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Abstract

We investigate the decay modes of a CP-even scalar boson ϕ that mixes with the Standard Model Higgs boson, focusing on the
mass range between 2 GeV and 2mτ. Starting from a higher-order perturbative calculation of the inclusive decays ϕ → gg and
ϕ → ss̄, we employ a hadronisation model to obtain predictions for individual hadronic final states. Our hadronisation model
is based on the Herwig cluster model, but incorporates various conservation laws to determine the allowed final states and their
respective weights. The model includes two tunable parameters, which we determine using dispersion relation results at mϕ = 2
GeV, enabling extrapolation to higher masses. Our predictions show that two-particle hadronic final states like π+π− and K+K−

dominate over µ+µ− for mϕ near 2 GeV, suggesting promising targets for future experimental searches.

1. Introduction

Calculating the decay modes of a CP-even scalar particle in
the GeV mass range has challenged physicists for decades, go-
ing back to the 1980s [1] when it was still plausible that the
Standard Model (SM) Higgs boson would have a mass below
10 GeV [2]. While the problem is no longer relevant for the
SM Higgs boson, it has received renewed interest in the con-
text of new scalar particles that mix with the SM Higgs boson,
obtaining the same coupling structure suppressed by a mixing
angle θ [3, 4]. Such particles are of great interest in the context
of dark matter physics [5, 6] and provide exciting targets for
accelerator experiments [7, 8]. While decays into leptons can
easily be calculated perturbatively, more complicated methods
are needed to determine the decays into hadrons [9]. This prob-
lem is much more severe for CP-even scalars than for pseu-
doscalars, which are expected to mix with well-known QCD
resonances [10], and for vectors, which can be studied experi-
mentally using off-shell photons [11]. None of these possibili-
ties exist for CP-even scalars, because the SM contains neither
a light fundamental scalar nor narrow scalar QCD resonances
at the GeV scale.

Over the years, various methods have been developed to ad-
dress these issues. One possible is to study partial decay widths,
such as ϕ → ππ or ϕ → KK using dispersive methods, i.e.
the analysis of scattering data using the optical theorem [12].
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The other possibility are higher-order perturbative calculations
of inclusive decays such as ϕ → gg or ϕ → ss̄ [13]. Unfor-
tunately, neither of these methods is complete: The dispersive
method cannot give the total decay width, which would need
to include additional final states such as ϕ → ηη, while the
perturbative method cannot give partial decay widths into ex-
clusive final states. Even more unfortunately, the two methods
cover different mass regions: Given the available experimen-
tal data, the dispersive method is reliable only up to approx-
imately 2 GeV [14], which corresponds approximately to the
lower bound up to which a perturbative expansion is expected to
converge. As a result, there is currently no method that can pre-
dict the branching ratios of a CP-even scalar in the GeV mass
range.

A possible solution could be to combine a perturbative cal-
culation above 2 GeV with a hadronisation model as imple-
mented in parton shower generators such as Herwig [15] or
PYTHIA [16]. Such a hadronisation model would translate the
“hard” process (such as a decay into a gluon pair) into hadronic
final states. However, none of the existing tools are actually fit
for this purpose. The reason is that conservation laws, which are
decisive for understanding the decay patterns of particles at the
GeV scale, are not explicitly enforced in the code. While this is
not a problem in the energy range these tools are intended for,
it leads to unphysical predictions for the scenario that we are
interested in.

In the present work we address this shortcoming by propos-
ing a new approach to calculate branching ratios for CP-even
scalars: A hadronisation model that explicitly checks and en-
forces various conservation laws that are expected to hold for
strong interactions. Combined with a perturbative calculation
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of the total decay width, this approach enables us to predict
branching ratios for exclusive final states. Of course, the hadro-
nisation model comes with unknown parameters that need to
be determined from data. Fortunately, such data exists in the
form of the partial decay widths obtained from the disper-
sive method. Requiring that the two methods should agree for
mϕ = 2 GeV, we can determine the free parameters and obtain
new predictions for the scalar decay modes in the mass range
2 GeV < mϕ < 2mτ, where the upper bound corresponds to the
scalar mass where decays into tau leptons and D mesons start
to dominate the total width.

Our results have immediate implications for experimental
searches for light CP-even scalars. The Belle II-experiment, for
example, has recently performed a search for scalar resonances
produced in the decay B→ Kϕ. While the search has been car-
ried out in a multitude of different final states, the lack of the-
oretical predictions for the branching ratios meant that only the
di-muon final state could be used to constrain specific models,
such as light scalars with Higgs mixing. The branching ratios
that we calculate enable us to reinterpret the model-independent
results from Belle II for various final states, finding that in par-
ticular the ϕ → KK decay offers a promising target for future
searches.

The remainder of this work is structured as follows. We
briefly review the existing methods for calculating partial and
total decay widths of a CP-even scalar with Higgs mixing in
section 2. In section 3 we then discuss the available parton
shower tools and their shortcomings, before introducing our
own approach. We also discuss how we use existing results
to determine the free parameters of our model. Our results are
presented in section 4.

2. Review of existing techniques

The model of a Higgs-mixed scalar (also called Higgs portal)
is an extension of the SM with one additional real scalar field
S . Due to interaction terms in the scalar potential, S mixes with
the SM Higgs boson h0 after electroweak symmetry breaking.
The physical mass eigenstates h and ϕ are then obtained by an
orthogonal rotation(

h0
S

)
=

(
cos θ sin θ
− sin θ cos θ

) (
h
ϕ

)
. (1)

As a result, the usual interaction terms of the SM Higgs boson
are suppressed by a factor of cos θ, while the new scalar ϕ ob-
tains the same interaction terms with a factor of sθ ≡ sin θ. As a
result, ϕ couples to all massive particles of the SM proportion-
ally to their mass. Since measurements of the production and
decay modes of h agree well with SM predictions, we know that
sθ ≪ 1, which makes it possible for ϕ to be much lighter than h
and still evade experimental detection.

In the absence of additional decay modes, the partial and total
decay widths are simply given by those of a SM Higgs boson
with mass mϕ, multiplied by s2

θ . We can therefore use many of
the standard results for Higgs boson decays from the literature.
However, these results usually rely on approximations based on

the Higgs boson being light compared the top quark and very
heavy compared to all other quark flavours, which need to be
reassessed in the context of a light scalar.

2.1. Perturbative decays

The leading order decay of ϕ into a pair of gluons proceeds
via a quark triangle diagram. The corresponding decay width is
given by [17]

Γ
gg
LO =

GFα
2
s s2
θ

36
√

2π3
m3
ϕ

∣∣∣∣∣∣∣34 ∑
q

Aq(τq)

∣∣∣∣∣∣∣
2

, (2)

where the sum extends over all quarks running in the loop and
Aq is given by

Aq(τq) = 2
τq + (τq − 1) f (τq)

τ2
q

, (3)

with

f (τ) =

arcsin2 √τ τ ≤ 1

− 1
4

(
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

)2
τ > 1

(4)

and τq = m2
ϕ/(4m2

q). Since limτ→∞ A(τ) = 0, light flavours can
be excluded from the sum over q. For scalar masses above 2
GeV, these are up, down and strange quarks.

The decay width of the Higgs boson to gluons is currently
known up to N4LO [18] in the limit of infinite top quark mass
and five massless flavours. This approximation is well-justified
for the SM Higgs boson, but is questionable for scalars at the
GeV scale, since charm and bottom mass effects could be size-
able. Only the NLO correction is known including the full mass
dependence of the three heavy flavours [17] and is given by

Γ
gg
NLO = Γ

gg
LO

(
1 + E

αs

π

)
(5)

with

E =
95
4
−

7
6

n f +
33 − 2n f

6
log
µ2

m2
ϕ

+ ∆E, (6)

where ∆E involves some numerical integrals given in the ap-
pendix of [17]. These can be calculated numerically with the
public code higlu [19].

The parameter n f describes the number of light ("active")
quark flavours and the on-shell renormalization scheme is used
for the quark masses. Higlu takes as quark mass inputs the MS
masses mc(µ = 3 GeV) = 0.98 GeV and mb(mb) = 4.18 GeV.
These values are taken from Ref. [20], where the charm mass
is given as mc(mc) = 1.27 GeV, which is then evolved to a
scale of 3 GeV using rundec-python1. We also use this pack-
age for the running of the strong coupling constant. The on-
shell masses are calculated by higlu to be mOS

c = 1.43 GeV and
mOS

b = 4.83 GeV. The top mass in the on-shell scheme is taken
to be mt = 172.5 GeV [20].

1This code is a python wrapper of the C++ program rundec [21] and can be
found at https://github.com/DavidMStraub/rundec-python.
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Figure 1: Decay width into gluons Γgg (top) and into strange quarks Γss̄ (bot-
tom) as a function of the scalar mass mϕ at different orders in perturbation
theory.

The number of active quark flavours n f appears explicitly in
the decay width through eq. (6), but is also implicitly contained
in α(n f )

s (µ) because it affects the running of the coupling. For
the gluonic decay width, n f is related to the number of quarks
contributing to the real corrections ϕ → gg → gqq̄, where one
gluon splits into a quark-antiquark pair. Here we set n f = 3,
which effectively subtracts the ϕ → gcc̄ and ϕ → gbb̄ contri-
butions from the decay width but leaves behind logarithms of
the form log

(
µ2/m2

c

)
and log

(
µ2/m2

b

)
. It is argued in Ref. [22]

that these can be resummed by going from α(5)
s to α(3)

s , thereby
decoupling the charm and bottom quarks from the theory. Al-
though the resummation is not necessary for the convergence of
the perturbation series, because the logarithms are not large in
the mass range that we consider, we include it for consistency.

Higher order corrections to ϕ → gg exist only in the ap-
proximation of infinite top mass and zero charm and bottom
mass. However, already at NLO the impact of the charm and
bottom quarks are found to be very small, with the exact K
factor Kexact

NLO = Γ
gg
NLO/Γ

gg
LO differing from the approximate one

including only top quarks by at most 6%. We take this as justi-
fication for including higher-order contributions up to N4LO in
the limit of heavy top quark and massless other flavours in the
decay width, while keeping the exact quark mass dependence
up to NLO.

The decay width as a function of the scalar mass is shown
in the top panel of figure 1 for different orders in perturba-
tion theory. As expected, higher order corrections become con-

secutively smaller, indicating perturbative convergence above
mϕ = 2 GeV. Below 2 GeV, on the other hand, the higher or-
der corrections start to move apart again and the decay width
diverges around mϕ = 1 GeV, due to the divergence of αs. We
emphasize that the gluonic decay width at N4LO is a factor of
3–5 larger than the leading-order estimate, which is commonly
used by the community [23]. This has important implications
for experimental searches that target the decay ϕ → µ+µ−, as
performed for example by LHCb [24] or CMS [25]. Using
the leading-order estimate of the gluonic decay width strongly
overestimates the branching ratio into muons, and hence the
strength of experimental constraints.

In the results above, we have set the renormalization scale to
µ = mϕ. The dependence of the decay width on µ can be used
as a measure of missing higher-order contributions, because the
exact result should have no µ dependence. To estimate the theo-
retical error of our calculation, we therefore compare the result
for µ = mϕ to the one obtained for µ = 2mϕ.2 For mϕ = 2 GeV
and the N4LO result, we obtain a relative uncertainty of 24%.
This uncertainty will be included in our calculations below.

For our analysis, we also need the decay width for ϕ → ss̄
which plays a relevant role in the production of kaons. At lead-
ing order, this decay width is given by [2]

Γss̄
LO =

3s2
θGFmϕm2

s

4
√

2π
β3 (7)

with β =
√

1 − 4m2
s/m

2
ϕ.

3 In Ref. [18] the QCD corrections

to this process have been calculated up to N4LO in the limit
of vanishing masses of the light quarks and infinite top mass,
which is a reasonable approximation for decays into strange
quarks. A comparison of the decay width at different orders
of perturbation theory is shown in the bottom panel of figure
1. While the first two corrections are large, the higher orders
provide only small corrections, which is a sign of perturbative
convergence above 2 GeV.

2.2. Dispersion relations
Since QCD perturbation theory only gives reliable results

for scalar masses above approximately 2 GeV, other tools are
needed to calculate hadronic decay widths for smaller scalar
masses. Below the chiral symmetry breaking scale of about
1 GeV, chiral perturbation theory can be used to directly calcu-
late the decays into pions and kaons [13]. In the intermediate
region between, the decay widths can be obtained from disper-
sion relations [9]. The most recent calculation was made in
Ref. [14], which calculates the decay to pions and kaons in a
two channel approximation.

2A more common approach would be to vary µ between 1
2 mϕ and 2mϕ.

However, doing so overestimates the uncertainty, since αs diverges around 1
GeV. We have checked that randomly varying the renormalisation scale be-
tween mϕ and 2mϕ gives a similar uncertainty estimate as the one obtained
from our approach.

3Ref. [13] suggests to replace ms by mK in the expression for β in order to
correctly capture the closure of the phase space for mϕ → 2mK . Here we stick
to a purely perturbative calculation, noting that the result becomes unphysical
for mϕ < 2mK .

3
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Figure 2: Widths for the decay of ϕ to pions and kaons obtained from dispersion
relations in Ref. [14].

The resulting decay widths to pions and kaons are shown in
figure 2. The plot is generated using the code hipsofcobra, pub-
lished together with Ref. [14], using the conditions proposed
in Ref. [26] to match to chiral perturbation theory at low en-
ergies. The decay widths show several pronounced peaks due
to scalar resonances, which enter through the experimental data
of ππ → ππ and ππ → KK scattering. The uncertainty bands
come from an estimation of the uncertainties of the chiral per-
turbation theory results used for the matching, as well as from
the errors in the experimental data. Since the available data
only extends up to a centre-of-mass energy of

√
s = 2 GeV,

this approach can only be reliably used for mϕ ≤ 2 GeV.
The calculation in Ref. [14] is performed entirely in the two-

channel approximation, neglecting all other decay channels of
ϕ that might be important, such as e.g. ϕ → ηη. It is argued in
Ref. [9] that this reduction to a two-channel system may intro-
duce significant uncertainties. It should be kept in mind that no
estimate of the size of these errors exists so far, so the uncer-
tainty associated with the pion and kaon decay widths may be
larger than what is shown in figure 2. Nevertheless, we will use
these decay widths and their quoted uncertainties to fix the open
parameters of the hadronisation model that will be introduced
in the next section.

3. Hadronisation model

To obtain the partial decay widths into pions and kaons also
for mϕ > 2 GeV, one could interface the perturbative calcula-
tion of ϕ→ gg and ϕ→ ss̄ presented above with the hadronisa-
tion models provided by parton shower generators such as Her-
wig [15] or PYTHIA [16]. While Herwig is based on the clus-
ter model for hadronisation [27], Pythia uses the Lund string
model [28, 29].

It turns out, however, that neither of the two available meth-
ods give satisfactory results for such a low-energy system. The
cluster model in Herwig assumes that each gluon decays non-
perturbatively into a pair quarks, each of which ends up in a
separate meson, such that it is impossible to obtain two-meson
final states. Indeed, for mϕ = 2 GeV the most common final

state in the Herwig simulation is π+π−2π0, accounting for ap-
proximately 12% of all events. In Pythia, on the other hand,
two particle final states are possible, but the most common final
state turns out to be π+π−π0 (25% of all events). This final state,
however, is CP-odd and should never arise in strong decays of
a CP-even scalar. This conservation law is however ignored in
Pythia, such that the output contains various unphysical final
states.

To address these shortcomings, we have developed a new
hadronisation model, based on the cluster model in Herwig. For
the mass range that we are interested in, we assume that no par-
ton shower takes place and that the decay products (either glu-
ons or strange quarks) immediately form a single cluster. This
is in contrast to the original approach, where gluons decay non-
pertubatively into a quark-antiquark pair. In a high-energy en-
vironment this allows to follow the colour structure of the event
after the parton shower in order to form primary colour singlet
clusters. In our case the gluon pair from the decay is already in
a colour-singlet state and hence it is conceivable that this would
directly form a single cluster. In the targeted mass range, this
cluster would be a light cluster and not undergo any cluster fis-
sion. The resulting cluster is then further decayed into hadrons
based on a number of simple assumptions: First, we consider
only decays into mesons. In the mass range under consider-
ation, decays into baryon-antibaryon pairs are expected to be
suppressed, both because of the small available phase space and
because of the need to create two quark-antiquark pairs from the
plasma. Furthermore, the cluster is assumed to always decay
into exactly two mesons initially. Although decays into more
particles are possible in principle, they are again expected to be
suppressed due to the smaller available phase space.

The relative proportions in which different meson pairs are
produced are determined solely by symmetry considerations.
We start with all possible meson combinations4 that conserve
charge, flavour, parity, G-parity, charge conjugation symme-
try, angular momentum and isospin as outlined in Appendix A.
Each pair of mesons m1 and m2 is then assigned a weight given
by

W(m1,m2) = p(m1,m2,mϕ)WqWvWIWsym. (8)

To obtain the probability for ϕ to decay into a particular meson
pair, each weight is normalized by dividing by the sum of all
weights. The individual factors in eq. (8) are

• p(m1,m2,mϕ): A phase-space factor. It corresponds to the
momentum of the two mesons with masses m1 and m2 in
the rest frame of ϕ [20], which is given by

p(m1,m2,mϕ) = 1
2mϕ

[
(m2
ϕ − (m1 + m2)2)

(m2
ϕ − (m1 + m2)2)

] 1
2 . (9)

• Wq: A weight assigned for the quark content of the

4We exclude the f0(500) and K∗0(700) resonances, because their widths and
decay modes are not sufficiently well known. Other scalar resonances, such as
f0(980), are included and treated as quark-antiquark bound states consisting of
up and down quarks only.
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mesons. It consists of a weight wq for each quark-
antiquark pair of flavour q, which quantifies the probability
of creating this pair from the vacuum. We will discuss this
factor in more detail below.

• Wv: A weight counting the spin multiplicity of the final
state, see Appendix A.3 for details. If the final state does
not carry orbital angular momentum, conservation of an-
gular momentum implies Wv = (2 j1 + 1), where j1 de-
notes the spin of m1, which must be equal to the spin of
m2. In our analysis, we also allow for final states with
non-zero angular momentum, which are however sup-
pressed by a factor 0 < av < 1. As a result, we set
Wv = (1 − av)(2 j1 + 1) + av(2 j1 + 1)2 if j1 = j2 and
P1 = P2, where P1,2 denotes the parity of the two mesons,
and Wv = av(2 j1 + 1)(2 j2 + 1) otherwise.

• WI : This weight takes into account isospin conservation
as explained in Appendix A.4. The selection rules re-
quire that both mesons have the same isospin I. Decays
are therefore suppressed by the factor WI = 1/(2I + 1).

• Wsym: A factor to take into account the multiplicity of the
final state. We assign each pair of non-identical mesons
a factor of Wsym = 2 and each pair of identical mesons a
factor of Wsym = 1.

3.1. Weight calculation
To calculate Wq we assume that for the gluon channel, two

quark-antiquark pairs of arbitrary flavour are created. For
charged mesons m1 with quark content (q1, q̄2) and m2 with
(q2, q̄1), the quark weight is then

Wq = wq1 wq2 . (10)

We assume isospin symmetry, such that wu = wd. Since the
final weights will be normalised, we can set both weights equal
to unity without loss of generality. The only free parameter that
we need to introduce is therefore the strange-quark weight ws.

For a pair of (flavour) neutral mesons, which may be in a
superposition of quark-antiquark states,

Wq =
∑

q

pm1
q pm2

q w2
q , (11)

where the sum runs over all quarks flavours (up, down and
strange) and pm

q is the probability of finding the quark-antiquark
pair of flavour q in meson m. For the light neutral mesons, we
take these probabilities as [30]:

pπ
0

ud = 1 , pηud = cos2(θ + φ) , pη
′

ud = sin2(θ + φ) , (12)

pπ
0

s = 0 , pηs = sin2(θ + φ) , pη
′

s = cos2(θ + φ) (13)

with φ = arctan
(√

2
)
. The probabilities for up and down quarks

are combined into one, such that pπ
0

ud is the probability of finding
uū or dd̄ in a π0 meson. We implement this mixing for (π0, η, η′)
with θ = −23◦ and for (ρ0,Φ, ω) with θ = 36◦ as in the source
code of Herwig 7.3 [15].

In the strange-quark channel, only strange mesons can be
produced, and it is assumed that one ss̄ pair is already present.
A weight is only assigned for the other quark pair. For charged
mesons m1 with quark content (s, q̄) and m2 with (q, s̄) this
means simply

Wq = wq (14)

and for neutral mesons

Wq = pm1
s pm2

s ws. (15)

The procedure outlined above generates a list of weights for
the allowed decays of ϕ for both the gluon and the strange-
quark channel. The branching ratios from both channels are
then added in proportion:

BR(ϕ→ m1,m2) =
Γ(ϕ→ gg)
Γhad

Wgg(m1,m2)

+
Γ(ϕ→ ss̄)
Γhad

Wss̄(m1,m2) (16)

where Γhad = Γ(ϕ→ gg)+Γ(ϕ→ ss̄) denotes the total hadronic
decay width and the weights are assumed to be normalised.
After generating all initial meson pairs with their associated
branching ratios, each meson is further decayed until a suffi-
ciently long-lived final state is reached. As we are interested
in the hadronic decay width and branching ratios for particular
final states, no explicit decay kinematics is needed. Therefore
all further computations can be done independent from a full
implementation of this model into Herwig.

3.2. Fitting the model to data

The hadronisation model described above introduces two
free parameters: the strange quark weight ws and the suppres-
sion of orbital angular momentum av. These two parameters
can be determined by comparing the predictions of our model
to the results from the dispersion relations discussed in sec-
tion 2.2. This comparison is done at mϕ = 2 GeV, where both
methods are in principle applicable. Since the hadronisation
model only predicts branching ratios, the comparison requires
as additional input the total hadronic decay width. Given the
sizeable theory uncertainties, as discussed in section 2.1, we
allow the hadronic decay width to deviate from the theory pre-
diction by a factor aΓ, which is constrained by the uncertainty
determined from the scale dependence.

To determine the three free parameters, we construct a like-
lihood function. Since the errors σ± for Γπ and ΓK are very
asymmetric, we follow the approach in Ref. [31] and use the
likelihood function

log L(a; â, σ±) = −
1
2

(
a − â

σ + (a − â)σ′

)2

(17)

with â denoting the measured value and

σ =
2σ+σ−

σ+ + σ−
, σ′ =

σ+ − σ−

σ+ + σ−
. (18)

This likelihood function generalises the Gaussian likelihood

5
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Figure 3: Decay widths of the CP-even scalar ϕ as a function of mass. Be-
low 2 GeV, the pion and kaon decay widths are obtained from dispersion rela-
tions [14] (labelled as "data"). Above 2 GeV, the decay widths into gluons and
strange quarks are obtained from a perturbative calculation, while the decay
widths into pions and kaons are obtained from our hadronisation model, after
fitting the free parameters to agree with the result from dispersion relations at 2
GeV.

and satisfies the requirement log L(â) − log L(â ± σ±) = − 1
2 .

The total log-likelihood is then given as the sum

−2 logL(ws, av, aΓ)

= −2 log L
(
Γπ(ws, av, aΓ); Γ̂π, σ±π

)
− 2 log L

(
ΓK(ws, av, aΓ); Γ̂K , σ

±
K

)
− 2 log L

(
Γhad(aΓ); Γ̂had, σ

±
Γ

)
.

(19)

The minimum of this log-likelihood determines the best-fit val-
ues of the model parameters. The corresponding uncertainties
are obtained from the MINOS algorithm that is implemented
in iminuit [32], which performs a profile likelihood scan for all
parameters and returns asymmetric upper and lower errors for
each parameter. These uncertainties are then propagated to the
output of our hadronisation model by varying each parameter
within the quoted uncertainty interval and taking the largest and
smallest prediction for each branching ratio.

We emphasize that even though the number of model param-
eters is equal to the number of constraints, it is not guaranteed
that a good fit can be obtained. This is because both av and ws

are constrained to lie in the range [0, 1].

4. Results

The fitting procedure described above gives the following re-
sults:

w0
s = 0.11+0.54

−0.11

a0
v = 0.0+0.32

a0
Γ = 1.0+0.12

−0.12

−2 logL0 = 0.13

(20)

Our likelihood function is normalised in such a way that
−2 logL0 = 0 would correspond to a perfect fit, while a 1σ

deviation in a single observable would give −2 logL0 = 1. The
maximal value of the likelihood in our fit therefore indicates
that the constraints can easily be satisfied within their uncer-
tainties. This expectation is confirmed in figure 3, which com-
pares the partial widths into pions and kaons from dispersion
relations for mϕ < 2 GeV with the predictions of our best-fit
hadronisation model for mϕ > 2 GeV. The two predictions are
found to match very well at the boundary mϕ = 2 GeV.

We find that the best-fit strange-quark weight is only slightly
larger than zero, corresponding to a substantial suppression
for the creation of strange-quark pairs. This is because the
prediction for ΓK from dispersion relations is quite small at
mϕ = 2 GeV compared to the perturbative prediction for the
decay ϕ → ss̄, such that the decay ϕ → gg should not give a
large contribution to ΓK . Moreover, larger values of ws would
suppress Γπ. However, the results from dispersion relations
have large uncertainties, and ΓK varies strongly as a function of
mϕ, such that larger values of ws may also be compatible with
the available information. For comparison, the strange-quark
weight used in Herwig is ws = 0.68, which is approximately at
the upper boundary of our confidence region for ws.

Furthermore, our fit clearly prefers a strong suppression of
orbital angular momentum, with the best-fit point lying at the
boundary av = 0. This is because larger values of av would
reduce the partial width Γπ below the prediction from disper-
sion relations. For the same reason the uncertainty band for
Γπ extends only to smaller values. In other words, within our
hadronisation model, there is no freedom to increase Γπ beyond
the value predicted by dispersion relations.

As shown in figure 3, our hadronisation model makes it pos-
sible to extrapolate the predictions for Γπ and ΓK from disper-
sion relations beyond scalar masses of 2 GeV. Moreover, we
can also obtain predictions for other final states. These arise
from two-body decays of the scalar into heavier mesons, which
rapidly decay into lighter mesons, leading to higher-multiplicity
final states. The predicted branching ratios for some of these fi-
nal states are shown in figure 4. All of these final states contain
at least two charged particles, allowing for the reconstruction
of the decay vertex. Nevertheless, some of them also include
neutral pions, which makes the reconstruction of the invariant
mass of the decaying particle more challenging. Nevertheless,
for all of the final states shown in figure 4, the branching ratios
are larger than the one into muons (which varies between 3%
and 2% in the mass range that we consider). As a result, these
final states offer an attractive target for future searches.

To make this point more explicit, we derive sensitivity pro-
jections for Belle II based on the published search for B+ →
K+ϕ followed by ϕ → e+e−, µ+µ−, π+π− or K+K−. Belle II
has published both model-independent limits on BR(B+ →
K+ϕ) × BR(ϕ → X) as well as a reinterpretation of these lim-
its in the context of a Higgs-mixed scalar. While the Belle II
exclusion extends to scalar masses mϕ > 2 GeV, this result un-
derestimates the hadronic decay width and hence overestimates
the lifetime and the branching ratio into muons. With our new
results, we find that the published Belle II search has no sensi-
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Figure 4: Branching ratios for the most relevant final states as a function of the
scalar mass. In each case, the solid line corresponds to the best-fit prediction
and the band represents the uncertainties resulting from the uncertainties in the
partial widths obtained from dispersion relations at mϕ = 2 GeV.

tivity to dark scalars above 2 GeV.5

Nevertheless, future searches based on more data may be
able to probe into this difficult mass region. Since large parts
of the search (based on an integrated luminosity of 189 fb−1)
are still background-free, we can expect sensitivity improve-
ments on the product of branching ratios by more than an or-
der of magnitude. Concretely, we take the published expected
sensitivities for the muon, pion and kaon final state and as-
sume that future searches can improve sensitivity by a fac-
tor of 20 in each channel. Following Ref. [35, 13], we take
BR(B+ → K+ϕ) = 0.44 sin2 θ for mϕ ≪ mB −mK as well as the
total decay width and branching ratios of ϕ as shown in figure 3.
The resulting sensitivity projections are shown in figure 5.

We find that even though the expected sensitivity for the
product of the branching ratios is worse in the kaon final state
than in the muon final state, the larger branching ratio pre-
dicted by our hadronisation model means that this channel is
nevertheless competitive and promises the best sensitivity for

5The same issue is expected to affect also the exclusion limit from
LHCb [24], which uses the same assumptions for the branching ratio into
muons, as well as potentially the limit from CMS [25], which does not provide
any details on the assumed branching ratios. However, the effect is expected to
be milder than for Belle II, since the sensitivity of LHC-based experiments ex-
tends to smaller lifetimes as a result of the higher boost factors. Projections for
the sensitivity of LHCb to Higgs-mixed scalars including hadronic final states
have been derived in Ref. [33].

Figure 5: Sensitivity of Belle II to a Higgs-mixed scalar with mass mϕ and mix-
ing angle sin θ for different final states, assuming that the expected exclusion
limits from Ref. [34] can be improved by a factor of 20.

scalar masses close to 2 GeV. For larger scalar masses, the
branching ratio into K+K− drops rapidly in favour of final states
with higher meson multiplicities, such that the muon channel
once again offers the best sensitivity. The pion channel is less
favourable due to a lower sensitivity than the muon channel and
a smaller branching ratio than the kaon channel.

5. Conclusions

In this work we have considered the partial decay widths and
branching ratios of a CP-even scalar boson that mixes with
the SM Higgs boson. We have focused on the mass range
2 GeV ≤ mϕ ≤ 2mτ, for which neither dispersion relations nor
perturbative calculations can be directly applied.

As a first step, we have re-evaluated perturbative calculations
of the inclusive decays ϕ → gg and ϕ → ss̄. We find that the
effect of including finite masses for bottom and charm quark,
which is crucial at leading order, gives only a small correction at
NLO. We therefore use N4LO results from the literature for the
decay widths assuming one infinitely heavy and three massless
quarks. This approach yields a significantly larger total decay
width than previous estimates, resulting in a suppression of the
leptonic branching ratios and the lifetime of the scalar.

To obtain branching ratios into specific hadronic final states,
we have developed a hadronisation model based on the clus-
ter model of Herwig. In contrast to the existing implementa-
tion, we assume that the two gluons produced in the scalar de-
cay form a single cluster, which decays into a pair of mesons.
To select the allowed final states, we check conservations laws
such as parity and charge conjugation. These final states are
assigned a weight according to the available phase space and
selection rules for spin and isospin.

Our hadronisation model introduces two free parameters: the
strange-quark weight and the suppression of final states with

7



orbital angular momentum. These parameters can be fixed by
matching the predictions of our model to those from disper-
sion relations at mϕ = 2 GeV. This procedure makes it possible
to extrapolate the partial decay widths into pions and kaons to
mϕ > 2 GeV. Moreover, the hadronisation model also predicts
branching ratios for other states that may be of experimental
interest, such as ϕ→ 2π+2π−.

We find that for mϕ slightly above 2 GeV, both BR(ϕ →
π+π−) and BR(ϕ → K+K−) are larger than BR(ϕ → µ+µ−),
making these final states an attractive target for future searches.
To illustrate this point, we have estimated the sensitivity of a
future search for these final states at Belle II. We conclude that
the kaon final state does indeed hold the potential to cover ad-
ditional parameter space of a Higgs-mixed scalar not testable
with the muon final state.

Our study should be considered as a proof-of-principle for
the use of hadronisation models with conservation laws. There
are many possible directions in which this work can be ex-
tended. For example, it could be interesting to allow for cluster
fission, such that more than high meson multiplicities can be
produced, or to include baryonic decay modes. Moreover, our
model could be extended to include off-shell effects for mesons
with a large width, as well as mixing of ϕ with CP-even scalar
resonances. In fact, the latter effect may not only modify the
branching ratios, but also the total width and hence the lifetime
of the scalar.

Finally, our approach relies strongly on the results from dis-
persion relations, which in turn require input from experimental
data. Improving these measurements could give tighter con-
straints on the partial decay widths below 2 GeV, which in turn
would lead to reduced uncertainties on the free parameters of
our hadronisation model. Combining these experimental and
theoretical efforts, there is a real chance to make substantial
progress on the long-standing problem of the decay modes of a
GeV-scale CP-even scalar.
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Appendix A. Selection Rules

In this appendix, we examine the conserved quantities and
the resulting selection rules for hadronic decays of a scalar par-
ticle ϕ that is even under both parity and charge conjugation.
We assume that these decay are mediated by the strong inter-
action, where parity, charge conjugation and isospin are con-
served. As in our hadronisation model, we consider only de-
cays into meson pairs, neglecting both decays into baryons and
decays into higher-multiplicity final states.

Appendix A.1. Parity

If a particle state has orbital angular momentum (OAM) l,
then the spatial wave function of this system has parity (−1)l.
As a result, a meson with intrinsic OAM l has parity

P = (−1)l+1, (A.1)

where the additional factor of (−1) comes from the quark hav-
ing opposite parity to the antiquark. For a system of two parti-
cles with OAM l and individual intrinsic parities P1 and P2 the
total parity is

P = P1P2(−1)l . (A.2)

If ϕ decays into two scalar mesons, conservation of angular mo-
mentum implies l = 0, such that both mesons must have the
same parity. For all decays to mesons of higher spin, the al-
lowed intrinsic parities of both mesons depend on their relative
OAM (see below).

Appendix A.2. Charge conjugation

Since ϕ is even under charge conjugation, every charged6

particle produced in the decay of ϕ must be accompanied by
its antiparticle, in order for the two-particle state to be a Ĉ-
eigenstate. This requirement strongly restricts the possible de-
cays and excludes all decays into two different charged mesons
such as π+ρ−. Decays to two different neutral mesons such as
ηη′ are still possible, in which case C is the product of the Ĉ-
eigenvalues of the individual mesons.

The eigenvalue under charge conjugation for a particle-
antiparticle state is known from their total spin s and their rel-
ative angular momentum l: C = (−1)l+s [36]. This equation
automatically gives C = 1, since the total spin and OAM have
to add to a total angular momentum of zero.

Appendix A.3. Angular momentum

All decays have to respect angular momentum conservation,
meaning that the total angular momentum of the final state must
be zero. This requirement restricts the possible spin configura-
tions of the final states and therefore determines the weight Wv

representing the spin multiplicity. We denote the spins of the
two mesons as j1 and j2, their combined spin as J and the OAM
as l. The following cases are possible:

• j1 = j2 = j and P1 = P2: This combination can al-
ways couple to zero angular momentum, even without rel-
ative OAM. The Clebsch-Gordon coefficients for coupling
two angular momenta to zero total angular momentum are
given by [37]

⟨ j,m1; j,m2|0, 0⟩ = δm1,−m2 (−1) j−m1
1√

2 j + 1
. (A.3)

In other words, if there is no relative OAM, the state of
zero total angular momentum is a superposition 2 j + 1

6The term "charged" refers here to electrical charge as well as flavour. All
particles that are not their own antiparticles are considered to be charged.
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states, each with the same amplitude. We therefore set
Wv = 2 j + 1 in this case. If non-zero OAM is allowed, all
possible combinations of the meson spins, i.e. of m1 and
m2, are allowed. The result is therefore a superposition of
all (2 j + 1)2 possible states.

• j1 = j2 = j and P1 = −P2: In this case l must be odd
to conserve parity, which also requires J to be odd. Un-
der these conditions, the Clebsch-Gordon coefficients for
m1 = m2 vanish, such that only 2 j(2 j + 1) allowed final
states remain. We neglect this relatively minor effect and
take the spin multiplicity to be (2 j + 1)2 also if the two
mesons have opposite parity.

• j1 = 0 and j2 , 0: The OAM has to be l = j2 to allow
the total spin and OAM to couple to zero. Hence, if j2 is
odd, both mesons must have opposite intrinsic parities to
satisfy parity conservation and if j2 is even they must have
the same parities. This excludes for example decays to
π0ρ0, because they have the same parity. The multiplicity
of the state is always (2 j2 + 1).

• j1 , j2 and both non-zero: No general conclusions can
be drawn. In this case, we take the multiplicity as (2 j1 +
1)(2 j2 + 1), which also includes the case that j1 = 0 from
above.

To summarize, if we require no OAM, only final states with
j1 = j2 and P1 = P2 are allowed with weight Wv = (2 j1 + 1).
If we impose no restriction on OAM, the weight is (approxi-
mately) Wv = (2 j1 + 1)(2 j2 + 1). Introducing the parameter av

to suppress OAM then leads to the expression for Wv given in
the main text.

Appendix A.4. Isospin

Isospin is conserved approximately by the strong interac-
tion, if the difference between up and down quark masses is
neglected. Since the scalar ϕ has I = 0, the isospins of the
two particles resulting from the ϕ decay have to couple to zero,
which is only possible if they are the same. This excludes for
example decays to the combination π0 (I = 1) and η (I = 0),
which would be otherwise allowed by P and C conservation.

In contrast to the case of angular momentum, the I3 com-
ponent is always fixed for any meson by the contained quarks.
As a result, decays into mesons with higher isospin are not en-
hanced by a multiplicity factor, but are in fact suppressed com-
pared to the decay to isoscalars. If both particles have isospin I,
the probability that they couple to an isospin singlet is given by
1/(2I + 1). For example, decays into pairs of kaons (I = 1

2 ) are
suppressed by a factor of 1

2 , while decays into pairs of pions7 or
pairs of ρ-mesons (I = 1) are suppressed by factor of 1

3 .

7The three pions are identified with the isospin states π+ = |1, 1⟩ , π− =
|1,−1⟩ , π0 = |1, 0⟩

Appendix A.5. G-parity

The G-parity transformation describes a rotation around the
I2 axis in isospin space followed by a charge conjugation:

Ĝ = Ĉ exp
{
iπÎ2

}
. (A.4)

Since charge conjugation and isospin are conserved individu-
ally in strong interactions, G is conserved as well. All mesons
that contain only up and down quarks are eigenstates of this
transformation, and all mesons in the same isospin multiplet
carry the same eigenvalue. For a meson multiplet of isospin I
the eigenvalue is given by G = (−1)IC, where C is the eigen-
value of the neutral member of the multiplet under charge con-
jugation. Since ϕ has I = 0 and C = 1, it can be assigned an
eigenvalue of G = 1. G-parity conservation then excludes all
decays into mesons with G = −1. Since pions are G-parity odd,
while ρmesons are G-parity even, this conservation law forbids
decays into πρ or any odd number of pions.

References

[1] M. B. Voloshin, Sov. J. Nucl. Phys. 44, 478 (1986).

[2] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson,
The Higgs Hunter’s Guide, vol. 80 (2000), ISBN 978-0-
429-49644-8.

[3] M. Pospelov, A. Ritz, and M. Voloshin, Physics Letters B
662, 53 (2008), ISSN 0370-2693.

[4] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 80,
095024 (2009), 0906.5614.

[5] G. Krnjaic, Phys. Rev. D 94, 073009 (2016), 1512.
04119.

[6] K. Bondarenko, A. Boyarsky, T. Bringmann, M. Huf-
nagel, K. Schmidt-Hoberg, and A. Sokolenko, JHEP 03,
118 (2020), 1909.08632.

[7] J. Beacham et al., J. Phys. G 47, 010501 (2020), 1901.
09966.

[8] C. Antel et al., Eur. Phys. J. C 83, 1122 (2023), 2305.
01715.

[9] F. Bezrukov, D. Gorbunov, and I. Timiryasov, Uncer-
tainties of hadronic scalar decay calculations (2018),
1812.08088.

[10] M. Ovchynnikov and A. Zaporozhchenko, Phys. Rev. D
112, 015001 (2025), 2501.04525.

[11] P. Ilten, Y. Soreq, M. Williams, and W. Xue, JHEP 06, 004
(2018), 1801.04847.

[12] S. Raby and G. B. West, Phys. Rev. D 38, 3488 (1988).

[13] M. W. Winkler, Physical Review D 99, 015018 (2019).

9

0906.5614
1512.04119
1512.04119
1909.08632
1901.09966
1901.09966
2305.01715
2305.01715
1812.08088
2501.04525
1801.04847


[14] P. J. Blackstone, J. T. Castellà, E. Passemar, and J. Zupan,
Hadronic Decays of a Higgs-mixed Scalar (2024), 2407.
13587.

[15] G. Bewick, S. F. Ravasio, S. Gieseke, S. Kiebacher, M. R.
Masouminia, A. Papaefstathiou, S. Plätzer, P. Richardson,
D. Samitz, M. H. Seymour, et al., Herwig 7.3 Release
Note (2024), 2312.05175.

[16] C. Bierlich, S. Chakraborty, N. Desai, L. Gellersen, I. He-
lenius, P. Ilten, L. Lönnblad, S. Mrenna, S. Prestel, C. T.
Preuss, et al., A comprehensive guide to the physics and
usage of PYTHIA 8.3 (2022), 2203.11601.

[17] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas,
Nuclear Physics B 453, 17 (1995), ISSN 05503213, hep-
ph/9504378.

[18] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren,
and A. Vogt, Journal of High Energy Physics 2017, 113
(2017), ISSN 1029-8479, 1707.01044.

[19] M. Spira, HIGLU: A Program for the Calculation of the
Total Higgs Production Cross Section at Hadron Collid-
ers via Gluon Fusion including QCD Corrections (1995),
hep-ph/9510347.

[20] S. Navas, C. Amsler, T. Gutsche, C. Hanhart,
J. J. Hernández-Rey, C. Lourenço, A. Masoni,
M. Mikhasenko, R. E. Mitchell, C. Patrignani, et al.,
Physical Review D 110, 030001 (2024).

[21] B. Schmidt and M. Steinhauser, Computer Physics Com-
munications 183, 1845 (2012), ISSN 00104655, 1201.
6149.

[22] M. Spira, QCD Effects in Higgs Physics (1997), hep-ph/
9705337.

[23] T. Ferber, A. Grohsjean, and F. Kahlhoefer, Progress in
Particle and Nuclear Physics 136, 104105 (2024), ISSN
01466410, 2305.16169.

[24] R. Aaij et al. (LHCb), Phys. Rev. D 95, 071101 (2017),
1612.07818.

[25] A. Tumasyan et al. (CMS), JHEP 04, 062 (2022), 2112.
13769.

[26] J. F. Donoghue, J. Gasser, and H. Leutwyler, Nucl. Phys.
B 343, 341 (1990).

[27] B. R. Webber, Nuclear Physics B 238, 492 (1984), ISSN
0550-3213.

[28] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjös-
trand, Physics Reports 97, 31 (1983), ISSN 0370-1573.

[29] T. Sjöstrand, Nuclear Physics B 248, 469 (1984), ISSN
0550-3213.

[30] M. Bahr, S. Gieseke, M. A. Gigg, D. Grellscheid,
K. Hamilton, O. Latunde-Dada, S. Platzer, P. Richardson,
M. H. Seymour, A. Sherstnev, et al., Herwig++ Physics
and Manual (2008), 0803.0883.

[31] R. Barlow, A. Brazzale, and I. Volobouev, Asymmetric Er-
rors (2024), 2411.15499.

[32] F. James and M. Roos, Computer Physics Communica-
tions 10, 343 (1975), ISSN 0010-4655.

[33] D. Craik, P. Ilten, D. Johnson, and M. Williams, in Snow-
mass 2021 (2022), 2203.07048.

[34] B. I. Collaboration, I. Adachi, K. Adamczyk, L. Ag-
garwal, H. Aihara, N. Akopov, A. Aloisio, N. A. Ky,
D. M. Asner, H. Atmacan, et al., Physical Review D 108,
L111104 (2023), ISSN 2470-0010, 2470-0029, 2306.
02830.

[35] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 83,
054005 (2011), 0911.4938.

[36] P. B. Pal, An Introductory Course of Particle Physics
(CRC Press, Boca Raton, 2014), ISBN 978-0-429-06851-
5.

[37] L. C. Biedenharn and J. D. Louck, Angular Momentum
in Quantum Physics: Theory and Application (Addison-
Wesley Publishing Company, Advanced Book Program,
1981), ISBN 978-0-201-13507-7.

10

2407.13587
2407.13587
2312.05175
2203.11601
hep-ph/9504378
hep-ph/9504378
1707.01044
hep-ph/9510347
1201.6149
1201.6149
hep-ph/9705337
hep-ph/9705337
2305.16169
1612.07818
2112.13769
2112.13769
0803.0883
2411.15499
2203.07048
2306.02830
2306.02830
0911.4938

	Introduction
	Review of existing techniques
	Perturbative decays
	Dispersion relations

	Hadronisation model
	Weight calculation
	Fitting the model to data

	Results
	Conclusions
	Selection Rules
	Parity
	Charge conjugation
	Angular momentum
	Isospin
	G-parity


