Strange, Charm and Bottom masses at NNLO and $\ensuremath{\mathsf{N}}^3\ensuremath{\mathsf{LO}}$

J.H. Kühn

SFB TR-9

- I. Sum Rules with Charm and Bottom Quarks: recent data and N^3LO calculations
- II. m_c and m_b : overview
- III. m_s from τ -decays and sum rules

I Sum Rules with Charm and Bottom Quarks

experiment	energy [GeV]	date	systematic error
BES	2 - 5	2001	4%
MD-1	7.2 - 10.34	1996	4%
CLEO	10.52	1998	2%
PDG	J/ψ		(7%) 3%
PDG	ψ'		(9%) 5.7%
PDG	ψ''		15%

rimont operation [CoV] data avatomatic

m_Q from SVZ Sum Rules, Moments and Tadpoles

Some definitions

$$R(s) = 12\pi \operatorname{Im} \left[\Pi(q^2 = s + i\epsilon) \right]$$
$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu} \right) \Pi(q^2) \equiv i \int dx \, e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ}

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\text{MS}}$ mass.

Coefficients \overline{C}_n up to n = 8 known analytically in order α_s^2 (Chetyrkin, JK, Steinhauser) recently up to n = 30!(Boughezal, Czakon, Schutzmeier)

recently also \overline{C}_0 and \overline{C}_1 in order α_s^3 (four loops!) \Rightarrow talk at session V (QCD hard interactions) (Chetyrkin, JK, Sturm; confirmed by Boughezal, Czakon, Schutzmeier)

Analysis in NNLO

Coefficients \bar{C}_n from three-loop one-scale tadpole amplitudes with "arbitrary" power of propagators; FORM-program MATAD

Analysis in N^3LO

Algebraic reduction to 13 master integrals (Laporta algorithm); numerical evaluation of master integrals

 \bigcirc : heavy quarks, \bigcirc : light quarks, n_f : number of active quarks

 \implies About 700 Feynman-diagrams

 \bar{C}_n depend on the charm quark mass through $l_{m_c} \equiv \ln(m_c^2(\mu)/\mu^2)$

$$\bar{C}_{n} = \bar{C}_{n}^{(0)} + \frac{\alpha_{s}(\mu)}{\pi} \left(\bar{C}_{n}^{(10)} + \bar{C}_{n}^{(11)} l_{m_{c}} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{2} \left(\bar{C}_{n}^{(20)} + \bar{C}_{n}^{(21)} l_{m_{c}} + \bar{C}_{n}^{(22)} l_{m_{c}}^{2} \right) \\ + \left(\frac{\alpha_{s}(\mu)}{\pi} \right)^{3} \left(\dots \right)$$

n	1	2	3	4
$ar{C}_n^{(0)}$	1.0667	0.4571	0.2709	0.1847
$\bar{C}_n^{(10)}$	2.5547	1.1096	0.5194	0.2031
$\bar{C}_n^{(11)}$	2.1333	1.8286	1.6254	1.4776
$\bar{C}_n^{(20)}$	2.4967	2.7770	1.6388	0.7956
$\bar{C}_n^{(21)}$	3.3130	5.1489	4.7207	3.6440
$\bar{C}_n^{(22)}$	-0.0889	1.7524	3.1831	4.3713

Define the moments

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}}\right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \bar{C}_{n}$$

dispersion relation:

$$\Pi_c(q^2) = \frac{q^2}{12\pi^2} \int \mathrm{d}s \, \frac{R_c(s)}{s(s-q^2)} + \text{subtraction}$$

$$\Rightarrow \mathcal{M}_n^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s)$$

constraint: $\mathfrak{M}_n^{\exp} = \mathfrak{M}_n^{\operatorname{th}}$

 $r \gg m_c$

SVZ:

 $\mathcal{M}_n^{\text{th}}$ can be reliably calculated in pQCD: low *n*:

- fixed order in α_s is sufficient, in particular no resummation of 1/v terms from higher orders required
- condensates are unimportant
- pQCD in terms of short distance mass : $m_c(3 \text{ GeV}) \Rightarrow m_c(m_c)$ stable expansion : no pole mass or closely related definition (1S-mass, potential-subtracted mass) involved
- moments available in NNLO
- and \bar{C}_0 , \bar{C}_1 in N³LO

anatomy of errors and update: m_c

old results (NPB 619(2001) and

new results (update on $\Gamma_e(J/\psi, \psi')$ and $\alpha_s = 0.1187 \pm 0.0020$)

	$J/\psi,\psi^{\prime}$	charm threshold region	continuum	sum
n	$\mathfrak{M}_n^{\mathrm{exp},\mathrm{res}}$	$\mathfrak{M}_n^{ ext{exp,cc}}$	$\mathfrak{M}_n^{ ext{cont}}$	$\mathfrak{M}_n^{\mathrm{exp}}$
	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$
1	0.1114(82)	0.0313(15)	0.0638(10)	0.2065(84)
1	0.1138(40)	0.0313(15)	0.0639(10)	0.2090(44)
2	0.1096(79)	0.0174(8)	0.0142(3)	0.1412(80)
2	0.1121(38)	0.0174(8)	0.0142(3)	0.1437(39)

new analysis

$$\begin{array}{c} \hline n = 1 & N^2 LO \\ m_c(3 \ {\rm GeV}) = 1017 \pm 14(\exp) \pm 7(\alpha_s) \pm 1.3({\rm scale}) \\ r > m_c(m_c) = 1301 \pm 15 \quad (3\text{-loop-running}) \\ \hline n = 1 & N^3 LO \\ m_c(3 \ {\rm GeV}) = 1012 \pm 14(\exp) \pm 8(\alpha_s) \pm 0.6({\rm scale}) \\ r > m_c(m_c) = 1297 \pm 15 \quad (4\text{-loop-running}) \\ \hline n = 2 & N^2 LO \\ m_c(3 \ {\rm GeV}) = 982 \pm 10(\exp) \pm 17 \ (\alpha_s) \pm 19 \ ({\rm scale}) \\ r > m_c(m_c) = 1269 \pm 25 \quad (3\text{-loop-running}) \\ \hline combine & r > m_c(3 \ {\rm GeV}) = 1007 \pm 16 \\ m_c(m_c) = 1290 \pm 15, \quad \text{old result } 1304 \pm 27 \end{array}$$

anatomy of errors and update: m_b

old results (NPP 619 (2001)) and update (Γ_e from CLEO);					
$\alpha_s = 0.1187 \pm 0.0020$					
n	$\mathfrak{M}_n^{\mathrm{exp},\mathrm{res}}$	$\mathfrak{M}_n^{ ext{exp,thr}}$	$\mathfrak{M}_n^{ ext{cont}}$	$\mathfrak{M}_n^{\mathrm{exp}}$	
	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	
1	1.237(63)	0.306(62)	2.913(21)	4.456(121)	
1	1.271(24)	0.306(62)	2.918(16)	4.494(84)	
2	1.312(65)	0.261(54)	1.182(12)	2.756(113)	
2	1.348(25)	0.261(52)	1.185(9)	2.795(75)	
3	1.399(68)	0.223(44)	0.634(8)	2.256(108)	
3	1.437(26)	0.223(44)	0.636(6)	2.296(68)	

 $n = 1 \mid N^2 LO$ $m_b(10 \text{ GeV}) = 3644 \pm 40(\exp) \pm 7(\alpha_s) \pm 4(\text{scale})$ $rac{}{\sim} m_b(m_b) = 4191 \pm 40$ (3-loop-running) $n = 1 \mid N^3 LO$ $m_b(10 \text{ GeV}) = 3644 \pm 40(\exp) \pm 7(\alpha_s) \pm 1(\text{scale})$ $\Rightarrow m_b(m_b) = 4191 \pm 40$ (4-loop-running) $n=2 \mid N^2 LO$ $m_b(10 \text{ GeV}) = 3631 \pm 29(\exp) \pm 13 \ (\alpha_s) \pm 17 \ (\text{scale})$ $rac{}{\sim} m_b(m_b) = 4179 \pm 35$ (3-loop-running) $n = 3 \mid N^2 LO$ $m_b(10 \text{ GeV}) = 3622 \pm 22(\exp) \pm 17 \ (\alpha_s) \pm 20 \ (\text{scale})$ $\Rightarrow m_b(m_b) = 4170 \pm 33$ (3-loop-running) combine $rac{l}{\Rightarrow} m_b(10 \text{ GeV}) = 3630 \pm 35$ $m_b(m_b) = 4180 \pm 35$, old result 4210 ± 50

Summary on m_c and m_b

⇒ drastic improvement in δm_c , δm_b from moments with low n in N²LO ⇒ direct determination of short-distance mass

improved measurements of $\Gamma_e(J/\psi, \psi')$ and $\Gamma_e(\Upsilon, \Upsilon', \Upsilon'')$ and new N^3LO results lead to significant improvements

preliminary results:

 $m_c(3 \text{ GeV}) = 1.007(16) \text{ GeV}$ $m_c(m_c) = 1.300(15) \text{ GeV}$

 $m_b(10 \text{ GeV}) = 3.630(35) \text{ GeV}$ $m_b(m_b) = 4.179(35) \text{ GeV}$ II m_c and m_b : other characteristic results

no review

charm

- moments of *B*-decay distributions (hadron mass, lepton energy) HQE up to $O(1/m_b^3)$, pQCD up to $O(\alpha_s^2\beta_0)$ 1240 ± 70 Buchmüller, Flächer 1224 ± 17 ± 54 Hoang, Manohar
- Lattice, from D_s (quenched $\Rightarrow \pm (40 60)$) $1260 \pm 40 \pm 120$ Becirevic, Lubicz, Martinelli 1301 ± 34 Rolf, Sint

bottom

- moments of *B*-decay distributions (hadron mass, lepton energy) HQE up to $O(1/m_b^3)$, pQCD up to $O(\alpha_s^2\beta_0)$ 4200 ± 40 4170 ± 30 Buchmüller, Flächer Bauer et al.
- Υ -spectroscopy (1S-state), pNRQCD + nonperturbative effects 4346 \pm 70 Penin, Steinhauser (N^3LO) 4210 \pm 90 \pm 25 Pineda (N^2LO)

III m_s from τ -decays and sum rules

$$\tau \to \nu s \bar{d}$$

input: moments of $m(s\bar{d})$ (ALEPH, OPAL) V_{us} (Czarnecki, Marciano, Sirlin)phenomenology(Gamiz et al)pQCD in $\mathcal{O}(\alpha^3)$ (Baikov, Chetyrkin, JK)

(finite part of massless four-loop correlator)

$$\Rightarrow ms(M_{\tau}) = 100 \pm {\binom{+5}{-3}}_{\text{theo}} \pm {\binom{+17}{-19}}_{\text{rest}}$$

pseudoscalar sum rules in $\mathcal{O}(\alpha_s^4)$

 $\bar{m}_s(2 \,\text{GeV}) = 105 \pm 6(\text{param}) \pm 7(\text{hadr})$

Chetyrkin, Khodjamirian

Method	$\overline{m}_s(2 \text{ GeV})$	Ref.
	[MeV]	
Pseudoscalar Borel sum rule	$105\pm6\pm7$	Chetyrkin
Pseudoscalar FESR	100 ± 12	Maltman
Scalar Borel sum rule	99 ± 16	Jamin
Vector FESR	139 ± 31	Eidemüller
Spectral function	> 77	Baikov
	81 ± 22	Gamiz
Hadronic τ decays	96^{+5+16}_{-3-18}	Baikov
	104 ± 28	Narison
$ au$ decays \oplus sum rules	99 ± 28	Narison
	97 ± 22	Della Morte
Lattice QCD $(n_f = 2)$	100 - 130	Gockeler
	$101\pm8^{+25}_{-0}$	Becirevic
	$76\pm3\pm7$	Aubin
Lattice QCD $(n_f = 3)$	86.7 ± 5.9	Ishikawa
	$87 \pm 4 \pm 4$	Mason
PDG04 average	80 -130	Eidelman

Summary

new multiloop results from pQCD + improved data

 $m_c(3 \text{ GeV}) = 1007 \pm 16 \text{ MeV}$ $m_c(m_c) = 1290 \pm 15 \text{ MeV}$ $m_b(10 \text{ GeV}) = 3630 \pm 35 \text{ MeV}$ $m_b(m_b) = 4180 \pm 35 \text{ MeV}$

significantly reduced errors, consistent with other determinations, but more precise

 $m_s(2 \text{ GeV}) = 105 \pm 10 \text{ MeV}$

on the basis of N^3LO pseudoscalar sumrules