PRECISE QUARK MASSES:

m_c and m_b

J.H. Kühn

SFB TR-9

I Generalities

WHY precise masses?

- B-decays
- sum rules
- perturbative vs. lattice

Higgs decay (ILC)

$$\Gamma(H \to b\bar{b}) = \frac{G_{\rm F} M_{\rm H}}{4\sqrt{2}\pi} m_{\rm b}^2(M_{\rm H}) \tilde{R}$$
$$\tilde{R} = 1 + 5.6667 a_{\rm s} + 29.147 a_{\rm s}^2 + 41.758 a_{\rm s}^3 - 825.7 a_{\rm s}^4$$
$$1 + 0.2075 + 0.0391 + 0.0020 - 0.0015$$
$$(m_{\rm H} = 120 \,{\rm GeV})$$

rapidly increasing coefficients! $\left(a_{s} \equiv \frac{\alpha_{s}}{\pi}\right)$

 a_{s}^{4} -term = 5-loop calculation (Baikov,...) (not yet known for $e^{+}e^{-} \rightarrow$ had)

Yukawa Unification

MS- vs. Pole-Mass

Pole-Mass (M_{pole}): close to intuition

- t \rightarrow b W $M_{\text{pole}}(\text{b W}) = (171.4 \pm 2.1) \text{ GeV} \pm \mathcal{O}(\Lambda?)$
- $e^+e^- \rightarrow t \bar{t}$ "peak" at $2M_{\text{pole}} + \mathcal{O}(\alpha_s^2)$
- $M_{\mathsf{B}} \approx M_{\mathsf{pole}} + \mathcal{O}(\Lambda)$ 5280 MeV $\approx (4820 + 460)$ MeV

But: large corrections for observables involving large momentum transfers

examples:

• running $\bar{m}(\mu)$ absorbs often large corrections

$$\Gamma(\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}) \sim M_{\mathrm{b}}^{2} \left(1 - 2 a_{s} \ln \left(\frac{M_{\mathrm{H}}^{2}}{M_{\mathrm{b}}^{2}}\right) + ...\right)$$

• improvement even if scales are comparable

$$\delta \rho = 3 \frac{G_{\rm F} M_{\rm t}^2}{8\sqrt{2}\pi^2} \left(1 - 2.8599a_{\rm s} - 14.594a_{\rm s}^2 - 93.1501a_{\rm s}^3\right)$$

$$\delta \rho = 3 \frac{G_{\rm F} m_{\rm t}^2(m_{\rm t})}{8\sqrt{2}\pi^2} \left(1 - 0.19325a_{\rm s} - 3.9696a_{\rm s}^2 - 1.6799a_{\rm s}^3\right)$$

conversions: $M \Leftrightarrow \overline{m_{b}}(\mu)$

$$\overline{m_{b}}(\mu) = M \left\{ 1 - a_{s} \left[\frac{4}{3} + \ln \frac{\mu^{2}}{M^{2}} \right] - a_{s}^{2} \left[\# + \ln + \ln^{2} \right] + a_{s}^{3} \left[\# + \dots \right] \right\}$$

as³: Chetyrkin+Steinhauser; Melnikov+Ritbergen examples: $M_t = 171 \text{GeV}$ ⇒ $m_t(m_t) = 161 \text{GeV}$ $m_b(m_b) = 4165 \text{MeV}$ ⇒ $M_b = 4796 \text{MeV}$

large logarithms for $\mu^2 \gg M^2 \ \rightarrow$ renormalization group

$$\mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} \bar{m}(\mu) = \bar{m}(\mu) \gamma(\alpha_{\mathrm{S}})$$

 $\gamma(\alpha_{s}) = -\sum_{i\geq 0} \gamma_{i} a_{s}^{i+1}$, (known up to γ_{3} , Chetyrkin; Larin+...) +matching

$$m_{b}(m_{b}) = 4164 \text{ MeV}$$

 $m_{b}(10 \text{GeV}) = 3609 \text{ MeV}$
 $m_{b}(M_{Z}) = 2834 \text{ MeV}$
 $m_{b}(161.8 \text{GeV}) = 2703 \text{ MeV}$

II Sum Rules with Charm and Bottom Quarks

(Chetyrkin, JK, Steinhauser, Sturm)

Main Idea (SVZ)

Data

pQCD and data agree well in the regions 2 - 3.73 GeV and 5 - 10.52 GeV

m_Q from

SVZ Sum Rules, Moments and Tadpoles

Some definitions:

$$R(s) = 12\pi \operatorname{Im}\left[\Pi(q^2 = s + i\epsilon)\right]$$

$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu}\right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2 (Chetyrkin, JK, Steinhauser, 1996)

recently also \overline{C}_0 and \overline{C}_1 in order α_s^3 (four loops!)

reduction to master integrals through Laporta algorithm

(Chetyrkin, JK, Sturm; confirmed by Boughezal, Czakon, Schutzmeier)

evaluation of master integrals numerically through difference equations (30 digits) or Padé method or analytially in terms of transcendentals (<u>Schröder + Vuorinen</u>, Chetyrkin et al., Schröder + Steinhauser, Laporta, Broadhurst, Kniehl et al.)

Analysis in N³LO

Algebraic reduction to 13 master integrals (Laporta algorithm); numerical evaluation of master integrals

🜔 : heavy quarks, 🛛 🌔 : light quarks,

- n_f : number of active quarks
- ⇒ About 700 Feynman-diagrams

recall:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

 \bar{C}_n depend on the charm quark mass through $l_{m_c} \equiv \ln(m_c^2(\mu)/\mu^2)$

$$\bar{C}_{n} = \bar{C}_{n}^{(0)} + \frac{\alpha_{s}(\mu)}{\pi} \left(\bar{C}_{n}^{(10)} + \bar{C}_{n}^{(11)} l_{m_{c}} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \left(\bar{C}_{n}^{(20)} + \bar{C}_{n}^{(21)} l_{m_{c}} + \bar{C}_{n}^{(22)} l_{m_{c}}^{2} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{3} \left(\bar{C}_{n}^{(30)} + \bar{C}_{n}^{(31)} l_{mc} + \bar{C}_{n}^{(32)} l_{mc}^{2} + \bar{C}_{n}^{(33)} l_{ms}^{3} \right)$$

n	$\bar{C}_n^{(0)}$	$ar{C}_n^{(10)}$	$\bar{C}_n^{(11)}$	$\bar{C}_n^{(20)}$	$\bar{C}_n^{(21)}$	$\bar{C}_{n}^{(22)}$	$ar{C}_n^{(30)}$	$\bar{C}_{n}^{(31)}$	$ar{C}_n^{(32)}$	$\bar{C}_n^{(33)}$
1	1.0667	2.5547	2.1333	2.4967	3.3130	- 0.0889	-5.6404	4.0669	0.9590	0.0642
2	0.4571	1.1096	1.8286	2.7770	5.1489	1.7524		6.7216	6.4916	-0.0974
3	0.2709	0.5194	1.6254	1.6388	4.7207	3.1831		7.5736	13.1654	1.9452
4	0.1847	0.2031	1.4776	0.7956	3.6440	4.3713		4.9487	17.4612	5.5856

estimate
$$-6 < C_n^{(30)} < 6$$
 , $n = 2, 3, 4$

Define the moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}} \right)^{n} \Pi_{c}(q^{2}) \Big|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}} \right)^{n} \bar{C}_{n}$$
$$\mathcal{M}_{n}^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_{c}(s)$$

constraint:

$$\mathcal{M}_n^{\mathsf{exp}} = \mathcal{M}_n^{\mathsf{th}}$$

 $\Rightarrow m_c$

update compared to NPB619 (2001)

experiment:

- $\alpha_s = 0.1187 \pm 0.0020$
- $\Gamma_e(J/\psi, \psi')$ from BES & CLEO & Babar
- ψ (3770) from BES

theory:

- $N^{3}LO$ for n=1
- $N^{3}LO$ estimate for n =2,3,4
- include condensates

$$\delta \mathcal{M}_n^{\mathsf{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_s}{\pi} G^2 \right\rangle a_n \left(1 + \frac{\alpha_s}{\pi} \overline{b}_n \right)$$

- careful extrapolation of R_{uds}
- estimate of non-perturbative terms (oscillations)

Contributions from

- narrow resonances: $R = \frac{9 \prod M_R \Gamma_e}{\alpha^2(s)} \delta(s M_R^2)$
- threshold region $(2 m_D 4.8 \text{ GeV})$
- perturbative continuum ($E \ge 4.8 \text{ GeV}$)

n	\mathcal{M}_n^{res}	\mathcal{M}_n^{thresh}	\mathcal{M}_n^{cont}	\mathcal{M}_n^{exp}	$\mathcal{M}_n^{\sf np}$
	$ imes$ 10 $^{(n-1)}$	$ imes 10^{(n-1)}$	$ imes$ 10 $^{(n-1)}$	$ imes 10^{(n-1)}$	$ imes 10^{(n-1)}$
1	0.1201(25)	0.0318(15)	0.0646(11)	0.2166(31)	-0.0001(2)
2	0.1176(25)	0.0178(8)	0.0144(3)	0.1497(27)	0.0000(0)
3	0.1169(26)	0.0101(5)	0.0042(1)	0.1312(27)	0.0007(14)
4	0.1177(27)	0.0058(3)	0.0014(0)	0.1249(27)	0.0027(54)

Results (m_c)

n	m_c (3 GeV)	ехр	$lpha_{s}$	μ	np	total	$\delta ar{C}_n^{ m 30}$	$m_c(m_c)$
1	0.986	0.009	0.009	0.002	0.001	0.013		1.286
2	0.979	0.006	0.014	0.005	0.000	0.016	0.006	1.280
3	0.982	0.005	0.014	0.007	0.002	0.016	0.010	1.282
4	1.012	0.003	0.008	0.030	0.007	0.032	0.016	1.309

n = 1:

- $m_c(3 \,\text{GeV}) = 986 \pm 13 \,\text{MeV}$
- $m_c(m_c) = 1286 \pm 13 \,\mathrm{MeV}$

n

update on m_b

Contributions from

- narrow resonances $(\Upsilon(1S) \Upsilon(4S))$
- threshold region (10.618 GeV 11.2 GeV)
- perturbative continuum ($E \ge 11.2 \text{ GeV}$)

n	$\mathcal{M}_n^{res,(1S-4S)}$	\mathcal{M}_n^{thresh}	\mathcal{M}_n^{cont}	\mathcal{M}_n^{exp}
	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$
1	1.394(23)	0.296(32)	2.911(18)	4.601(43)
2	1.459(23)	0.249(27)	1.173(11)	2.881(37)
3	1.538(24)	0.209(22)	0.624(7)	2.370(34)
4	1.630(25)	0.175(19)	0.372(5)	2.178(32)

Results (m_b)

n	$m_b(10 \text{ GeV})$	ехр	$lpha_{s}$	μ	total	$\delta \bar{C}_n^{30}$	$m_b(m_b)$
1	3.593	0.020	0.007	0.002	0.021		4.149
2	3.609	0.014	0.012	0.003	0.019	0.006	4.164
3	3.618	0.010	0.014	0.006	0.019	0.008	4.173
4	3.631	0.008	0.015	0.021	0.027	0.012	4.185

$$n = 2$$
:

•
$$m_b(m_b) = 4164 \pm 25 \, {\rm MeV}$$

- $m_b(10 \text{GeV}) = 3609 \pm 25 \text{ MeV}$
- $m_b(m_t) = 2703 \pm 18 \pm 19 \,\mathrm{MeV}$
- $m_t/m_b = 59.8 \pm 1.3$

n

Summary

 \Rightarrow drastic improvement in δm_c , δm_b from moments with low n in N²LO

➡ direct determination of short-distance mass

- improved measurements of $\Gamma_e(J/\psi, \psi')$ and $\Gamma_e(\Upsilon, \Upsilon', \Upsilon'')$
- improved measurement of charm threshold region
- reanalysis of bottom threshold region
- new N^3LO results lead to significant improvements

 $m_c(3 \text{ GeV}) = 0.986(13) \text{ GeV}$ $m_c(m_c) = 1.286(13) \text{ GeV}$ $m_b(10 \text{ GeV}) = 3.609(25) \text{ GeV}$ $m_b(m_b) = 4.164(25) \text{ GeV}$

(old result: $m_c(m_c) = 1.304(27) \text{GeV}, \quad m_b(m_b) = 4.191(51) \text{GeV})$

$m_c(m_c)$ (GeV)	Method
1.286 ± 0.013	low-moment sum rules, NNNLO
1.24 ± 0.07	fit to B decay distribution, $\alpha_s^2 \beta_0$
$1.224 \pm 0.017 \pm 0.054$	fit to B decay data, $lpha_s^2eta_0$
1.29 ± 0.07	NNLO moments
1.319 ± 0.028	lattice, quenched
$1.26 \pm 0.04 {\pm} 0.12$	lattice, quenched
1.301 ± 0.034	lattice (ALPHA), quenched
1.304 ± 0.027	low-moment sum rules, NNLO
1.25 ± 0.09	PDG 2006

$m_b(m_b)$ (GeV)	Method
4.164 ± 0.025	low-moment sum rules, NNNLO
4.19 ± 0.06	Υ sum rules, NNLL (not complete)
4.347 ± 0.048	lattice (ALPHA), quenched
4.20 ± 0.04	fit to B decay distribution, $lpha_s^2eta_0$
$4.25 \ \pm 0.02 \ \pm \ 0.11$	lattice (UKQCD)
4.33 ± 0.10	lattice, quenched
4.346 ± 0.070	$\Upsilon(1S)$, NNNLO
$4.210 \pm 0.090 \pm 0.025$	$\Upsilon(1S)$, NNLO
4.191 ± 0.051	low-moment sum rules, NNLO
$4.17 \hspace{0.1in} \pm 0.05$	Ƴ sum rules, NNLO
4.20 ± 0.07	PDG

