HARD SCATTERING AND ELECTROWEAK CORRECTIONS AT THE LHC

J.H. Kühn

- I. Introduction
- II. One-Loop Results
 - **1.** $t\overline{t}$ and $b\overline{b}$
 - 2. V + jet
 - **3.** *W*⁺*W*⁻
- III. QED Corrections; QED & PDFs
- IV. W,Z Radiation; Compensations?
- V. Open Questions

Karlsruhe Institute of Technology

DURHAM SEPTEMBER 24-26 2012

I. Introduction

(four-fermion cross section \Rightarrow factor 4)

- leading log² multiplied by (charge)² = $I(I+1) = \begin{cases} 3/4 & I = 1/2 \\ 2 & I = 1 \end{cases}$ \Rightarrow further enhancement for W-pairs by nearly factor 2.
- important subleading logarithms (NLL+...)
- One-loop up to $\mathcal{O}(30\%) \rightarrow$ two-loop terms may be relevant
- interplay between electroweak and QCD corrections
- important differences between fermions and electroweak gauge bosons
- important differences between long. and transverse gauge bosons (I = 1/2 vs. I = 1)

II. One-Loop Results

1. Top and Bottom Pair Production

JK, Scharf, Uwer, Eur. Phys. J. C45(2006), C51 (2007)37, PRD 82 (2010) 013007

(Related Results: Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth (1994) Bernreuther, Fücker, Si Moretti, Holten, Ross)

(more problematic for $qq \rightarrow qq!$)

cuts of second group individually IR-divergent

 $\mathcal{O}(\alpha_s^2 \alpha_{weak})$ weak corrections $(g g \to t \bar{t})$

7

large corrections for large $\sqrt{\hat{s}}$ sizable M_h -dependence

(relative weak corrections [%])

Transverse momentum dependence

Total cross sections

Left: Weak corrections to top-quark pair production at the Tevatron and **Right:** at the LHC for three different Higgs masses ($m_H = 120$ GeV (full line), $m_H = 200$ GeV (dashed), $m_H = 1000$ GeV (dash-dotted)).

Differential distributions

The relative corrections to the p_T and $M_{t\bar{t}}$ distribution for the Tevatron for $m_H = 120$ GeV (bold histogram) and $m_H = 1000$ GeV (thin histogram).

LHC at 8 TeV, top-pair invariant mass

LHC at 8 TeV, transverse momentum

Threshold behaviour: Tevatron and LHC

 \Rightarrow $m_{\rm H}$ and Yukawa coupling

dependence on Higgs mass

dependence on Yukawa coupling: $Y_{top} \Rightarrow 2 * Y_{top}$

Threshold behaviour

Left: Invariant mass distribution $d\sigma/dM$ from NRQCD and for a fixed NLO for LHC with $\sqrt{s} = 14$ TeV. The bands are due to scale variation for $\mathcal{L} \otimes F$ from m_t to $4m_t$.

Right: Invariant mass distribution $d\sigma/dM$ from NLO calculation for LHC with $\sqrt{s} = 14$ TeV.

• analytical & numerical results available

(earlier partial results by Beenakker *et al.*, some disagreements) independent evaluation by Bernreuther, Fücker, $Si \Rightarrow$ agreement Moretti, Holten, Ross \Rightarrow some disagreement ?

- (box contribution) $_{up-quark} = -(box contribution)_{down-quark}$ \Rightarrow suppression
- box contribution moderately \hat{s} -dependent
- corrections strongly increasing with \hat{s} , angular dependent; $(M_{tt}/2 \text{ vs } p_T)$
- sizable $M_{\rm h}$ -dependence, large effect close to threshold \Rightarrow determination of Yukawa coupling

$b\overline{b}$ production: similar to $t\overline{t}$

Additional contributions from:

- $gb \rightarrow gb$: (single *b*-tag) through crossing
- $bb \rightarrow bb$: s and t exchange; terms of $\mathcal{O}(\alpha_s \alpha_w)$ small corrections irrelevant
- $qq \rightarrow qq$ etc.: s and t exchange; terms of $\mathcal{O}(\alpha_s \alpha_w)$ contribute new terms of $\mathcal{O}(\alpha_s^2 \alpha_w)$; interplay between QCD and EW corrections \Rightarrow Moretti et al.

II. 2. V + jet, $V = W, Z, \gamma$

JK, Kulesza, Pozzorini, Schulze Denner, Dittmaier, Kasprzik, Mück ⇒ talk by Kasprzik

Complete one loop calculation NLL approximation at two loops

- one-loop $\sim 30\%$ at $p_{\rm T} \sim 1 {\rm TeV}$
- two-loop relevant above 1 TeV
- important angular-dependent logarithmic terms
- experiment: p_{T} up to 2 TeV

Relative NLO and NNLO corrections w.r.t. the LO and statistical error for the unpolarized integrated cross section for $pp \rightarrow Zj$ at $\sqrt{s} = 14$ TeV.

(Similarly, but smaller by a factor 2 for jet+ γ)

W production

additional complications:

- photon radiation as necessary part of virtual corrections (gauge invariance)
- IR singularities must be compensated by real radiation
- $p_{\mathsf{T}}(W) = p_{\mathsf{T}}(\mathsf{jet}) + p_{\mathsf{T}}(\gamma)$

ratios are less sensitive to QCD corrections

II. 3. W^+W^- , $W^{\pm}Z$, ZZ

Two Approaches:

 dominant, logarithmically enhanced terms via evolution equation & separation of QED

 \Rightarrow one- and two-loop terms in NNLL

J.H.K., Metzler, Penin, Uccirati: JHEP 1106 (2011) 143 related work based on SCET: Manohar,...

• one-loop calculation, including M_W^2/\hat{s} terms and real radiation: full NLO Bierweiler, Kasprzik, J.H.K., Uccirati related work: logarithmically enhanced terms only, including W decays Accomando, Denner, Kaiser

Leading Order

$$u\bar{u} \rightarrow W^+W^-, \ \sqrt{s} = 1 \text{ TeV}$$

- Strong enhancement for $\Theta \rightarrow 180^{\circ}$
- dominance of transverse W

Also included: $\gamma\gamma \rightarrow WW$

also included: $gg \rightarrow WW$

Total cross sections LHC8, $p_T > p_{T,cut}$

Total cross sections LHC14, $p_T > p_{T,cut}$

Differential LO cross sections for the W-boson rapidity gap with a minimal invariant mass of 1000 GeV at the LHC14. On the right-hand-side, the corresponding relative rates due to photon- and gluon-induced channels w.r.t. the $q\bar{q}$ -contributions are shown, as well as the EW corrections.

Drell-Yan process:

 $pp \rightarrow l^+l^- + X$ at $\sqrt{s} = 14 \text{TeV}$

				-		
$M_{ m II}/{ m GeV}$	50-∞	100–∞	200-∞	500-∞	$1000-\infty$	2000-∞
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\sigma_0 _{FS/PS}/pb$	738.773(6)	32.7268(3)	1.48492(1)	0.0809489(6)	0.00680008(3)	0.000303767(1)
$\delta_{\gamma\gamma,0}/$ %	0.17	1.15	4.30	4.92	5.21	6.17
$\delta^{ m rec}_{ m qar q, phot}/{ m \%}$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta^{\mu^+\mu^-}_{{ m q}ar{ m q},{ m phot}}/{ m \%}$	-3.34	-8.85	-5.72	-7.05	-9.02	-12.08
$\delta^{\mu^+\mu^-}_{{ m multi}-\gamma}/{ m \%}$	$0.073^{+0.027}_{-0.024}$	$0.49\substack{+0.18 \\ -0.15}$	$0.17\substack{+0.06 \\ -0.05}$	$0.23^{+0.07}_{-0.06}$	$0.33^{+0.09}_{-0.08}$	$0.54\substack{+0.13 \\ -0.12}$
$\delta_{ m qar q,weak}/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta_{ m h.o.weak}/\%$	0.030	0.012	-0.23	-0.29	-0.31	-0.32
$\delta^{(2)}_{ m Sudakov}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38
$\delta_{{ m q}/{ar { m q}}\gamma,{ m phot}}/\%$	-0.11	-0.21	0.38	1.53	1.91	2.34
$\delta^{ ext{rec}}_{\gamma\gamma, ext{phot}}/{ extsf{\%}}$	-0.0060	-0.032	-0.11	-0.14	-0.16	-0.23
$\delta^{\mu^+\mu^-}_{\gamma\gamma,{ m phot}}/{ m \%}$	-0.011	-0.058	-0.22	-0.30	-0.39	-0.59
$\delta_{\gamma\gamma,{\sf weak}}/{\sf \%}$	0.000045	0.00056	-0.025	-0.14	-0.31	-0.64
$\delta_{ extsf{QCD}}/\%$	4.0(1)	13.90(6)	26.10(3)	21.29(2)	8.65(1)	-11.93(1)
Dittmaier, Huber (arXiv: 0911.2329v2 [hep-ph])						

QED and EW one-loop corrections can be separated in some cases:

• Drell-Yan process:
$$q\bar{q} \xrightarrow{\gamma^*/Z} \mu^+ \mu^-$$

•
$$\gamma\gamma$$
 or ZZ production: $q\bar{q} \longrightarrow \gamma\gamma$ or ZZ

• top pair production: $q\bar{q} \longrightarrow t\bar{t}$ or $gg \longrightarrow t\bar{t}$

not for $qg \longrightarrow Wq'$, $q\bar{q} \longrightarrow W^+W^-$,...

naively estimated to be small: $\mathcal{O}\left(\frac{\alpha}{\pi}\right) \leq 1\%$

Results for tt (Hollik, Kollar)

Hollik, Kollar (arXiv:0708.1697[hep-ph])

Results for tt (Hollik, Kollar)

Process	$\sigma_{ m tot}$ without cuts [pb]				
	Born	correction			
$uar{u}$	34.25	-1.41			
d ar d	21.61	-0.228			
$s\overline{s}$	4.682	-0.0410			
$c\overline{c}$	2.075	-0.0762			
gg	407.8	2.08			
$g\gamma$		4.45			
pp	470.4	4.78			

Production cross section: MRST2004qed $(\mathcal{O}(\alpha_s) \text{ and } \mathcal{O}(\alpha) \text{ improved})$

Comments:

- large contributionfrom $\gamma g \longrightarrow t \overline{t}$ strongly dependent on $f_{\gamma/P}$
- collinear singularities absorbed in PDF, **but:** calculation without QCD corrections, PDF with $\mathcal{O}(\alpha_s)$.

Drell-Yan (Dittmaier, Huber)

admixture from $\gamma\gamma \longrightarrow \mu^+\mu^-$

$M_{\mu\mu}$	$\langle 50,\infty angle$	$\langle 100,\infty angle$	$\langle 200,\infty angle$	$\langle 500,\infty angle$	$\langle 1000,\infty angle$
$\delta_{\gamma\gamma}$ /%	0.17	1.15	4.30	4.92	5.21

(MRST2004qed, $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha)$ corrections, include photon PDFs.)

 $\gamma\gamma \longrightarrow W^+W^-$: (\Rightarrow talk by Bierweiler)

• prediction strongly dependent on PDF (MRST2004qed $\hat{=}$ educated guess)

•
$$\sigma(\gamma\gamma \longrightarrow W^+W^-) \xrightarrow{s \to \infty} \frac{8\pi\alpha^2}{M_W^2}$$

(strongly enhancement in forward-backward direction)

IV. Real W, Z Radiation: Compensation?

- soft and/or collinear radiation may (partly) compensate or overcompensate virtual corrections:
- model study (Bell, J.K., Rittinger arXiv:1004.4117; EPJC) strong dependence on cuts! asymptotic energies (multi-TeV)
- MC simulation with decays for tt (Baur) partial compensation
- semi-realistic evaluation (on-shell W, Z) (Bierweiler, Kasprzik, J.K.) $q\bar{q} \longrightarrow W^+W^-(\gamma)$ (Born + one-loop) vs. $q\bar{q} \longrightarrow W^+W^-Z$ $q\bar{q} \longrightarrow W^+W^-W^+$ + c.c.

Aim: real radiation taken care of by MC \Rightarrow different final states: t \overline{t} : $q\overline{q} \longrightarrow t\overline{t}Z$; $q\overline{q} \longrightarrow t\overline{b}W$; ... W^+W^- : $q\overline{q} \longrightarrow W^+W^-Z$, ...

V. Two Loop Results (Sudakov Logarithms)

```
one-loop: \sim 30\%
\Rightarrow two-loop: \sim ?
```

```
(Vast amount of literature since ~ 2000)
Karlsruhe (Jantzen, J.K., Metzler, Penin, Smirnov, Uccirati)
Fadin, Lipatov, Martin, Melles
PSI (Denner, Melles, Pozzorini, ...)
Ciafaloni, ...
Manohar, ...
```

A) Form Factor and Evolution Equations

Born:

$$\mathcal{F}_{\mathsf{Born}} = ar{\psi}(p_2) \gamma_\mu \psi(p_1)$$

$$\frac{\partial}{\partial \ln Q^2} \mathcal{F} = \left[\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \gamma(\alpha(x)) + \zeta(\alpha(Q^2)) + \xi(\alpha(M^2)) \right] \mathcal{F}$$
 Collins, Sen

$$\Rightarrow \mathcal{F} = \mathcal{F}_{\text{Born}} F_0(\alpha(M^2)) \exp\left\{\int_{M^2}^{Q^2} \frac{\mathrm{d}x}{x} \left[\int_{M^2}^{x} \frac{\mathrm{d}x'}{x'} \gamma(\alpha(x')) + \zeta(\alpha(x)) + \xi(\alpha(M^2))\right]\right\}$$

aim: N⁴LL \Rightarrow corresponds to all terms of the form: $\alpha^{n} \left[\begin{array}{c} \mathcal{L}^{2n} + \mathcal{L}^{2n-1} + \mathcal{L}^{2n-2} + \mathcal{L}^{2n-3} + \mathcal{L}^{2n-4} \\ LL & \text{NLL} & \text{NNLL} & \text{N}^{3}LL & \text{N}^{4}LL \end{array} \right]$ $\mathcal{L} \equiv \ln(Q^{2}/M^{2})$

NNLL requires running of α (i.e. β_0 and β_1) and: $\zeta(\alpha), \xi(\alpha), F_0(\alpha)$ up to $\mathcal{O}(\alpha)$ (one-loop) $\gamma(\alpha)$ up to $\mathcal{O}(\alpha^2)$ (massless two loop)

N³LL requires two-loop calculation in high-energy limit including linear logarithms (available for non-abelian theory)

N⁴LL requires complete two-loop calculation in high-energy limit (available for abelian theory)

B) Two-Loop Results: Massive U(1) Model

$$\mathcal{F}_{\alpha}(M,Q) = \mathcal{F}_{\text{Born}} \left[1 + \frac{\alpha}{4\pi} f^{(1)} + \left(\frac{\alpha}{4\pi}\right)^2 f^{(2)} + \dots \right]$$

$$f^{(2)} = \frac{1}{2} \mathcal{L}^4 - 3 \mathcal{L}^3 + \left(8 + \frac{2}{3}\pi^2\right) \mathcal{L}^2 - \left(9 + 4\pi^2 - 24\zeta_3\right) \mathcal{L}$$

$$+ \frac{25}{2} + \frac{52}{3}\pi^2 + 80\zeta_3 - \frac{52}{15}\pi^4 - \frac{32}{3}\pi^2 \ln^2 2 + \frac{32}{3}\ln^4 2 + 256\operatorname{Li}_4\left(\frac{1}{2}\right)$$

 $\mathcal{L} \equiv \ln(Q^2/M^2)$

C) Massive SU(2) form factor in 2-loop approximation

2-loop vertex diagrams (massless fermions, massive bosons):

+ $1-loop \times 1-loop$ corrections + renormalization

$$f_{2} = +\frac{9}{32}\mathcal{L}^{4} - \frac{19}{48}\mathcal{L}^{3} - \left(-\frac{7}{8}\pi^{2} + \frac{463}{48}\right)\mathcal{L}^{2} + \left(\frac{39}{2}\frac{\text{Cl}_{2}\left(\frac{\pi}{3}\right)}{\sqrt{3}} + \frac{45}{4}\frac{\pi}{\sqrt{3}} - \frac{61}{2}\zeta_{3} - \frac{11}{24}\pi^{2} + 29\right)\mathcal{L}$$

Extensions to: 4-fermion scattering (detailed discussion: Penin et al.) gauge boson pair production (J.K., Metzler, Penin, Uccirati)
Complication: massless photon! ⇒ QED subtracted

• QCD \otimes EW: ambiguities

$$(1 + \delta_{\text{QCD}})(1 + \delta_{\text{EW}}) - (1 + \delta_{\text{QCD}} + \delta_{\text{EW}}) = \delta_{\text{QCD}'} \delta_{\text{EW}}$$

e.g.:

 $\delta_{\text{QCD}} \sim 40\%$; $\delta_{\text{EW}} \sim 30\%$ first steps: virtual corrections for $q\bar{q} \longrightarrow Z$ of $\mathcal{O}(\alpha_w \alpha_s)$ available: J.K., Veretin (no Sudakov logs!)

• definition of final state:

do we consider W (hard) \oplus g (hard) \oplus W(soft) part of W-pair production?

• Can we discriminate top $\longrightarrow Wb$ or $W \longrightarrow q\bar{q}'$, $Z \longrightarrow q\bar{q}$ from fat QCD jets?