Four Loop Calculations as Tool for Precise Quark Mass Determination

J.H. Kühn

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

SFB TR-9

In collaboration with: K.G. Chetyrkin, M. Faisst, P. Maierhöfer, Ch. Sturm

I. Introduction & MotivationII. Strategy & MethodsIII. Results & ImplicationsIV. Summary & Conclusion

I. Introduction and Motivation Definitions :

Correlator of two currents:

$$\Pi^{\mu\nu}(q,j) = i \int dx \, e^{iqx} \langle 0|Tj^{\mu}(x)j^{\nu}(0)|0\rangle$$

<u>here:</u> $j^{\mu}(x)$ electromagnetic heavy quark current

• Diagrammatically:

• Polarization function $\Pi(q^2)$:

 $\Pi^{\mu\nu}(q) = \left(-g^{\mu\nu} \, q^2 + q^{\mu} \, q^{\nu}\right) \, \, \Pi(q^2)$

Theory \leftrightarrow Experiment

Dispersion-relations

$$\Pi(q^2) = \Pi(q^2 = 0) + \frac{q^2}{12 \pi^2} \int ds \, \frac{R(s)}{s \, (s - q^2)}$$

Moments \mathcal{M}_n related to derivatives of $\Pi(q^2)$ at $q^2 = 0$:

$$\mathcal{M}_n^{\exp} = \int \frac{ds}{s^{n+1}} R^{\exp}(s) = \frac{12\pi}{n!} \left(\frac{d}{dq^2}\right)^n \Pi(q^2) \Big|_{q^2=0}$$

• Taylor expansion:

$$\Pi(q^2) = \frac{3\,Q_f^2}{16\,\pi^2}\,\sum_n \overline{C}_n \left(\frac{q^2}{4\,m^2}\right)^r$$

• Diagrammatic Expansion:

• First and higher derivatives of $\Pi(q^2)$

Sextraction of charm- and bottom-quark mass:

c-quarks: Novikov, et al. '78; b-quarks: Reinders, et al. '85

...at 3-loop-order:

J.H. Kühn, M. Steinhauser '01

 $\overline{\mathsf{MS}}$ - mass: $\overline{m_b(m_b)} = \overline{4.191(51)} \ \overline{\mathsf{GeV}}$

... analog for charm-quarks:

 $m_c(m_c) = 1.304(27) \; {\rm GeV}$

$\Pi(q^2=0):$

Relates electromagnetic coupling constant in on-shell and $\overline{\text{MS}}$ renormalization schemes

$$\alpha_{em} = \frac{\overline{\alpha}_{em}(\mu)}{1 + \frac{\overline{\alpha}_{em}(\mu)}{4\pi} \, 3 \, \overline{C}_0}$$

Status:

$$\Pi(q^2) = \Pi^{(0)}(q^2) + \frac{\alpha_s}{\pi} \Pi^{(1)}(q^2) + \left(\frac{\alpha_s}{\pi}\right)^2 \Pi^{(2)}(q^2) + \left(\frac{\alpha_s}{\pi}\right)^3 \Pi^{(3)}(q^2) + \dots$$

G. Källén, A. Sabry '55; J. Schwinger '73 K.G. Chetyrkin, J.K., M. Steinhauser '96

- Low energy limit \leftarrow in this talk First two Taylor coefficients in Order α_s^3

← new

II. Strategy & Methods:

Classification according to the number of inserted Fermion loops

 \bigcirc : heavy quarks, \bigcirc : light quarks, n_f : number of active quarks

⇒ About 700 Feynman-diagrams

Integration-by-parts:

Chetyrkin, Tkachov

$$0 = \int d^d k_1 \dots d^d k_4 \quad \partial_{(k_j)_{\mu}} \left(k_l^{\mu} I_{\alpha\beta} \right) , \quad j, l = 1, \dots, \text{loops=4}$$

 $I_{\alpha\beta}$: Generic integrand with propagator powers $\alpha = \{\alpha_1, \ldots\}$ and scalar-product powers $\beta = \{\beta_1, \ldots\}$

Laporta-Algorithm:

Laporta, Remiddi

Idea: – IBP-identities for explicit numerical values of α,β
 – Introduction of an order among the integrals
 – Solving a linear system of equations
 Problem: Dramatic growth of number of equations
 >31 million IBP-identities generated and solved
 ~> Integral-tables with solutions for around
 5 million integrals, expressed through 13 masters

Consider symmetries of diagrams

- ~ Smaller number of IBP-equations,
- → Keep size of integral-tables under control

Automation:

- Generation & solution of the system of linear equations with:
- Implementation based on FORM3 J.A.M. Vermaseren
- Simplification of rational functions in d by FERMAT Lewis
- with the use of GateToFermat Tentyoukov, Vermaseren
- Evaluation of 13 master integrals(MI):

four are simple ...

Master integrals

Solution with high precision numerics Schröder, Vuorinen with difference equation method Laporta other contributions: Broadhurst; Laporta; Kniehl, Kotikov; Schröder, Steinhauser

Difficulty:

- - \rightsquigarrow Master integrals with spurious poles as coefficient need to be known in higher order in ε

ε -finite basis:

Chetyrkin, Faisst, Sturm, Tentyukov

Choice of master integrals is not unique

 \rightsquigarrow Select a new basis with ε -finite coefficients

This ε -finite basis can be found in the set of initial integrals F_i

Prescription:

1.) Select F_i having the $1/\varepsilon^{n_{max}}$ -pole with highest power n_{max}

- 2.) Solve for master integral $T_{j,n_{max}}$ and replace $T_{j,n_{max}} \to F_i \equiv T_{j,n_{max}}^f$
- 3.) Repeat 1.) and 2.) until no spurious poles survive

complimentary to difference equations

Prescription:

Integration with respect to 3 loop momenta "semi-analytical" and with respect to the 4-th numerical

Integrand $F(p^2)$: Determined through Padé-approximation

Pole-part analytically, finite part numerically

$$\begin{split} T_{52}^{f} &= \frac{3\zeta_{3}}{2\epsilon^{2}} + \frac{15\zeta_{3}}{2\epsilon} - \frac{91\pi^{4}}{360\epsilon} - \frac{4\pi^{2}\log^{2}2}{3\epsilon} + \frac{4\log^{4}2}{3\epsilon} + \frac{32\operatorname{Li}_{4}\left(\frac{1}{2}\right)}{\epsilon} + 27.30068067(5), \\ T_{54}^{f} &= \frac{5\zeta_{5}}{4\epsilon} - 6.762240238547(2), \\ T_{61}^{f} &= \frac{5\zeta_{5}}{\epsilon} - 29.703462427815(3), \\ T_{62}^{f} &= 2.440345823350757(6), \\ T_{64}^{f} &= \frac{5\zeta_{5}}{\epsilon} - 18.026245978729184(4), \\ T_{71}^{f} &= \frac{5\zeta_{5}}{\epsilon} - 5.19831391(6), \\ T_{72}^{f} &= \frac{5\zeta_{5}}{\epsilon} - 26.4964794044474738(5), \\ T_{81}^{f} &= \frac{5\zeta_{5}}{\epsilon} - 22.53760348(3), \\ T_{91}^{f} &= 1.808879546207(2). \end{split}$$

$$\Pi(q^2) = \frac{3}{16\pi^2} \left\{ \begin{pmatrix} \frac{\alpha_s}{\pi} \end{pmatrix} 1.4444 + \begin{pmatrix} \frac{\alpha_s}{\pi} \end{pmatrix}^2 \left(1.5863 + 0.1387 n_h + 0.3714 n_l \right) \\ + \left(\frac{\alpha_s}{\pi} \right)^3 \left(0.0257 n_l^2 - 0.0309 n_h^2 + 0.0252 n_h n_l \\ -1.2112 n_l - 3.3426 n_h + 1.4186 \right) \right\}$$
$$+ \left(\frac{q^2}{4m^2} \right) \left[1.0667 \\ + \left(\frac{\alpha_s}{\pi} \right) 2.5547 + \left(\frac{\alpha_s}{\pi} \right)^2 \left(0.2461 + 0.2637 n_h + 0.6623 n_l \right) \\ + \left(\frac{\alpha_s}{\pi} \right)^3 \left(0.0961 n_l^2 + 0.0130 n_h^2 + 0.1658 n_h n_l \\ -2.9605 n_l - 6.4188 n_h + 8.2846 \right) \right] + \dots \right\}$$

numerically evaluated for scale $\mu = \overline{m}$

Charm

 $\begin{array}{ll} n = 1 & \mathsf{N}^2 \mathsf{LO}: \\ m_c(3 \; {\rm GeV}) = 1017 \pm 14(\exp) \pm 7(\alpha_s) \pm 3(\mathsf{scale}) \\ m_c(m_c) = 1301 \pm 15 \end{array}$

 $\begin{array}{ll} n = 1 & \mathsf{N}^3 \mathsf{LO}: \\ m_c(3 \; \mathsf{GeV}) = 1012 \pm 14(\mathsf{exp}) \pm 8(\alpha_s) \pm 0.76(\mathsf{scale}) \\ m_c(m_c) = 1297 \pm 15 \end{array}$

combine with n = 2 (N²LO): $m_c(3 \text{ GeV}) = 1007 \pm 16$ $m_c(m_c) = 1290 \pm 15$, old result: 1304 ± 27

Bottom

 $\begin{array}{ll} n = 1 & \mathsf{N}^2 \mathsf{LO}: \\ m_b(10 \; \mathsf{GeV}) = 3644 \pm 40(\mathsf{exp}) \pm 7(\alpha_s) \pm 4(\mathsf{scale}) \\ m_b(m_b) = 4191 \pm 40 \end{array}$

 $\begin{array}{ll} n = 1 & \mathsf{N}^3 \mathsf{LO}: \\ m_b(10 \; \mathsf{GeV}) = 3644 \pm 40(\mathsf{exp}) \pm 7(\alpha_s) \pm 1(\mathsf{scale}) \\ m_b(m_b) = 4191 \pm 40 \end{array}$

combine with n = 2, 3 (N²LO): $m_b(10 \text{ GeV}) = 3630 \pm 35$ $m_b(m_b) = 4180 \pm 35$, old result: 4210 ± 50

ρ -parameter

• $t\overline{t}$, $b\overline{b}$ and $t\overline{b}$ contributions at four loops

$$\delta
ho = rac{\Pi_{T}^{Z}(0)}{M_{Z}^{2}} - rac{\Pi_{T}^{W}(0)}{M_{W}^{2}}$$

- algebraic reduction "relatively" simple
- large number of new masters evaluated with difference equations and Padé method

$$\delta\rho = 3\frac{G_F M_t^2}{8\pi^2 \sqrt{2}} \left(1 - 2.86 \left(\frac{\alpha_s}{\pi}\right) - 14.59 \left(\frac{\alpha_s}{\pi}\right)^2 - 93.15 \left(\frac{\alpha_s}{\pi}\right)^3\right)$$

$$\Rightarrow \Delta M_W \approx 2 \text{ MeV}$$

(confirmed by Czakon, ...)

Decoupling

Chetyrkin, JK, Sturm

• Evaluation of $\alpha_s^{(5)}(M_Z)$ from $\alpha_s^{(4)}(M_\tau)$

Schröder, Steinhauser

• cross *b* quark threshold:

$$n_l = 4, \mu = M_\tau \approx 1.77 \text{ GeV: } m_b \gg \mu$$

 $n_l = 5, \mu = M_Z \approx 91.2 \text{ GeV: } m_b \ll \mu$

Decoupling

Chetyrkin, JK, Sturm

• Evaluation of $\alpha_s^{(5)}(M_Z)$ from $\alpha_s^{(4)}(M_\tau)$

Schröder, Steinhauser

- cross *b* quark threshold:
 - $n_l = 4, \mu = M_\tau \approx 1.77 \text{ GeV: } m_b \gg \mu$ $n_l = 5, \mu = M_Z \approx 91.2 \text{ GeV: } m_b \ll \mu$

- Dependence of $\alpha_s^{(5)}(M_Z)$ on μ_b for 0-, 1-, 2-, 3- and 4-loop decoupling
- Note: *n*-loop decoupling $\Leftrightarrow (n + 1)$ -loop running
- set 5-loop coefficient of β function to zero

 $lpha_s^{(4)}(M_{ au}) riangleq lpha_s^{(5)}(M_Z)$

IV. Summary & Conclusion

- Calculation of higher Taylor-coefficients of the polarization function allows a precise determination of the charm- and bottom-quark mass
- Significant progress in the evaluation of 4 loop vakuum integrals during the last year:
 - algebraic reduction and masters
 - phenomenological applications:
 sum rules, decoupling, ρ-parameter
 - all results confirmed by two independent calculations

New data:

 $m_c(3 \text{ GeV}) = 1.007(16) \text{ GeV}, \quad m_b(10 \text{ GeV}) = 3.630(30) \text{ GeV}$ $m_c(m_c) = 1.300(15) \text{ GeV}, \quad m_b(m_b) = 4.179(35) \text{ GeV}$