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Abstract: We explore supersymmetric contributions to the decay K0
S → µ+µ−, in light

of current experimental data. The Standard Model (SM) predicts B(K0
S → µ+µ−) ≈

5 × 10−12. We find that contributions arising from flavour violating Higgs penguins can
enhance the branching fraction up to ≈ 35×10−12 within different scenarios of the Minimal
Supersymmetric Standard Model (MSSM), as well as suppress it down to ≈ 0.78 × 10−12.
Regions with fine-tuned parameters can bring the branching fraction up to the current
experimental upper bound, 8× 10−10. The mass degeneracy of the heavy Higgs bosons in
MSSM induces correlations between B(K0

S → µ+µ−) and B(K0
L → µ+µ−). Predictions for

the CP asymmetry in K0 → µ+µ− decays in the context of MSSM are also given, and can
be up to eight times bigger than in the SM.
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1 Introduction

Leptonic decays of pseudoscalar mesons with down-type quarks are known to be very sen-
sitive to the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), due
to, among others, enhancement factors proportional to

(
tan6 β/M4

A

)
.#1 This factor comes

from the so-called non-holomorphic Yukawa terms at large tanβ [1–6], which are triggered
by the supersymmetric (SUSY) µ term, and hence the non-SUSY two-Higgs-doublet model
cannot produce this enhancement [5]. The best known example is B0

s → µ+µ− [1–15]. If
Minimal Flavour Violation (MFV) is imposed, then B0

s → µ+µ− is the dominant constraint
in P → µ+µ− decays. This is due to the stronger Yukawa coupling of the b–quark com-
pared to the s–quark, and to the better experimental precision in B0

s → µ+µ− compared
to B0

d → µ+µ−. However, in the presence of new sources of flavour violation, the sensi-
tivity of each mode depends on the flavour and CP structures of the corresponding terms.
Hence, a priori, B0

s → µ+µ−, B0
d → µ+µ−, K0

S → µ+µ−, and K0
L → µ+µ− are all separate

constraints that carry complementary information in the general MSSM. The observables
related to these decay modes are typically branching fractions and CP asymmetries. Even
though the muon polarization could carry interesting information, it cannot be observed by
current experiments.

In this paper, we focus on the MSSM effects in the K0
S → µ+µ− decay. The Standard

Model (SM) expectation is (5.18 ± 1.50LD ± 0.02SD) × 10−12 [16–18], where the first un-
certainty comes from the long-distance (LD) contribution and the second one comes from
the short-distance (SD) contribution. On the other hand, the current experimental upper
bound is 8 × 10−10 at 90% C.L., using 3 fb−1 of LHCb data [19]. The LHCb upgrade
could reach sensitivities at the level of about 1× 10−11 or even below, approaching the SM
prediction [20].

We predict the branching ratio B(K0
S → µ+µ−) under consideration of MSSM con-

tributions and taking into account the relevant experimental constraints on the branching
fractions B(K0

L → µ+µ−), B(B+ → τ+ντ ) and B(K+ → µ+νµ), the CP violation parame-
ters ε′K/εK and εK , the K0

L–K
0
S mass difference, ∆MK ≡MK0

L
−MK0

S
> 0, and the Wilson

coefficient C7 from b→ sγ. We use the Mass Insertion Approximation (MIA) [21], treating
the mass insertion terms as phenomenological parameters at the SUSY scale. The details
of the formalism are given in section 2. The subsets of the MSSM parameter space are
studied in scans performed on Graphics Processing Units (GPU), as detailed in section 3.
The results are shown in section 4 and conclusions are drawn in section 5.

2 Formalism

2.1 Definitions

In this paper, we follow the notations of ref. [22, 23]. We denote the right-handed down
and up squarks as D and U . On the other hand, the two left-handed squarks have the same
mass because of the SU(2)L doublet, and they are denoted as Q. The average of the Q, D,
and U -squark masses squared are denoted by m̃2

Q, m̃
2
d, m̃

2
u, respectively.

#1Note that this enhancement factor is not present in the up-type quark case.
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The mass insertions (hereafter MIs) are defined as:

(
δLLd

)
ij

=

[(
M2

D

)
LL

]
ij

m̃2
Q

=
(m2

Q)ji

m̃2
Q

, (2.1)

(
δLLu

)
ij

=

[(
M2

U

)
LL

]
ij

m̃2
Q

=
(V m2

QV
†)ji

m̃2
Q

, (2.2)

(
δRRd

)
ij

=

[(
M2

D

)
RR

]
ij

m̃2
d

=
(m2

D)ij
m̃2
d

, (2.3)

where V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix andM2
D,U are the 6×6 squark

mass matrices. Note that the indices ij are inverted for LL. Comparison with the SUSY
Les Houches Accord 2 convention [24] is given in the appendix of ref. [22].

The running coupling constants α1, α2, and α3 are defined as

α1 =
g2

1

4π
=

5

3

g′2

4π
, (2.4)

α2 =
g2

2

4π
=
g2

4π
, (2.5)

α3 =
g2

3

4π
=
g2
s

4π
, (2.6)

where g′, g, and gs are the U(1)Y , SU(2)L, and SU(3)C group coupling constants, respec-
tively. In the following, these couplings are evaluated at the µSUSY scale, where we define
µSUSY =

√
m̃QM3.

2.2 Observables

As will be shown in the next subsections, the main MSSM contribution to B(K0
S → µ+µ−)

is proportional to
[(
δ
LL(RR)
d

)
12
µ tan3 βM3/M

2
A

]2
. In order to constrain those parameters,

the following observables are calculated in addition to B(K0
S → µ+µ−):

• Observables sensitive, among others, to the off-diagonal mass insertion terms
(
δ
LL(RR)
d

)
12
:

B(K0
L → µ+µ−) , ε′K/εK , εK , and ∆MK .#2

• Observables sensitive to tanβ and the heavy Higgs mass: B(B+ → τ+ντ ), B(K+ →
µ+νµ), ∆C7.

The definitions of B(B+ → τ+ντ ), B(K+ → µ+νµ), and C7 are given in ref. [22] and
the remaining observables are defined in the following subsections. The CKM matrix is
fitted excluding measurements with potential sensitivity to MSSM contributions.

The constraints we impose on physics observables sensitive to the MSSM same param-
eters as B(K0

S → µ+µ−) are listed in table 1, where the EXP/SM represents the measured
value over the SM prediction with their uncertainties. Due to the poor theoretical knowl-
edge of ∆MK , we asign a 100% theoretical uncertainty; thus, the constraint imposed on

#2 The contributions to B(K → πνν) are controlled by an additional free parameter, the slepton mass,
and O(1) effects are possible in this scenario [25].
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Observable Constraint
B(K0

S → µ+µ−)EXP/SM unconstrained

B(K0
L → µ+µ−)EXP/SM 1.00± 0.12 (+) [18, 33, 34]

0.84± 0.16 (−) [18, 33, 34]
∆M

EXP/SM
K 1± 1

ε
EXP/SM
K 1.05± 0.10 [34–36]

∆(ε′K/εK)EXP−SM [15.5± 2.3(EXP)± 5.07(TH)]× 10−4 [34, 37]
B(B+ → τ+ντ )EXP/SM 0.91± 0.22 [34]
B(K+ → µ+νµ)EXP/SM 1.0004± 0.0095 [34]

∆C7 −0.02± 0.02 [38]
tanβ:MA plane ATLAS limits for hMSSM scenario [39]

LSP Lightest neutralino
BG 1± 3(TH) [40, 41]

Table 1. Physics observables constraints imposed in this study. The two different constraints on
B(K0

L → µ+µ−)EXP/SM arise from an unknown sign of AµLγγ in eq. (2.16) (see refs. [18, 33]).

this observable penalizes only O(1) effects. It is not counted as a degree of freedom in the
χ2 tests, so that the ∆MK constraint can only make the bounds tighter, but never looser.
Remaining constraints can in principle be satisfied by adjusting the other parameters of
the model. In particular, B physics constraints not included in our list can be satisfied
by parameters unspecified in our scan, for example by setting δ13 ≈ δ23 ≈ 0 and small
At. The relation of eq. (2.2) may induce non-zero up-type MIs in the B sector and hence
modify B0

s(d) → µ+µ−, however, we checked that these effects can be safely neglected in the
scenarios we studied. The large SUSY masses in our scan are typically beyond the reach of
LHC.

The lattice values for (ε′K/εK)SM used are from refs. [26–29], although the conclusions
of our study remain largely unchanged if we use the χPT value from refs. [30–32] instead.
The values of εEXP/SMK and ∆(ε′K/εK)EXP−SM are discussed in more detail in the following
subsections.

2.3 K0 → µ+µ−

The |∆S| = 1 effective Hamiltonian relevant for the K0 → `` transition at the Z boson
mass scale is

Heff = −CAQA − C̃AQ̃A − CSQS − C̃SQ̃S − CPQP − C̃P Q̃P + H.c., (2.7)

where CA, CS and CP are the axial, scalar and pseudoscalar Wilson coefficients. The
right-handed and left-handed axial (Q̃A, QA), scalar (QS , Q̃S) and pseudoscalar (QP , Q̃P )
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operators are given by:

QA = (sγµPLd)(`γµγ5`), Q̃A = (sγµPRd)(`γµγ5`),

QS = ms(sPRd)(``), Q̃S = ms(sPLd)(``),

QP = ms(sPRd)(`γ5`), Q̃P = ms(sPLd)(`γ5`), (2.8)

where PL,R are the left and right-handed projection operators. For B(K0
S,L → µ+µ−) #3,

there are two contributions from S-wave (AS,L) and P-wave transitions (BS,L), resulting
in: #4

B(K0
S,L → µ+µ−) = τS,LΓ(K0

S,L → µ+µ−) = τS,L
f2
KM

3
Kβµ

16π

(
|AS,L|2 + β2

µ|BS,L|2
)
, (2.9)

with

AS =
msMK

ms +md
Im(CP − C̃P ) +

2mµ

MK
Im(CA − C̃A), (2.10)

BS =
2G2

FM
2
Wmµ

π2MK
Bµ
Sγγ −

msMK

ms +md
Re(CS − C̃S), (2.11)

and

AL =
2G2

FM
2
Wmµ

π2MK
AµLγγ −

msMK

ms +md
Re(CP − C̃P )− 2mµ

MK
Re(CA − C̃A), (2.12)

BL =
msMK

ms +md
Im(CS − C̃S), (2.13)

where

βµ =

√
1−

4m2
µ

M2
K

. (2.14)

Here, the long-distance contributions are [16–18, 42]:#5

2G2
FM

2
Wmµ

π2MK
Bµ
Sγγ = (−2.65 + 1.14i)× 10−11 (GeV)−2, (2.15)

2G2
FM

2
Wmµ

π2MK
AµLγγ = ±(0.54− 3.96i)× 10−11 (GeV)−2, (2.16)

and τS,L are the K0
S,L lifetimes. Here, fK = (155.9 ± 0.4) MeV [34]. Note that there is

a theoretically and experimentally unknown sign in AµLγγ , which is determined by higher
chiral orders than O(p4) contributions [46, 47], and they provide two different constraints on
B(K0

L → µ+µ−)EXP/SM in table 1. This sign can be determined by a precise measurement
of the interference between K0

L → µ+µ− and K0
S → µ+µ− [18]. In addition, in the MSSM,

#3 The electron modes are suppressed by m2
e/m

2
µ, and we do not consider them in this paper.

#4 Our result agrees with refs. [42–45]. However, it disagrees with notable literature [6, 22] after discarding
the long-distance contributions. We found that CSM

10 should be −CSM
10 in eq. (3.45) of ref. [22], and (CP−C′

P )

should be (C′
P − CP ) in eq. (2.4) of ref. [6].

#5 Note that BµSγγ is denoted by AµSγγ in refs. [18, 42].
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the correlation between B(K0
S → µ+µ−) and B(K0

L → µ+µ−) depends on the unknown sign
of AµLγγ . In the following, we derive some relations between the two branching fractions,
for a better interpretation of the results of our scans. In the case in which new physics
enters only in C̃S and C̃P = C̃S (pure left-handed MSSM scenario), the following relations
between the branching fractions of K0

S and K0
L decaying into µ+µ− can be established:

B
(
K0
S → µ+µ−

)
∝β2

µ

∣∣NLD
S

∣∣2 +
(
ASD
S,SM

)2 − 2MK

[
ASD
S,SMIm(C̃S)− β2

µRe
(
NLD
S

)
Re(C̃S)

]
+M2

K

{[
Im(C̃S)

]2
+ β2

µ

[
Re(C̃S)

]2
}
, (2.17)

B
(
K0
L → µ+µ−

)
∝
∣∣NLD

L

∣∣2 +
(
ASD
L,SM

)2 − 2MKRe(C̃S)
[
ASD
L,SM − Re

(
NLD
L

)]
+M2

K

{[
Re(C̃S)

]2
+ β2

µ

[
Im(C̃S)

]2
}
− 2ASD

L,SMRe
(
NLD
L

)
, (2.18)

with

ASD
S,SM =

2mµ

MK
Im(CA,SM), ASD

L,SM =
2mµ

MK
Re(CA,SM), (2.19)

and

NLD
S =

2G2
FM

2
Wmµ

π2MK
Bµ
Sγγ , NLD

L =
2G2

FM
2
Wmµ

π2MK
AµLγγ , (2.20)

where md terms are discarded for simplicity. The long-distance term Re
(
NLD
L

)
holds the

unknown sign from AµLγγ , which changes the correlation significantly, as will be shown.
On the other hand, if new physics produces only CS and CP = −CS (pure right-handed
MSSM), the two branching fractions are

B
(
K0
S → µ+µ−

)
∝β2

µ

∣∣NLD
S

∣∣2 +
(
ASD
S,SM

)2 − 2MK

[
ASD
S,SMIm(CS) + β2

µRe
(
NLD
S

)
Re(CS)

]
+M2

K

{
[Im(CS)]2 + β2

µ [Re(CS)]2
}
, (2.21)

B
(
K0
L → µ+µ−

)
∝
∣∣NLD

L

∣∣2 +
(
ASD
L,SM

)2 − 2MKRe(CS)
[
ASD
L,SM − Re

(
NLD
L

)]
+M2

K

{
[Re(CS)]2 + β2

µ [Im(CS)]2
}
− 2ASD

L,SMRe
(
NLD
L

)
. (2.22)

It is shown that B
(
K0
L → µ+µ−

)
is the same as the pure left-handed one by a replacement

of CS → C̃S , while B
(
K0
S → µ+µ−

)
is not; the final terms of the first line have opposite

sign. Hence, the relations between the two branching fractions are different for left-handed
and right-handed new physics scenarios.

For those cases, the experimental measurement of B(K0
L → µ+µ−) [34],

B(K0
L → µ+µ−)EXP = (6.84± 0.11)× 10−9, (2.23)

imposes an upper bound on B(K0
S → µ+µ−). This bound can be alleviated if |CS | 6= |CP |

or if new physics is present simultaneously in the left-handed and right-handed Wilson
coefficients.
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Experimentally, one can also access an effective branching ratio of K0
S → µ+µ− [18]

which includes an interference contribution with K0
L → µ+µ− in the neutral kaon sample.

We obtain

B(K0
S → µ+µ−)eff = τS

(∫ tmax

tmin

dte−ΓStε(t)

)−1
[∫ tmax

tmin

dt

{
Γ(K0

S → µ+µ−)e−ΓSt

+
Df2

KM
3
Kβµ

8π
Re
[
i
(
ASAL − β2

µB
∗
SBL

)
e−i∆MKt

]
e−

ΓS+ΓL
2

t

}
ε(t)

]
, (2.24)

where the dilution factor D is a measure of the initial (t = 0) K0–K0 asymmetry,

D =
K0 −K0

K0 +K0
, (2.25)

ε(t) is the decay-time acceptance of the detector. The second line of eq. (2.24) corresponds
to an interference effect between K0

L and K0
S , and for D = 0, B(K0

S → µ+µ−)eff corresponds
to B(K0

S → µ+µ−). The current experimental bound [19],

B(K0
S → µ+µ−)EXP < 8× 10−10 [90% C.L.], (2.26)

uses untagged K0 and K̄0 mesons produced in almost equal amounts, and hence D = 0

is assumed. A pure K0
L → µ+µ− background can be subtracted by a combination of

simultaneous measurement of K0
S → π+π− events and knowledge of the observed value

of B(K0
L → µ+µ−) in eq. (2.23) [18]. The decay-time acceptance of the LHCb detector

is parametrized by ε(t) = exp(−βt) with β ' 86 ns−1, and the range of the detector for
selecting K0 → µ+µ− is tmin = 8.95 ps= 0.1τS and tmax = 130 ps = 1.45τS .

Given the potential measurement of an effective branching ratio by different dilution
factors D > 0 and D′ < 0 using K− tagging and K+ tagging, respectively, the direct
CP asymmetry can be measured using the difference B(K0

S → µ+µ−)eff(D) − B(K0
S →

µ+µ−)eff(D′), which is a theoretically clean quantity that emerges from a genuine direct
CP violation. Therefore, we define the following direct CP asymmetry in K0

S → µ+µ−:

ACP (K0
S → µ+µ−)D,D′ =

B(K0
S → µ+µ−)eff(D)− B(K0

S → µ+µ−)eff(D′)

B(K0
S → µ+µ−)eff(D) + B(K0

S → µ+µ−)eff(D′)
. (2.27)

We discarded the indirect CP -violating contributions because they are numerically negli-
gible compared to the CP -conserving and the direct CP -violating contributions [18].

Within the SM, the Wilson coefficients are,

CA,SM = − [α2(MZ)]2

2M2
W

(V ∗tsVtdYt + V ∗csVcdYc) , (2.28)

C̃A,SM = CS,SM = C̃S,SM = CP,SM = C̃P,SM ' 0, (2.29)

where Yt = 0.950±0.049 and Yc = (2.95±0.46)×10−4 [48]. Using the CKM matrix tailored
for probing the MSSM contributions, we obtain the SM prediction of ACP ,

ACP (K0
S → µ+µ−)SM

D,D′ =

{
− 3.71(D−D′)

(10.53±3.01)−3.71(D+D′) , (+)
3.98(D−D′)

(10.53±3.01)+3.98(D+D′) , (−)
(2.30)
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H, A

K0

sL/R

dR/L

g̃

s̃L/R

s̃R/L

d̃R/L

µ+

µ−

Figure 1. Feynman diagram of the leading (pseudo-)scalar MSSM contributions to K0
S → µ+µ−

and K0
L → µ+µ−, which include a gluino and a heavy Higgs boson. The black dot is the corre-

sponding mass insertion term.

where (+) and (−) correspond to the unknown sign of AµLγγ in eq. (2.16). The uncertainty
is totally dominated by Bµ

Sγγ [18] and it will be sharpened by the dispersive treatment of
K0
S → γ(∗)γ(∗) [49]. If one considers the case of D′ = −D achieved by the accompanying

opposite-charged-kaon tagging, the SM prediction of ACP is simplified:

ACP (K0
S → µ+µ−)SM

D,−D =

{(
−0.704+0.156

−0.281

)
×D, (+)(

+0.756+0.302
−0.168

)
×D. (−)

(2.31)

In the MSSM, the leading contribution to CA, induced by terms of second order in the
expansion of the squark mass matrix of the chargino Z-penguin, is [6, 50],

CA = − (α2)2

16M2
W

[
(M2

U )LR
]∗
23

[
(M2

U )LR
]
13

M4
2

l
(
xQ2 , x

u
2

)
, (2.32)

C̃A = 0, (2.33)

where xQ2 = m̃2
Q/M

2
2 and xu2 = m̃2

u/M
2
2 . The loop function l(x, y) [50] is defined in ap-

pendix B.1. Here, contributions from the Wino-Higgsino mixing are omitted. Setting
m̃2
Q = m̃2

u gives the MIA result of refs. [40, 51].

The leading MSSM contributions to CS(P ) and C̃S(P ) in K0
S → µ+µ− and K0

L → µ+µ−

– 7 –



are shown in figure 1. For CS and C̃S , we obtain

CS =− 2

3

αsα2mµ

M2
W

µM3

M2
Am̃

2
d

(
δRRd

)
12

tan3 β

(1 + εg tanβ)2(1 + ε` tanβ)
G
(
x3
d, x

Q
d

)
− 2

3

αsα2mµ

M2
W

mb

ms

µM3m̃
2
Q

M2
Am̃

4
d

(
δRRd

)
13

(
δLLd

)
32

× tan3 β

(1 + εg tanβ)[1 + (εg + εY y2
t ) tanβ](1 + ε` tanβ)

H
(
x3
d, x

Q
d

)
, (2.34)

C̃S =− 2

3

αsα2mµ

M2
W

µM3

M2
Am̃

2
Q

(
δLLd

)
12

tan3 β

(1 + εg tanβ)2(1 + ε` tanβ)
G
(
x3
Q, x

d
Q

)
− 2

3

αsα2mµ

M2
W

mb

ms

µM3m̃
2
d

M2
Am̃

4
Q

(
δLLd

)
13

(
δRRd

)
32

× tan3 β

(1 + εg tanβ)[1 + (εg + εY y2
t ) tanβ](1 + ε` tanβ)

H
(
x3
Q, x

d
Q

)
+

(α2)2mµm
2
t

8M4
W

µAt
M2
Am̃

2
Q

V ∗tsVtd
tan3 β[1 + (εg + εY y

2
t ) tanβ]2

(1 + εg tanβ)4(1 + ε` tanβ)
F
(
xµQ, x

u
Q

)
+

(α2)2mµ

4M2
W

µM2

M2
Am̃

2
Q

(
δLLu

)
12

tan3 β

(1 + εg tanβ)2(1 + ε` tanβ)
G
(
x2
Q, x

µ
Q

)
, (2.35)

with

εg =
2αs
3π

µM3

m̃2
Q

F
(
x3
Q, x

d
Q

)
, (2.36)

εY =
1

16π

µAt
m̃2
Q

F
(
xµQ, x

u
Q

)
, (2.37)

ε` ' −
3α2

16π
, (2.38)

where x3
d = M2

3 /m̃
2
d, x

Q
d = m̃2

Q/m̃
2
d, x

3
Q = M2

3 /m̃
2
Q, x

d
Q = m̃2

d/m̃
2
Q, x

µ
Q = µ2/m̃2

Q, x
u
Q =

m̃2
u/m̃

2
Q, x

2
Q = M2

2 /m̃
2
Q, and xµQ = µ2/m̃2

Q. The loop functions F (x, y), G(x, y), and
H(x, y) are defined in appendix B.1. These results are consistent with ref. [22] in the
universal squark mass limit after changing the flavor and its chirality for B0

s decay. Here,
we used the following approximation

α ' β − π

2
, MH 'MA, (2.39)

where α is an angle of the orthogonal rotation matrix for the CP -even Higgs mass, and
MH (MA) is a CP -even (odd) heavy Higgs mass. On the other hand, the contributions to
CP and C̃P are

CP = −CS , C̃P = C̃S . (2.40)

Note that the Wilson coefficients in the MSSM are given at the µSUSY scale, and there is
no QCD correction from the renormalization-group (RG) evolution at the leading order.
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2.4 ε′K/εK

New physics models affecting ε′K/εK have recently attracted some attention since lattice
results from the RBC and UKQCD collaborations [26–29] have been reported 2–3σ below
[37, 52] the experimental world average of Re(ε′K/εK) [34]. This is consistent with the
recent calculations in the large-Nc analyses [53, 54]. Although the lattice simulation [29]
includes final-state interactions partially along the line of ref. [55], final-state interactions
have to be still fully included in the calculations in light of a discrepancy of a strong phase
shift δ0 [56–58]. Conversely combining large-Nc methods with chiral loop corrections can
bring the value of ε′K/εK in agreement with the experiment [30–32].

In this paper, we used the hadronic matrix elements obtained by lattice simulations.
For the χ2 test, we use the following constraint,

∆

(
ε′K
εK

)EXP−SM

≡ Re
(
ε′K
εK

)EXP

−
(
ε′K
εK

)SM

= [15.5± 2.3(EXP)± 5.07(TH)]× 10−4,

(2.41)

with (
ε′K
εK

)SM

→
(
ε′K
εK

)SM

+

(
ε′K
εK

)SUSY

, (2.42)

where the SM prediction at the next-to-leading order in ref. [37] is used. The experimental
value of εK is used in the calculation of the ratio. The SUSY contributions to εK are given
in the next subsection.

Within the MSSM, the SUSY contributions to ε′K/εK are dominated by gluino box,
chargino-mediated Z-penguin, and chromomagnetic dipole contributions. The first two
contributions are represented by the same |∆S| = 1 four-quark effective Hamiltonian at the
µSUSY scale, which is:

Heff =
GF√

2

∑
q

4∑
i=1

[
CqiQ

q
i + C̃qi Q̃

q
i

]
+ H.c., (2.43)

with

Qq1 = (s̄d)V−A (q̄q)V+A , Q̃q1 = (s̄d)V+A (q̄q)V−A ,

Qq2 = (s̄αdβ)V−A (q̄βqα)V+A , Q̃q2 = (s̄αdβ)V+A (q̄βqα)V−A ,

Qq3 = (s̄d)V−A (q̄q)V−A , Q̃q3 = (s̄d)V+A (q̄q)V+A ,

Qq4 = (s̄αdβ)V−A (q̄βqα)V−A , Q̃q4 = (s̄αdβ)V+A (q̄βqα)V+A , (2.44)

where (V ∓A) refers to γµ(1∓ γ5), and α and β are color indices.
The Wilson coefficients from the gluino box contributions are leading contributions

when the mass difference between right-handed squarks exists [59, 60]. They are shown
in appendix A.1 with their corresponding loop functions defined in appendix B.2.1. Here,
(δd)13(δd)32 terms are discarded for simplicity.

– 9 –



The Wilson coefficients of the chargino-mediated Z-penguin are induced by terms of
second order in the expansion of MIA. These ones are shown in appendix A.2, where the
loop function l(x, y) is given by eq. (B.1).

The matching conditions to the standard four-quark Wilson coefficients [37] are

s1 = 0, s2 = 0,

s3 = 1
3

(
Cu3 + 2Cd3

)
, s4 = 1

3

(
Cu4 + 2Cd4

)
,

s5 = 1
3

(
Cu1 + 2Cd1

)
, s6 = 1

3

(
Cu2 + 2Cd2

)
,

s7 = 2
3

(
Cu1 − Cd1

)
, s8 = 2

3

(
Cu2 − Cd2

)
,

s9 = 2
3

(
Cu3 − Cd3

)
, s10 = 2

3

(
Cu4 − Cd4

)
.

(2.45)

The coefficients for the opposite-chirality operators, s̃1,...,10, are trivially found from the pre-
vious ones by replacing Cq1,2,3,4 → C̃q1,2,3,4. Using theWilson coefficients ~s = (s1, s2, . . . , s10)T

and ~̃s = (s̃1, s̃2, . . . , s̃10)T at the µSUSY scale, the dominant box and penguin contributions
to ε′K/εK are given by [37]

ε′K
εK

∣∣∣∣
box+pen

=
GFω+

2|εEXPK |ReAEXP
0

〈 ~Qε′(µ)T 〉Û(µ, µSUSY)Im
[
~s− ~̃s

]
, (2.46)

with

ω+ = (4.53± 0.02)× 10−2, (2.47)

|εEXPK | = (2.228± 0.011)× 10−3, (2.48)

ReAEXP
0 = (3.3201± 0.0018)× 10−7 GeV. (2.49)

The hadronic matrix elements at µ = 1.3 GeV, including I = 0 and I = 2 parts, are [37]

〈 ~Qε′(µ)T 〉 =
(

0.345, 0.133, 0.034,−0.179, 0.152, 0.288, 2.653, 17.305, 0.526, 0.281
)
(GeV)3,

(2.50)

and the approximate function of the RG evolution matrix Û(µ, µSUSY) is given in ref. [37].
Next, the |∆S| = 1 chromomagnetic-dipole operator that contributes to ε′K/εK is

Heff = C−g Q
−
g + H.c., (2.51)

with

Q−g = − gs
(4π)2

(
sσµνTAγ5d

)
GAµν . (2.52)

The complete expression for the Wilson coefficient C−g at the µSUSY scale is shown in
appendix A.3, where (δd)13(δd)32 terms are discarded for simplicity. The corresponding loop
functions I(x, y), J(x, y), K(x, y), L(x, y),M3(x), andM4(x) are defined in appendix B.2.2.
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The chromomagnetic-dipole contribution to ε′K/εK is [40]

ε′K
εK

∣∣∣∣
chromo

=
ω+

|εEXPK |ReAEXP
0

(
1− Ω̂eff

) 11
√

3

64π2

M2
πM

2
K

fπ(ms +md)
ηsBGImC−g , (2.53)

where fπ = (130.2± 1.7) MeV [34], and [52, 61, 62]

Ω̂eff = 0.148± 0.080, (2.54)

ηs =

[
αs(mb)

αs(1.3GeV)

] 2
25
[
αs(mt)

αs(mb)

] 2
23
[
αs(µ

SUSY)

αs(mt)

] 2
21

. (2.55)

According to refs. [40, 41], the hadronic matrix element for the chromomagnetic-dipole
operator into two pions, BG, is enhanced by 1/Nc ·M2

K/M
2
π from the large next-to-leading-

order corrections that it receives. Therefore, the leading order in the chiral quark model,
BG = 1, is implausible, and we consider BG = 1± 3 in our analyses.

The other contributions are negligible [59]. Note that the sub-leading contributions
which come from the gluino-mediated photon-penguin and the chargino-mediated Z-penguins
induced by terms of first order in the expansion of the squark mass matrix, have opposite
sign and practically cancel each other [59].

Finally, the SUSY contributions to ε′K/εK are given as(
ε′K
εK

)SUSY

'
ε′K
εK

∣∣∣∣
box+pen

+
ε′K
εK

∣∣∣∣
chromo

. (2.56)

2.5 εK and ∆MK

Although εK is one of the most sensitive quantities to new physics, the SM prediction is
still controversial. Especially, the leading short-distance contribution to εK in the SM is
proportional to |Vcb|4 (cf., ref. [63]), whose measured values from inclusive semileptonic
B decays (B → Xc`

−ν) and from exclusive decays (B → D(∗)`−ν and Λb → Λc`
−ν) are

inconsistent at a 4.1σ level [35, 64]. A recent discussion about the exclusive |Vcb| is given
in refs. [65–67].

In this paper, for the SM prediction, we use [36]

εSM
K = (2.12± 0.18)× 10−3, (2.57)

with

εK = eiϕεεSMK , (2.58)

where ϕε = tan−1(2∆MK/∆ΓK) = (43.51±0.05)◦ [34]. This value and the uncertainty are
based on the inclusive |Vcb| [35], the Wolfenstein parameters in the angle-only-fit method
[68], and the long-distance contribution obtained by the lattice simulation [29]. Combining
the measured value in eq. (2.48), we impose

ε
EXP/SM
K = 1.05± 0.10(TH), (2.59)
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on the χ2 test, with

εSMK → εSMK + εSUSYK . (2.60)

Note that we also impose Re(εK) > 0 from Re(εK) = (1.596± 0.013)× 10−3 [69].
Within the MSSM, the SUSY contributions to εK are dominated by gluino box dia-

grams. In this paper, however, we will focus on their suppressed region. The crossed and
uncrossed gluino-box diagrams give opposite sign contributions and there is a certain can-
cellation region [59, 70], and/or simultaneous mixings of (δLLd ) and (δRRd ) can also produce
the cancellation. Therefore, we also consider the sub-dominant contributions which come
from Wino and Higgsino boxes. The |∆S| = 2 four-quark effective Hamiltonian at the
µSUSY scale is [71]

Heff =
5∑
i=1

CiQi +
3∑
i=1

C̃iQ̃i + H.c., (2.61)

with

Q1 =
(
dγµPLs

) (
dγµPLs

)
, Q2 =

(
dPLs

) (
dPLs

)
, Q3 =

(
dαPLsβ

) (
dβPLsα

)
,

Q4 =
(
dPLs

) (
dPRs

)
, Q5 =

(
dαPLsβ

) (
dβPRsα

)
,

Q̃1 =
(
dγµPRs

) (
dγµPRs

)
, Q̃2 =

(
dPRs

) (
dPRs

)
, Q̃3 =

(
dαPRsβ

) (
dβPRsα

)
. (2.62)

The kaon mixing amplitude M (K)
12 , ∆MK and εK are given by

M
(K)
12 =

〈K0|Heff|K0〉
2MK

, (2.63)

∆MK = 2Re[M (K)
12 ], (2.64)

εK = κε
eiϕε√

2

Im[M
(K)
12 ]

∆MEXP
K

= eiϕεεSUSY
K , (2.65)

where κε = 0.94 ± 0.02 [72]. Using the latest lattice result [73], for the hadronic matrix
elements, we obtain

〈K0| ~Q(µ)|K0〉 =
(

0.00211,−0.04231, 0.01288, 0.09571, 0.02452
)
(GeV)4, (2.66)

with 〈K0|Q̃1,2,3(µ)|K0〉 = 〈K0|Q1,2,3(µ)|K0〉, where µ = 3 GeV and we used ms(µ) =

(81.64± 1.17) MeV and md(µ) = (2.997± 0.049) MeV [73].
The leading-order QCD RG corrections are given by [74]

C1(µ) = ηK1 C1(µSUSY), (2.67)(
C2(µ)

C3(µ)

)
= X23η

K
23X

−1
23

(
C2(µSUSY)

C3(µSUSY)

)
, (2.68)(

C4(µ)

C5(µ)

)
=

(
(ηK1 )−4 1

3

[
(ηK1 )−4 − (ηK1 )

1
2

]
0 (ηK1 )

1
2

)(
C4(µSUSY)

C5(µSUSY)

)
, (2.69)

– 12 –



with

ηK1 =

[
αs(mb)

αs(µ)

] 6
25
[
αs(mt)

αs(mb)

] 6
23
[
αs(µ

SUSY)

αs(mt)

] 6
21

, (2.70)

ηK23 =

(
(ηK1 )

1
6(1−

√
241) 0

0 (ηK1 )
1
6(1+

√
241)

)
, (2.71)

X23 =

(
1
2

(
−15−

√
241
)

1
2

(
−15 +

√
241
)

1 1

)
. (2.72)

The QCD corrections to C̃1,2,3 are the same as C1,2,3.
The Wilson coefficients from the |∆S| = 2 gluino boxes are shown in appendix A.4

with their corresponding loop functions defined in appendix B.3.1. In the universal squark
mass limit, these results are consistent with ref. [22]. Here, the terms proportional to[
(M2

D)LR
]
12

or (δd)13(δd)32 are discarded for simplicity.
The Wilson coefficients and their corresponding loop functions for the sub-leading con-

tributions to εK are given in appendix A.5 and B.3.2, respectively.

3 Parameter scan

The MSSM parameter scan is performed with the framework Ipanema-β [75] using a GPU
of the model GeForce GTX 1080. The samples are a combination of flat scans plus scans
based on genetic algorithms [76]. The cost function used by the genetic algorithm is the
likelihood function with the observable constrains. In addition, aiming to get a dense
population in regions with B(K0

S → µ+µ−) significantly different from the SM prediction,
specific penalty contributions are added to the total cost function. We also perform specific
scans at tanβ ≈ 50 and MA ≈ 1.6 TeV as for those values the chances to get sizable MSSM
effects are larger.

We study three different scenarios (for the ranges of the scanned parameters see table 2):

• Scenario A: A generic scan with universal gaugino masses. No constraint on the Dark
Matter relic density is applied in this case, other than the requirement of neutralino
Lightest Supersymmetric Particle (LSP). The LSP is Bino-like in most cases, although
some points with Higgsino LSP are also found.

• Scenario B: A scan motivated by scenarios with Higgsino Dark Matter. In this sce-
nario, the relic density is mostly function of the LSP mass, which fulfills the measured
density [77] at mχ0

1
≈ 1 TeV [78–81]. Thus, we perform a scan with |µ| = 1 TeV

< M1. We assume universal gaugino masses in this scenario, which then implies that
M3 > 4.5 TeV.

• Scenario C: A scan motivated by scenarios with Wino Dark Matter, which is possi-
ble in mAMSB or pMSSM, although it is under pressure by γ-rays and antiprotons
data [82]. In those scenarios, the relic density is mostly function of the LSP mass,
which fulfills the experimental value [77] at mχ0

1
≈ 3 TeV [81, 83]. Thus, we make a
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Parameter Scenario A Scenario B Scenario C
m̃Q [2, 10] [2, 10] [4, 10]

m̃2
Q/m̃

2
d [0.25, 4] [0.25, 4] [0.25, 4]

M3 [2, 10] [4.5, 15] [4, 15]
tanβ [10, 50] [10, 50] [10, 50]
MA [1, 2] [1, 2] [1, 2]
|µ| [1, 10] 1 [5, 20]
M1

α1(µSUSY )
α3(µSUSY )

M3
α1(µSUSY )
α3(µSUSY )

M3 5

M2
α2(µSUSY )
α3(µSUSY )

M3
α2(µSUSY )
α3(µSUSY )

M3 3
BG [-2, 4] [-2, 4] [-2, 4]

Re
[
(δ
LL(RR)
d )12

]
[-0.2, 0.2] [-0.2, 0.2] [-0.2, 0.2]

Im
[
(δ
LL(RR)
d )12

]
[-0.2, 0.2] [-0.2, 0.2] [-0.2, 0.2]

Table 2. Scan ranges for scenario A, B (motivated by Higgsino Dark Matter) and C (moti-
vated by Wino Dark Matter). All masses are in TeV. The nuisance parameter BG appears in the
chromomagnetic-dipole contribution to ε′K/εK .

scan with M2 = 3 TeV < |µ|,M1,3. The Bino mass M1 is set to 5 TeV for simplicity.
Since it is only necessary in order to ensure that the LSP is Wino-like, any other
value above 3 TeV (such as, e.g., an mAMSB-like relation M1 ≈ 9.7 TeV) could also
be used without changing the obtained results. The lightest neutralino and the light-
est chargino are nearly degenerate, and radiative corrections are expected to bring
the chargino mass to be ≈ 160 MeV heavier than the lightest neutralino [84].

For simplicity, in all cases we set to zero the trilinear couplings and the mass insertions
other than

(
δ
LL(RR)
d

)
12

and
(
δLLu

)
12

which is given by the relations in eq. (2.2), and µ is
treated as a real parameter, with both signs allowed a priori.

We also perform studies at the MFV limit, using RG equations induced MIs in CMSSM.
As expected, no significant effect is found in this case.

For the squark masses, we use m̃Q = m̃u 6= m̃d. This set up is motivated by the SUSY
SU(5) grand unified theory, where Q and U -squark are contained in 10 representation
matter multiplet while D-squark is in 5 representation one. In general, their soft-SUSY
breaking masses are different and depend on couplings between the matter multiplets and
the SUSY breaking spurion field.

4 Results

In the following, we show the main results of our scans. The points with χ2 < 12.5,
corresponding to 95% C.L. for six degrees of freedom, are considered experimentally viable.
The number of degrees of freedom has been calculated as the number of observables, not
counting the nuisance parameter BG, the rigid bound on the tanβ:MA plane, and ∆MK ,
which are not Gaussian distributed. Therefore, the χ2 requirement corresponds to a 95%
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Figure 2. Scenario A B(K0
S → µ+µ−) vs B(K0

L → µ+µ−) for
(
δLLd

)
12
6= 0 and (M3 · µ) > 0

(upper left),
(
δLLd

)
12
6= 0 and (M3 · µ) < 0 (upper right),

(
δRRd

)
12
6= 0 and (M3 · µ) > 0 (lower

left), and
(
δRRd

)
12
6= 0 and (M3 · µ) < 0 (lower right). The cyan dots correspond to AµLγγ > 0 and

the orange crosses to AµLγγ < 0. The vertically hatched area corresponds to the SM prediction for
AµLγγ > 0 and the inclined hatched area corresponds to the SM prediction for AµLγγ < 0.

C.L. or tighter. Similar plots are obtained if one uses a looser bound on the absolute χ2

accompanied with a ∆χ2 < 5.99 across the plane being plotted. Due to the large theory
uncertainty, B(K0

L → µ+µ−) can go up to ≈ 1 × 10−8 at 2σ level. Values slightly above
that limit can still be allowed if they reduce the χ2 contribution in other observables. The
allowed regions are separated by the sign of AµLγγ in eq. (2.16). We also show results for
ACP , which could be experimentally accessed by means of a tagged analysis.

4.1 Effects from
(
δ
LL(RR)
d

)
12

separately

We first study the effects from LL and RR MIs separately. The obtained scatter plots for
B(K0

L → µ+µ−) vs B(K0
S → µ+µ−) and B(K0

S → µ+µ−) vs ε′K/εK are shown in figure 2
and figure 3 for Scenario A, figure 4 and figure 5 for Scenario B, and figure 6 and figure 7
for Scenario C. The points in the planes correspond to predictions from different values of
the input parameters. One should note that in such cases, the SUSY contributions to εK
can be suppressed naturally in a heavy gluino region (M3 & 1.5m̃Q) [59, 70].
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Figure 3. Scenario A ε′K
εK

vs B(K0
S → µ+µ−) for

(
δLLd

)
12
6= 0 and (M3 · µ) > 0 (upper left),(

δLLd
)

12
6= 0 and (M3 · µ) < 0 (upper right),

(
δRRd

)
12
6= 0 and (M3 · µ) > 0 (lower left), and(

δRRd
)

12
6= 0 and (M3 ·µ) < 0 (lower right). The cyan dots correspond to AµLγγ > 0 and the orange

crosses to AµLγγ < 0. The deep purple band corresponds to the experimental results and the hatched
area to the SM prediction.

We can see that the allowed 2σ range for B(K0
S → µ+µ−) is approximately [0.78, 14]×

10−12 for LL-only contributions, and [1.5, 35] × 10−12 for RR-only contributions, without
any need of fine-tuning the parameters to avoid constraints from B(K0

L → µ+µ−). The
MSSM contributions are similar for RR and LL, and the differences on the allowed ranges
for B(K0

S → µ+µ−) arise from the interference with the SM amplitudes in K0
S(L) → µ+µ−,

which are shown in section 2.3. It can also be seen that, in Scenario B the maximum
departure of B(K0

S → µ+µ−) from the SM is smaller than in the other scenarios, since
CS,P ∝ µ and µ is small relative to squark and gluino masses. The allowed regions for
scenarios A and C are very similar to each other, although marginally larger on A. In the
contributions to (ε′K/εK)SUSY, the chromomagnetic-dipole contribution can be significant
in both LL-only and RR-only cases when µ tanβ and BG have large values, while the box
contributions can be significant only via LL MIs [59]. Note that the penguin contributions
to (ε′K/εK)SUSY are neglected in our parameter scan.

The effective branching fraction and CP asymmetry are shown in figure 8 for Scenario
A. Correlation patterns of ACP with other observables can be seen in figure 9, where we
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Figure 4. Scenario B, motivated by Higgsino Dark Matter with universal gaugino masses,
B(K0

S → µ+µ−) vs B(K0
L → µ+µ−) for

(
δLLd

)
12
6= 0 and (M3 · µ) > 0 (upper left),

(
δLLd

)
12
6= 0

and (M3 · µ) < 0 (upper right),
(
δRRd

)
12
6= 0 and (M3 · µ) > 0 (lower left), and

(
δRRd

)
12
6= 0

and (M3 · µ) < 0 (lower right). The cyan dots correspond to AµLγγ > 0 and the orange crosses to
AµLγγ < 0. The vertically hatched area corresponds to the SM prediction for AµLγγ > 0 and the
inclined hatched area corresponds to the SM prediction for AµLγγ < 0.

choose D′ = −D and D = 0.5 for simplicity . We find that CP asymmetries can be up to
≈ 6 (at D = 1), approximately eight times bigger than in the SM. The largest effects are
found in left-handed scenarios. Note that the negative value of B(K0

S → µ+µ−)eff is cured
by inclusion of the background events from K0

L → µ+µ−.
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Figure 5. Scenario B, motivated by Higgsino Dark Matter and universal gaugino masses, ε
′
K

εK
vs

B(K0
S → µ+µ−) for

(
δLLd

)
12
6= 0 and (M3 ·µ) > 0 (upper left),

(
δLLd

)
12
6= 0 and (M3 ·µ) < 0 (upper

right),
(
δRRd

)
12
6= 0 and (M3 · µ) > 0 (lower left), and

(
δRRd

)
12
6= 0 and (M3 · µ) < 0 (lower right).

The cyan dots correspond to AµLγγ < 0 and the orange crosses to AµLγγ > 0. The deep purple band
corresponds to the experimental results and the hatched area to the SM prediction.
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Figure 6. Scenario C (motivated by Wino Dark Matter) B(K0
S → µ+µ−) vs B(K0

L → µ+µ−)

for
(
δLLd

)
12
6= 0 and (M3 · µ) > 0 (upper left),

(
δLLd

)
12
6= 0 and (M3 · µ) < 0 (upper right),(

δRRd
)

12
6= 0 and (M3 · µ) > 0 (lower left), and

(
δRRd

)
12
6= 0 and (M3 · µ) < 0 (lower right). The

cyan dots correspond to AµLγγ > 0 and the orange crosses to AµLγγ < 0. The vertically hatched area
corresponds to the SM prediction for AµLγγ > 0 and the inclined hatched area corresponds to the
SM prediction for AµLγγ < 0.
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Figure 7. Scenario C, motivated by Wino Dark Matter, ε
′
K

εK
vs B(K0

S → µ+µ−) for
(
δLLd

)
12
6= 0

and (M3 · µ) > 0 (upper left),
(
δLLd

)
12
6= 0 and (M3 · µ) < 0 (upper right),

(
δRRd

)
12
6= 0 and

(M3 ·µ) > 0 (lower left), and
(
δRRd

)
12
6= 0 and (M3 ·µ) < 0 (lower right). The cyan dots correspond

to AµLγγ > 0 and the orange crosses to AµLγγ < 0. The deep purple band corresponds to the
experimental results and the hatched area to the SM prediction.

Figure 8. Scenario A,
(
δLLd

)
12
6= 0 and (M3 · µ) < 0. Plots of ACP (K0

S → µ+µ−) vs D
(left) for the case D = −D′ (D > 0) where the cyan dots correspond to AµLγγ > 0, the orange
crosses to AµLγγ < 0, and the deep purple bands correspond to the SM predictions in eq. (2.31).
B(K0

S → µ+µ−)eff vs D (right).
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Figure 9. ACP vs B(K0
S → µ+µ−) (left) and vs ε′K/εK (right). The top panels correspond to

Scenario A,
(
δLLd

)
12
6= 0 and (M3 ·µ) < 0. The bottom panels correspond to Scenario B,

(
δLLd

)
12
6= 0

and (M3 · µ) > 0. The plots are done for D = −D′ = 0.5 . The cyan dots correspond to AµLγγ > 0

and the orange crosses to AµLγγ < 0. The deep purple bands correspond to the experimental value of
ε′K/εK , the vertically hatched areas correspond to the SM prediction for AµLγγ > 0 and the inclined
hatched areas to the SM prediction for AµLγγ < 0 .
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4.2 Floating LL and RR MIs simultaneously

A priori, one possibility to avoid the constraint from B(K0
L → µ+µ−) is to allow simulta-

neously for non-zero LL and RR mass insertions. This way both CS(P ) and C̃S(P ) are non
zero and eqs. (2.17)–(2.22) do not hold. One can then find regions in which the MSSM
contributions to B(K0

S → µ+µ−) do not alter B(K0
L → µ+µ−) significantly.

For instance, if one chooses

Re
[(
δLLd

)
12

]
= −Re

[(
δRRd

)
12

]
, Im

[(
δLLd

)
12

]
= Im

[(
δRRd

)
12

]
, (4.1)

then the SUSY contributions to B(K0
L → µ+µ−) are canceled, while the SUSY contributions

to B(K0
S → µ+µ−) are maximized (see eqs. (2.9)–(2.13)). However, it is known that in

those cases the bounds from ∆MK and εK are very stringent. Using genetic algorithms
with cost functions that target large values of B(K0

S → µ+µ−), we find fine-tuned regions
with B(K0

S → µ+µ−) > 10−10, or even at the level of the current experimental bound of
8× 10−10 at 90% C.L. [19], which are consistent with all our constraints. These points are
located along very narrow strips in the

(
δLLd

)
12

vs
(
δRRd

)
12

planes, as shown in figure 10.
The figure corresponds to Scenario C as it is the one with higher density of points at large
values of B(K0

S → µ+µ−) and the pattern observed in Scenario A is nearly identical. A
particularly favorable region corresponds to the vicinity of eq. (4.1) for |(δLLd )12| ∼ 0.03,
with δLLu given by the symmetry relation of eq. (2.2). They also favor narrow regions in
the squark vs gluino masses planes as shown in figure 4.2. We checked that the values close
to the experimental upper bound can still be obtained even if the constraint on ∆MK is
significantly tightened.

We note that the authors in ref. [35] provide a SM prediction for εK less consistent with
data than the one we used. That prediction is obtained using |Vcb| from exclusive decays.
If we use that value instead of eq. (2.59),

ε
EXP/SM
K = 1.41± 0.16(TH), (4.2)

then we can accommodate more easily LL and RR MIs of similar sizes, and fine-tuned
regions with B(K0

S → µ+µ−) > 10−10 are found with higher chances. The shapes of the
strips in the mass insertion planes do not change substantially.
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Figure 10. Scatter plots of the real (upper left) and the imaginary (upper right) parts of the mass
insertions

(
δRRd

)
12

and
(
δLLd

)
12

for B(K0
S → µ+µ−) > 2× 10−10, of the real vs imaginary

(
δRRd

)
12

(lower left) and of the real vs imaginary
(
δLLd

)
12

(lower right). All points in the plane pass the
experimental constraints defined in section 2. The up-type MI (δLLu )12 is given by eq. (2.2). The
plots correspond to Scenario C, with a sample of 4378 points with B(K0

S → µ+µ−) > 2×10−10 and
χ2 < 12.5, produced after 6M generations of 200k points each. The pattern observed in Scenario A
is very similar.

Figure 11. Scatter plot of the squark and gluino masses for B(K0
S → µ+µ−) > 2 × 10−10 taking

into account the constraints defined in section 2. Left: Scenario A, Right: Scenario C. The χ2 cut
in Scenario A has been relaxed to 14 to increase the density of points.
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4.3 Non degenerate Higgs masses

The results so far have been obtained in the MSSM framework, in which |CS | ≈ |CP |. This
is due to the mass degeneracy MH ≈ MA. In models in which such degeneracy can be
broken, the constraint that B(K0

L → µ+µ−) imposes to B(K0
S → µ+µ−) relaxes the more

those two masses differ. This degeneracy is broken in MSSM at low values of MA, and
requiring tanβ to be small to avoid constraints from tanβ : MA planes from LHC. Those
regions are more difficult to study, since it would require a detailed specification of the
MSSM and test it against bounds of the Higgs sector. The mass degeneracy is also broken
in extensions such as NMSSM. According to our scans, on those hypothetical cases one
could, in principle reach values of B(K0

S → µ+µ−) > 10−10 for mass differences of O(33%)

or larger without fine-tuning the MIs.

5 Conclusions

We explored MSSM contribution to B(K0
S → µ+µ−) for non-zero (δLLd )12 and (δRRd )12 mass

insertions, motivated by the experimental value of ε′K/εK , and in the large tanβ regime.
We find that MSSM contributions to B(K0

S → µ+µ−) can surpass the SM contributions by
up to a factor of seven, reaching the level of 3.5×10−11 even for large SUSY masses, with no
conflict with existing experimental data. This is also the case even if ε′K/εK turns out to be
SM-like as predicted by refs. [30–32]. The 3.5× 10−11 bound is due to the combined effect
of ∆MK , εK , and K0

L → µ+µ− constraints. Such bound is not rigid, and fine-tuned regions
can bring the branching fraction above the 10−10 level, even up to the current experimental
bound; the largest deviations from SM are found at |(δLLd )12| ≈ 2|(δRRd )12| ∼ 0.03 and
arg

[
(δLLd )12

]
≈ −arg

[
(δRRd )12

]
+ π for large squark and gluino masses. We also find that

the CP asymmetry of K0 → µ+µ− can be significantly modified by MSSM contributions,
being up to eight times bigger than the SM prediction in the pure LL case. Finally, we
remind that, for simplicity, we have restricted our study to the main contributions in the
large tanβ regime. Discarded terms could, in principle, provide even more flexibility to the
allowed regions.
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A Wilson coefficients

A.1 |∆S| = 1 gluino box contribution

The Wilson coefficients of the gluino box contributions to ε′K/εK are

Cq1 =
(αs)

2

2
√

2GFM2
3

(
δLLd

)
12

[
1

18
f
(
xQ3 , x

q
3

)
− 5

18
g
(
xQ3 , x

q
3

)]
,

Cq2 =
(αs)

2

2
√

2GFM2
3

(
δLLd

)
12

[
7

6
f
(
xQ3 , x

q
3

)
+

1

6
g
(
xQ3 , x

q
3

)]
,

Cq3 =
(αs)

2

2
√

2GFM2
3

(
δLLd
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12

[
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f
(
xQ3 , x

Q
3
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+

1

36
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Cq4 =
(αs)

2

2
√

2GFM2
3

(
δLLd
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12

[
1

3
f
(
xQ3 , x

Q
3

)
+
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12
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(
xQ3 , x

Q
3
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,

C̃q1 =
(αs)

2

2
√

2GFM2
3

(
δRRd
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12

[
1

18
f
(
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Q
3

)
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18
g
(
xd3, x

Q
3
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,

C̃q2 =
(αs)

2

2
√

2GFM2
3

(
δRRd

)
12

[
7

6
f
(
xd3, x

Q
3

)
+

1

6
g
(
xd3, x

Q
3

)]
,

C̃q3 =
(αs)

2

2
√

2GFM2
3

(
δRRd

)
12

[
−5

9
f
(
xd3, x

q
3
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+

1

36
g
(
xd3, x

q
3
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C̃q4 =
(αs)
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2
√

2GFM2
3

(
δRRd

)
12

[
1

3
f
(
xd3, x

q
3

)
+

7

12
g
(
xd3, x

q
3

)]
, (A.1)

where q runs u and d, and xQ3 = m̃2
Q/M

2
3 and xq3 = m̃2

q/M
2
3 .

A.2 |∆S| = 1 chargino-mediated Z-penguin contribution

The Wilson coefficients of the chargino-mediated Z-penguin are

Cu1 = −(α2)2 sin2 θW

12
√

2GFM2
W

[
(M2

U )LR
]∗
23

[
(M2

U )LR
]
13

M4
2

l
(
xQ2 , x

u
2

)
,

Cd1 =
(α2)2 sin2 θW

24
√

2GFM2
W
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(M2

U )LR
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23

[
(M2

U )LR
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13

M4
2

l
(
xQ2 , x

u
2

)
,

Cu3 =
(α2)2

16
√

2GFM2
W

(
1− 4

3
sin2 θW

) [
(M2

U )LR
]∗
23

[
(M2

U )LR
]
13

M4
2

l
(
xQ2 , x

u
2

)
,

Cd3 = − (α2)2

16
√

2GFM2
W

(
1− 2

3
sin2 θW

) [
(M2

U )LR
]∗
23

[
(M2

U )LR
]
13

M4
2

l
(
xQ2 , x

u
2

)
,

Cq2,4 = C̃q1,2,3,4 = 0. (A.2)
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A.3 |∆S| = 1 chromomagnetic dipole contribution

The Wilson coefficients of the chromomagnetic dipole contributions to ε′K/εK are

C−g =
αsπ

3

m̃2
Qµms

M5
3

(
δLLd

)
12

tanβ

1 + εg tanβ

[
I
(
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d
3
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d
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(
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)
12
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(
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d

)
+ 9M4

(
x3
d

)]
. (A.3)

A.4 |∆S| = 2 gluino box contribution

The Wilson coefficients of the gluino box contributions to εK are

C1 = −(αs)
2

m̃2
Q

[(
δLLd

)
21

]2
g

(1)
1

(
x3
Q

)
, (A.4)

C4 = −(αs)
2

M2
3

[(
δLLd

)
21

(
δRRd

)
21

]
g

(1)
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x3
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C5 ' −
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21
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C̃1 = −(αs)
2

m̃2
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[(
δRRd

)
21

]2
g

(1)
1

(
x3
d

)
, (A.7)

C2 = C3 = C̃2 = C̃3 = 0. (A.8)

A.5 Sub-leading contributions to εK

The Wilson coefficients of the Wino and Higgsino contributions are

C1 = −αsα2

6m̃2
Q

[(
δLLd

)
21

]2
g

(1)
g̃w̃

(
x3
Q, x

2
Q
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W

f1 (xµu) , (A.9)

C̃3 = −(α2)2

8
(VtsV

∗
td)

2 m2
s tan2 β

(1 + εg tanβ)2

m4
t

M4
W

µ2A2
t

m̃4
Qm̃

4
u

f3

(
xµQ, x

µ
u

)
, (A.10)

C2 = C3 = C4 = C5 = C̃1 = C̃2 = 0. (A.11)

Note that a tan4 β enhanced contribution to εK comes from the exchange of neutral
Higgses, which is discarded because of (δd)23 (δd)31 = 0 in our analyses. For the Wilson
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coefficient, we obtain

C2 ' C̃2 ' 0, (A.12)

C4 ' −
8(αs)
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Q

)
H
(
x3
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Q
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)
, (A.13)

C1 = C3 = C5 = C̃1 = C̃3 = 0, (A.14)

where the approximation in eq. (2.39) is used, and the loop function H(x, y) is given in
eq. (B.4). Note that the CP -even and CP -odd Higgs contributions to C2 (C̃2) are canceled
out by each other.

B Loop functions

B.1 K0 → µ+µ−

The loop functions l(x, y), F (x, y), G(x, y), and H(x, y) are given by

l(x, y) = −
[
x2 + (x− 2)y

]
x lnx

(x− 1)2(x− y)3
+

[
y2 + (y − 2)x

]
y ln y

(y − 1)2(x− y)3
− x+ y − 2xy

(x− 1)(y − 1)(x− y)2
,

(B.1)

F (x, y) =
x lnx

(x− 1)(x− y)
+

y ln y

(y − 1)(y − x)
, (B.2)

G(x, y) =
x lnx

(x− 1)2(x− y)
+

y ln y

(y − 1)2(y − x)
+

1

(x− 1)(y − 1)
, (B.3)

H(x, y) =
x lnx
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+

(x+ xy − 2y2) ln y

(y − 1)3(x− y)2
− 2x− y − 1

(x− 1)(y − 1)2(x− y)
, (B.4)

where l(1, 1) = −1/12, F (1, 1) = 1/2, G(1, 1) = −1/6, and H(1, 1) = 1/12.

B.2 ε′K/εK

B.2.1 |∆S| = 1 gluino box contributions

The loop functions f(x, y) and g(x, y) [60] are

f(x, y) =
x[2x2 − (x+ 1)y] lnx

(x− 1)3(x− y)2
− xy ln y

(y − 1)2(x− y)2
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which lead to
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]
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(
1

x

)
. (B.8)

The loop functions B1,2(x) are consistent with ref. [71] for the universal squark masses case.
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B.2.2 Chromomagnetic-dipole operator

The loop functions I(x, y), J(x, y), K(x, y), L(x, y), M3(x), and M4(x) are given by
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The above M1,3,4(x) are consistent with ref. [71] in the universal squark masses case.#6

B.3 εK

B.3.1 |∆S| = 2 gluino box contributions

The loop functions g(1)
1 (x), g(1)

4 (x, y), and g(1)
5 (x, y) are given by

g
(1)
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)
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(B.18)

#6 We found that in eq. (14) of ref. [71], M2(x) = −xB2(x) should be replaced by M2(x) = −B2(x)/x,
which has been pointed out in ref. [85].

– 28 –



g
(1)
5 (x, y) = − x2y lnx

9(x− y)3(1− x)3

[
x2(11 + x) + (x− 5)(x+ 2)y

]
− y2x ln y

9(y − x)3(1− y)3

[
y2(11 + y) + (y − 5)(y + 2)x

]
− xy

9(1− x)2(1− y)2(x− y)2

(
5x+ 5y + 7x2 + 7y2 − 32xy + 3x2y + 3xy2 + 2x2y2

)
.

(B.19)

B.3.2 Wino and Higgsino contributions

The loop functions g(1)
g̃w̃ , g

(1)
w̃ (x), f1(x) and f3(x, y) are given by
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f1(x) = − x+ 1
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lnx, (B.22)

f3(x, y) = −x
2[x(1 + x+ y)− 3y]
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lnx− y2[y(1 + x+ y)− 3x]
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f3(x) =
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(1− x)5
lnx, (B.24)

where lim
y→x

f3(x, y) = f3(x).#7
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