PRECISION CALCULATIONS FOR FCC-ee

selected examples on $\Gamma(Z)$, $\Gamma(W)$ and Higgs production, mainly from QCD, not a review

J. H. Kühn

I) Γ_Z and related quantities

II) M_W from G_F , M_Z , α

III) Higgs production and decay

I) Γ_Z and related quantities

Tera Z: Γ_Z

aim $\delta\Gamma_Z = 0.1 \text{ MeV}$ (LEP: 2495.2 ± 2.3 MeV)

present theory error: 0.2 MeV from ?

[stated in TLEP-paper]

closer look on QCD and mixed EW \otimes QCD corrections

Mixed electroweak and QCD: light quarks (u,d,c,s)

terms of $\mathcal{O}(\alpha \alpha_s)$, Czarnecki, JK; hep-ph/9608366

 $\Delta\Gamma\equiv\Gamma(\text{two loop (EW \star QCD)})-\Gamma_{\text{Born}}\delta_{\text{EW}}^{\text{NLO}}\delta_{\text{QCD}}^{\text{NLO}}=-0.59(3)\text{ MeV}$

three loop: reduction by $\# \cdot \frac{\alpha_s}{\pi} = \# 0.04$

should not exceed 5!

corrections of $\mathcal{O}(\alpha_{\scriptscriptstyle W} \alpha_{\scriptscriptstyle S}^2)$ (three loop)

difficult

Tera Z:
$$\Gamma(Z \rightarrow b\bar{b}) \equiv \Gamma_b$$

aim: $\delta R_b \equiv \frac{\delta \Gamma_b}{\Gamma_Z} = 2 - 5 \times 10^{-5}$ (LEP: $R_b = 0.21629 \pm 0.00066$, corresponds to $\delta \Gamma_b \approx 1.6$ MeV) 2×10^{-5} corresponds to 0.05 MeV!

corrections specific for $b\bar{b}$:

$$m_t^2$$
-enhancement: order $G_F m_t^2$ and $G_F m_t^2 \alpha_s$

$$\Delta \Gamma = \frac{G_F M^3}{16\pi^3} G_f m_t^2 (1 - \frac{2}{3} s_w^2) (1 - \frac{\pi^2 - 3}{3} \frac{\alpha_s}{\pi}) \quad \text{(Fleischer et al 1992)}$$

Complete $\alpha_{w}\alpha_{s}$ result:

$$\Gamma_b - \Gamma_q = (-5.69 - 0.79 \quad O(\alpha) + 0.50 + 0.06 \quad O(\alpha \alpha_s)) \text{ MeV}$$

separated into m_t^2 -enhanced and rest (Harlander, Seidensticker, Steinhauser hep-ph/9712228)

dressed with gluons

motivates the evaluation of m_t^2 -enhanced corrections of $O(G_F m_t^2 \alpha_s^2)$

(Chetyrkin, Steinhauser, hep-ph/990480)

 $\delta\Gamma_b(G_F m_t^2 \alpha_s^2) \approx 0.1 \text{MeV}$ (non-singlet) (absent in Z-fitter, G-fitter!)

General observation:

many top-induced corrections become significantly smaller, if m_t is expressed in \overline{MS} convention

$$\bar{m}_t(\bar{m}_t) = m_{pole} \left(1 - 1.33 \left(\frac{\alpha_s}{\pi} \right) - 6.46 \left(\frac{\alpha_s}{\pi} \right)^2 - 60.27 \left(\frac{\alpha_s}{\pi} \right)^3 - 704.28 \left(\frac{\alpha_s}{\pi} \right)^4 \right)$$

(Karlsruhe, 1999) (Marquard, Smirnov, Smirnov, Steinhauser, 2015)

$$= (173.34 - 7.96 - 1.33 - 0.43 - 0.17) \text{GeV}$$
$$= (163.45 \pm 0.72|_{m_t} \pm 0.19|_{\alpha_s} \pm ?|_{th}) \text{GeV}$$

top scan \Rightarrow *m*(potential subtracted)

 $\delta m_t \sim 20 - 30 \text{ MeV}$

Tera Z:
$$\Gamma_b(Z \rightarrow b\bar{b})$$

Can we isolate the $Zb\bar{b}$ -vertex?

 $R_b = 0.21629 \pm 0.00066 \text{ (LEP)}; \quad 3\% \cong 1.65 \text{ MeV}$

TLEP: $2-5 \times 10^{-5} \stackrel{\frown}{=} 50 - 120 \text{ keV}$

conceptual problem: singlet-terms

(total hadronic rate more robust!)

Tera Z: Γ_{had} and $\Gamma_{had}/\Gamma_{lept}$ corrections known to $O(\alpha_s^4)$, N³LO

(Baikov, Chetyrkin, JK, Rittinger, arxiv: 0801.1821, 1201.5804)

8

theory uncertainty from $M_Z/3 < \mu < 3M_Z$

 $\Rightarrow \delta\Gamma_{NS} = 101 \text{keV}; \\ \delta\Gamma_{S}^{V} = 2.7 \text{keV}; \\ \delta\Gamma_{S}^{A} = 42 \text{keV}; \end{cases} \begin{cases} \Sigma = 145.7 \text{keV} \\ (\text{corresponds to } \delta\alpha_{s} \sim 3 \times 10^{-4}) \\ \text{TLEP: } \delta\Gamma_{had} = 100 \text{ keV} \end{cases}$

similar analysis of $\Gamma(W \rightarrow had)$ only affected by non-singlet corrections!

b-mass corrections under control: $m_b^2 \alpha_s^4$; $m_b^4 \alpha_s^3$; ...

one more loop? $\alpha_s^2(1979), \alpha_s^3(1991), \alpha_s^4(2008), \alpha_s^5(?),$ guesses on α_s^5 based on

II) M_W from G_F , M_Z , α

LEP: $\delta M_W \simeq 30$ MeV; TLEP: $\delta M_W \simeq 0.5 - 1$ MeV

Theory

$$M_W^2 = f(G_F, M_Z, m_t, \Delta \alpha, \ldots) = \frac{M_Z^2}{2(1-\delta\rho)} \left(1 + \sqrt{1 - \frac{4\pi\alpha(1-\delta\rho)}{\sqrt{2}G_F M_Z^2} \left(\frac{1}{1-\Delta\alpha} + \ldots\right)}\right);$$

 m_t -dependence through $\delta \rho_t$

$$\begin{split} \delta M_W &\approx M_W \frac{1}{2} \frac{\cos^2 \theta_W}{\cos^2 \theta_W - \sin^2 \theta_W} \delta \rho \approx 5.7 \times 10^4 \, \delta \rho \, [\text{MeV}] \\ \delta \rho_t &= 3X_t \left(1 - 2.8599 \left(\frac{\alpha_s}{\pi} \right) - 14.594 \left(\frac{\alpha_s}{\pi} \right)^2 - 93.1 \left(\frac{\alpha_s}{\pi} \right)^3 \right) \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \delta M_W &= 9.5 \, \, \text{MeV} \qquad \delta M_W = 2.1 \, \, \text{MeV} \end{split}$$

 α_s^3 : 4 loop (Chetyrkin, JK, Maierhöfer, Sturm; Boughezal, Czakon, 2006)

mixed QCD \star electroweak

 $\alpha_s^3 X_t$ (QCD four loop) $\Rightarrow 2.1 \text{MeV}$

 X_t^3

 $\alpha_s X_t^2 \\ \alpha_s^2 X_t$

the future

individual uncalculated higher orders below 0.5 MeV, examples:

 $\alpha_s^2 X_t^2$ presumably feasible (4 loop tadpoles), $\alpha_s^4 X_t$ 5 loop tadpoles?

dominant contribution from $m_t(pole) \Rightarrow \bar{m}_t$

crucial input: m_t also for stability of the universe

TLEP: $\delta m_t = 10 - 20 \text{ MeV}$

based on **bold** extrapolation of ILC study (ILC: 35 MeV, no theory error) momentum distribution etc: LO only

 σ_{tot} in N³LO just completed (Beneke, Kiyo Marquard, Piclum, Penin, Steinhauser)

robust location of threshold, extraction of λ_{Yuk} requires normalization!

important ingredient: $\bar{m}_t(\bar{m}_t) \Leftrightarrow m_{pole}$ example: $m_{pole} = 173.340 \pm 0.87$ GeV, $\alpha_s \equiv \alpha_s^{(6)}(m_t) = 0.1088$

4 loop term is just completed (Marquard, Smirnov, Smirnov, Steinhauser, 2015)

$$m_{pole} = \bar{m}_t(\bar{m}_t) \left(1 + 0.4244 \,\alpha_s + 0.8345 \,\alpha_s^2 + 2.365 \,\alpha_s^3 + (8.49 \pm 0.25) \,\alpha_s^4 \right)$$

= (163.643 + 7.557 + 1.617 + 0.501 + 0.195 ± 0.05) GeV

four-loop term matters!

III) Higgs production and decay

Cross sections for the three major Higgs production processes as a function of center of mass

energy, from arXiv:1306.6352

example: $H \rightarrow b\bar{b}$ dominant decay mode, all branching ratios are affected! TLEP: $\sigma_{HZ} \times Br(H \rightarrow b\bar{b})$: aim 0.2%

Higgs WG, arXiv:1307.1347 (Table 1) assumes $\alpha_s = 0.119 \pm 0.002$, $m_b|_{pole} = 4.49 \pm 0.06$ GeV: $\frac{\delta\Gamma(H \rightarrow b\bar{b})}{\Gamma(H \rightarrow b\bar{b})} = \pm 2.3\%|_{\alpha_s} \pm 3.2\%|_{m_b} \pm 2.0\%|_{th} \Rightarrow 7.5\%$ Our estimate: $\Gamma(H \rightarrow b\bar{b}) = \frac{G_F M_H}{4\sqrt{2\pi}} m_b^2(M_H) R^S(s = M_H^2, \mu^2 = M_H^2)$ $R^S(M_H) = 1 + 5.667 \left(\frac{\alpha_s}{\pi}\right) + 29.147 \left(\frac{\alpha_s}{\pi}\right)^2 + 41.758 \left(\frac{\alpha_s}{\pi}\right)^3 - 825.7 \left(\frac{\alpha_s}{\pi}\right)^4$ = 1 + 0.1948 + 0.03444 + 0.0017 - 0.0012 = 1.2298 (Chetyrkin, Baikov, JK, 2006) for $\alpha_s(M_Z) = 0.118$, $\alpha_s(M_H) = 0.108$

Theory uncertainty ($M_H/3 < \mu < 3M_H$) : 5% (four loop) reduced to 1.5% (five loop)

present parametric uncertainties:

$$\begin{split} m_b(10 {\rm GeV}) &= 3610 - \frac{\alpha_s - 0.1189}{0.002} 12 \pm 11 \; {\rm MeV} \; ({\rm Karlsruhe, \; arXiv:0907.2110}) \\ \left(\begin{array}{c} {\rm Bodenstein+Dominguez:} & 3623(9) \; {\rm MeV} \\ {\rm HPQCD} & & 3617(25) \; {\rm MeV} \end{array} \right) \end{split}$$

(α_s uncertainties are presently dominant, assuming $\delta = 0.002$ they influence m_b -determination; runnung to M_H ; R^S)

running from 10 GeV to M_H depends on

anomalous mass dimension, β -function and α_s

 $m_b(M_H) = 2759 \pm 8|_{m_b} \pm 27|_{lpha_s} \, {
m MeV}$

 γ_4 (five loop): Baikov + Chetyrkin, 2012

 β_4 under construction

$$\frac{\delta m_b^2(M_H)}{m_b^2(M_H)} = -1.4 \times 10^{-4} \left(\frac{\beta_4}{\beta_0} = 0\right) \quad | \quad -4.3 \times 10^{-4} \left(\frac{\beta_4}{\beta_0} = 100\right) \quad | \quad -7.3 \times 10^{-4} \left(\frac{\beta_4}{\beta_0} = 200\right)$$

to be compared with $\delta\Gamma(H \to b\bar{b})/\Gamma(H \to b\bar{b}) = 2.0 \times 10^{-4}$ (FCC-ee)

$$\begin{array}{lll} \underline{\text{perspectives:}} & (\text{assume } \delta \alpha_s = 2 \times 10^{-4}) \\ \delta m_b (10 \text{GeV})/m_b \sim 10^{-3} & \text{conceivable (dominated by } \delta \Gamma(\Upsilon \rightarrow e^+e^-)) \\ \Rightarrow & \frac{\delta \Gamma_{H \rightarrow b\bar{b}}}{\Gamma_{H \rightarrow b\bar{b}}} = \pm 2 \times 10^{-3} |_{m_b} \pm 1.3 \times 10^{-3} |_{\alpha_s, \text{running}} \pm 1 \times 10^{-3} |_{\text{theory}} \\ \\ \text{similarly: } \Gamma_c & \delta m_c (3 \text{ GeV})/m_c (3 \text{ GeV}) &= 13 \text{ MeV}/986 \text{ MeV} & (\text{now}) \\ &= 5 \text{ MeV}/986 \text{ MeV} & (\text{conceivable}) \end{array}$$

$$\begin{array}{lll} m_c(M_H) &=& (609 \pm 8|_{m_c} \pm 9|_{\alpha_s}) \ {\rm MeV} & ({\rm now}) \\ & \pm 3 \ {\rm MeV} & ({\rm conceivable}) \end{array}$$
$$\Rightarrow \frac{\delta\Gamma_c}{\Gamma_c} &=& \pm 5.5 \times 10^{-2} & ({\rm now}) \\ &=& \pm 1 \times 10^{-2} & ({\rm conceivable}) \end{array}$$

Starting from order α_s^3 the separation of $H \to gg$ and $H \to b\bar{b}$ is no longer unambiguously possible. (Chetyrkin, Steinhauser, 1997) $H \rightarrow gg$ to $\mathcal{O}(\alpha_s^5)$ (hep-ph/0604194; Baikov, Chetyrkin)

(separation of gg, $b\bar{b}$, $c\bar{c}$ difficult in $\mathcal{O}(\alpha_s^4)$ and higher)

$$\Gamma(H \to gg) = K \cdot \Gamma_{\mathsf{Born}}(H \to gg)$$

$$K = 1 + 17.9167 a'_{s} + (156.81 - 5.7083 \ln \frac{M_{t}^{2}}{M_{H}^{2}})(a'_{s})^{2} + (467.68 - 122.44 \ln \frac{M_{t}^{2}}{M_{H}^{2}} + 10.94 \ln^{2} \frac{M_{t}^{2}}{M_{H}^{2}})(a'_{s})^{3}$$

take $M_t = 175$ GeV, $M_H = 120$ GeV and $a'_s = \alpha_s^{(5)}(M_H)/\pi = 0.0363$:

$$K = 1 + 17.9167 a'_{s} + 152.5 (a'_{s})^{2} + 381.5 (a'_{s})^{3}$$
$$= 1 + 0.65038 + 0.20095 + 0.01825.$$

Claim: experimental precision of $\sigma(HZ)$ BR $(H \rightarrow gg) = 1.4\%$

 \sim approximately equal to last calculated correction

$H ightarrow \gamma \gamma$ (arxiv:1212.6233; Maierhöfer, Marquard)

non-singlet and singlet terms; electroweak corrections (Passarino,...)

 $\Gamma_{H \to \gamma\gamma} = (9.398 - 0.148 + 0.168 + 0.00793) \text{ keV}$ $LO \times \text{NLO-EW} + \frac{0.168}{LO \times \text{NLO-QCD}} + \frac{0.00793}{\alpha_s^2} \text{ keV}$ $\alpha_s^2 \text{ term dominated by singlet part of prediction,}$

prediction good to 1 permille!

SUMMARY

theory predictions do not (yet?) fulfill TLEP requirements,

missing corrections are presumably feasible (QCD),

important experimental input from low-energy e^+e^- annihilation: $m_b, m_c, \Delta \alpha, (\alpha_s?),$

```
m_b determiantion \Rightarrow \Gamma(H \rightarrow b\bar{b})
```

usage of $m_b(pole)$ is strongly disfavoured compared to $\bar{m}_b(10 \text{ GeV})$,

separation of $H \rightarrow b\bar{b}$, gg, $c\bar{c}$ difficult!