from μ_{b}^{dec} (4-loop running and 3-loop decoupling) RunDec: [Chetyrkin,JK,Steinhauser'00]

 $\Rightarrow \alpha_{\rm s}^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$ [JK,Steinhauser,Teubner'07]

• CLEO analysis: $\alpha_s^{(5)}(M_Z^2)|_{\text{CLEO}} = 0.126 \pm 0.005^{+0.015}_{-0.011}$ massless approximation for R(s), no decoupling of α_s

R: experiment + theory

R: experiment + theory

$\alpha_{\rm S}$ from R

• $\alpha_{\rm s}^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$ [JK,Steinhauser,Teubner'07]

• Combine with $\alpha_{\rm s}^{(5)}(M_Z) = 0.124^{+0.011}_{-0.014}$ [JK,Steinhauser'01] R measurements between 2 and 10.5 GeV from

BES'01, MD-1'96, CLEO'97

 $\Rightarrow \alpha_{\rm s}^{(5)}(M_Z) = 0.119^{+0.009}_{-0.011}$

• Compare: $\alpha_{\rm s}^{(5)}(M_Z) = 0.1189 \pm 0.0010$ [Bethke'06]