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Abstract

We present an updated fit of supersymmetric SO(10) models to quark and lepton masses
and mixing parameters. Including latest results from lattice QCD determinations of
quark masses and neutrino oscillation data, we show that fits neglecting supersymmetric
threshold corrections are strongly disfavoured in our setup. Only when we include these
corrections we find good fit points. We present χ2-profiles for the threshold parameters,
which show that in our setup the thresholds related to the third generation of fermions
exhibit two rather narrow minima.
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1 Introduction

Since the advent of Maxwell’s theory of electromagnetism it is a common dream in physics to
unify all interactions into one single theory. This dream is particularly persistent in particle
physics where Grand Unified Theories (GUTs) – which unify three of the fundamental forces
of nature – have been a major guiding principle in the last couple of decades. To be precise
in this paper we will focus on GUTs based on the SO(10) gauge group first proposed in
the 1970s [1, 2]. This choice contains all the essential features interpreted as hints towards
unification, like charge quantization, anomaly cancellation or smallness of neutrino masses.

SO(10) GUTs work especially well in the context of low energy supersymmetry (SUSY) [3]
which helps significantly to unify the gauge couplings, see, e.g., [4]. In fact, supersymmetry is
part of the dream of unification as it unifies the concepts of bosons and fermions or the con-
cepts of matter and forces. It also provides an elegant mechanism to stabilize mass hierarchies
and provides a dark matter candidate on top.

In this paper though we will not discuss all features and aspects of SUSY SO(10) models in
general. We focus on the Yukawa sector, which is interesting because this sector is constrained
by low energy observables, namely the observed fermion masses and mixing parameters.
There has been some tremendous progress in the last couple of years in particular for light
quark masses from lattice computations and neutrino masses and mixing from oscillation
experiments. We will use this updated information to provide an updated fit to a minimal
SUSY SO(10) Yukawa sector.

There is a long history of fitting SO(10) to fermion masses, see, e.g., [5–46]. Some works
focussed on particular SO(10) models, while others focussed on a general SO(10) Yukawa
sector only. These efforts have always been a difficult task due to the large number of pa-
rameters and observables. For that reason many groups had to resort to some simplifications
or estimates. For instance, the recent fits by Dueck and Rodejohann [47] neglect in the
SUSY case threshold corrections which are known to give sizeable, important corrections,
e.g., Refs. [3, 7, 11, 48, 49]. One of the main improvements of our work compared to previous
studies is to include these threshold corrections in terms of three parameters and to provide
χ2-profiles for them for the first time, to our knowledge.

Our paper is organised as follows: In Section 2 we describe in detail how we match the
SO(10) Yukawa couplings at the high scale to the fermion masses and mixing parameters at
low energies including the fit procedure. In Section 3 we discuss our results. First we present
the global minima of our fits and the pulls to identify which observables are potentially driving
some tensions of the data with our setup. Then we present the χ2-profiles for the SUSY
threshold corrections before we summarise and conclude in Section 4. We provide additional
information in two appendices. Appendix A gives additional numerical values for Standard
Model (SM) observables, and Appendix B the values of the GUT scale fit parameters at the
global and local minima.

2 Fitting GUT Scale Yukawa Couplings to Fermion Masses

Besides the unification of the gauge sector, SO(10) GUTs also predict the unification of the
Yukawa sector by arranging all matter fields in the spinorial 16 representation. Of course,
these constraints hold only at the GUT scale and effects of GUT breaking and of the renor-
malisation group equations (RGEs) will alter the relations among the Yukawa couplings.
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Below the GUT scale, important physics happens around the seesaw scale where the heavy
right-handed neutrinos are integrated out one after another. Moreover, SUSY breaking effects
have to be taken into account in supersymmetric GUTs. Especially for large values of tanβ,
threshold corrections from SUSY particles have sizeable effects [3]. In our analysis, we choose
the matching scale between the SM and its minimal supersymmetric extension (MSSM) to be
MSUSY = 1 TeV. At this scale we define as well the χ2-function to fit the GUT parameters to
the SM Yukawa couplings. Therefore we first need to evolve the fermion masses and mixing
parameters to MSUSY using the SM β-functions. We describe the procedure in greater detail
in the following.

2.1 Yukawa Couplings in SO(10) GUTs

In this work we restrict ourselves to renormalisable SO(10) GUTs. This has a stronger pre-
dictive power than SU(5) or non-renormalisable GUTs. Furthermore we assume the standard
embedding of the matter fields into the spinorial 16 of SO(10). This restricts the Higgs
representations relevant for fermion masses to a 10, 120 and/or 126 of SO(10).

In SUSY SO(10), the most general renormalisable superpotential describing Yukawa in-
teractions is then given by

W = Y ij
10 16i · 16j · 10H + Y ij

120 16i · 16j · 120H + Y ij
126 16i · 16j · 126H , (2.1)

where the 16i are the three generations of matter fields with flavour indices i, j = 1, 2, 3. The
fields 10H , 120H and 126H are GUT representations containing Higgs fields and we assume
maximum one of each. Due to the SO(10) gauge structure the Yukawa matrices Y ij

10 and Y ij
126

are symmetric while Y ij
120 is antisymmetric in the flavour indices i and j. Without loss of

generality we apply an unphysical flavour rotation to choose Y10 real and diagonal.
After breaking SO(10) at the high scale MGUT = 1.353 × 1016 GeV, given by gauge

coupling unification1, the Yukawa matrices are matched to the MSSM Yukawa matrices Yx,
x = u, d, e, ν, the Majorana mass matrix for the right handed neutrinos M and the Wilson
coefficient of the Weinberg operator κ, see for example Ref. [47]

Yu = r (Y10 + s Y126 + i tu Y120) , (2.2)

Yd = Y10 + Y126 + i tdY120 , (2.3)

Yν = r (Y10 − 3s Y126 + i tν Y120) , (2.4)

Ye = Y10 − 3Y126 + i te Y120 , (2.5)

M = rR Y126 , (2.6)

κ = rL Y126 . (2.7)

The parameters s, tu, td, tν , te correspond to the mixing of GUT scale Higgs doublets into
the MSSM Higgs doublets Hu, Hd whereas r, rR, rL correspond to the vacuum expectation
values (vevs) of the GUT scale Higgs fields and can be chosen real without loss of generality.

A minimal realistic choice omits the 120 representation (i.e., the parameters tu, td, tν , te)
and rL. Previous fits to fermion observables have shown that the 120 does not significantly
improve the fit to fermion masses in the SM, e.g., Ref. [47], so we will not include it here
(Y120 = 0). Furthermore, in Ref. [50] it was argued that while a generic fit to fermion masses

1For details see Appendix B.
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prefers a mix of type-I seesaw (parametrised by rR) and type-II seesaw (parametrised by rL),
a fit which includes the GUT potential favours scenarios where type-I is dominant over type-
II. Hence, we will assume rL = 0. Thus we end up with a set of 19 GUT scale parameters:
Y10 (three parameters), Y126 (twelve parameters), rR (one parameter), r (one parameter) and
s (two parameters).

Before we discuss our numerical implementation and the results we want to give a few
comments on Yukawa couplings from higher-dimensional operators. In this study we explicitly
assume that no higher-dimensional operators correct the Yukawa coupling relations beyond
the ones present at renormalisable level. Especially, in the context of supergravity one might
expect higher-dimensional operators to be present in the superpotential suppressed by powers
of MGUT/MPlanck = O(0.01). Such higher-dimensional operators could alter the Yukawa
relations if they have a non-trivial gauge structure.

It is an open question if quantum gravity introduces GUT non-singlets at the Planck scale
which couple to ordinary matter. The presence of non-singlets would imply that quantum
gravity knows something about flavour. If it would be flavour-blind all Yukawa couplings
should be at least of order MGUT/MPlanck = O(0.01). However, this is not the case unless
there are some large cancellations at work. Hence, we interpret the smallness of the electron
mass as an indication that these higher-dimensional operators are negligibly small and we do
not consider them here. Nevertheless, in a supersymmetric GUT theory of flavour they can
be the dominant operators and very sensible, for a recent review, see, e.g., Ref. [51].

2.2 RGE Running from the GUT Scale to the SUSY Scale

The values of the Yukawa couplings at different energy scales are related by the renormalisa-
tion group equations via

Y (µ2) = Y (µ1) +

log µ2∫
log µ1

d logµβY (µ), (2.8)

with the beta function being defined as βY (µ) = dY/d logµ. At one- and two-loop level they
are well-known for both the SM and the MSSM with additional right-handed neutrinos, see,
e.g., Ref. [52]. We also include the running of the Weinberg operator at the one-loop level.

For every point in the GUT parameter space the RGEs have to be solved, i.e. numerically
integrated. For a correct treatment of the seesaw mechanism, we consecutively integrate
out the right-handed neutrinos as described in Ref. [53] and implemented in the Mathematica
package REAP presented therein. REAP provides a useful tool for cross checking our calculations.
We implement the numerical procedure in C++ using the template libraries odeint [54] and
eigen3 [55]. This speeds up the calculation of the RGE running by up to a factor of 100
compared to the Mathematica version of REAP on our test desktop machine (Intel i5-4590
CPU, 3.30 GHz).

2.3 Fermion masses at the SUSY scale

Our low scale input for the quark masses and αs is given in Table 1. We perform the QCD
RGE evolution to MZ = 91.1876 GeV [57] and the matching from 4 to 5 as well as from 5
to 6 active flavours with the Mathematica package RunDec [58] to four-loop accuracy. Our
results are shown in Table 2. Errors from variation of the bottom and top quark scales are
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Table 1: Input data for SM parameters in the MS scheme from lattice QCD determinations
with Nf = 2 + 1 + 1 taken from Ref. [56].

Input Value

mu(2 GeV) 2.36(24) MeV
md(2 GeV) 5.03(26) MeV
ms(2 GeV) 93.9(1.1) MeV
mc(3 GeV) 996(25) MeV
m̄b(m̄b) 4.190(21) GeV

α
(5)
s (MZ) 0.1182(12)

Table 2: Results of the QCD RG evolution for six active flavours and a top-quark pole mass
mt,pole = 174.2± 1.4 GeV [57].

Result at MZ Value

m
(6)
u (MZ) 1.36(15) MeV

m
(6)
d (MZ) 2.90(11) MeV

m
(6)
s (MZ) 54.05(63) MeV

m
(6)
c (MZ) 635(16) MeV

m
(6)
b (MZ) 2.866(14) GeV

m
(6)
t (MZ) 172.3(1.5) GeV

α
(6)
s (MZ) 0.1170(12)

negligible compared to the experimental uncertainties. The Yukawa couplings at MZ can be
obtained from y = m/v, with v = 174.104 GeV. As additional input at MZ , we use the values
for the gauge couplings g1 and g2 as well as the values for the lepton Yukawa couplings from
Ref. [59]. Regarding the input for the CKM matrix, we use the ICHEP2016 update from
CKMfitter [60]. Corresponding results from UTfit are in good agreement [61].

In order to perform the RGE evolution from MZ to MSUSY, we use the two-loop RGEs
for the SM Yukawas and gauge couplings [62]. For solving the RGEs at two-loop also the
Higgs quartic coupling is needed which we get from the PDG average of the Higgs mass
measurement mHiggs = 125.09 ± 0.24 GeV [57]. For the off-diagonal elements of the Yukawa
matrices we use the standard parametrisation of the PDG. Further details can be found in
Appendix A.

We treat the uncertainties of the experimental data as Gaussian and symmetrise them
arithmetically where necessary. For the propagation of uncertainties we sample normally
distributed random numbers at MZ . Each sample point is then evolved to the respective
energy scale. There, we fit a normal distribution to the set of sample points. Thus, also non-
linear effects, especially the influence of the top quark Yukawa coupling, and interdependencies
in the RGE running are taken into account. This has the effect that the relative errors are
larger at higher energy scales due to the error of the top quark mass measurement.

For our global fit we set MSUSY = 1 TeV. However, for reference, in Table 3 we additionally
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Table 3: SM observables in the MS scheme at MZ , 1 TeV, 3 TeV and 10 TeV.
Quark masses and αs are taken from lattice determinations [56] and evolved to MZ with
RunDec [58]. All quark Yukawa couplings and αs correspond to six active flavours. Lepton
Yukawas and electroweak gauge couplings are taken from Ref. [59], CKM parameters from the
ICHEP 2016 update of Ref. [60]. The running between MZ and 1, 3 and 10 TeV is performed
using the SM RGEs at two-loop. Gaussian errors are propagated applying Bayes’ theorem.

MZ 1 TeV 3 TeV 10 TeV

g1 0.461425+0.000044
−0000043 0.467773± 0.000045 0.470766± 0.000046 0.474109± 0.000047

g2 0.65184+0.00018
−0.00017 0.63935± 0.00016 0.63383± 0.00016 0.62792± 0.00016

g3 1.2127± 0.0061 1.0549± 0.0040 1.0009± 0.0034 0.9503± 0.0029

yu/10−6 7.80± 0.86 6.73± 0.74 6.37± 0.70 6.03± 0.66

yc/10−3 3.646± 0.091 3.147± 0.79 2.976± 0.074 2.816± 0.071

yt 0.9897± 0.0086 0.8723± 0.0088 0.8317± 0.0088 0.7934± 0.0089

yd/10−5 1.663± 0.064 1.438± 0.056 1.361± 0.053 1.289± 0.050

ys/10−4 3.104± 0.036 2.685± 0.032 2.541± 0.030 2.407± 0.029

yb/10−2 1.646± 0.0082 1.3940± 0.0079 1.3091± 0.0071 1.2303± 0.0070

ye/10−6 2.794745+0.000015
−0.000016 2.8491± 0.0022 2.8659± 0.0031 2.8800± 0.0040

yµ/10−4 5.899863+0.000019
−0.000018 6.0146± 0.0046 6.0501± 0.0065 6.080± 0.0086

yτ/10−2 1.002950+0.000090
−0.000091 1.02246± 0.00078 1.0285± 0.0011 1.0336± 0.0014

θq12 0.22704+0.00030
−0.00029 0.22704± 0.00029 0.22704± 0.00029 0.22705± 0.00029

θq13/10−3 3.71+0.13
−0.14 3.79± 0.14 3.82± 0.14 3.85± 0.14

θq23/10−2 4.181+0.047
−0.067 4.270± 0.058 4.303± 0.058 4.337± 0.059

δqCP 1.143+0.011
−0.011 1.143± 0.011 1.143± 0.011 1.143± 0.011

list also the SM Yukawa and gauge couplings in the MS scheme at MZ , 3 TeV and 10 TeV
for reference. The same results converted to the DR scheme can be found in Table 4.

2.4 SM vs. MSSM Yukawa couplings

At the SUSY scale (which we set to 1 TeV) two important things happen at the same time.
First of all, loop calculations in the SM are usually done in the MS scheme which is unsuitable
for supersymmetry. For supersymmetry the DR scheme is preferred. We will use two-loop
RGEs so we have to perform the matching at the one-loop level. The relevant formulae for
gauge couplings and Yukawa couplings are [63]

gMS = gDR

(
1− g2

96π2
C(G)

)
, (2.9)

[Y i
MS

]jk = [Y i
DR

]jk
(

1 +
g2
a

32π2
(Ca(ri) + Ca(rj)− 2Ca(rk))

)
, (2.10)
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Table 4: SM observables in the DR scheme at MZ , 1 TeV, 3 TeV and 10 TeV.
The results at 1 TeV are included as input in our SO(10) fit. Quark masses and αs are
taken from lattice determinations [56] and evolved to MZ with RunDec [58]. All quark Yukawa
couplings and αs correspond to six active flavours. Lepton Yukawa couplings and electroweak
gauge couplings are taken from Ref. [59], CKM parameters from the ICHEP 2016 update of
Ref. [60]. The running between MZ and 1, 3 and 10 TeV is performed using the SM RGEs at
two-loop. Gaussian errors are propagated applying Bayes’ theorem. All gauge couplings and
Yukawa couplings have been converted to DR at the given scale according to Ref. [63].

MZ 1 TeV 3 TeV 10 TeV

g1 0.461425+0.000044
−0000043 0.467773± 0.000045 0.470766± 0.000046 0.474109± 0.000047

g2 0.65243± 0.00018 0.63990± 0.00017 0.63437± 0.00016 0.62844± 0.00016

g3 1.2185± 0.0062 1.0587± 0.0040 1.00415± 0.0034 0.9530± 0.0029

yu/10−6 7.71± 0.85 6.68± 0.74 6.32± 0.70 5.99± 0.66

yc/10−3 3.60± 0.090 3.120± 0.078 2.954± 0.074 2.797± 0.071

yt 0.9785± 0.0086 0.8651± 0.0087 0.8255± 0.0087 0.7881± 0.0088

yd/10−5 1.64441± 0.064 1.426± 0.056 1.351± 0.053 1.281± 0.050

ys/10−4 3.06979± 0.036 2.663± 0.032 2.523± 0.030 2.392± 0.029

yb/10−2 1.6274± 0.0082 1.3825± 0.0073 1.2995± 0.0071 1.2224± 0.0070

ye/10−6 2.796719± 0.000016 2.8510± 0.0022 2.8677± 0.0031 2.8818± 0.0041

yµ/10−4 5.904029± 0.000019 6.0186± 0.0046 6.0540± 0.0065 6.0836± 0.0086

yτ/10−2 1.003658± 0.000091 1.0231± 0.0078 1.0292± 0.0011 1.0342± 0.0015

θq12 0.22704+0.00030
−0.00029 0.22704± 0.00029 0.22704± 0.00029 0.22705± 0.00029

θq13/10−3 3.71+0.13
−0.14 3.79± 0.14 3.82± 0.14 3.85± 0.14

θq23/10−2 4.181+0.047
−0.067 4.270± 0.058 4.303± 0.058 4.337± 0.059

δqCP 1.143+0.011
−0.011 1.143± 0.011 1.143± 0.011 1.143± 0.011
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with C(G) = N and C(r) = (N2− 1)/2N for SU(N). In the MSSM the matching conditions
for the Yukawa matrices then read

Y u
MS

= Y u
DR

(
1 +

1

32π2

(
−g

2
1

60
− 3 g2

2

4
+

8 g2
3

3

))
, (2.11)

Y d
MS

= Y d
DR

(
1 +

1

32π2

(
−13 g2

1

60
− 3 g2

2

4
+

8 g2
3

3

))
, (2.12)

Y e
MS

= Y e
DR

(
1 +

1

32π2

(
9 g2

1

20
− 3 g2

2

4

))
. (2.13)

The second thing is that the Yukawa couplings in the SM and the MSSM are not the
same, not even on tree-level since the MSSM is a two Higgs doublet model. This introduces
a dependence on tanβ, the ratio of the two Higgs vevs. Beyond that also finite one-loop
corrections have to be taken into account in the matching. In particular there are certain
pieces which are enhanced by tanβ [3] and thus can easily make changes of O(10%) or even
larger on the Yukawa couplings.

The approach we will take here is well documented, for instance, in Refs. [64–66], see
also Ref. [59], so that we will not go into much detail here. Note that we include the tanβ
enhanced parts only. This allows a simple parametrisation of the SUSY threshold corrections
in terms of three parameters, εb, εq and εl, only using some rather mild, plausible assumptions
on the SUSY breaking parameters. To be more precise we assume that the squark and slepton
mass matrices are very close to being proportional to the unit matrix and that the trilinear
couplings are hierarchical and dominated by the 3-3 element.

For the up-type quarks we can use the tree-level matching relation for SM and MSSM
Yukawa couplings in the DR scheme,

sinβ Y u
MSSM = Y u

SM , (2.14)

since their threshold corrections are proportional to cotβ � 1.
For the Yukawa couplings of the charged leptons and down-type quarks there are tanβ

enhanced threshold corrections in the matching formulas

cosβ(1 + εl tanβ) Y e
MSSM = Y e

SM , (2.15)

cosβ diag (1 + εq tanβ, 1 + εq tanβ, 1 + εb tanβ) Y d
MSSM = Y d

SM , (2.16)

where we have used the conventions as in Ref. [66] but we defined here εb ≡ εA + εq.
Note that Y e

MSSM and Y d
MSSM are not diagonal in our approach and we determine the

corresponding low energy mixing parameters from these matrices after the matching.
In the following, if we do not specify SM or MSSM we refer to MSSM DR quantities.

2.5 Fitting Procedure

For every point in the GUT parameter space that is scanned over we extract the fermion
observables Otheo

i at 1 TeV and compare it to the experimental data Oexp
i with the χ2-function

χ2 =
15∑
i=1

(
Otheo
i −Oexp

i

σi

)2

+
4∑
i=1

χ2
PMNS,i , (2.17)
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where σi are the standard deviations of the experimental observables. The first term in
Eq. (2.17) includes the masses of quarks (6 observables) and charged leptons (3 observables)
as well as the CKM parameters (4 observables) and the mass squared differences of the light
neutrinos (2 observables). For these we use a Gaussian error.

The NuFit 3.0 results for the mass squared differences of the neutrinos are

∆m2
21 = (7.50± 0.18)× 10−5 eV2 , (2.18)

∆m2
31 = (2.524± 0.0395)× 10−3 eV2 . (2.19)

The other Gaussian observables are listed in Table 4 in the column ’1 TeV’. For reference we
also show the corresponding results in the MS scheme in Table 3.

The Gaussian treatment of the errors would be yet inadequate for the PMNS parameters.
Therefore, for these we use the corresponding χ2-profiles from NuFit 3.0 [67], which are
represented in the second term in Eq. (2.17). Our implementation also includes a check for
inverted or normal mass ordering to ensure the right distribution is used. In particular we
also include the second (higher) χ2 minimum of θl23. In that way, also the CP phase δlCP

can be included although it is not yet measured directly. Note that neutrino observables are
treated here as tree-level observables and consequently by definition do not take part in the
running under the renormalisation group. Considering this, we employ the results of NuFit

3.0 directly at MSUSY = 1 TeV.
Altogether, we have 19 observables and 22 parameters in the fit, including the three

threshold parameters εb, εq and εl. As these stem from 1-loop corrections, we allow for them
the following ranges:

−0.05 ≤ εq ≤ 0.05 , (2.20)

−0.10 ≤ εb ≤ 0.10 , (2.21)

−0.03 ≤ εl ≤ 0.03 , (2.22)

see, for example, Refs. [59, 64, 66, 68]. The corrections to quarks are generally larger since
they receive SUSY QCD corrections. Furthermore, εb receives another correction from the
potentially large stop trilinear SUSY breaking coupling. One might worry here that the
corrections become non-perturbative, since our scan allows, e.g., |εb tanβ| > 1. But this
is not the case since there are no higher order corrections O((εb tanβ)n) with n ≥ 2, see,
e.g., [69].

In order to perform the fits we link our C++ code to the Sbplx/Subplex [70,71] and ISRES
algorithms [70,72,73] implemented in the NLopt 2.4.2 library [70]. The extensive numerical
fits are performed on the TTP computing cluster. As these are highly time consuming we do
not include two minor online-updates of the NuFit results which appeared in the meantime.

3 Results of the SUSY SO(10) Fit to Flavour Data

In the following, we present our results for the χ2 fit of SUSY SO(10) models to the quark
and lepton flavour data given at 1 TeV as described in Section 2.5. First, we present the
global minima, which show that threshold corrections are essential to get a good fit in our
setup. Afterwards, we present the χ2-profiles for the SUSY threshold parameters.
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Table 5: Results of the global minimisation. Minimal χ2, pulls of the observables in the
DR scheme (for the definition of pulls see Eqs. (3.1) and (3.2)) for different values of tanβ as
well as our best-fit values for the light neutrino masses and SUSY threshold corrections (TC)
if included in the fit.

w/o TC with TC

tanβ 10 38 50 10 38 50

χ2 127.0 94.69 75.43 40.37 1.74 3.74

Pulls yu 0.19 0.29 0.12 0.01 0.25 -0.17
yc 2.73 2.71 2.44 1.66 0.19 0.11
yt -2.06 -2.01 -1.85 -1.26 -0.35 0.06

yd -7.42 -8.08 -6.30 -4.53 0.82 1.26
ys 0.90 2.12 1.17 -0.12 -0.17 -0.42
yb -0.36 -0.55 0.39 -0.22 -0.04 -0.15

θq12 0.62 0.45 0.38 0.11 -0.05 -0.08
θq13 -0.71 -1.03 -0.42 2.81 0.35 -0.11
θq23 -0.38 -0.58 0.40 -1.61 0.52 -0.49
δqCP 1.51 0.64 0.77 0.38 -0.12 -0.16

ye 0.01 0.01 0.04 0.17 -0.08 -0.04
yµ -0.30 -0.73 -0.33 0.28 -0.15 0.04
yτ 0.42 0.14 0.19 0.30 -0.17 0.00

∆m2
21 0.81 0.17 0.49 -0.30 -0.05 0.03

∆m2
32 -0.25 -0.11 -0.31 0.19 0.03 -0.02

θl12 -1.30 -0.45 -0.87 -1.07 -0.02 -0.01
θl13 -4.13 -0.40 -0.93 0.72 0.00 -0.04
θl23 -5.74 -2.67 -4.29 -0.48 0.18 -0.26
δlCP -1.83 -1.73 -1.78 1.61 0.56 1.24

Best-fit values mν,1 in meV 2.4 2.6 2.4 1.8 2.4 2.0
mν,2 in meV 9.1 9.1 9.0 8.8 9.0 8.9
mν,3 in meV 50.2 50.3 50.2 50.3 50.3 50.3

εq/10−2 – – – 5.00 2.80 4.72
εb/10−2 – – – -7.35 -4.06 -0.60
εl/10−2 – – – -3.00 -0.60 0.13

.
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Figure 1: Results of the global minimisation. Pulls of the observables for different values
of tanβ without (top) and with (bottom) SUSY threshold corrections.
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3.1 Comparison of the Global Minima

We search for the global minima for three different values of tanβ = 10, 38 and 50 as well
as both with and without SUSY threshold corrections so that we have six global minima
in total. The results of our global minimisation can be found in Table 5. The table shows
the minimal χ2 from our scan, the pulls of the SM observables as well as the predictions for
the light neutrino masses and the needed value of the threshold corrections in case they are
included. We define the pull for an observable Oi with a Gaussian error by

pulli =
Otheo
i −Oexp

i

σi
. (3.1)

For the PMNS parameters we use the χ2-distribution and the best-fit values of NuFit Obest−fit
i

to define
pulli = sign (Otheo

i −Obest−fit
i )

√
χ2

PMNS,i . (3.2)

Additionally, these pulls are also visualised in the bar charts of Fig. 1. The corresponding
detailed fit parameters at the GUT scale are given in Appendix B.

Without including SUSY threshold corrections we find a poor description of the data by
our SO(10) setup, with best fit points having χ2 > 70. It turns out that this is especially
triggered by the high precision of quark mass determinations on the lattice, in particular, for
the down-type quark Yukawa coupling the tension is for all three values of tanβ more than
6σ. There is another major tension in the atmospheric mixing angle where the modulus of
the pull is always larger than 2 and even larger than 5 for tanβ = 10.

Note that the fit without threshold corrections has as many parameters as observables,
and including threshold corrections we have three parameters more than observables so that
one might expect to see a perfect fit. However, the dependence of the observables on the
parameters is highly non-linear, so that the expectation of a perfect fit in this case is mislead-
ing. Indeed, the observables are singular values of complex matrices with a strong hierarchical
structure and are coupled via non-linear differential equations. This also leads to the fact
that not every GUT scale fit parameter enters the same low-scale observables. For instance,
the 1-1 elements of the Yukawa matrices will practically not affect the masses of the third
generation fermions, whereas the 3-3 elements affect all other couplings and together with the
2-3 elements determine the mixing between second and third generation.

Having more parameters than observables the statistical interpretation of χ2 is not straight
forward. Nevertheless, we can still use the χ2 information in order to compare different fit
scenarios. First of all, our results clearly prefer a large tanβ which is a well-known result. Our
minimal SO(10) setup is hardly viable without threshold corrections and for tanβ = 10 even
including that corrections, see Table 5. Therefore, we conclude that sizeable, i.e., percent
order SUSY threshold corrections and large values of tanβ are needed in order to be in
accordance with data. Note that for tanβ = 10 at the global minimum we have εq = 0.05 and
εl = −0.03 which are both at the edges of the respective allowed ranges for these parameters.
That means the fit would prefer larger values of εq and εl or larger tanβ.

Comparing the pulls of the different observables, it is remarkable that besides yd we find
large discrepancies in the neutrino observables. This makes a thorough treatment of the
right-handed neutrinos necessary: We treat them in an effective field theory picture where
each of them is integrated out at its mass scale, as described in detail in Ref. [53].

Within our setup we always find the neutrinos to have a normal mass hierarchy with
the heaviest neutrino having a mass of about 50 meV. The sum of light neutrino masses is
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below the cosmological bound
∑
mν . 0.23 eV/c2 [74] for all global minima. The same holds

obviously for the effective β-decay mass

m2
ν,β =

3∑
i=1

|V l
ei|2m2

ν,i, (3.3)

where the current upper bound is mν,β < 2.05 eV [75]. Our best-fit results are also far
below the sensitivity of KATRIN [76] which is expected to improve this bound by an order
of magnitude.

3.2 Likelihood Profiles for Threshold Corrections

Given the importance of the SUSY threshold corrections for the goodness of fit of SO(10)
models to fermion masses, see Section 3.1, it is an interesting question how sensitive the data is
to the magnitude of the threshold corrections. This has in particular non-trivial implications
for potential concrete SUSY spectra. In order to answer this question, we determine the χ2-
profiles of εb, εq and εl, which are shown in Fig. 2. On the left-hand side we show the results
over the full range that we allow, see Eqs. (2.20)–(2.22), while on the right-hand side we zoom
into the interesting regions around the minima for tanβ = 38, 50. Around the minima we
increased the number of points to exclude possible numerical artefacts and to obtain a better
resolution of the profile.

Keeping in mind that the threshold corrections get multiplied by tanβ, see Eqs. (2.15)
and (2.16), we first like to discuss the case of tanβ = 10. In this case, the χ2-profiles have
in general less features than for tanβ = 38, 50. Still, there is a distinct minimum in the
εb-profile and a clear preference for smaller values of εl and larger values of εq. Actually, the
global minimum lies on the border of the allowed ranges for εq and εl as we mentioned before.

Interestingly, for tanβ = 38 and tanβ = 50 we see two competing narrow minima in the
χ2-profile of εb. In fact, our fit fixes the viable values for εb to narrow intervals which can be
an interesting input for SUSY model building and phenomenology. Furthermore, we obtain
that εb < 0 whereas εq > 0. This means that the fit favours to decrease the bottom Yukawa
coupling and to increase the Yukawa coupling for the strange quark and down quark.

As a curiosity, we note that in our scans the deeper of the two minima for tanβ = 38
is the one with smaller εb while for tanβ = 50 it is the other way around. In particular for
tanβ = 50 the minima are almost degenerate with χ2 = 3.7 and χ2 = 4.7. It might be an
interesting observation for SUSY phenomenology, that the two minima competing correspond
to either εb tanβ < −1 or −1 < εb tanβ < 0, respectively.

Altogether, it is interesting to note that the largest tensions, cf. Figs. 1 and 3, are in the
down quark mass, up quark mass, θq13 and the leptonic CP phase δlCP. Especially, for the light
quark masses and the leptonic CP phase we expect a significant reduction in the uncertainties
in the next decade which might help to disfavour one of the two minima or even both minima.
The importance of the leptonic CP phase for SO(10) fits was also noticed already, e.g., in
Ref. [45]. This again shows that, although we have more parameters than observables, we
can still make qualitative statements.

12



 1

 10

 100

 1000

 10000

 100000

-0.1 -0.05  0  0.05  0.1

χ2

εb

tan β = 10
tan β = 38
tan β = 50

 1

 10

 100

 1000

 10000

-0.05 -0.04 -0.03 -0.02 -0.01  0
χ2

εb

tan β = 10
tan β = 38
tan β = 50

 1

 10

 100

 1000

 10000

 100000

 1x106

-0.04 -0.02  0  0.02  0.04

χ2

εq

tan β = 10
tan β = 38
tan β = 50

 1

 10

 100

 1000

 0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

χ2

εq

tan β = 10
tan β = 38
tan β = 50

 1

 10

 100

 1000

 10000

 100000

-0.03 -0.02 -0.01  0  0.01  0.02  0.03

χ2

εl

tan β = 10
tan β = 38
tan β = 50

 1

 10

 100

 1000

-0.01 -0.008 -0.006 -0.004 -0.002  0  0.002  0.004  0.006

χ2

εl

tan β = 10
tan β = 38
tan β = 50

Figure 2: Results of the minimisation for fixed values of the threshold corrections.
The circles mark the global minima. The left plots show the full range of the fit whereas the
right plots are zoomed around the global minima.
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Figure 3: Comparison of global minima and local minima. Shown are the pulls of the
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14



4 Summary and Conclusions

SUSY SO(10) is one of the best motivated extensions of the SM and due to its aesthetics it
served as a guiding principle in particle physics for quite a while. Yet, as no signs of SUSY
or proton decay have been seen in experimental searches, it still remains uncertain if SUSY
GUTs are just a dream or if they have indeed something to do with nature.

Fermion masses and mixing can give a partial answer to this question. In this work we
have fitted a minimal SO(10) Yukawa sector to recent data for fermion masses and mixing.
Regarding the available data, compared to most previous studies there is a quite significant
reduction of uncertainties for light quark masses and neutrino mixing parameters. These
changes are so drastic that minimal SUSY SO(10) without the inclusion of sizeable SUSY
threshold corrections is highly disfavoured nowadays.

Although it was known for quite a while already that these corrections are generically
large and important [3] they were usually neglected in fits. Even in our rather minimal setup
the Yukawa sector has already 19 parameters which we fit to 19 observables. SUSY thresholds
plausibly add at least another three parameters which we have included here increasing the
computational needs quite drastically.

In fact, we did not only include them but also provide for them χ2-profiles for the first
time to our knowledge. These turn out to be particularly interesting for the third generation
parameter εb. We find two rather narrow minima for tanβ = 38 and 50 each, all of them
with an acceptable χ2 < 5. These precise predictions for εb have consequences for the SUSY
spectrum and phenomenology which nevertheless goes beyond the scope of the current work.
Unfortunately, we could not identify here a general set of observables which allows us to
distinguish between the two solutions for both tanβ values. In principle, once the SUSY
spectrum is known we can directly calculate the ε-parameters which would provide a definite
answer.

Until then a more precise determination of the light quark masses and neutrino mixing
observables will help to challenge some of the minima which we have found here. The good
thing is that we expect a significant progress for these observables in the next years before a
detailed knowledge of the SUSY spectrum could realistically be available.

In particular, we would like to highlight here the role of the leptonic Dirac CP violating
phase δlCP which creates a considerable contribution to the χ2 for most of the found minima.
Hence, with the measurement of low energy leptonic CP violation we can test SUSY SO(10).

In summary, we see that with the emergence of precision neutrino data and improved
lattice calculations SUSY SO(10) can be challenged. So that in the near future we might find
out, if we have been foolishly dreaming or following a path towards a deeper understanding
of nature.
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A SM Observables at Various Scales

The quark masses (except for the top quark) and the value of α
(5)
s are taken from Ref. [56],

as described in Section 2.3. For the mass of the top quark we use the PDG average mt,pole =
174.2± 1.4 GeV [57]. At two-loop accuracy also the quartic Higgs coupling contributes to the
RGE running of the Yukawas in the SM

λ =
2mHiggs

v2
. (A.1)

This convention is in accordance with the convention used in the two-loop RGEs, i.e. the
quartic term in the SM Higgs potential is given by λ(φ†φ)2/4. We calculate λ from the Higgs
mass measurement mHiggs = 125.09± 0.24 GeV [57].

The values for the charged lepton Yukawa couplings and the electroweak gauge couplings
have already been given in Ref. [59]

106 × Ye(MZ) = 2.794745± 0.0000155 , (A.2)

104 × Yµ(MZ) = 5.899863± 0.0000185 , (A.3)

102 × Yτ (MZ) = 1.002950± 0.0000905 , (A.4)

g1(MZ) = 0.461425± 0.0000435 , (A.5)

g2(MZ) = 0.65184± 0.000175 . (A.6)

For the CKM matrix we use the updated results of the CKMfitter group as presented at
ICHEP 2016 [60]. We translate from the Wolfenstein parametrisation to the parametrisation
of the PDG and obtain

θq12 = 0.227035± 0.000293 (A.7)

θq13 = 0.003712± 0.000139 (A.8)

θq23 = 0.0418112± 0.000567 (A.9)

δqCP = 1.1430± 0.0108 (A.10)

In Table 3 all these values are given at 1 TeV, 3 TeV and 10 TeV, respectively. The procedure
of RGE running is described in Sec. 2.3. For use within SUSY models the values have also
been converted to the DR scheme, cf. Table 4.

B GUT Scale Parameters for the Global Minima

For reference, we give here the coordinates of our global minima to a high numerical precision,
which allows the reproduction of the results given in Table 5. We determine the GUT scale by
minimising the sum of the squared differences of the gauge couplings. The central values of the
Yukawa couplings are included in the running to the GUT scale. At MGUT = 1.35276× 1016

we find
g1 = 0.706132, g2 = 0.708008, g3 = 0.705465.

In all fits, these values remain fixed. The parametrisation of the MSSM Yukawa matrices is
given in Eqs. (2.2)-(2.7). If SUSY threshold corrections are included, their value at MSUSY is
also given below. The parametrisation of the SO(10) Yukawa couplings is

Y10 = diag (H1, H2, H3) , Y126 =

F1 F2 F3

F2 F4 F5

F3 F5 F6

 .
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B.1 Global Minima without SUSY Threshold Corrections

We list here our fit results for the coordinates of the global minima without SUSY threshold
corrections for different values of tanβ. For reference, we use a high numerical precision.

tanβ = 10, no threshold corrections, χ2 = 127.016

r = 8.93109 , s = 0.40219 + 0.0537018 i ,

rR = 5.7222× 1014 GeV , H1 = −8.13678× 10−6 ,

H2 = 0.000546749 , H3 = 0.0587967 ,

F1 = (3.62943 + 1.11577 i)× 10−5 , F2 = (−4.86448− 6.8181 i)× 10−5 ,

F3 = −8.669× 10−5 + 0.00101114 i , F4 = −0.00122229 + 0.000483037 i ,

F5 = 0.00229999− 0.00243838 i , F6 = −0.00436435 + 0.000144527 i .

tanβ = 38, no threshold corrections, χ2 = 94.6859

r = 2.09333 , s = 0.361579 + 0.00221939 i ,

rR = −1.01454× 1014 GeV , H1 = −3.76306× 10−5 ,

H2 = 0.0017972 , H3 = 0.254405 ,

F1 = 0.000100472 + 0.000137311 i , F2 = 3.1103× 10−5 + 0.000457557 i ,

F3 = −0.00260288 + 0.0039351 i , F4 = −0.00474944 + 0.00161864 i ,

F5 = −0.0107501 + 0.00940057 i , F6 = −0.0119578− 0.047225 i .

tanβ = 50, no threshold corrections, χ2 = 75.428

r = −1.351 , s = 0.380723 + 0.0112833 i ,

rR = 7.08356× 1013 GeV , H1 = −5.44756× 10−5 ,

H2 = 0.00295336 , H3 = 0.418203 ,

F1 = 0.000198815 + 0.000167965 i , F2 = 0.000197095 + 0.00060758 i ,

F3 = 0.00302059− 0.00664685 i , F4 = −0.00713153 + 0.00251093 i ,

F5 = 0.0167445− 0.0153386 i , F6 = −0.0253209− 0.0530162 i .

B.2 Global Minima with SUSY Threshold Corrections

Here we give our fit results for the coordinates of the global minima including SUSY threshold
corrections, again with a high numerical precision, see above.
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tanβ = 10, with threshold corrections, χ2 = 40.3671

r = 2.68759 , s = 0.146006− 0.258778 i ,

rR = 4.05262× 1013 GeV , H1 = 5.28137× 10−6 ,

H2 = 0.000694187 , H3 = 0.186542 ,

F1 = (−7.52986− 11.2321 i)× 10−6 , F2 = (−5.92321− 9.76299 i)× 10−5 ,

F3 = 0.000578945 + 0.000363829 i , F4 = 6.89316× 10−5 − 0.000631902 i ,

F5 = 0.0100828 + 0.000256401 i , F6 = 0.0424372 + 0.028391 i ,

εq = 0.05000 , εb = −0.07348963 ,

εl = −0.02999953 .

tanβ = 38, with threshold corrections, χ2 = 1.74389

r = 0.739487 , s = 0.171775− 0.0527206 i ,

rR = 3.00163× 1012 GeV , H1 = 1.74192× 10−5 ,

H2 = 0.00263311 , H3 = 0.873783 ,

F1 = (−4.52508− 1.40042)× 10−5 i , F2 = −0.000670712− 0.000352788 i ,

F3 = 0.00257905 + 0.000499293 i , F4 = −0.00325008− 0.0013532 i ,

F5 = 0.0128581 + 0.0601288 i , F6 = 0.474974 + 0.216717 i ,

εq = 0.02796541 , εb = −0.04061278 ,

εl = −0.006000 .

tanβ = 50, with threshold corrections, χ2 = 3.73552

r = 0.699764 , s = 0.137602− 0.0279775 i ,

rR = 2.33× 1012 GeV , H1 = 1.21069× 10−5 ,

H2 = 0.00246264 , H3 = 0.988718 ,

F1 = (−4.09545− 1.24086 i)× 10−5 , F2 = 0.000472532 + 0.00031884 i ,

F3 = 0.00483506 + 0.00119957 i , F4 = −0.00190458 + 0.00028723 i ,

F5 = −0.0316564− 0.0584933 i , F6 = 0.607543 + 0.0633526 i ,

εq = 0.04720754 , εb = −0.006000 ,

εl = 0.001271233 .

B.3 Local Minima with SUSY Threshold Corrections

Here we give our fit results for the coordinates of the local minima of εb including SUSY
threshold corrections, again with a high numerical precision, see above.
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tanβ = 38, with threshold corrections, χ2 = 3.71108

r = 0.670043 , s = 0.11989− 0.0413042 i ,

rR = 2.03128× 1012 GeV , H1 = 1.09545× 10−5 ,

H2 = 0.00255376 , H3 = 1.05489 ,

F1 = −3.38058× 10−5 − 5.62988× 10−10 i , F2 = −0.00040558− 0.000269377 i ,

F3 = 0.00523839 + 0.000883983 i , F4 = −0.00226047 + 0.000662944 i ,

F5 = 0.0259931 + 0.063712 i , F6 = 0.622678 + 0.0958844 i ,

εq = 0.04999992 , εb = −0.01243252 ,

εl = −0.0048000 .

tanβ = 50, with threshold corrections, χ2 = 4.6864

r = 0.719454 , s = 0.17033− 0.0410235 i ,

rR = 2.89057× 1012 GeV , H1 = 1.14972× 10−5 ,

H2 = 0.00276048 , H3 = 0.898288 ,

F1 = (−3.87624− 1.31146 i)× 10−5 , F2 = −0.000600001− 0.000317934 i

F3 = −0.00275464− 0.00102727 i , F4 = −0.00375989− 0.00115394 i

F5 = −0.0164547− 0.0618966 i , F6 = 0.552 + 0.0273906 i

εq = 0.4246740 , εb = −0.3408847 ,

εl = 0.0020000 .
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