Implications of an R-scan for Charm Physics

Johann H. Kühn

I. CHARM and BOTTOM MASSES

- m_Q from Sum Rules
- Experimental Analysis: *m_c*
- II. Resonant Production of χ_{c1} and χ_{c2}
 - Concept
 - Phenomenology
 - Luminosity Requirements

III. SUMMARY

I. CHARM and BOTTOM MASSES

in collaboration with

K. Chetyrkin, Y. Kiyo, A. Maier, P. Maierhöfer, P. Marquard,

A. Smirnov, M. Steinhauser, C. Sturm

I. 1. m_Q from SVZ Sum Rules, Moments and Tadpoles

Main Idea (SVZ)

Sensitivity to m_Q from location of $Q\bar{Q}$ threshold.

Some definitions:

$$\left(-q^2 g_{\mu\nu} + q_{\mu} q_{\nu}\right) \Pi(q^2) \equiv i \int dx e^{iqx} \langle T j_{\mu}(x) j_{\nu}(0) \rangle$$

with the electromagnetic current j_{μ} .

$$R(s) = 12\pi \operatorname{Im}\left[\Pi(q^2 = s + i\varepsilon)\right]$$

Taylor expansion:
$$\Pi_Q(q^2) = Q_Q^2 \frac{3}{16\pi^2} \sum_{n \ge 0} \bar{C}_n z^n$$

with $z = q^2/(4m_Q^2)$ and $m_Q = m_Q(\mu)$ the $\overline{\mathrm{MS}}$ mass.

$$\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s}{\pi} \bar{C}_n^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 \bar{C}_n^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 \bar{C}_n^{(3)} + \dots$$

generic form

$$\begin{split} \bar{C}_n &= \bar{C}_n^{(0)} \\ &+ \frac{\alpha_s}{\pi} \left(\begin{array}{c} \bar{C}_n^{(10)} \\ + \bar{C}_n^{(11)} l_{m_c} \right) \\ &+ \left(\frac{\alpha_s}{\pi} \right)^2 \left(\begin{array}{c} \bar{C}_n^{(20)} \\ \bar{C}_n^{(20)} \\ + \bar{C}_n^{(21)} l_{m_c} + \bar{C}_n^{(22)} l_{m_c}^2 \right) \\ &+ \left(\frac{\alpha_s}{\pi} \right)^3 \left(\begin{array}{c} \bar{C}_n^{(30)} \\ \bar{C}_n^{(30)} \\ + \bar{C}_n^{(31)} l_{m_c} + \bar{C}_n^{(32)} l_{m_c}^2 + \bar{C}_n^{(33)} l_{m_c}^3 \right) \\ &+ \dots \end{split}$$
with $\alpha_s = \alpha_s(\mu), \ l_{m_c} = \ln\left(\frac{m_c^2}{\mu^2}\right)$
 $\bar{C}_n^{(ij)} = \text{pure numbers}$
for $j \ge 1$ from RG

for j = 0 : calculation

Analysis in N³LO

Algebraic reduction to 13 master integrals (Laporta algorithm);

numerical and analytical evaluation of master integrals

○ : heavy quarks, ○ : light quarks,

 n_f : number of active quarks

 \Rightarrow About 700 Feynman-diagrams

$$\bar{C}_0$$
 and \bar{C}_1 in order α_s^3 (four loops!) (2006)

Reduction to master integrals

(Chetyrkin, JK, Sturm; Boughezal, Czakon, Schutzmeier)

 \bar{C}_2 and \bar{C}_3 (2008)

```
(Maier, Maierhöfer, Marquard, A. Smirnov)
```

All master integrals known analytically and double checked.

(Schröder + Vuorinen, Chetyrkin et al., Schröder + Steinhauser,

Laporta, Broadhurst, Kniehl et al.)

 $\overline{C}_4 - \overline{C}_{10}$: extension to higher moments by Padé method, using analytic information from low energy ($q^2 = 0$), threshold ($q^2 = 4m^2$), high energy ($q^2 = -\infty$) (Kiyo, Maier, Maierhöfer, Marquard, 2009) Relation to measurements

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}}\right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}}\right)^{n} \bar{C}_{n}$$
Perturbation theory: \bar{C}_{n} is function of α_{s} and $\ln \frac{m_{c}^{2}}{\mu^{2}}$

dispersion relation:

$$\Pi_{c}(q^{2}) = \frac{q^{2}}{12\pi^{2}} \int ds \frac{R_{c}(s)}{s(s-q^{2})} + \text{subtraction}$$
$$\Rightarrow \mathcal{M}_{n}^{\exp} = \int \frac{ds}{s^{n+1}} R_{c}(s)$$

constraint: $\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\operatorname{th}}$

$$\Rightarrow m_{\mathcal{C}} = \frac{1}{2} \left(\frac{9}{4} Q_{\mathcal{C}}^2 \bar{C}_n / \mathcal{M}_n^{\exp} \right)^{1/(2n)}$$

qualitative considerations

$$\mathcal{M}_n = \int_{threshold} \frac{ds}{s^{n+1}} R_c(s) \sim \text{dimension } (m_c)^{-2n}$$

- depends moderately on α_s!
- $\Pi(q^2)$ is an analytic function with branch cut from $(2m_D)^2$ to ∞ .
- averaging over resonances reduces influence of long distances (binding effects).
- $\Pi(q^2 = 0)$ and its derivatives at $q^2 = 0$ are short distance quantities. \Rightarrow pQCD is applicable.

I. 2. Experimental Analysis: m_c

$$\mathcal{M}_n^{\exp} \equiv \int \frac{ds}{s^{n+1}} R_{\mathrm{charm}}(s)$$

$$\Rightarrow \mathbf{m}_{\mathbf{c}} = \frac{1}{2} \left(\frac{9}{4} Q_{c}^{2} \bar{C}_{n} / \mathcal{M}_{n}^{\exp} \right)^{1/(2n)}$$

- \bar{C}_n from calculation
- \mathcal{M}_n^{\exp} from experiment

experiment:

- $\Gamma_e(J/\psi,\psi')$ from BES & CLEO & BABAR (PDG)
- ψ (3770) and R(s) from BES
- $\alpha_s = 0.1187 \pm 0.0020$

theory:

- N³LO for n = 1, 2, 3, 4
- include condensates

$$\delta \mathcal{M}_n^{\mathrm{np}} = \frac{12\pi^2 Q_c^2}{(4m_c^2)^{(n+2)}} \left\langle \frac{\alpha_{\mathrm{s}}}{\pi} G^2 \right\rangle a_n$$

(including NLO-terms)

- estimate of non-perturbative terms (oscillations, based on Shifman)
- careful extrapolation of R_{uds}
- careful definition of R_c

Contributions from

- narrow resonances: $R = \frac{9 \prod M_R \Gamma_e}{\alpha^2(s)} \delta(s M_R^2)$ (PDG)
- threshold region $(2 m_D 4.8 \,\text{GeV})$ (BESS)
- perturbative continuum ($E \ge 4.8 \,\text{GeV}$) (Theory)

n	$\mathcal{M}_n^{\mathrm{res}}$	$\mathcal{M}_n^{\mathrm{thresh}}$	$\mathcal{M}_n^{\mathrm{cont}}$	\mathcal{M}_n^{\exp}	\mathcal{M}_n^{np}
	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$	$\times 10^{(n-1)}$
1	0.1201(25)	0.0318(15)	0.0646(11)	0.2166(31)	-0.0001(2)
2	0.1176(25)	0.0178(8)	0.0144(3)	0.1497(27)	0.0000(0)
3	0.1169(26)	0.0101(5)	0.0042(1)	0.1312(27)	0.0007(14)
4	0.1177(27)	0.0058(3)	0.0014(0)	0.1249(27)	0.0027(54)

Different relative importance of resonances vs. continuum for n = 1, 2, 3, 4.

Results (m_c)

PRD 80: (2009) 074010

n	$m_c(3{\rm GeV})$	ехр	α_s	μ	np	total
1	986	9	9	2	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

Remarkable consistency between n = 1, 2, 3, 4

and stability ($O(\alpha_s^2)$ vs. $O(\alpha_s^3)$);

prefered scale: $\mu = 3 \,\text{GeV}$,

conversion to $m_c(m_c)$:

- $m_{\rm c}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm c}(m_{\rm c}) = 1279 \pm 13 \,{\rm MeV}$

n

Perturbative stability

$$m_{c} = \frac{1}{2} \left(\frac{9Q_{c}^{2}}{4} \frac{\bar{C}_{n}^{\text{Born}}}{\mathcal{M}_{n}^{\text{exp}}} \right)^{\frac{1}{2n}} (1 + r_{n}^{(1)} \alpha_{s} + r_{n}^{(2)} \alpha_{s}^{2} + r_{n}^{(3)} \alpha_{s}^{3})$$

$$\approx 1 - \left(\begin{array}{c} 0.328\\ 0.524\\ 0.618\\ 0.662 \end{array} \right) \alpha_{s} - \left(\begin{array}{c} 0.306\\ 0.409\\ 0.510\\ 0.575 \end{array} \right) \alpha_{s}^{2} - \left(\begin{array}{c} 0.262\\ 0.230\\ 0.299\\ 0.396 \end{array} \right) \alpha_{s}^{3},$$

error from next order $\leq r_n^{max} \alpha_s^4 < 2$ to 3 permille

(smaller than μ -variation!)

(1)

Potential improvements in analysis

- 1) Combined fit to lowest three moments
 - \Rightarrow optimal usage of experimental information,
 - \Rightarrow requires dedicated analysis of correlation.
- 2) More "aggressive" choice for $\delta \alpha_s$:

$$\alpha_s = 0.1189 \pm 0.002 \quad \Rightarrow \quad \alpha_s = 0.1184 \pm 0.0007 \text{ (PDG 2012)}$$

3) Theory error from perturbation series (2-3 permille)

instead of μ -variation

 $\Rightarrow \delta m_c$ below 10 MeV

Potential experimental improvements

1.) narrow resonances $(J/\Psi, \Psi')$ dominate:

 $\Gamma_e(1S) = 5.55 \pm 0.14 \pm 0.02 \text{ keV}; \ \Gamma_e(2S) = 2.35 \pm 0.04 \text{ keV}$

improvement? correlations?

2.) threshold region: improvement at BESS?

subtraction of $u\bar{u}$, $d\bar{d}$, $s\bar{c} \Rightarrow$ precise reference point below charm threshold needed

3.) continuum above 4.8 GeV:

missing data substituted by theory \Rightarrow small error

excellent agreement with data

improved calibration at ~ 4.5 GeV desirable

ightarrow crucial information over wide range

In total $\delta m_c \approx 7$ MeV may be within reach

Experimental Ingredients for m_b

Contributions from

- narrow resonances $(\Upsilon(1S) \Upsilon(4S))$ (PDG)
- threshold region (10.618 GeV 11.2 GeV)
- perturbative continuum ($E \ge 11.2 \,\text{GeV}$)

(Theory)

(BABAR 2009)

• different relative importance of resonances vs. continuum for n = 1, 2, 3, 4

n	$\mathcal{M}_n^{\mathrm{res},(\mathrm{1S-4S})}$	$\mathcal{M}_n^{\mathrm{thresh}}$	$\mathcal{M}_n^{\mathrm{cont}}$	\mathcal{M}_n^{\exp}
	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$
1	1.394(23)	0.287(12)	2.911(18)	4.592(31)
2	1.459(23)	0.240(10)	1.173(11)	2.872(28)
3	1.538(24)	0.200(8)	0.624(7)	2.362(26)
4	1.630(25)	0.168(7)	0.372(5)	2.170(26)

BELLE?

n	$m_b(10{\rm GeV})$	ехр	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	10	12	3	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

Consistency (n = 1, 2, 3, 4) and stability ($O(\alpha_s^2)$ vs. $O(\alpha_s^3)$);

- $m_{\rm b}(10\,{\rm GeV}) = 3610\pm16\,{\rm MeV}$
- $m_{\rm b}(m_{\rm b}) = 4163 \pm 16 \,{\rm MeV}$

potential improvements:

- $\delta \alpha_s$
- combined analysis of 3 lowest moments
- improved data

 α_s -dependence

$$\begin{split} m_c(3 \text{ GeV}) &= \left(986 - \frac{\alpha_s - 0.1189}{0.002} \cdot 9 \pm 10\right) \text{ MeV} \\ m_b(10 \text{ GeV}) &= \left(3610 - \frac{\alpha_s - 0.1189}{0.002} \cdot 12 \pm 11\right) \text{ MeV} \\ m_b(m_b) &= \left(4163 - \frac{\alpha_s - 0.1189}{0.002} \cdot 12 \pm 11\right) \text{ MeV} \\ m_b(M_Z) &= \left(2835 - \frac{\alpha_s - 0.1189}{0.002} \cdot 27 \pm 8\right) \text{ MeV} \\ m_b(161.8 \text{ GeV}) &= \left(2703 - \frac{\alpha_s - 0.1189}{0.002} \cdot 28 \pm 8\right) \text{ MeV} \end{split}$$

 $m_{\rm c}(3\,{\rm GeV}) = {986(13)}\,{
m MeV}$

 $m_{
m b}(10\,{
m GeV}) = {
m 3610(16)~{
m MeV}} \ m_{
m b}(m_{
m b}) = {
m 4163(16)~{
m MeV}}$

Improvement by factor 2 conceivable

II. Resonant Production of χ_{c1} and χ_{c2} Concept

<u>direct</u> coupling of χ_{cJ} to e^+e^-

$$\begin{aligned} \mathfrak{A}(e^+e^- \to \chi_0) &= \mathcal{O}(m_e/M_\chi) \approx 0 \\ \mathfrak{A}(e^+e^- \to \chi_1) &= g_1 \bar{\mathbf{v}} \gamma_5 \notin \mathbf{u} \\ \mathfrak{A}(e^+e^- \to \chi_2) &= g_2 \bar{\mathbf{v}} \gamma^\mu \mathbf{u} \varepsilon_{\mu\nu} (l_+^\nu - l_-^\nu)/M_\chi \end{aligned}$$

through two virtual photons

quarkonium: short distance calculation

$$g_{1} = -\frac{\alpha^{2}}{M^{2}} 32 a \ln \frac{2b}{M}$$

$$g_{2} = +\frac{\alpha^{2}}{M^{2}} 32 a \left[\sqrt{2} \ln \frac{2b}{M} + \frac{\sqrt{2}}{3} (i\pi + \ln 2 - 1)\right]$$
with $M \equiv M_{\chi}$, $a = \sqrt{\frac{3}{4\pi m_{c}}} \Phi'(0)$,

$$b=$$
 "binding energy" $ightarrow b=\pm 0.5~{
m GeV}$

vector dominance:

Results:
$$\Gamma(\chi_J \rightarrow e^+ e^-)$$
 in eV

J	1	2
quarkonium		
b = +0.5 GeV	0.023	0.013
$b = -0.5 \; \text{GeV}$	0.17	0.27
vector dominance	0.46	0.014
unitarity limit	0.044	0.0023

consider J = 1 and use $\Gamma = 0.1 \text{ eV}$

Strategy:

R-scan around $M(\chi_1) = 3.511 \text{ GeV}$

A) all final states

$$\Rightarrow R_{\text{peak}} = \frac{9\pi}{2\alpha\sqrt{2\pi}} \frac{\Gamma_1}{\Delta M} c_{\text{rad}} \approx 0.05 \frac{\Gamma_1[\text{eV}]}{\Delta M[\text{MeV}]}$$
$$\Delta M = \text{energy spread} = 1.1 \text{ MeV}; \quad c_{\text{rad}} \approx 0.5$$
$$R_{\text{peak}} = 0.005 \text{ above background of } R = 2$$

 $(\Rightarrow 100 \text{ pb}^{-1} \text{ per point with 5 points} \Rightarrow 3 \text{ sigma})$

B) selected final state $\chi_1 o \gamma J/\psi (o \mu^+ \mu^-, e^+ e^-)$

 $(\text{Br}\approx 0.35\cdot 0.12\approx 0.054)$

background from $e^+e^-
ightarrow \gamma J/\psi$ (radiative return)

similar requirement on luminosity

SUMMARY

precise charm and bottom quark masses can be further improved through:

- improved $\Gamma(J/\psi \rightarrow e^+e^-)$ etc.
- improved *R*_{charm} and *R*_{bottom}
- improved α_s
- combined analysis of lowest three moments

direct resonant production of χ_{1c} is possible

- through a dedicated scan around 3.511 GeV
- perhaps through radiative return
 - \rightarrow improved insight in charmonium dynamics