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Abstract

Meson-antimeson transitions are flavor-changing neutral current processes in which the strangeness, charm, or beauty quantum
number changes by two units. In the Standard Model (SM) these transitions originate from box diagrams with two W bosons. They
permit the preparation of time-dependent, oscillating quantum states which are superpositions of a meson and its antimeson. By
studying their decays one gains information on both the meson-antimeson mixing amplitude itself and the decay amplitude involved,
in particular one can measure complex phases quantifying the violation of charge-parity (CP) violation. I present a comprehensive
overview on the topic, starting with phenomenological presentations of K−K̄ , Bd−B̄d , Bs−B̄s , and D−D̄ mixing and their impact
on the formulation of the SM. Highlights are the discovery of the violation of CP and other discrete symmetries, the prediction of the
charm quark and its mass, the prediction of a heavy top quark, and the confirmation of the Kobayashi-Maskawa mechanism of CP
violation. Further sections cover the theoretical formalism needed to describe meson-antimeson mixing and to calculate observables
in terms of the fundamental parameters of the SM or hypothetical theories of new physics. I discuss the unitarity triangle of the
Cabibbo-Kobayashi-Maskawa matrix, which is used to visualize how various CP-violating and CP-conserving quantities combine to
probe the SM. I describe the emergence of precision flavor physics and the role of reliable theory calculations to link K−K̄ mixing
to Bd−B̄d mixing, which was essential to confirm the Kobayashi-Maskawa mechanism, and present the current status of theory
predictions. Today, the focus of the field is on physics beyond the SM, because meson-antimeson mixing amplitudes are sensitive to
virtual effects of heavy particles with masses which are several orders of magnitude above the reach of current particle colliders.
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2 Meson-antimeson mixing

Nomenclature

α, β, γ angles of the unitarity triangle
afs CP asymmetry in flavor-specific decays
Adir

CP(M → f ) direct CP asymmetry in M → f
Amix

CP (M → f ) mixing-induced CP asymmetry in M → f
B neutral b-flavored meson Bd or Bs,

beauty (a.k.a. bottom) quantum number
BSM beyond Standard Model
C charm quantum number,

charge conjugation
CKM Cabibbo-Kobayashi-Maskawa
CP charge-parity conjugation
D neutral D meson
δKM Kobayashi-Maskawa phase
∆Γ width difference between the two mass eigenstates
∆M mass difference between the two mass eigenstates
F flavor quantum number, F = B,C, S ,U,D
GF Fermi constant
Γ12 off-diagonal matrix element of the meson-antimeson decay matrix
gw weak coupling constant
HQE Heavy Quark Expansion
K neutral Kaon
λ, A, ρ, η Wolfenstein parameters
M any of K, D, Bd , or Bs

M12 off-diagonal matrix element of the meson-antimeson mass matrix
OPE Operator Product Expansion
P parity
QCD quantum chromodynamics
(ρ̄, η̄) apex of the standard unitarity triangle
S strangeness quantum number
SM Standard Model
T time reversal
τ lifetime
UT unitarity triangle
V CKM matrix
VC Cabibbo matrix
QFT quantum field theory

Objectives

1. The text intends to be a comprehensive introduction into K−K̄ , Bd−B̄d , Bs−B̄s , and D−D̄ mixing for people studying any of these
topics in experiment or theory. It shall convey the special knowledge needed to interpret an experimental analysis or to understand the
concepts of a theoretical calculation.

2. Furthermore, the text comprises an overview from a larger perspective and is self-contained, so that it may serve as a basis for a topical
course or as material for the preparation for a PhD exam.

3. In addition, the text aims at giving a detailed and accurate presentation of the historical developments of the field, from the understanding
of K−K̄ mixing in the 1950s to the study of B−B̄ and D−D̄ mixing in modern high-statistics flavor experiments. I show how the
interplay of excellent experimental achievements and innovative theoretical ideas lead to landmark results which shaped the Standard
Model of Elementary Particle Physics.

4. Finally, I elucidate the importance of the precision calculations which were needed to link K−K̄ mixing to Bd−B̄d mixing to confirm the
Kobayashi-Maskawa interpretation of CP violation and, today, allow us to precisely determine fundamental parameters of the Standard
Model’s Yukawa sector and to constrain the parameter spaces of new-physics models.

1 Introduction

In this introductory section the basic notation and the fundamental concepts of meson-antimeson mixing are introduced, mostly in a quali-
tative way, with quantitative details relegated to later sections.
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Fig. 1 Box diagrams for K−K̄ , D−D̄ , Bd−B̄d and Bs−B̄s mixing with zigzag lines representing W bosons. The diagrams show the
transition from antimeson M̄ meson entering the diagram from the left into meson M leaving the diagram to the right. For each process
there is also a second box diagram, obtained by a 90◦ rotation.

Mesons can be labeled by flavor quantum numbers, which characterize the quark-antiquark pair from which they are formed. For
example, a D+s meson has the flavor quantum numbers C = 1 and S = 1, which denote charm and strangeness, respectively. One shortly
writes D+s ∼ cs̄ to indicate that D+s has the same flavor quantum numbers as the indicated quark-antiquark pair. We further need the beauty
quantum number B and, for completeness, also introduce D and U for d̄ and u quark. The flavor quantum numbers are +1 for up-type quarks
and −1 for down-type quarks, with opposite signs for the antiquarks. When referring to a generic flavor quantum number we write F, i.e.
F = B,C, S ,U, or D. While the strong interaction, described by quantum chromodynamics (QCD), respects the flavor quantum numbers,
the weak interaction can change them. The most prominent examples for flavor-changing transitions are weak decays like D+s → K+π0;
in this example the C quantum number changes from C = 1 to C = 0 while U increases by one unit. Weak decays are |∆F| = 1 processes
mediated by the exchange of one W boson. But the Standard Model (SM) of Elementary Particle Physics also permits |∆F| = 2 transitions,
through Feynman diagrams with two W bosons. This feature makes any of the following four neutral mesons,

K ∼ s̄d, D ∼ cū, Bd ∼ b̄d, Bs ∼ b̄s, (1)

mix with its respective antimeson,

K̄ ∼ sd̄, D̄ ∼ c̄u, B̄d ∼ bd̄, B̄s ∼ bs̄. (2)

The Feynman diagrams for the four possible meson-antimeson mixing amplitudes are shown in Fig. 1. Meson-antimeson mixing are
examples of flavor-changing neutral current (FCNC) processes, in which a quark morphs into another quark with the same electric charge
but different flavor. In the SM FCNC processes are rare, because they are forbidden at tree-level. Meson-antimeson mixing has two
important implications:
i. The flavor eigenstates |M⟩ and |M̄⟩ corresponding to the mesons in Eqs. (1) and (2) are not the physical mass eigenstates and do not

obey exponential decay laws. Instead the mass eigenstates are linear combinations of |M⟩ and |M̄⟩. For K, K̄ the mass eigenstates are
|Kshort⟩ and |Klong⟩, with the subscript referring to their lifetime τ. Since τKlong ≫ τKshort it is natural to use the mass eigenstates to describe
observables in Kaon physics: For sufficiently large times the Kshort component of a neutral Kaon has decayed away and one can study
Klong decays, while for times t ∼ τKshort decays of the Kshort component of the Kaon are dominant.

ii. If we produce a meson M at some time t = 0, the corresponding state will evolve into a superposition of M and M̄ at later times t > 0,
leading to meson-antimeson oscillations. This property is used in D, Bd , and Bs physics, where the lifetime differences of the mass
eigenstates is small.
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As an important consequence, meson-antimeson mixing permits the study of a quantum-mechanical superposition of a particle with its
antiparticle. This feature gives access to the relative complex phase between the M → f and M̄ → f decay amplitudes for final states f
into which both M and M̄ can decay.

To calculate the two mass eigenstates in terms of the flavor eigenstates M and M̄ one must solve a quantum-mechanical two-state system
by diagonalising a 2 × 2 matrix. The off-diagonal elements of this matrix are calculated from the box diagrams in Fig. 1; this calculation will
be explained in detail in this chapter. As a consequence of meson-antimeson mixing, the eigenstates differ in their masses and decay width.
One may label the eigenstates by their lifetimes, as we did above in (i) for the neutral Kaons. While Γ(Kshort) = 1/τ(Kshort) > Γ(Klong) =
1/τ(Klong) by definition, the sign of the Klong–Kshort mass difference is not fixed and must be determined by measurement. In Bd,s and D
physics one commonly labels the eigenstates by their masses as |MH⟩ and |ML⟩ with the labels referring to “heavy” and “light”. With this
definition

∆M ≡ MH − ML > 0, while ∆Γ ≡ ΓL − ΓH (3)

can have either sign. Here MH,L and ΓH,L denote masses and width of the eigenstates.1 For neutral Kaons the sign of ∆Γ/∆M is firmly
established, so that today we know that

|KH⟩ = |Klong⟩, |KL⟩ = |Kshort⟩. (4)

(I refrain from employing the usual notation KL,S for Klong,short, because I use “L” for “light” and the lighter Kaon happens to be KL = Kshort.)
Note the choice of the sign of ∆Γ in Eq. (3). This choice is motivated by aiming at positive numbers for both ∆M and ∆Γ for neutral Kaons.
With this definition also the SM expectation for ∆Γ for the B−B̄ systems is positive and this is experimentally confirmed for B = Bs, while
no data are yet available for B = Bd .

We will also need the average mass and average width,

M =
MH + ML

2
, Γ =

ΓH + ΓL

2
(5)

and note that the average lifetime is defined as τ ≡ 1/Γ, that is, it is not the average of τ(MH) and τ(ML). The Particle Data Table lists the
such defined average masses and lifetimes for the neutral mesons except for Klong and Kshort, for which the individual lifetimes are quoted
[1].

The mass eigenstates follow exponential decay laws,

|ML,H(t)⟩ = e−iML;H t−ΓL,H t/2|ML,H⟩ with |ML,H(0)⟩ = |ML,H⟩. (6)

Here the oscillatory term in the exponent with the meson mass ML,H is the usual factor time-evolution factor exp(−iEt) with E = ML;H in
the meson rest frame; here and throughout this chapter I use natural units with ℏ = c = 1. We can use |MH(t)⟩, |ML(t)⟩ as a basis to express
any neutral meson state (i.e. any chosen superposition of |M⟩ and |M̄⟩),

|Many⟩ = α|ML(t)⟩ + β|MH(t)⟩ = e−iMt−Γt/2
[
αei∆Mt/2−∆Γt/4|ML⟩ + βe−i∆Mt/2+∆Γt/4|MH⟩

]
, (7)

where I have used Eqs. (3) and (5) as MH,L = M ± ∆M/2 and ΓH,L = Γ ∓ ∆Γ/2. The first factor in Eq. (7) is just the time evolution of a
particle state which does not mix, such as a charged-meson state. The term in square bracktes shows that ∆M , 0 introduces oscillatory
terms and that further ∆Γ , 0 changes the familiar exponential decay law to a two-exponential formula. For the cases that |Many⟩ = |M⟩ or
|Many⟩ = |M̄⟩ we will learn that |α| ≃ |β| ≃ 1/

√
2. Now the probability to observe Many as M at time t is given by

∣∣∣⟨M|Many⟩
∣∣∣2 which involves

oscillatory terms like sin2(∆Mt/2) = (1 − cos(∆Mt))/2 and sin(∆Mt/2) cos(∆Mt/2) = (sin(∆Mt))/2, so that the oscillation frequency in
observable quantities is ∆M and not ∆M/2. Likewise

∣∣∣⟨M|Many⟩
∣∣∣2 and other observables involve sinh(∆Γt/2) and cosh(∆Γt/2). The detailed

expressions for the time evolution of states and observables will be derived later in Sec. 5.
This chapter is organized as follows: In Secs. 2-4 I will discuss K−K̄ , B−B̄ , and D−D̄ mixing with emphasis on the phenomenology

and the historical evolution of the field. This includes the presentation of theoretical and experimental landmark results. In the context of
these discussions I will derive the necessary theoretical formulae avoiding lengthy derivations as much as possible. Technical details are
relegated to Secs. 5 and 6. In Sec. 5 I derive the formulae for the time evolution of the neutral mesons, the relation between flavor and
mass eigenstates, and expressions linking these to physical observables. Sec. 6 presents the origin of flavor mixing in the SM and beyond,
and discusses how meson-antimeson mixing contributes to constrain —or eventually discover— new physics. Finally, Sec. 7 contains the
Conclusions.

2 K− K̄ mixing, discrete symmetries, and the Cabibbo-Kobayashi-Maskawa matrix

In this section I describe K−K̄ mixing and the historical role which this process played to shape the SM, with emphasis on the discrete
symmetries parity, charge conjugation, and time reversal. I use K−K̄ mixing to exemplify general concepts of meson-antimeson mixing
and to introduce basic concepts of flavor violation in the SM.

1Using the same notation for a generic meson M and its mass should not lead to confusion.
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Historically, for three decades K−K̄ mixing was the only known meson-antimeson mixing process. K−K̄ mixing was predicted in
1955 by Gell-Mann and Pais from the following observations [2]:
i. The decays K → π−e+νe and K̄ → π+e−ν̄e have shown that there are two neutral Kaons. There was confidence in a ∆S = ∆Q rule linking

the changes in strangeness S and electric charge Q of the hadron in semileptonic decays. (In modern language: It was (correctly)
assumed that the lepton charge tags S .) Thus it was clear that K and K̄ are distinct particles characterized by S = 1 and S = −1,
respectively.

ii. The observation that neutral Kaons decay to ππ states implies the possibility of K ↔ ππ↔ K̄ transitions, and the principles of quantum
physics dictate that |K⟩ and |K̄⟩ must mix. (In modern language: A virtual ππ loop permits a non-zero K → K̄ transition amplitude.)

With a symmetry argument Gell-Mann and Pais concluded that the mass eigenstates are not close to |K⟩ or |K̄⟩, but instead coincide with
maximally mixed states (|K⟩ ± |K̄⟩)/

√
2. I discuss their arguments a few paragraphs below in the context of discrete symmetries. An

important prediction of Ref. [2] was the existence of Klong, for which soon after evidence [3] and observation [4] were reported. To facilitate
the study of the original literature I remark that an early notation was θ0 ≡ K; later K0

1 and K0
2 were introduced to denote Kshort and Klong,

respectively.
Both meson-antimeson mixing and the M decays involve the weak interaction mediated by the W boson, which is the only SM particle

with flavor-violating couplings. The corresponding piece of the SM Lagrangian for quarks reads

LW =
gw
√

2

∑
j,k=1,2,3

[
V jk ū jL γ

µdkL W+µ + V∗jk d̄kL γ
µu jL W−µ

]
. (8)

Here gw is the weak coupling constant and I have used the notations (d1, d2, d3) = (d, s, b) and (u1, u2, u3) = (u, c, t). V is a unitary 3 × 3
matrix,

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (9)

the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We can decompose any four-component Dirac spinor field ψ(x) as ψ(x) = ψL(x) + ψR(x)
with the subscripts “L” and “R” referring to left and right chirality, respectively. The parity transform P flips the signs of the spatial
components of the four-vector x as x⃗→ −x⃗ and maps Nature onto a fictitious mirror-world. P also exchanges ψL(x)↔ ψR(x) and the W
interactions in Eq. (8) do not involve the right-handed components of the quark spinor fields u jL(x) and dkL(x) at all. This feature is called
maximal parity violation. Until 1956 it was believed that P is a good symmetry of Nature, but the observation that a Kaon can decay into
two-pion states with parity quantum number P = +1 as well as three-pion states with parity quantum number P = −1 lead Lee and Yang to
the conclusion that the weak interaction violates parity [5]. By contrast, the strong and electromagnetic interactions obey parity symmetry.

There are three fundamental discrete symmetries which are useful to characterize interactions within and beyond the SM; apart from P
these are the charge conjugation (C) and time reversal T symmetries. C maps particles onto antiparticles and vice versa or Nature onto a
fictitious antiworld. More precisely, C maps a spinor field ψ(x) which destroys a fermion and creates an antifermion onto the field ψc(x)
which instead destroys an antifermion and creates a fermion. ψc(x) is calculated from the adjoint spinor field ψ̄ = ψ†γ0 (with the Dirac
matrix γ0), but we do not need the explicit form of ψc(x) in this chapter. As an important feature, C also flips the chirality, e.g. if ψ = ψL

is left-handed, then ψc = ψc
L = (ψc)R is right-handed. Thus the maximal P violation in Eq. (8) implies also maximal C violation. In 1956

nothing was known about quarks and the role of quark currents in meson decays, but it was clear that in (semi-)leptonic decays P violation
implies C violation [6].2 Still no conclusion was drawn on C violation in hadronic weak decays or K−K̄ mixing and there was no consensus
on the question for a long time.

Since more than five decades studies of meson-antimeson mixing are instrumental to explore CP violation. The CP transformation is
a consecutive application of C and P. The order in which the operations are carried out does not matter, i.e. C and P commute. CP is
intimately related to the time reversal operation T which maps Nature onto a fictitious world in which time goes backwards. T is better
described as a reversal of particle motion, to study T one could compare a scattering process A + B→ C + D with C + D→ A + B, but
in practice one studies the violation of the associated quantum number T = ±1 in a suitable process or identifies T -odd observables, just
as one does in the study of P violation. The famous CPT theorem, states that any local Poincaré-invariant quantum field theory (QFT) is
invariant under the successive application of C, P, and T (in any order) [8–10]. That is, if we take a video of some physical process, it will
be indistinguishable from the video of the corresponding process with all particles exchanged by their antiparticles shown backwards in a
mirror. Thus under the very wide prerequisites of the CPT theorem CP violation is identical to T violation. It is easier to work with CP
rather than T , because CP is a unitary operation on quantum fields and states, while T is anti-unitary, meaning that it combines a unitary
transformation with a complex conjugation.

In their prediction of K−K̄ mixing and the existence of Klong in Ref. [2] Gell-Mann and Pais assumed that C is a good symmetry and
concluded that |Kshort⟩ and |Klong⟩ must be eigenstates of C with opposite quantum numbers, because the hamiltonian H and the C operator
must have common eigenstates if [H,C] = 0. Ironically, today we know that C is maximally broken, but their argument applies as well for
CP which is almost a good symmetry for the K−K̄ system: If we assume that Klong is CP-odd and that further the weak decay process
obeys the CP symmetry, the decay Klong → ππ (with a pair of neutral or charged pions) into a CP-even final state is forbidden. Instead the
dominant Klong decay modes involve three pions and the small phase space suppresses the decay rate to a level that τKlong ∼ 500 × τKshort .

2The seminal paper by Wu et al. [7] mentions the observation of both P and C violation in an angular asymmetry in β decay and Ref. [7] does so for π+ → µ+[→ e+2ν] ν.
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The width difference ∆ΓK in the K−K̄ system is an unspectacular quantity, it is essentially equal to Γshort, which in turn is completely
dominated by Kshort → ππ decays. The decay rates of Kshort → π+π− and Kshort → π0π0 cannot be reliably calculated from first principles.
Experimentally we have [1]

∆Γ
exp
K = (7.338 ± 0.003) µeV = (11.149 ± 0.005) · 10−3 ps−1. (10)

Already in 1958 the time evolution of neutral kaons was used for a measurement of |∆MK | [11] to find |∆MK/Γshort| ∼ 1 [11]. This reference
plots a likelihood function, but does not quote an error on the measurement. A later measurement employing the idea to regenerate Kshort’s
from a Klong beam passing through matter found [12] found |∆MK/ΓKshort | < 1.1 at 95% C.L., preferring values smaller than 1. Today we
know [1]

∆MK = (3.476 ± 0.006) µeV = (5.281 ± 0.009) · 10−3 ps−1. (11)

The regenerator method also permitted to determine the sign of ∆MK/∆ΓK .
Already in 1958 S. Weinberg estimated that CP violation in Klong decays must be smaller than 1% and concluded “Probably it will be

some time before experiments are performed which are capable of detecting such small charge asymmetries.” [13]. The discovery of CP
violation had to wait until 1964, when Christenson, Cronin, Fitch, and Turlay discovered the decay Klong → π+π− and concluded that CP is
violated at the permille level in K−K̄ mixing [14]. Their grant proposal was primarily aiming at a better measurement of Kshort regeneration,
but further mentions “Other results to be obtained will be a new and much better limit for the partial rate of K0

2 → π+π−” and the authors
expect their apparatus to “set a limit of about one in a thousand for the partial rate of K2 → ππ in one hour of operation.” The experimental
result —a discovery rather than a limit— was interpreted as the discovery of CP violation in the K−K̄ mixing amplitude, i.e. in a |∆S | = 2
process, and subsequent theory papers shared that view, because models attempting to explain the measurement with direct CP violation,
i.e. K → π+π− and K̄ → π+π− amplitudes of different magnitude, were considered disfavoured by other measurements [15]. Nevertheless,
Refs. [16, 17] ascribed the CP violation to the weak |∆S | = 1 amplitudes with Ref. [17] exploiting the K ↔ ππ↔ K̄ mechanism of Ref. [2]
to generate CP violation in the |∆S | = 2 K−K̄ mixing amplitude. Yet the connection to the weak interaction was not obvious at all at the
time, recall that there was no SM yet (and clearly nothing was known about box diagrams). In Ref. [18] it was speculated that instead the
electromagnetic interaction of hadrons violates C and T . Furthermore, the authors of Ref. [19] decomposed the hamiltonian as HG + HF

with HG comprising “the usual weak interaction which . . . is invariant under CP” and further describing HF as “a new interaction which
does not conserve CP”. The paper discusses the three cases that HF contains ∆S = 0, |∆S | = 1, and |∆S | = 2 interactions, and the third
possibility, called superweak model has been a benchmark model which the SM was compared to for a long time.3 The 1965 status of the
field is well-described in the talk by Prentki in Ref. [23]. This talk and the summary talk by Salam also show that the situation with C
violation was not clear at the time.

The landmark result of Ref. [14] was the branching ratio

B(Klong → π+π−) = (2.0 ± 0.4) · 10−3. (12)

Today’s world average is [1]

B(Klong → π+π−) = (1.967 ± 0.010) · 10−3. (13)

The further interpretation of this result needs the theoretical machinery of Sec. 5 and is relegated to later sections of this chapter.
In the SM FCNC processes can only be studied in a meaningful way since the introduction of the charm quark field by Glashow,

Iliopoulos, and Maiani in 1970 [24]. The old three-quark version of the SM involved the FCNC coupling s̄Lγ
µdLZµ of the Z boson, while

the new four-quark model, treating two SU(2) doublets (uL, dL)T and (cL, sL)T equally, lead to flavor-conserving Z couplings. This feature
is called tree-level GIM mechanism. The authors were guided by the three-flavor-SM prediction of an unduly large K−K̄ mixing as well
as Klong → µ+µ− and K+ → π+e+e− decay amplitudes, in contradiction to experiment. In the four-quark model K−K̄ mixing involves the
box diagram of Fig. 1 with all four combinations of u and c quarks on the two internal quark lines. In the four-quark model, V in Eq. (9)
reduces to the 2 × 2 Cabibbo matrix VC which is the upper left sub-matrix of V . The unitarity of VC makes the K−K̄ mixing amplitude
vanish exactly in the limit mc = mu of equal up and charm quark masses. In this limit the box diagram is identical for all four combinations
of u and c quarks on the internal lines and the CKM elements combine to (VusV∗ud + VcsV∗cd)2, which vanishes because a unitary 2 × 2 matrix
satisfies VusV∗ud = −VcsV∗cd . Setting mu = 0 and keeping mc , 0 one finds that the K−K̄ mixing amplitude is GIM-suppressed by a factor of
m2

c/M
2
W ∼ 10−4, where MW is the W boson mass. Details on the calculation will be presented in Sec. 6. The suppression by factors m2

c/M
2
W

or m2
c/M

2
W ln(m2

c/M
2
W ) is a common feature of Kaon FCNC processes called loop-level GIM mechanism. In summary, the GIM mechanisms

have a dramatic effect on the K−K̄ mixing, reducing the prediction of the tree amplitude of the three-quark model (involving Z exchange)
by a factor of roughly m2

c/(4π
2 M2

W ). Gaillard and Lee have estimated mc ≈ 1.5 GeV from K−K̄ mixing [25] which is surprisingly close to
the value inferred from the c-c̄ bound state J/ψ after its discovery [26, 27].

3The superweak model constrains CP violation to K−K̄ mixing and was disproven, when |∆S | = 1 CP violation was discovered by the CERN NA31 and NA48 as well
as the Fermilab KTeV collaborations [20–22].
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What did the four-quark model say about CP violation? CP maps W+ onto W− and exchanges quark and antiquark fields in Eq. (8).
Picking out the CP transformation of the s decay vertex one finds

LW ⊃
gw
√

2

[
Vus ūγµs W+µ + V∗us s̄γµu W−µ

]
(14)y CP

y CP

Vus s̄γµu W−µ + V∗us ūγµsW+µ . (15)

While owing to Vus , V∗us Eq. (15) looks different form Eq. (14) these two expressions are nevertheless physically equivalent, because we
can rephase any quark field as

d j → eiϕd
j d j, uk → eiϕu

k uk. (16)

without changing the physics. This rephasing affects V jk as V jk → V jkei(ϕd
j−ϕ

u
k ) entailing that we are free to multiply any row or any column

of V by a common phase factor. We can do such a rephasing in Eq. (15) and arrange the phase ϕs − ϕu ≡ ϕ
d
2 − ϕ

u
1 to bring the result into

agreement with Eq. (14). Of course, in the four-quark model, Eq. (16) has been conventionally applied already in Eq. (8) to obtain a real VC

with Vud = Vcs = cos θC and Vus = −Vcd = sin θC in terms of the Cabibbo angle θc [28]. For this standard choice of the VC phase convention
the CP invariance of Eq. (14) and all other W couplings to quarks is manifest. Thus in 1970 the origin of CP violation, discovered six
years before, was not clear. In 1973 Kobayashi and Maskawa proposed three possibilities to accomodate CP violation [29]. One of these
was based on the observation that the n2 parameters characterising a unitary n × n matrix involve n(n − 1)/2 angles (which would suffice
for a real orthogonal matrix) and n(n + 1)/2 complex phases. With Eq. (16) we can rephase the n rows and n columns with 2n − 1 phase
differences ϕd

j − ϕ
u
k at our disposal to render 2n − 1 elements of V real. This leaves n(n + 1)/2 − 2n + 1 = (n − 1)(n − 2)/2 complex phases

as physical parameters and for the case of n = 3 there is exactly one physical phase in V . Applying our CP transformation in Eq. (15) to
Eq. (8) will not leave LW invariant. The mentioned physical phase is the only CP-violating parameter appearing in the weak interaction of
quarks and is called Kobayashi-Maskawa (KM) phase δKM . Our exercise further tells us that one cannot locate CP violation in a particular
term in Eq. (8), because by rephasing our quark fields we can render chosen CKM elements real and transfer δKM to other elements. CP-
violating observables always involve CKM elements in combinations which are independent of phase conventions such as VusV∗udVtsV∗td ,
which originate from two interfering amplitudes governed by different combinations of CKM elements.

The standard phase convention of the CKM matrix [30] adopted by the Particle Data Group chooses Vud , Vus, Vcb, and Vtb real and
positive. The KM phase appears in Vub as |Vub|e−iδKM and apart from Vtd all remaining CKM elements have phases close to 0 or π. The
structure of this matrix is best seen in the approximate Wolfenstein parametrization [31],

V =


1 − 1

2λ
2 λ Aλ3(ρ − iη)

−λ 1 − 1
2λ

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

 + O(λ4) , (17)

which employs an expansion in the small parameter λ ≃ |Vus| with three more positive parameters A, ρ, η targeted to be of order 1. Eq. (17)
nicely exhibits the hierarchy of the CKM matrix, with diagonal elements close to 1 and the smallest elements in the upper right and lower
left corner. The origin of this hierarchy is part of the “flavor puzzle” of the SM and not understood. CP violation is implemented through
η , 0. Today we know that λ = 0.225, A = 0.82, ρ = 0.16

+0.01
−0.00, and η = 0.36

+0.01
−0.00 if there are no BSM contributions to flavour-changing

decays [32]. At this level of experimental precision, the approximation in Eq. (17) is too crude and one better works with exact expressions
(see Sec. 6).

Ref. [29] can be viewed as the paper predicting the third fermion generation, but did not receive much attention at first, with only six
citations by the end of 1975. At the time the alternative explanation in terms of spontaneous CP violation with a second Higgs doublet
was more popular [33]. In the six-quark model the prediction of the Klong → π+π− decay rate involves Im

(
VtsV∗td/(VusV∗ud)

)
, which apart

from δKM depends on other —at the time— poorly known CKM parameters (namely A and ρ in Eq. (17)) as well as the unknown top
mass. Moreover, the hadronic, non-perturbative piece of the prediction could only be roughly estimated. Thus the confirmation of the KM
mechanism had to wait for more data on flavor-changing processes and better theory predictions.

While the third fermion generation is essential for Eq. (13), the impact of tops in the loop is negligible in ∆MK , which scales like
G2

F/(4π
2)m2

c , where the dependence on MW is contained in the Fermi constant GF ∝ 1/M2
W and 1/(4π2) is the loop suppression factor found

from calculating the box diagram.
In retrospective, the 1964 discovery of CP violation [14] revealed the virtual effect of a very heavy particle, the top quark, with mass

mt ∼ 350MK . The box diagram with two top quarks does not suffer from GIM suppression, which partly offsets the smallness of the CKM

factor
(
VtsV∗td

)2
. Thus the absence of GIM suppression enhances the sensitivity to top effects. As a general feature, FCNC processes, and

especially meson-antimeson mixing observables, probe mass scales far above the energy of the experiment at which they are carried out.
Today, FCNC processes serve as efficient probes of physics beyond the SM (BSM physics), Ref. [34] finds a reach of K−K̄ mixing to BSM
particle masses up to 9000 TeV, if they contribute to K−K̄ mixing at tree level with O(1) couplings.

We close this section by mentioning two important consequences of the CPT theorem: Any particle and its antiparticle have the same
mass and lifetime. In the context of meson-antimeson mixing the equalities MK = MK̄ and ΓK = ΓK̄ are essential to correctly relate the tiny
mass and width differences of the mass eigenstates as well as the size of CP-violation to the box diagrams in Fig. 1. In K−K̄ mixing even
CPT-violating quantities have been analyzed and measured to be consistent with zero. One may speculate that CPT symmetry is violated



8 Meson-antimeson mixing

by the dynamics of quantum gravity associated with the energy scale of the Planck mass MPlanck ∼ 1018 GeV. The current experimental
accuracy is |MK − MK̄ |/MK < 8 · 10−19 [1], which is of order MK/MPlanck, but CPT breaking —if it exists at all— needs not be linear in this
parameter.

3 B− B̄ mixing, flavor oscillations, CP asymmetries, and the unitarity triangle

The mass eigenstates of the Bd mesons have almost identical lifetimes, so that one needs different methods to study Bd−B̄d mixing compared
to K−K̄ mixing. The DESY laboratory had operated the DORIS collider with the ARGUS experiment, which was used as a B factory,
which is an e+- e− collider with the center-of-mass energy of the Υ(4S ) resonance. This resonance essentially only decays to (B+, B−) or
(Bd , B̄d) pairs. ARGUS had studied dilepton events, i.e. decays in which both B± or

( )
B̄d mesons decay semileptonically (into final states with

electron/positron e∓ or (anti-)muon µ∓). In the case of B± mesons the lepton charges have necessarily opposite signs, since the lepton charge
tags the beauty quantum number. ARGUS also observed like-sign dilepton events and concluded that they originate from a (Bd , B̄d) pair in
which one of the

( )
B̄d mesons has oscillated into its antimeson. In addition, ARGUS has used events with fully reconstructed kinematics such

as Bd → D∗−π+ (and also decays with more than one pion) in which the charged pion serves as the tag: The up quark in b̄→ c̄ud̄ ends up
in the π+ while the charge-conjugate mode will give a ū hadronizing into a π−. Tagging modes are also called flavor-specific, characterized
by the property that a decay Bd → f and its CP-conjugate decay B̄d → f̄ is allowed while B̄d → f and Bd → f̄ are forbidden. Here I have
used the definition

| f̄ ⟩ ≡ CP| f ⟩. (18)

which I use for all final multi-particle states, while the CP transformation of the one-particle states of our four neutral mesons K, D, and
Bd,s is given in Eq. (23). It is understood that CP is applied in the rest frame of the decaying particle where p⃗M = 0. Thus CP reverses the
momenta of the particles in | f ⟩, but in two-body final states we can bring |h̄1(p⃗)h̄2(−p⃗)⟩ to |h̄1(−p⃗)h̄2(p⃗)⟩ by a 180◦ rotation. This feature is
crucial for the CP physics discussed below, because otherwise we could not define two-body CP eigenstates in a useful way.

For example, Bd → π+π− is not flavor-specific. Strictly speaking, the decay Bd → D∗−π+ used by ARGUS is not exactly flavor-specific,
because B̄d → D∗−π+ is allowed via b→ uc̄d, but this amplitude is suppressed by a factor of λ2 compared to b→ cūd (see Eq. (17)) and
could be neglected in 1987.

We will see in Sec. 5 that the oscillation frequency is equal to the difference ∆Md of the masses of the two eigenstates of the Bd−B̄d

system and is proportional to the absolute value of the box diagram in Fig. 1. Recalling our use of natural units with ℏ = c = 1, we realize
that energy, mass, and frequency have the same dimension. One usually quotes ∆Md in units of inverse picoseconds, because it is measured
as the mentioned oscillations frequency and the relevant time scale is the Bd lifetime of 1.5 ps. ∆Md is proportional to the magnitude of the
B−B̄ mixing amplitude, which one can calculate in terms of |VtbV∗td |

2 and mt. Contrary to K−K̄ mixing, box diagrams with other CKM
elements are negligible. To verify this, we observe from Eq. (17) that all three CKM combinations VtbV∗td , VcbV∗cd , and VubV∗ud are quadratic
in λ and thus of similar size and recall the GIM mechanism suppressing contributions with light quarks. ARGUS could not track the time
evolution of the mesons, but did a time-integrated measurement yielding [35]

xd ≡ ∆Md τBd = 0.73
+0.17
−0.18 ARGUS 1987. (19)

Confronting this with the theory prediction, ARGUS concluded that mt must be larger than 50 GeV, which was the first evidence for a
heavy top quark. Shortly before, the UA1 collaboration had reported evidence for an excess of dilepton events stemming from B mesons
produced in pp̄ collisions, in which all b-flavored hadrons are produced, and erroneously ascribed the effect to Bs−B̄s mixing [36]. This
interpretation is compatible with a roughly five times lighter top, because |Vts| in Eq. (17) is larger than |Vtd | and the box diagram roughly
grows as m2

t .
Using the 2025 value τBd = (1.517 ± 0.004) ps, the ARGUS measurement in Eq. (19) implies ∆Md = 0.48

+0.11
−0.12 ps−1 which perfectly

complies with the actual number found from the world average of the oscillation frequency in time-dependent studies,

∆Md =
(
0.5069 ± 0.0016stat ± 0.00116syst

)
ps−1 HFLAV 2025 [37], (20)

which involves data from LEP, Tevatron, BaBar, Belle(-II), LHCb, but is dominated by LHCb measurements [38].
The proximity of xd to 1 and the smallness of |Vcb| and |Vub| constitute the B physics miracle: The latter property makes the B meson

long-lived, since only b→ c and b→ u decay channels are open and suppressed by the small CKM elements, so that the sizable Bd lifetime
around 1.5 ps permits the study of time-dependent observables. The former property means that the oscillation frequency is in the right
range to analyze observables governed by sin(∆Mdt) and cos(∆Mdt), i.e. after two lifetimes a meson produced as Bd has oscillated into a
B̄d . To study such time-dependent quantities one must produce the B mesons with a sufficiently large boost. This was the case at the LEP I
collider at CERN, where b-flavored hadrons were produced from Z decays. The asymmetric B factories Super KEK-B (KEK, Tsukuba,
Japan) and PEP-II (SLAC, Menlo Park, USA) with the experiments Belle and BaBar, respectively, have been built to study time-dependent
observables in decays of (Bd , B̄d) pairs originating from the Υ(4S ) resonance. The different energies of the e+ and e− beams boosted the
center-of-mass of the (Bd , B̄d) pair in the detector permitting to measure the difference of the times at which the mesons decay. Currently
the upgraded experiment Belle II is running. Hadron colliders also provide sufficiently energetic B mesons and there was a rich b physics
program at the pp̄ collider Tevatron at Fermilab (Batavia, USA) with the experiments CDF and DØ. One of the four major experiments
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at the pp̄ collider LHC at CERN is LHCb, which is a dedicated forward-spectrometer experiment optimized for studies in b (as well as c)
physics. Furthermore, the high-pT LHC experiments CMS and ATLAS contribute to the field as well.

B factories produce the (Bd , B̄d) pair in a coherent state with the quantum numbers of the Υ(4S ). At any given time t each of the two
involved mesons is a quantum-mechanical superposition of Bd and B̄d , but their correlation is such that the overall beauty quantum number
is 0, as that of Υ(4S ).4 If we observe at some time t1 a flavor-specific decay Bd → ffs, the coherent wave function collapses such that
the other meson is in a |B̄d⟩ state as this time. This “starts the clock” for the time evolution of |B̄d⟩; one defines the time-dependent state
|B̄d(t)⟩ which satisfies |B̄d(t1)⟩ = |B̄d⟩. For t > t1 this state |B̄d(t1)⟩ is a calculable superposition of |Bd⟩ and |B̄d⟩ and the decay B̄d(t2)→ f
observed at time t2 > t1 provides information on B−B̄ mixing and, if the decay is not flavor-specific, on the interference of the Bd → f and
B̄d → f decay amplitudes. The latter feature is heavily used to explore CP violation. (b, b̄) pairs produced at hadron colliders hadronize
into multi-particle states containing many light hadrons in addition to the pair of b-flavored hadrons. A Bd can be produced together with
a B− or Λb, so that we cannot expect an entangled (Bd , B̄d) pair as in a B factory. Still the overall beauty quantum number is zero, thus the
observation of a B− or Λb (which contain a b quark) tags the Bd and studies of time-dependent CP asymmetries are possible as well. Here
the “clock starts” at the time the Bd is produced. Hadron colliders produce substantially more Bd mesons than B factories, which in turn
have a better tagging efficiency. Unlike hadron colliders the entanglement at B factories can also be used to do CP tagging, in which one of
the B’s is tagged through a decay into a CP eigenstate, so that the other B collapses into the orthogonal state.

To study time-dependent effects one defines the time-dependent decay rate of a meson tagged at t = 0 as M:

Γ(M(t)→ f ) =
1

NM

d N(M(t)→ f )
d t

, (21)

where d N(M(t)→ f ) denotes the number of decays into the final state f occurring within the time interval between t and t + d t. NM is the
total number of M’s produced at time t = 0. An analogous definition holds for Γ(M̄(t)→ f ). We consider a decay into a CP eigenstate fCP,

CP | fCP⟩ = ηCP,f | fCP⟩ (22)

with the CP quantum number ηCP,f = ±1. For example, D+D− and π+π− are CP-even eigenstates with ηCP,D+D− = ηCP,π+π− = 1.
We also need the C and CP transformations for the state of the decaying meson, which I choose as

C|M(p⃗)⟩ = |M̄(p⃗)⟩, C|M̄( p⃗)⟩ = |M( p⃗)⟩, CP|M( p⃗)⟩ = −|M̄(− p⃗)⟩, CP|M̄(p⃗)⟩ = −|M(− p⃗)⟩, (23)

where it is used that M = K,D, Bd , Bs are all P-odd. One can put arbitrary phase factors into these definitions like C|M(p⃗)⟩ = exp(iϕC)|M̄( p⃗)⟩
with C|M̄(p⃗)⟩ = exp(−iϕC)|M(p⃗)⟩, because the phase of any state vector is arbitrary: Changing from |M⟩ to |M′⟩ ≡ exp(iϕC/2)|M⟩ with
|M̄′⟩ ≡ exp(−iϕC/2)|M̄⟩ and applying C of Eq. (23) leads to C|M′(p⃗)⟩ = exp(iϕC) |M̄′(p⃗)⟩. Similarly, such a freedom exists for the definition
of the CP transform of the fields in LW in Eqs. (14) and (15). One does not need to carry these arbitrary phases through the calculations,
instead one can stick to Eq. (23) and e.g. confirm CP invariance by checking that the CP-transformed quantity can be brought into agreement
with the original expression by changing unphysical phases of fields and states, just as we did in the discussion of Eqs. (14) and (15).
However, sometimes one checks the (non-)dependence on ϕC to identify physical quantities and to perform a “sanity check” of a calculation
by confirming that some calculated observable is independent of the choices for unphysical phases.

Needless to say, the ambiguity of ϕC leads to the fact that you can find different “standard definitions” of C and CP in the literature,
corresponding to ϕC = 0 and ϕC = π, so that the signs are flipped compared to Eq. (23). There is, however, a good reason for my choice:
While there are many phase conventions involved in a quantum field theory, several of these conventions are related to each other. A
standard convention for the definition of the light meson states in terms of (anti-)quark fields uses the standard Gell-Mann matrices λa,
a = 1, . . . 8, in the meson octet as Ma = (ū, d̄, s̄)λa(u, d, s)T , so that K ∼ ds̄ and K̄ ∼ sd̄ in Eqs. (1) and (2), without any “−” signs (or, more
generally, without phase factors). Now we can employ the SU(3)F symmetry to rotate |K( p⃗)⟩ into |K̄(p⃗⟩; this is a so-called U-spin SU(2)
rotation of (s, d)T , the analogue of an isospin rotation of the isodoublet (u, d)T . Thus we can get from |K( p⃗)⟩ to |K̄(p⃗⟩ in two ways, by a
U-spin rotation or by applying C, and these two operations must be consistent with each other. A rotation by π around the y-axis in U-spin
space leads to |K(p⃗)⟩ → −|K̄(p⃗)⟩ and, by convention, the combination of this rotation and C is the GU parity transformation which maps
the three members of the U-spin triplet onto themselves [40–43]. GU parity is the analogue of the famous G parity which combines C with
an isospin rotation and has the property that G|π±⟩ = −|π±⟩ and G|π0⟩ = −|π0⟩, with the “−” sign fixed from the G parity of π0, for which no
choice of phase of the C transformation is possible, because it is a C eigenstate [44]. Thus the definitions of GU and G parities require the
choice for C in Eq. (23) for neutral Kaons and C|π+⟩ = |π−⟩ for charged pions. In decays of D or B into final states with one or more neutral
Kaons, this subtlety indeed matters in analyses using SU(3)F symmetry and leads to mistakes if ignored as shown in Refs. [43, 45]. For the
heavy D and B mesons the argument presented above does not apply, because nobody uses flavor symmetries rotating heavy mesons into
their antimesons. Nevertheless, I use the same phase conventions for C and CP for all neutral mesons.

The time-dependent CP asymmetry for M → fCP is defined as

aCP(M(t)→ fCP) ≡
Γ(M̄(t)→ fCP) − Γ(M(t)→ fCP)
Γ(M̄(t)→ fCP) + Γ(M(t)→ fCP)

. (24)

Specifying to M = Bd one finds

aCP(Bd(t)→ fCP) = −Adir
CP cos(∆Md t) − Amix

CP sin(∆Md t). (25)

4The time evolution of a coherent (Bd , B̄d) pair is discussed e.g. in Ref. [39].
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b d

t

W

Fig. 2 Penguin diagram contributing to a ∆S = 0 decay of a b-flavored hadron.

We will derive Eq. (25) in Sec. 5 and note that in Eq. (25) some sub-percent corrections are set to zero. The first term is non-zero already
for t = 0, when |Bd(t)⟩ = |Bd⟩. aCP(Bd(0)→ fCP) simply quantifies the amount by which the decay rates Γ(B̄d → fCP) and Γ(Bd → fCP)
differ from each other. This feature is called direct CP violation and motivates the notation Adir

CP in Eq. (25). As time elapses, the initially
produced

( )
B̄d oscillates into a superposition of Bd and B̄d which makes aCP(Bd(t)→ fCP) sensitive to the interference of Bd → fCP and

B̄d → fCP and the size of this effect is encoded in Amix
CP , the mixing-induced CP asymmetry. Thus Amix

CP sin(∆M t) quantifies CP violation in
the interference of mixing and decay. Of course, Adir/mix

CP = Adir/mix
CP (Bd → fCP) depends on the decay mode, but to keep the notation short I

omit this dependence wherever this does not lead to confusion.
For a non-zero CP asymmetry we need two interfering amplitudes. In the case of Adir

CP these are two decay amplitudes governed
by different CKM elements. For example, B̄d → D+D− is dominated by the tree-level W-mediated b→ cc̄d amplitude but also receives a
contribution from the top penguin depicted in Fig. 2 and a similar diagram with internal up quark. These three contributions are proportional
to VcbV∗cd , VtbV∗td , and VubV∗ud , respectively. There is further a charm penguin diagram which comes with the same CKM structure as the
tree contribution.

Using unitarity we can eliminate one of these CKM combinations, e.g. VtbV∗td = −VcbV∗cd − VubV∗ud , so we are left with a decay amplitude
of the form A(B̄d → D+D−) = VcbV∗cdAT + VubV∗udAP with complex AT,P. This (commonly used) notation is reminiscent of “tree” and
“penguin”, although AT also comprises the charm penguin and a part of the top penguin. The CP-conjugate mode has the amplitude A(Bd →

D+D−) = −V∗cbVcdAT − V∗ubVudAP, with the “−” sign stemming from CP|Bd⟩ = −|B̄d⟩ in Eq. (23). The phases of the CKM elements flip their
signs, because the quarks flow in the opposite direction and the corresponding vertex Feynman rules in Eq. (8) involve the complex conjugate
of the CKM element entering A(B̄→ D+D−). That is, CP-violating phases flip signs when going from a process to its CP-conjugate one.
The remainder stays the same, A(B̄→ D+D−) and A(B→ D+D−) involve the same AT and AP, because the SM has no other CP-violating
parameters beyond the elements of V .5 While the hadronic dynamics in AT,P is complicated and uncalculable, the CP invariance of QCD
ensures that these quantities are equal in A(B̄→ D+D−) and A(B→ D+D−). The phases of AT,P are dubbed CP-conserving or strong phases.
In decays in which the strong phases of AT and AP are the same, one readily finds |A(B̄→ D+D−)| = |A(B→ D+D−)|, so that a non-zero Adir

CP
needs arg AT , arg AP. It is impossible to calculate these phases from first principles, making predictions for Adir

CP impossible and rendering
essentially all direct CP asymmetries useless for the determination of δKM or potential BSM CP phases.6

Whenever two amplitudes AT and AP contribute to the decay, also Amix
CP cannot be calculated. However, there are cases in which one of

the two amplitudes is highly suppressed or even absent. Such decays are called gold-plated modes. Thus gold-plated modes have necessarily
Adir

CP = 0. (The converse is not true, AT and AP could have the same strong phase leading to Adir
CP = 0. Therefore by measuring Adir

CP = 0 one
cannot conclude that the mode is gold-plated.) The prime example of a gold-plated mode is Bd → J/ψKshort, proposed by Bigi and Sanda
[49], in which the tree amplitude AT is multiplied by VcsV∗cb which is proportional to two powers of the Wolfenstein parameter λ, while AP

instead involves VusV∗ub ∝ λ
4. In this context AP is dubbed “penguin pollution”, as it inflicts an uncertainty of a few percent on the value of

the CP phase extracted from a measurement of Amix
CP (Bd → J/ψKshort). Experimentally one detects the lepton pair from the J/ψ decay and

a π+π− pair with the invariant mass of the neutral Kaon. Thus really aCP(Bd(0)→ J/ψ[π+π−]MK ) is measured. This feature is important,
because the b̄→ c̄cs̄ transition in the Bd decay produces a K meson while b→ cc̄s triggering the B̄d decay produces a K̄. The interference
of the K → π+π− and K̄ → π+π− decays is needed to obtain a meaningful Amix

CP .
Interestingly, we can deduce which CP phase is measured from Amix

CP without performing the detailed calculations of Secs. 5 and 6. Amix
CP

must involve the phase of the Bd−B̄d box diagram, which is ±(VtbV∗td)2 with the sign to be determined by a calculation of the box diagram.
That is, we only need the sign, not the full analytical result of this diagram. Neglecting the penguin pollution, the decay amplitude can be
written as

A fCP ≡ A
(
Bd → J/ψK[→ π+π−]

)
= V∗cbVcs V∗usVud AT (26)

where the second CKM factor V∗usVud originates from the s̄→ ūud̄ amplitude in the K → π+π− decay. The charge conjugate mode with
decay amplitude Ā fCP ≡ A(B̄d → J/ψK̄[→ π+π−]) involves the complex-conjugate CKM elements instead.

Apart from the phase of the box diagram, the desired physical CP phase ϕmix
CP,Bd

can only depend on the relative phase of A fCP and Ā fCP ,
that is, the phase of Ā fCP/A fCP . If we adopt the standard CKM phase convention explained before Eq. (17), we find the CKM elements

5QCD could violate CP, but bounds on electric dipole moments constrain the corresponding parameter θQCD to be smaller than 10−10.
6In exceptional cases one can relate different decays to each other and eliminate uncalculable amplitudes [46–48].
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in Eq. (26) real, except for Vcs, whose phase is far below 0.01◦ and negligible. Thus, the only contribution to ϕmix
CP,Bd

stems from the box
diagram and (for a positive sign) one deduces

ϕmix
CP,Bd

= arg
(
(VtbV∗td)2

)
= 2 arg V∗td , valid for the standard CKM phase convention. (27)

From Eq. (17) one realizes that this is not expected to be a small number, there is no suppression by powers of λ in Eq. (27). The
observation that —contrary to what people were used to from Kaon physics— Bd decays can exhibit large CP violation is due to Carter and
Sanda [50, 51]. Thus, loosely speaking, Amix

CP (Bd → J/ψKshort) measures the phase of the Bd−B̄d mixing box diagram. But one must keep
in mind that the latter is convention-dependent and unphysical, and the physical CP phase in any Bd(t)→ fCP decay is the relative phase
between the box diagram and the phase of Ā fCP/A fCP .

In Sec. 5 we will derive

Amix
CP (Bd → J/ψKshort) = − sin ϕmix

CP,Bd
. (28)

The overall sign of Amix
CP (Bd → J/ψKshort) is related to the CP quantum number ηCP,J/ψKshort of the final state. To determine this we recall that

Kshort is a placeholder for π+π− which is CP even. J/ψ is a JPC = 1−− resonance, thus it is also CP-even. Now the quantum number of the
total angular momentum of the J/ψKshort state is j = 0, because Bd has zero spin. That implies that the final state has angular momentum
quantum number l = 1, meaning that the wave function is proportional to Y l=1

m=0(θ, ϕ) if the z-axis points in the flight direction of Kshort or
J/ψ. The parity transformation of CP maps Y l=1

m=0(θ, ϕ) onto Y l=1
m=0(π − θ, ϕ + π) = −Y l=1

m=0(θ, ϕ), so that we arrive at the CP quantum number
ηCP,J/ψKshort = −1. If we considered a b→ cc̄s decay into a CP-even final state, we would find Amix

CP = sin ϕmix
CP,Bd

instead of Eq. (28).
To describe the impact of CP asymmetries on CKM metrology one introduces unitarity triangles (UTs). The unitarity of V implies for

j , k:

V∗1 jV1k + V∗2 jV2k + V∗3 jV3k = 0 columns (29)

and V∗j1Vk1 + V∗j2Vk2 + V∗j3Vk3 = 0 rows. (30)

The first equation expresses that any two columns of V are orthogonal to each other, the second one does this for rows. We have already
used the first relation for j = 1 and k = 3 as VtbV∗td = −VcbV∗cd − VubV∗ud above. Each of the relations in Eqs. (29) and (30) defines a triangle
in the complex plane, e.g. for Eq. (29) the three corners are located at 0, V∗1 jV1k and −V∗2 jV2k. The three sides of this triangle are |V∗1 jV1k |,
|V∗2 jV2k |, and |V∗3 jV3k |. The UTs have the important feature that the phase transformations of Eq. (16) rotate the unitarity triangles in the
complex plane, but leaves their shape fixed. That is, both sides and angles of the UTs are independent of phase conventions and, indeed, we
can associate physical observables with them. The angles are related to CP asymmetries.

The area of all six triangles is the same and given by J/2, where J is the Jarlskog invariant [52]

J ≡ Im
[
V∗tdVtbV∗ubVud

]
≃ A2λ6η. (31)

Here last result uses the Wolfenstein approximation of Eq. (17). Four of the six unitarity triangles are squashed, the three sides are similar
only for the choice ( j, k) = (3, 1). Moreover, within the Wolfenstein approximation the shapes of the “column” and “row” of Eqs. (29) and
(30) are equal for ( j, k) = (3, 1). Seeking a definition of a completely rephasing-invariant unitarity triangle (which does not rotate under
rephasings) we divide Eq. (29) (for ( j, k) = (3, 1)) by V∗23V21 = V∗cbVcd to arrive at

V∗ubVud

V∗cbVcd
+

V∗tbVtd

V∗cbVcd
+ 1 = 0 (32)

When people speak of “the” unitarity triangle they mean the rescaled triangle defined by Eq. (32). Since its baseline coincides with the
interval [0, 1] of the real axis, the unitarity triangle is completely determined by the location of its apex (ρ̄, η̄), where

ρ̄ + iη̄ ≡ −
V∗ubVud

V∗cbVcd
. (33)

This is an exact expression; comparing it with the Wolfenstein approximation in Eq. (17) one finds that (ρ̄, η̄) agrees with (ρ, η) to an
accuracy of 3% [53]. The UT was used in the Wolfenstein approximation since the late 1980s [54], the notation ρ̄, η̄ was introduced in
Ref. [53] in which the Wolfenstein approximation was refined by expanding V to order λ5. The UT is depicted in Fig. 3. The two non-trivial
sides of the triangle are

Ru ≡

√
ρ̄2 + η̄2, Rt ≡

√
(1 − ρ̄)2 + η̄2. (34)

CP-violating quantities are associated with the triangle’s three angles

α = arg
[
−

VtdV∗tb
VudV∗ub

]
, β = arg

[
−

VcdV∗cb

VtdV∗tb

]
, γ = arg

[
−

VudV∗ub

VcdV∗cb

]
. (35)

These angles were used since the late 1980s [54] in the Wolfenstein approximation and then in the improved version [53]; Eq. (35) is the
exact definition, which does not employ any expansion in λ [55]. The Belle (-II) collaborations use the notation

ϕ1 ≡ β, ϕ2 ≡ α, ϕ3 ≡ γ,
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Ru Rt

βγ

α

(0,0) (1,0)

(ρ,η)

Fig. 3 The (standard) unitarity triangle. The non-trivial sides are Ru =
√
ρ̄2 + η̄2 and Rt =

√
(1 − ρ̄)2 + η̄2.

with the concept that in the (un-rescaled) UT the angle ϕ j is opposite to the side involving V j1V∗j3.
The angle γ coincides with the Kobayashi-Maskawa phase δKM at the sub-permille level. With Eqs. (33–35) one obtains

ρ + iη = Rueiγ, 1 − ρ − iη = Rte−iβ. (36)

The unitarity relation of Eq. (32) now simply reads

Rueiγ + Rte−iβ = 1 (37)

Taking real and imaginary parts of Eq. (37) allows us to express any two of the four quantities Ru,Rt, γ, β in terms of the remaining two
ones. By multiplying Eq. (37) with either exp(−iγ) or exp(iβ) one finds analogous relations involving α = π − β − γ.

In the standard CKM phase convention three of the six elements entering the UT are real. Now with the improved Wolfenstein expansion
of Ref. [53] one verifies

arg(−Vcd) = A2ηλ4 + O(λ8) = 6 · 10−4 = 0.03◦, (38)

so that one can safely neglect this phase and take Vcd as a negative number. Then

Vub = |Vub|e−iγ, Vtd = |Vtd |e−iβ, (39)

ϕmix
CP,Bd

SM
= 2β (40)

Eqs. (27) and (28) boil down to the famous result

Amix
CP (Bd → J/ψKshort)

SM
= − sin(2β), (41)

which is independent of any phase conventions if β is defined as in Eq. (35).
We can associate with each of the four meson-antimeson mixing processes one of the six unitarity triangles, which we consider rescaled

as in Eq. (32). Then Bd−B̄d probes the standard UT, while K−K̄ mixing discussed in Sec. 2, involving VqsVqd with q = u, c, t, is related to
the UT expressing the orthogonality of the first two columns. The height of this rescaled “squashed” triangle is of order η̄A2λ4 ≃ 6 · 10−4,
which is tiny. CP violation is thus small in K−K̄ mixing and the enhancement from the large top mass is instrumental to get to the —still
small, but detectable— branching ratio in Eq. (13).

CP violation in the Bd system was discovered through measurements of Amix
CP (Bd → J/ψKshort) by BaBar and Belle in 2001. These

experiments and the B factories hosting them were designed to measure this quantity and to thereby establish CP violation beyond Kaon
decays. Since the measured value complied with the expectation from the SM, this measurement was viewed as a confirmation of the KM
mechanism [29], prompting the Nobel Prize for Kobayashi and Maskawa in 2008.

Today’s experimental world average is

Amix,exp
CP (Bd → J/ψKshort) = −0.710 ± 0.011 HFLAV 2025 [37], (42)

which also involves other b→ cc̄s decay modes and uses data from BaBar [56], Belle [57], Belle II [58], and LHCb [59, 60]. Eq. (42)
implies

β = 22.62◦ ± 0.45◦. (43)

To clarify this point, I first mention that in 2004 BaBar had determined sign cos(2β) to be positive by scanning over the invariant mass of
the Kshortπ

0 pair in Bd → J/ψKshortπ
0 around the K∗(0) resonance and used interference effects of S and P waves [61]. Thus 2β = ϕmix

CP,Bd
is

determined to lie in the first quadrant with sin ϕmix
CP,Bd

> 0, cos ϕmix
CP,Bd

> 0. One could still add π to β, but 22.62◦ + 180◦ = 202.62◦ (implying
η̄ < 0 and ρ̄ > 1 from Eq. (36)) is incompatible with other measurements by far, even if these had contributions from BSM physics.

At the level of precision in Eq. (43) one must worry about the penguin pollution of order Im (V∗ubVus/(V∗cbVcs)) ≃ η̄λ2 ∼ 0.02, which is
neglected in Eq. (43). One can estimate the size by measuring the mixing-induced CP asymmetry in the “control channel” Bs → J/ψKshort

which is a b̄→ c̄cd̄ decay in which both AT and AP come with a CKM factor of order λ3, so that one can determine the here large penguin
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contribution from data and relate it to the decay of interest by using the approximate U-spin symmetry of QCD [62]. This amounts to
exchanging d and s quark lines, which relates AT,P in Bd → J/ψKshort to AT,P in Bs → J/ψKshort and would be exact if down and strange
quark had the same mass. Currently this is not feasible, because Amix

CP (Bd → J/ψKshort) is measured consistent with zero with an error around
0.41 [63]. Alternatively one can calculate the penguin pollution using soft-collinear factorization, which can be applied to both b→ cc̄d
and b→ cc̄s decay modes. The result, however, involves an unknown phase and varying this phase between 0 and 2π only results in an
upper bound on the penguin pollution, which reads |δpeng Amix

CP (Bd → J/ψKshort)| ≤ 0.0086 inflicting an uncertainty of |δpeng β| ≤ 0.34◦ on β
in Eq. (43) [64]. For the control channel this reference finds |δpeng Amix

CP (Bs → J/ψKshort)| ≤ 0.26.
Bd−B̄d mixing is very sensitive to BSM physics, Ref. [34] finds a reach of Bd−B̄d mixing to virtual BSM particle effects with masses

up to 350 TeV. In general, BSM physics will affect both ∆Md and ϕmix
CP,Bd

, and Vtd can no more be found from these quantities. A BSM
analysis of Bd−B̄d mixing requires the determination of this CKM element from other observables.

The width difference ∆Γd stems from all decays into final states f which are common to Bd and B̄d . That is, only non-flavor-specific
decays contribute to ∆Γd . To understand this feature, note that the mass eigenstates |BH⟩ and |BL⟩ are linear combinations of |Bd⟩ and |B̄d⟩,
|BL,H⟩ = αL,H |Bd⟩ + βL,H |B̄d⟩ with |αL,H |

2 + |βL,H |
2 = 1. Introducing the decay amplitudes A f = ⟨ f |Bd⟩ and Ā f = ⟨ f |B̄d⟩, normalized such

that Γ(Bd → f ) = |A f |
2. one finds

Γ(BL,H → f ) = |⟨ f |BL,H⟩|
2 = (α∗L;H A∗f + β

∗
L;H Ā∗f )(αL;H A f + βL;H Ā f ) = |αL,H |

2|A f |
2 + |βL,H |

2|Ā f |
2 + 2 Re

(
α∗L;HβL,H A∗f Ā f

)
, (44)

so that the total widths read

ΓL,H =
∑

f

Γ(BL,H → f ) = |αL,H |
2Γtot(Bd) + |βL,H |

2Γtot(B̄d) + 2 Re

α∗L,HβL,H

∑
f

A∗f Ā f


= Γtot(Bd) + 2 Re

α∗L,HβL,H

∑
f

A∗f Ā f

 , (45)

where I have used that the CPT theorem dictates equal total decay rates for Bd and B̄d , Γtot(Bd) = Γtot(B̄d). The first term in Eq. (45) is the
same for ΓL and ΓH , thus ∆Γd = ΓL − ΓH only receives contributions from the last term in Eq. (45) to which only decays into final states
with A f , 0 , Ā f contribute. Now

∑
f A∗f Ā f corresponds to the Bd−B̄d box diagram with light quarks u, c on the internal lines. It can be

read such that a B̄d meson enters the diagram from the left and a Bd enters from the right to decay into the same final state with the quark
content of the internal lines. The optical theorem links inclusive quantities like

∑
f A∗f Ā f to the so-called absorptive part of a loop diagram,

which can be cut into two pieces such that f corresponds to the cut internal lines of this diagram. The absorptive part is calculated by
taking the imaginary part of the loop integral while retaining the couplings (i.e. the CKM elements) with the full complex phases. One can
view the last term in Eq. (45) as a B̄d ↔ f ↔ Bd “rescattering” transition. If we take a box diagram with internal charm and anti-up lines
as an example, we can cut it through these lines and the diagrams to the left and right of the cut correspond to Ā f and A∗f with the sum
over f carried out over all C = 1 final states such as D+π−,D∗+π0K−Kshort, . . .. The crucial point is that only states which are kinematically
accessible in a Bd decay can contribute to ∆Γd , so that the box diagrams with one or two internal top quarks do not contribute to ∆Γd . While
∆Md ∝ m2

t , one instead finds ∆Γd ∝ m2
b and ∆Γd/∆Md ∼ 10−3 from the calculation presented in Sec. 6.

There is yet no measurement of ∆Γd in the Bd−B̄d system. The experimental situation is as follows:∣∣∣∣∣∆Γd

Γd

∣∣∣∣∣exp

= 0.001 ± 0.010 HFLAV [37] (46)

with the average width Γd = 1/τBd entailing |∆Γd |
exp = (0.7 ± 6.6) · 10−3 ps−1. The value in Eq. (46) is dominated by measurements by

ATLAS [65], CMS [66], and LHCb [67]. One measures ∆Γd by measuring the lifetime in a Bd decay into a CP eigenstate like J/ψKshort

and uses the knowledge on Γd . HFLAV quotes Eq. (46) without the “|” for the absolute value, but the cited measurements are not sensitive
to the sign of ∆Γd , i.e. whether the lighter mass eigenstate has the shorter or longer lifetime. However, they give information on whether
the longer-lived or the shorter-lived eigenstates is closer to the (appropriately defined) CP-even eigenstate, as discussed in Sec. 5.

I next discuss Bs−B̄s mixing, which is very similar to Bd−B̄d mixing discussed above. The corresponding box diagram involves V2
ts

instead of V2
td . We have seen above that Bd−B̄d physics probes the standard unitarity triangle, as we have encountered CKM elements

of the first and third columns of V . Now Bs−B̄s mixing involves the CKM elements of the second and third columns and thus probes a
“squashed” unitarity triangle with height of order η̄λ2, so that we expect much smaller CP asymmetries than in Bd−B̄d . It is not useful to
depict results in terms of “squashed” triangles; recall that V only involves four parameters, so quoting values for Vus ≃ λ and Vcb = Aλ2 and
drawing the allowed range for the apex (ρ̄, η̄) of the standard UT are sufficient to describe V .

We can estimate the expected value for ∆Ms from ∆Md by rescaling ∆Md in Eq. (20) by |V2
ts/V

2
td | ∼ 23. Since τBs ≃ τBd , one realizes

that Bs−B̄s oscillations are very rapid, which prohibited their detection until 2006, when the CDF collaboration at the Fermilab Tevatron
collider observed these oscillations with [68, 69]

∆Ms =
(
17.77 ± 0.10stat ± 0.07syst

)
ps−1 CDF 2006. (47)

This number excellently agrees with today’s world average from CDF, LHCb and CMS,

∆Ms =
(
17.766 ± 0.004stat ± 0.004syst

)
ps−1, HFLAV 2025 [37], (48)
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which is also dominated by LHCb data [70, 71]. The hadronic physics in Bd−B̄d mixing and Bs−B̄s mixing would be the same in the
U-spin symmetry limit of ms = md , but in practice ∆Ms/∆Md = 35 is larger than |V2

ts/V
2
td | ∼ 23 because of sizable (but calculable) U-spin

breaking. In fact, ∆Md/∆Ms from Eqs. (20) and (48) is the most accurate way to determine |Vtd/Vts| which gives the side Rt of the UT
in Fig. 3 because of |Vtd/Vts| = λRt

(
1 + λ2(1/2 − ρ̄) + O(λ4)

)
. But as a caveat, B−B̄ mixing is also most sensitive to new physics and

whenever we want to test a BSM hypothesis in mixing observables we must not use numerical values for Vtd or Vts obtained by assuming
that the SM is correct. The state-of-the-art is to perform a combined fit to CKM elements and BSM parameters to all available data and to
study the likelihood ratio of the BSM best-fit point and the SM hypothesis [72–74].

In the SM one finds that to an excellent approximation ∆Γs/∆Ms = ∆Γd/∆Md . Since ∆Ms ≫ ∆Md , one finds ∆Γs sizable, ∆Γs/Γs =

∆ΓsτBs ≃ 0.12. The current world average

∆Γ
exp
s = (0.0781 ± 0.0035) ps−1 HFLAV 2025 [37], (49)

agrees well with the SM prediction discussed in Sec. 6. The quoted number uses data from CDF, DØ, ATLAS [75], CMS [76, 77], and
LHCb [78–80, 80–83]. Most of these measurements use Bs → J/ψϕ[→ K+K−] decays or the corresponding decay with ψ(2S ). These
decays also provide information on the CP phase of mixing-induced CP violation, i.e. the analogue of 2β in the Bs−B̄s system. Since ϕ
is a vector meson, there are three final states (J/ψϕ)l characterized by the angular orbital momentum quantum number l = 0, 1, or 2. The
l = 0 S-wave state is dominant and CP-even and the l = 2 state is CP-even as well. The P-wave state, with l = 1 and J/ψ and ϕ polarizations
perpendicular to each other, is CP-odd, so that one needs an angular analysis to separate the corresponding decay modes [84–88]. One
observes two exponential decay distributions following exp(−ΓLt) and exp(−ΓH t), which determines |∆Γs|. One further observes that the
larger of ΓL and ΓH occurs with decays into CP-even final states, so that the mass eigenstates are, to a good approximation, CP eigenstates,
with the shorter-lived state being dominantly CP-even. Interestingly, all three LHC experiments find errors for |∆Γs| of comparable size,
namely 0.004. While the quoted measurements determine |∆Γs|, it is important to note that sign∆Γs is firmly established to be positive:
LHCb had scanned the K+K− invariant mass in Bs → J/ψK+K− though the ϕ resonance and, since the variation of strong phases around
a resonance is known (from e.g. the Breit-Wigner formula), sign∆Γs could be determined [89] in 2012. The result complies with the SM
expectation, that |Bs,L⟩ is the shorter-lived eigenstate (and almost exactly CP-even). Thus in this respect there is no difference between
Bs−B̄s and K−K̄ systems.

The sizable width difference in the Bs−B̄s system opens the door to new observables. Dunietz has pointed out that one can use
untagged Bs samples to study CP violation, essentially mimicking the situation with K−K̄ mixing, because the longer-lived Bs,H state is
mostly decaying to CP-odd final states, just as Klong, and a

( )
B̄s beam enriches itself with Bs,H in time, because the Bs,L component decays

faster [90]. Thus one can access CP properties from lifetime information. I will come back to this point at the end of Sec. 5.3.
The analogue of the sin(2β) measurement of Bd−B̄d mixing in the Bs−B̄s system involves the time-dependent CP asymmetry in the

decay Bs → J/ψϕ, which is driven by b̄→ c̄cs̄ like Bd → J/ψKshort. Unlike the ∆Γs measurements described in the previous paragraph this
analysis requires flavor tagging; in the papers [78–80, 80–82] cited above the CP phase ϕmix

CP,Bs
is determined together with ∆Γs. We can take

the formulae used for the phase of the Bd−B̄d box diagram in Eq. (27) with the substitution 2β→ −2βs with the definition of βs through

VtsV∗tb
VcsV∗cb

≡

∣∣∣∣∣∣ VtsV∗tb
VcsV∗cb

∣∣∣∣∣∣ eiβs . (50)

Thus in the standard CKM phase convention we have

Vtd
Eq. (39)
= |Vtd |e−iβ, Vts = |Vts|eiβs , ϕmix

CP,Bs

SM
= −2βs (51)

where arg(−Vcd) = 0.03◦ (see Eq. (38)) and arg(Vcs) ≃ −A2η̄λ6 = −0.002◦ are neglected. Eq. (51) is the analogue of Eq. (40) in Bd−B̄d

mixing. The different signs in the definitions of the phases of Vtd and Vts, first introduced in [91], were motivated by the goal to have both
β and βs positive:

βs = η̄λ2
(
1 + λ2(1 − ρ̄)

)
+ O(λ6) = 0.019 = 1.1◦. (52)

In Amix
CP (Bs → (J/ψϕ)l) we must take care of the CP quantum number ηCP,(J/ψϕ)l = (−1)l and furthermore include the effect from a non-

negligible ∆Γs:

aCP(Bs(t)→ (J/ψϕ)l) = −
Adir

CP(Bs(t)→ (J/ψϕ)l) cos(∆Ms t) − Amix
CP (Bs(t)→ (J/ψϕ)l) sin(∆Ms t)

cosh(∆Γs t/2) − (−1)l cos(ϕmix
CP,Bs

) sinh(∆Γs t/2)
(53)

Amix
CP (Bs → (J/ψϕ)l) = (−1)l sin ϕmix

CP,Bs
=

SM
= −(−1)l sin(2βs) . (54)

This formula, which generalizes Eq. (28) to ∆Γs , 0, will be derived in Sec. 5. We see that Amix
CP (Bs → (J/ψϕ)l) is expected to be small; the

quantity will not significantly contribute to CKM metrology (though it could provide us with the height η̄ of the UT), but instead is a superb
testing ground for BSM physics. Ref. [34] finds a reach of Bs−B̄s mixing to virtual BSM particle effects with masses up to 70 TeV.

The experimental effort [78–80, 80–82] lead to the 2025 world average

ϕ
mix,exp
CP,Bs

= −0.052 ± 0.013 = 2.98◦ ± 0.74◦ HFLAV 2025 [37], (55)

which complies with the SM expectation of −2βs = −0.038 ± 0.001 [32] at 1σ.
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I further mention that sign∆Γs is correlated with the Bs−B̄s mixing phase as sign cos ϕmix
CP,Bs

= sign∆Γs [88] in the SM and any BSM
theory, in which the BSM contribution to the b→ cc̄s decay amplitudes constituting ∆Γs in Eq. (45) is smaller than the SM contribution.
This is plausible, because b→ cc̄s are large tree amplitudes and furthermore the excellent agreement of Eq. (49) with the SM prediction do
not suggest BSM dominance in Eq. (45).

In Ref. [92] it was proposed to determine sign∆Γs = sign ϕmix
CP,Bs

with Bs → D±s K∓ which involves the CKM angle γ in the combination
ϕmix

CP,Bs
+ γ which breaks the degeneracy of the two solutions for ϕmix

CP,Bs
found from Bs → J/ψϕ. Conversely, once the information on sign∆Γs

from Ref. [89] was available, one could exploit the large width difference to remove discrete ambiguities in studies of Bs → D±s K∓ aiming
at the determination of ϕmix

CP,Bs
+ γ [93].

In Eq. (54) and Eq. (55) the penguin pollution has been set to 0. The estimate of the size of penguin pollution using SU(3)F symmetry
is difficult, because ϕ has a large SU(3)F singlet component and one would need precise data on CP asymmetries is Bd,s → J/ψω decays.
The dynamical calculation of Ref. [64] finds |δpeng ϕmix

CP,Bs
| ≤ 0.97◦, ≤ 1.22◦, and ≤ 0.99◦ for the longitudinal, parallel, and perpendicular

polarizations of J/ψϕ, respectively, from which the (J/ψ)l amplitudes are constructed. (Only the amplitude with perpendicular polarizations
has l = 1, i.e. is CP-odd.) We see that the penguin pollution might matter in view of the experimental error in Eq. (55). For the decay mode
Bs → J/ψ f0[→ π+π−] employed to determine ∆Γs in Ref. [83] no estimates of the penguin pollution are available and future determinations
of ϕmix

CP,Bs
from Bs → J/ψ f0 should not be averaged with other measurements.

4 D− D̄ mixing

D−D̄ mixing is an example of a FCNC process of up-type quarks, since it involves c→ u transitions. Charm physics is the only way to
study such processes with the needed precision because branching ratios of t → c or t → u decays (suffering from the large total width of
the top quark) or u→ t or c→ t FCNC single-top production (i.e. without a b̄ quark in the final state) are not competitive yet.

The D−D̄ mixing amplitude, described by the D−D̄ box diagram in Fig. 1, involves the down-type quarks d, s, and b on the internal
lines. The CKM elements are hierarchical, with a situation similar to K−K̄ mixing; if we neglect the small CKM factor VubV∗cb with
magnitude |VubV∗cb| ≃ RuA2λ5 ≃ 10−4, we are back to the 2-flavor SM with the 2 × 2 submatrix VC . In this 2-flavor theory we find the D−D̄
mixing amplitude far more GIM suppressed than its K−K̄ mixing counterpart: Firstly, we observe that the CKM factor in both cases is
sin2 θC cos2 θC . Secondly, we see that the GIM suppression factor which was m2

c/M
2
W in K−K̄ mixing will (in the limit md = 0) involve

the much smaller ms instead of mc in D−D̄ mixing. Yet the suppression is even stronger, because mc ∼ 1.3 GeV is the largest mass scale
in the K−K̄ mixing diagram and we can set external momenta (of order ms or the QCD scale ΛQCD ∼ 400 MeV) to zero. In D−D̄ mixing
the largest mass scale is the momentum of the external charm quark, thus it is of order mc as well and we must keep both ms and mc in
the calculation. The result is a GIM suppression of order m4

s/(m
2
c M2

W ), which is smaller by a factor of m4
s/m

4
c compared to K−K̄ mixing.

Accounting for the different masses and hadronic parameters this results in a naive estimate of ∆MD ∼ 2 · 10−4 · ∆MK = 10−6 ps−1 from
Eq. (11).

If we include the contributions from the internal b quarks, we encounter six combinations of d, s, b quarks on the internal lines of the box
diagram. As usual, CKM unitarity permits to eliminate one of these, commonly this is done for VudV∗cd = −VusV∗cs − VubV∗cb. This results in

three contributions to the D−D̄ mixing amplitude, proportional to
(
VusV∗cs

)2,
(
VusV∗csVubV∗cb

)
, and

(
VubV∗cb

)2
, respectively. While the latter

two CKM elements are smaller than the first one, this suppression is partially offset by the weaker GIM suppression of the loop diagrams
with one or two b quarks. So while numerically sub-leading, these terms are not negligible compared to the

(
VusV∗cs

)2 m4
s/(m

2
c M2

W ) term.7

The experimental situation of ∆MD and ∆ΓD is summarized in Ref. [95]. In charm physics it is common standard to quote results in
terms of

xexp
D =

∆MD

ΓD
, yexp

D = −
∆ΓD

2ΓD
, (56)

where the “−” sign in yD stems from the definition in Eq. (3) which differs from the one in Ref. [95]. The first discovery of D−D̄ mixing,
(xD, yD) , (0, 0), from a combination of several measurements was in 2007 [37], in 2012 LHCb achieved this in a single experiment [96]
and in 2021 LHCb [97] has established xd , 0 with a significance of more than 5σ, see Ref. [95] for details. Apart from LHCb also BaBar,
Belle, and CDF made important contributions to the discovery and quantification of D−D̄ mixing. The 2025 world average is

xD = (0.407 ± 0.044) · 10−2, yD =

(
0.645

+0.024
−0.023

)
· 10−2 HFLAV 2025 [37] (57)

which is found from a global fit in which the CP-violating quantities are fitted together with xD and yD. No evidence for CP violation is
found until today. With 1/ΓD = τD = (0.4103 ± 0.0010) ps the numbers in Eq. (57) imply

∆MD = (0.0099 ± 0.0011) ps−1, ∆ΓD = −

(
0.01572

+0.00058
−0.00056

)
ps−1 (58)

We notice two important points here: Firstly, ∆MD is larger than our naive estimate by 4 orders of magnitude. For |∆ΓD| one finds the same
order-of-magnitude discrepancy between box diagram estimate and data [94]. Secondly, sign (∆MD/∆ΓD) is negative, opposite to what is
observed in K−K̄ mixing and Bs−B̄s mixing and what the SM predicts for Bd−B̄d mixing!

7For an analysis of this feature for ∆ΓD see Ref. [94].
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To understand the failure of the box diagram calculation I discuss the contribution with the large CKM factor
(
VusV∗cs

)2. The smallness
of the result of the box diagram Results from four contributions which are of order 1 and combine to a result of order m4

s/(m
2
c M2

W ). The box
diagrams vanish in the U-spin symmetry limit md = ms. The

(
VusV∗cs

)2 piece of the D−D̄ mixing is second order in the U-spin breaking
parameter ms − md . Indeed, if we calculate the box diagram with ms , 0 , md , we find a result proportional to(

m2
s − m2

d

)2
= (ms − md)2︸       ︷︷       ︸ · (ms + md)2︸       ︷︷       ︸

U-spin
breaking

artifact of
perturbation theory

(59)

Thus indeed, the U-spin breaking is correctly reproduced, but the additional suppression by (ms + md)2/m2
c is an artifact of the calculational

method, originating from the fact that the W boson only couples to left-chiral fields and one needs an even number of chirality flips on
each quark line. In Nature, left-right flips can also come from a non-perturbative object of QCD called quark condensate. So we are lead
to consider alternatives to the box diagram. In Refs. [98, 99] it was pointed out that contributions in which one or both of the internal s or
d lines of the box diagram are cut, so that they become external lines, (and eventually a gluon is added to get a connected diagram), the
artificial suppression factor (ms + md)2/m2

c can be avoided and the SU(3)-breaking could reside in a hadronic matrix element. To date, the
proposed contributions cannot be reliable calculated. In summary, the theory community was unable to predict the results in Eq. (57) and
further did not come up with convincing postdictions.

The result in Eq. (57) nevertheless teaches us about possible BSM explanations. BSM physics which contributes to the D−D̄ mixing
amplitude through new box or even tree-level diagrams with heavy particles typically contribute much more to xD than to yD and it is
unlikely that xd ∼ yD originates from BSM physics in xD and long-distance QCD dynamics in yD. More convincingly, BSM physics comes
with new complex couplings. Recall that the standard form of V with real Vud , Vus is the result of the rephasings in Eq. (16) and these
rephasing will also appear in the couplings of hypothetical BSM particles. Thus, by default, a dominant BSM contribution to xD would
give O(1) mixing-induced CP asymmetries in e.g.

( )
D̄→ K±π∓ decays, which are not observed. This means that BSM explanations of

Eq. (57) must have a mechanism which suppresses the effect in xD to the level of yD and further aligns new complex phases such that CP
violating observables are suppressed. The eventual discovery of BSM physics will clearly come from CP asymmetries and not from better
measurements of xD and yD.

As discussed in the previous sections, we use K−K̄ mixing and B−B̄ mixing to study the interference effects in M → f and M̄ →
f decays. Since D−D̄ oscillations are very slow, most of the

( )
D̄ sample has decayed once a sizable superposition of |D⟩ and |D̄⟩ has

evolved. But for such studies one can also use CP-tagged mesons, the CP eigenstates are |DCP±⟩ = (|D⟩ ∓ |D̄⟩)/
√

2 and are thus maximal
superpositions of |D⟩ and |D̄⟩. CP-tagged states are used at BES III to determine the strong phase in D→ K±π∓. There are ways to prepare
such states even at hadron colliders [100]. DCP± → f decays are not sensitive to the D−D̄ box diagram, they probe CP eigenstates rather
than mass eigenstates. Similarly to mixing-induced CP asymmetries, DCP± → f decays involve CP-violating observables which do not
need a non-vanishing strong phase.

5 Time evolution of neutral mesons and associated CP-violating quantities

In this section I will derive the formulae needed to describe meson-antimeson mixing and the CP-violating observables related to it, with
emphasis on the time evolution of neutral meson states. Compared to the previous sections the presentation is more technical but is
nevertheless of interest to both the theoretical and experimental community. Especially, presented aspects of the CP asymmetry in flavor-
specific decays, afs, which is still to be discovered in Bd,s and D decays, might be helpful to devise future measurements. The formalism of
the section is general and applies to the SM as well as any BSM theory. SM predictions will be presented in Sec. 6.

5.1 Time evolution
In order two understand the QFT formalism of the weak interaction of hadrons in general and of meson-antimeson mixing in particular, we
first seek a description of fields and states which permits the application of perturbation theory to the electroweak interaction, which involves
small coupling constants in which our amplitudes of interest can be expanded. In fact, for FCNC transitions the lowest non-vanishing order
in the weak coupling gw is sufficient, e.g. meson-antimeson mixing occurs first at order g4

w (box diagrams) and corrections from diagrams
with an additional electroweak boson are negligible in view of QCD uncertainties. In a first step the lagrangian of any QFT is expressed in
terms of fields and states in the Heisenberg picture, meaning that the quantum fields depend on the space-time variable xµ, while the states
(describing the particles) are time-independent. One then splits the hamiltonian density H as

H = H0 + Hint (60)

with Hint = −Lint containing the interaction terms with the small couplings in which we want to expand in our calculations. In the second
step one applies a unitary tranformation to fields and states to arrive at the interaction picture (a.k.a. Dirac picture). As a result the states
|ψ(t)⟩ become time-dependent and one encounters a time evolution operatorU(t2, t1),

|ψ(t2)⟩ = U(t2, t1) |ψ(t1)⟩, where U(t2, t1) = Texp
[
−i

∫ t2

t1
dt

∫
d3 x⃗ Hint

]
. (61)
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Here Texp is the time-ordered exponential and Hint depends on xµ = (t, x⃗) through the fields. In the calculation of a 2 × 2 scattering process,
where |ψ⟩ is a two-particle state, one encounters the S-matrix S = U(∞,−∞) and conveniently applies covariant perturbation theory in
momentum space to calculate the cross section (or other observables of interest) from the S-matrix elements in terms of the momentum
four-vectors pµj of the in-going and out-going particles. For the treatment of meson-antimeson mixing and the time-dependent decay rates
in Eq. (21) we need to depart from the described standard path in two aspects: Firstly, we must keep the time in the formalism, since
we need U(t2, t1) for t2 , ∞ , −t1. This means that we cannot trade t for the energy E = p0 with the usual Fourier transform w.r.t. to
time. Starting from the formalism of covariant perturbation theory we can Fourier-transform back to a world in which states are labeled
as |p⃗, t⟩ which gives us the “old-fashioned time-dependent perturbation theory” employed in early days when QFT emerged from quantum
mechanics. Secondly, in perturbation theory applied to processes of leptons and bosons (such as QED) one chooses H0 in Eq. (60) as the
free hamiltonian. In perturbation theory the initial and final states of a scattering or decay process are constructed from H0, accounting for
the fact that sufficiently widely separated particles (forming so-called asymptotic states) behave like free particles. In our cases of interest,
we encounter hadrons as asymptotic states, which are bound states of the strong interaction. Not surprisingly, since QCD is non-perturbative
at large distances, we cannot apply perturbation theory in terms of the strong coupling αs from the start. Thus H0 in Eq. (60) is H0 = HQCD,
which contains both the quadratic pieces of the free hamiltonian and all interaction terms with the gluon field. That is, our fields and states
are still in the Heisenberg picture w.r.t. QCD. In particular, the state vectors are eigenstates of Ĥ0 = ĤQCD =

∫
d3 x⃗ HQCD. For example, in a

weak two-body meson decay M → h1h2 into ground-state hadrons h1,2 the asymptotic states for initial and final state satisfy

ĤQCD|M(p⃗M)⟩ = EM |M(p⃗M)⟩ =
√

M2
M + p⃗2

M |M( p⃗M)⟩,

ĤQCD|h1(p⃗1) h2(p⃗2)⟩ = (E1 + E2) |h1(p⃗1) h2(p⃗2)⟩ =
(√

M2
1 + p⃗ 2

1 +

√
M2

2 + p⃗ 2
2

)
|h1(p⃗1) h2(p⃗2)⟩ (62)

and, in our decay, EM = E1 + E2. Since the time dependence stems from H1 = Hint and asymptotic states (describing M before the decay
and h1,2 when they hit the detector (or, in a cascade decay, at the time when they decay to other particles) are obtained from H0 = HQCD,
there is no time-dependence yet in Eq. (62). Ground state hadrons are those which do not decay through the strong interaction, this
characterization applies to our decaying mesons K, Bd,s, and D, as well as to charged or neutral π, K, and η(′) in the final states. A vector
meson like K∗ is not in this category, the strong decay K∗ → Kπ is instantaneous and the asymptotic state is Kπ in this case. In fact,
there are observables in which one exploits the interference of K∗0 → Kshortπ

0 and K̄∗0 → Kshortπ
0 in a decay chain, thus the neutral vector

meson is clearly not an asymptotic state observed in a detector. The most prominent example of a quantity using the shown interference is
Amix

CP (Bd → J/ψ
( )
K̄∗0[→ Kshortπ

0]).
To derive the desired formula for the time-evolution of a weakly decaying meson, we start with the case of a charged meson M+, for

which no flavor oscillations occur. In the interaction picture, the ket |M+⟩ of a meson produced at time t = 0 evolves in time as

U(t, 0)|M+⟩ = |M+(t)⟩ +
∑

f

| f ⟩⟨ f |U(t, 0)|M+⟩, (63)

with

|M+(t)⟩ ≡ |M+⟩⟨M+|U(t, 0)|M+⟩ (64)

describing the situation that M+ has not decayed at the considered time t > 0. The second term in Eq. (63) involves the sum over all final
states | f ⟩ into which M+ can decay. In the description of time-dependent decay processes it is further common to switch from the interaction
picture kets | . . .⟩I to the Schrödinger picture | . . .⟩S defined as

|ψ⟩S ≡ e−iĤ0 t |ψ⟩I = e−iEψ t |ψ⟩I . (65)

so that the one-particle stateU(t, 0)|M+⟩ in Eq. (63) picks up an extra factor of exp(−iEM+ t) in the Schrödinger picture. We do not transform
the fields, e.g. U(t2, t1) is not changed in the I → S transformation. By energy conservation these factors of exp(−iEt) drop out between
bras and kets, so that S ⟨. . .⟩S = I⟨. . .⟩I . We can determine |M+(t)⟩ in Eq. (63) by employing the exponential decay law to deduce

|M+(t)⟩ = e−iMM te−Γt/2|M+⟩ (66)

in the meson rest frame. The first term is the familiar time evolution factor of a stable state with energy E = MM . We understand the second
factor involving the total width Γ by considering the probability to find an undecayed meson at time t:∣∣∣⟨M+|M+(t)⟩

∣∣∣2 = e−Γt

Here I have normalized the states as ⟨M+|M+⟩ = 1.
Since MM − iΓ/2 is independent of t, we can compute it using the familiar covariant formulation of quantum field theory and in the

following calculations I comply with the standard relativistic normalization of the meson states,

⟨M(p⃗ ′)|M(p⃗)⟩ = 2E (2π)3δ(3)(p⃗ ′ − p⃗). (67)
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M+ M+ M0 M0

Fig. 4 Left: generic self energy Σ of a charged meson. Right: M0− M̄0 mixing amplitude Σ12.

The optical theorem tells us that MM and −Γ/2 are given by the real and imaginary parts of the self-energy Σ (depicted in the left diagram
of Fig. 4), where

−i(2π)4δ(4)(p⃗ ′ − p⃗)Σ =
⟨M+(p⃗ ′)|S |M+(p⃗)⟩

2MM
(68)

This defines Σ in the interaction picture, in the Schrödinger picture we must add the mass MM , i.e. the “tree-level self-energy”, to Σ.
The factor of 1/(2MM) in Eq. (68) originates from the normalization in Eq. (67). The truncated self-energy diagram of a boson has mass
dimension 2 and by dividing by 2MM we arrive at the correct mass dimension 1 for Σ = MM − iΓ/2. From Eq. (66) we find

i
d
d t
|M+(t)⟩ =

(
MM − i

Γ

2

)
|M+(t)⟩. (69)

Now this equation can be generalized to a two-state system describing neutral meson mixing. We may view (|K⟩, |K̄⟩) as a two component
object with strangeness (or U-spin quantum number U3 = ±1) as an inner degree of freedom distinguishing these components. Then

i
d
d t

 |M(t)⟩

| M̄(t)⟩

 = Σ

 |M(t)⟩

| M̄(t)⟩

 (70)

where now Σ is the 2 × 2 matrix defined as

−i(2π)4δ(4)(p′i − p j)Σi j =
⟨i, p⃗i

′|S SM| j, p⃗ j⟩

2MM
(71)

in the interaction picture with |1, p⃗1⟩ = |M(p⃗1)⟩ and |2, p⃗2⟩ = | M̄( p⃗2)⟩. In the Schrödinger picture used in Eq. (70) Σ gets an extra additive
term and is to be read as ΣS = ΣI + M · 1 with the 2 × 2 unit matrix 1. Since the shift between “I” and “S ” is trivial and only affects
equations describing time evolutions, I omit the corresponding index.

Recalling that any matrix can be written as the sum of a hermitian and an antihermitian matrix, we write

Σ = M − i
Γ

2
(72)

with the mass matrix M = M† and the decay matrix Γ = Γ†. Then

M12 =
Σ12 + Σ

∗
21

2
,

Γ12

2
= i
Σ12 − Σ

∗
21

2
. (73)

Again, Σ12 and the quantities derived from it here and below are different for the four cases M = K, Bd,s, and D and I drop the corresponding
index.

The expressions on the RHS of Eq. (73) are called dispersive and absorptive parts of Σ12, respectively. The right diagram in Fig. 4
generically represents all contributions to Σ12. The operational definitions of dispersive and absorptive parts, mentioned already after
Eq. (45), amount to factoring out all CKM elements (or other complex couplings when BSM theories are considered) and taking the
imaginary and real part of the remainder for dispersive and absorptive part, respectively. To shed light on this we discuss the Bd−B̄d box
diagram in Fig. 1 and write the Bd−B̄d amplitude as Σ12 = (VtbV∗td)2Arest. This quantity describes a |2⟩ ≡ |B̄⟩ → |1⟩ ≡ |B⟩ transition in which
a b quark enters the diagram and a b̄ quark leaves it. Now Σ21 in Eq. (73) instead describes the |B⟩ → |B̄⟩ transition which involves the box
diagram in which the direction of all quark lines are reversed, so that the CKM factor is complex-conjugated w.r.t. Σ12. The remainder of
the amplitude is the same, because Σ12 and Σ21 are related by CP conjugation and there are no sources of CP violation beyond the CKM
factors (or, in the case of a BSM theory, the complex coupling constants factored out). Thus Σ21 = (V∗tbVtd)2Arest and we realize that Σ∗21
appearing in the definitions of dispersive and absorptive parts in Eq. (73) are both proportional to (VtbV∗td)2. Thus

M12 = (VtbV∗td)2 Re Arest
Γ12

2
= −(VtbV∗td)2 Im Arest. (74)

From the optical theorem we know that Im Arest , 0 requires contributions from on-shell intermediate states, so that only box diagrams with
internal u, c quarks contribute to Γ12 for Bd−B̄d mixing.

The diagonal elements M11 and M22 are the (equal) masses of M and M̄ and are generated from the quark mass terms in the lagrangian
L and from the binding energy of the strong interaction. Had we stayed in the interaction picture, these diagonal elements would only
contain Σ11 = Σ22, i.e. the electroweak contributions to the meson self-energy, which are tiny electroweak corrections to the meson masses
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and completely negligible. Thus the extra term MMδ jk in the Schrödinger picture puts the full meson mass into the diagonal elements of the
mass matrix.

By contrast, the off-diagonal elements M12 = M∗21 and all elements of Γ stem from the weak interaction and are therefore tiny in
comparison with M11 and M22. The only reason why we can experimentally access M12 roots in the CPT theorem [8–10]: Applying CPT
to Eq. (71), which maps Σ11 ↔ Σ22, one finds

M11 = M22, Γ11 = Γ22, (75)

so that the eigenvalues of Σ are exactly degenerate for Σ12 = Σ21 = 0. Even the smallest Σ12 can lift the degeneracy and can lead to large
meson-antimeson mixing.

The presented derivations of Eqs. (66) and (70) were developed in [101] and use a shortcut: I have avoided to prove that Eq. (69)
holds with time-independent M and Γ and instead used the phenomenological input that we know the time-evolution of a decaying par-
ticle. However, Eq. (69) and the equivalent equation Eq. (66) with the exponential decay law are not valid exactly, but receive tiny (and
phenomenologically irrelevant) corrections [102]. The same statement is true for Eqs. (70) and (72), a proper derivation of Eq. (70) using
time-dependent perturbation theory for the weak interaction employs the so-called Wigner-Weisskopf approximation [6, 103]. Corrections
to this approximation have been addressed in Ref. [104] and are below the 10−10 level.

Eq. (70) is sometimes referred to as a “Schrödinger equation”, while the correct phrasing is “time evolution equation in the Schrödinger
picture”. A Schrödinger equation involves a hamiltonian, but M − iΓ/2 is not (the matrix representation of) a hamiltonian, because it is
not hermitian. It is also not some piece of a hamiltonian acting in a 2-dimensional subspace of the full infinite-dimensional Fock space of
particle physics, because the exponential decay described by Γ is an effective description of the M → f transitions in Eq. (63).

I will now present the solution of Eq. (70). We can diagonalize Σ as

Q−1ΣQ =

(
ML − iΓL/2 0

0 MH − iΓH/2

)
(76)

with

Q =

(
p p
q −q

)
and Q−1 =

1
2pq

(
q p
q −p

)
(77)

and |p|2 + |q|2 = 1. The ansatz in Eq. (77) (with just two coefficients p, q) works because of Σ11 = Σ22. Thus the eigenvectors of Σ in Eq. (71)
are the columns of Q, (p, q)T and (p,−q)T , which leads to the mass eigenstates [6]

|ML⟩ = p|M⟩ + q|M̄⟩ , |MH⟩ = p|M⟩ − q|M̄⟩. (78)

|ML,H(t)⟩ obey an exponential decay law like |M+(t)⟩ in Eq. (66) with (MM , Γ) replaced by (ML,H , ΓL,H). Transforming back to the flavour
basis gives  |M(t)⟩

| M̄(t)⟩

 = Q

 e−iML t−ΓL t/2 0

0 e−iMH t−ΓH t/2

 Q−1

 |M⟩
| M̄⟩

 (79)

The average mass m and average width Γ have been defined in Eq. (5) and the definitions of the mass and width difference can be found in
Eq. (3). The matrix appearing in Eq. (79) can be compactly written as

Q

 e−iML t−ΓL t/2 0

0 e−iMH t−ΓH t/2

 Q−1 =


g+(t)

q
p

g−(t)
p
q

g−(t) g+(t)

 (80)

with

g+(t) = e−imt e−Γt/2
[

cosh
∆Γ t

4
cos
∆M t

2
− i sinh

∆Γ t
4

sin
∆M t

2

]
,

g−(t) = e−imt e−Γt/2
[
− sinh

∆Γ t
4

cos
∆M t

2
+ i cosh

∆Γ t
4

sin
∆M t

2

]
. (81)

Inserting Eq. (80) into Eq. (79) gives us the desired expression for meson-antimeson oscillations:

|M(t)⟩ = g+(t) |M⟩ +
q
p

g−(t) | M̄⟩ ,

| M̄(t)⟩ =
p
q

g−(t) |M⟩ + g+(t) | M̄⟩ , (82)

We verify g+(0) = 1 and g−(0) = 0 and find that g±(t) has no zeros for t > 0 if ∆Γ , 0. Hence the two lifetimes 1/ΓL and 1/ΓH lead to a
dispersion, so that an initially produced M will never turn into a pure M̄ or back into a pure M.
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We will frequently encounter the combinations

|g±(t)|2 =
e−Γt

2

[
cosh

∆Γ t
2
± cos (∆M t)

]
,

g∗+(t) g−(t) =
e−Γt

2

[
− sinh

∆Γ t
2
+ i sin (∆M t)

]
. (83)

Note that M − iΓ/2 is not a hermitian matrix, so that we cannot expect Q linking (|M⟩, |M̄⟩) to (|ML⟩, |MH⟩) to be unitary. As a consequence,
the mass eigenstates need not be orthogonal to each other, that is

⟨ML |MH⟩ = |p|2 − |q|2 (84)

need not vanish. We can use this observation to find a criterion for CP violation. If CP is conserved in meson-antimeson mixing, then
|ML,H⟩ are eigenstates of the CP operator with different eigenvalues ±1. Since the CP operator is unitary, its eigenvectors are orthogonal
and in this case therefore Eq. (84) must vanish. Thus we conclude that |q/p| , 1 implies that CP is violated in |∆F| = 2 transitions. This
phenomenon is called CP violation in mixing and should not be confused with the mixing-induced CP violation defined by Amix

CP , 0 in
Eq. (25). The latter quantity is specific to the studied M → f decay mode, while CP violation in mixing is a universal effect, which only
depends on |q/p| and therefore affects all decays of M.

CPT transforms the state α|M(p⃗)⟩ + β|M̄( p⃗)⟩ to α∗|M̄( p⃗)⟩ + β∗|M( p⃗)⟩ times an arbitrary phase factor. Thus |ML;H⟩ are not CPT eigen-
states for |p| , |q|. Since CPT is a good symmetry of the SM, this looks strange. But there is no contradiction here, because |ML;H⟩ are
eigenstates of M − iΓt/2, which is not a hamiltonian.

5.2 ∆M, ∆Γ, and CP violation in mixing
I will next solve the eigenvalue problem in Eq. (76) to express ∆M, ∆Γ, p and q in terms of M12 and Γ12.

The secular equation for the two eigenvalues σL,H = ML,H − iΓL,H/2 of Σ is (Σ11 − σL,H)2 − Σ12Σ21 = 0. The two solutions of this
equation therefore satisfy

(σH − σL)2 = 4Σ12Σ21

or

(∆M + i
∆Γ

2
)2 = 4

(
M12 − i

Γ12

2

) (
M∗12 − i

Γ∗12

2

)
. (85)

Taking real and imaginary part of this equation gives

(∆M)2 −
1
4

(∆Γ)2 = 4 |M12|
2 − |Γ12|

2 , (86)

∆M ∆Γ = −4 Re (M12Γ
∗
12) , (87)

From Eq. (76) we further infer [Q−1ΣQ]12 = [Q−1ΣQ]21 = 0, which determines

q
p
= −

∆M + i∆Γ/2
2M12 − i Γ12

= −
2M∗12 − i Γ∗12

∆M + i∆Γ/2
. (88)

(The second solution, with opposite sign, is discarded by imposing ∆M > 0.) For the simplification of Eqs. (86–88) it is useful to identify
the physical quantities of the mixing problem in Eqs. (70) and (72). Rephasing |M⟩ or | M̄⟩ cannot change the physics, but it changes the
phases of M12, Γ12 and q/p, none of which can therefore have any physical meaning. Thus only

|M12|, |Γ12|, and ϕ ≡ arg
(
−

M12

Γ12

)
. (89)

can be physical quantities of meson-antimeson mixing. Eq. (87) then reads

∆M ∆Γ = 4 |M12||Γ12| cos ϕ. (90)

We can easily solve Eqs. (86) and (90) to express ∆M and ∆Γ, which we want to confront with the measurements in Eqs. (10), (11), (20),
(46), (48), (49), and (58), in terms of the theoretical quantities |M12|, |Γ12| and ϕ.

Before doing so, we recognize that a non-vanishing phase ϕ is responsible for |q/p| , 0 identified after Eq. (84) as a criterion for CP
violation: By multiplying the two expression for q/p in Eq. (88) with each other we find

(
q
p

)2

=
2M∗12 − i Γ∗12

2M12 − i Γ12
=

M∗12

M12

1 + i
∣∣∣∣∣ Γ12

2M12

∣∣∣∣∣ eiϕ

1 + i
∣∣∣∣∣ Γ12

2M12

∣∣∣∣∣ e−iϕ
. (91)

and this expression shows that ϕ , 0, π indeed implies |q/p| , 1, i.e. CP violation in mixing.
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Interestingly, CP violation in mixing is found small (i.e. ||q/p| − 1| ≪ 1) for all of the four K, Bd,s and D systems, to date it is only
measured non-zero in K−K̄ mixing, while otherwise only upper bounds have been experimentally determined. I will discuss the experi-
mental situation below in more detail. The smallness is expected in the SM: K−K̄ mixing and D−D̄ mixing are dominated by the 2 × 2
Cabibbo matrix VC and CP violation requires contributions which are sensitive to all three fermion generations. (With the real VC of
the two-generation SM, one immediately finds M12 and Γ12 real in Eq. (74).) The “leakage” to the third generation from VtsV∗td , 0 and
VubV∗cb , 0 is small, suppressing sin ϕ. In the B−B̄ systems the line of arguments is as follows: Since Γ12 gets no contributions from the
box diagram with top quarks, which in turn dominates M12, we find |Γ12/M12| = O(m2

b/m
2
t ). Even BSM physics cannot change this, because

the decays contributing to |Γ12| are experimentally studied well enough to exclude order-of-magnitude enhancements. Thus the second term
in the numerator and denominator of Eq. (91) is small, irrespective of the value of ϕ, and |q/p| ≃ 1 for Bd and Bs mesons.

It is useful to define the quantity afs through ∣∣∣∣∣ q
p

∣∣∣∣∣2 = 1 − afs. (92)

From the discussion above we understand that afs quantifies CP violation in meson-antimeson mixing. For all neutral meson complexes
we know that afs is very small from the experimental numbers quoted in Secs. 5.3 and 6. By expanding (q/p)2 in Eq. (91) in terms of ϕ or
Γ12/M12 we find

afs =
4|Γ12| |M12|

4|M12|
2 + |Γ12|

2 ϕ + O(ϕ2), for K−K̄ mixing and D−D̄ mixing (93)

afs = Im
Γ12

M12
+ O

((
Im
Γ12

M12

)2
)
=

∣∣∣∣∣ Γ12

M12

∣∣∣∣∣ sin ϕ , for B−B̄ mixing. (94)

With this result it is straightforward to solve Eqs. (86) and (90) for ∆M and ∆Γ. Incidentally, in both cases we have

∆M ≃ 2 |M12|, (95)

∆Γ ≃ 2 |Γ12| cos ϕ. (96)

which holds up to corrections of order ϕ2 for Kaons and D mesons and corrections of order |Γ12/M12|
2 for B mesons. In the SM we

can replace cos ϕ by 1 not only in K−K̄ mixing but also in B−B̄ mixing, but there the smallness of ||q/p| − 1| is already implied by
|Γ12/M12| ≪ 1 so that the experimental information on the smallness of ||q/p| − 1| leaves some space for non-negligible BSM contributions
to ϕ. Note that in D−D̄ mixing we have cos ϕ ≈ −1, because ∆ΓD/∆MD < 0 is measured.

Importantly, in all neutral meson complexes one deduces from Eq. (91) that

q
p
= −

M∗12

|M12|
[1 + O(afs)] . (97)

That is, the phase of −q/p is essentially given by the phase of the box diagram in Fig. 1. q/p depends on phase conventions and is specific
to the choice for the CP transformation in Eq. (23). In documents with opposite signs compared to Eq. (23) you find q/p in Eq. (97) without
the “−” sign. Since B−B̄ mixing is dominated by the box diagram with internal tops we readily infer

q
p
= −

V∗tbVtq

VtbV∗tq
= − exp[i arg

(
V∗tbVtq

)2
] for Bq−B̄q mixing with q = d, s (98)

up to tiny corrections of order afs. Eqs. (95) and (96) further show that ∆M is trivially related to |M12| and ∆Γ is essentially determined by
|Γ12|. Since −Γ12/2 is the absorptive part of Σ12, which is the M̄ → M transition amplitude, we verify that Γ12 is composed of all decays
into final states f which are common to M and M̄ from the optical theorem:

Γ12 =
∑

f

⟨M| f ⟩⟨ f |M̄⟩ =
∑

f

A∗f Ā f (99)

We have found this feature already in the discussion of ∆Γ around Eq. (45). Indeed, for |q/p| = 1 one has |q| = |p| = 1/
√

2 and inserting
αH = αL = p and βL = −βH = q into Eq. (45) gives

∆Γ = ΓL − ΓH = 4 Re

p∗q
∑

f

A∗f Ā f

 Eq. (99)
= 2 Re

(
q
p
Γ12

)
Eq. (97)
= −2 Re

(
M∗12

|M12|
Γ12

)

= −2 Re
(

M∗12

|M12|

|Γ12|
2

Γ∗12

)
Eq. (89)
= 2 Re

(
e−iϕ |Γ12|

)
= 2 |Γ12| cos ϕ (100)

in agreement with Eq. (96).
We can apply our formalism also to the width difference between CP eigenstates of the meson-antimeson systems. This is unambigu-

ously only possible in a theory which conserves CP. But the hierarchy of the CKM matrix permits the definition of such eigenstates also
in the SM: In the dominant CKM-favored tree-level decays modes we can neglect direct CP violation, because the required interfering
second amplitude is CKM-suppressed. Furthermore, the amplitudes of all such CKM-favored decays can be arranged to have weak phases
essentially equal to 0 or π; the standard CKM phase convention, which I use in the following discussion, has this property. I exemplify the
topic with Bs mesons, because it was studied for this case [88]. For example, the b→ cc̄s and b→ cūd amplitudes have both essentially real
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CKM factors. Thus we can define |Beven
s ⟩ and |Bodd

s ⟩ as orthogonal states with the property Bodd
s ̸→ fCP+ and Beven

s ̸→ fCP− in CKM-favored
decays, where fCP+ and fCP− denote CP-even and CP-odd states, respectively. Thus e.g. Beven

s can decay to D+s D−S , while Bodd
s cannot, as long

as the CKM-suppressed penguin amplitude is neglected. In the standard CKM phase convention in which the considered decay amplitudes
are real, one finds with Eq. (23):

|Beven
s ⟩ =

|Bs⟩ − |B̄s⟩
√

2
, |Bodd

s ⟩ =
|Bs⟩ + |B̄s⟩
√

2
. (101)

Note that our derivation of the mass eigenstates in Eq. (78) does not tell us anything about their relationship to the CP eigenstates in
Eq. (101), i.e. whether |⟨D+s D−S |Bs,L⟩|

2 > |⟨D+s D−S |Bs,H⟩|
2 or not, that is, whether Bs,L or Bs,H is closer to Beven

s . Now we repeat the derivation
in Eq. (100) with the CP eigenstates; for this we simply replace p and q by +1 and −1, respectively, in our derivation of Eq. (100) and find

∆ΓCP ≡ Γ(Beven
s ) − Γ(Bodd

s ) =
∑

f

(
|⟨ f |Beven

s ⟩|2 − |⟨ f |Bodd
s ⟩|

2
)
= −2 Re Γ12, (102)

valid for the standard CKM phase convention. Γ12 in the Bs−B̄s mixing system is dominated by b→ cc̄s decays, so that Γ12 has the essen-
tially real CKM factor (VcbV∗cs)

2 and one can omit the “Re ” in Eq. (102). In Ref. [88] it is explained how one can measure Γ(Beven/odd
s ). We

realize that ∆ΓCP is a mixing observable which probes Γ12 but is not sensitive to M12. The SM prediction discussed in Sec. 6 predicts Γ12 < 0
and BSM physics cannot be so large that this sign is flipped. Thus, independently of any BSM physics in M12, theory predicts ∆ΓCP > 0,
so that the CP-even eigenstate is shorter-lived. The measurement of sign∆Γs > 0 (predicted in the SM as well) was needed to identify Bs,L

with the shorter-lived eigenstate and ∆ΓCP > 0 means that it is also mostly CP-even. In the limit cos ϕ = 1 CP is a good symmetry and
the mass and CP eigenstates coincide. ∆ΓCP > 0 has been established experimentally as a byproduct of the analyses determining ϕmix

CP,Bs
in

Eq. (55) together with 1/ΓL,H , which find that the
( )
B̄s decays into the CP-even final states (J/ψϕ)l=0,2 with a lifetime 1/ΓL. The measurement

of ∆ΓCP in the Bs system, described in Ref. [88], was originally proposed to determine cos ϕ through a comparison of ∆ΓCP in Eq. (102)
and ∆Γ in Eq. (96). This is of little interest today, because we know that cos ϕ is close to 1 from bounds on | sin ϕ| discussed below.

Interestingly, in D−D̄ mixing it is also experimentally firmly established that the shorter-lived eigenstate is dominantly CP-even [37],
which seems to be a common feature of all four meson-antimeson systems. So while we cannot calculate Γ12 reliably for D−D̄ mixing,
experiment tells us that Γ12 < 0 from Eq. (102). In the Bd−B̄d case ∆ΓCP > 0 is a SM prediction and not yet verified experimentally. Bd−B̄d

mixing is special, because the CP eigenstates defined through Bodd
d ̸→ D+D− are not close to the mass eigenstates, because M12 has the phase

2β in the standard phase convention, so that in the SM one has |⟨Beven|Bs,short⟩|
2 = (1 + cos(2β))/2 and |⟨Beven|Bs,long⟩|

2 = (1 − cos(2β))/2
[88, 105]. This factor is taken into account when |∆Γd | is constrained from lifetime measurements in

( )
B̄d → J/ψKshort in Eq. (46).

Next I discuss CP violation in mixing, which we have identified in Eq. (84) as a consequence of |q/p| , 1. The standard way to define
the corresponding CP asymmetry employs the flavor-specific decays M → ffs and M̄ → f̄fs with M̄ ̸→ ffs and M̄ ̸→ ffs. With our result in
Eq. (82) for the states |M(t)⟩ and |M̄(t)⟩ and Eq. (83) we can calculate the time-dependent decay rates defined in Eq. (21) for the decays of
interest:

Γ(M(t)→ ffs) = |⟨ ffs|M(t)⟩|2 = |g+(t)|2|A ffs |
2 = |A ffs |

2 e−Γt

2

[
cosh

∆Γ t
2
+ cos (∆M t)

]
(103)

Γ(M(t)→ f̄fs) = |⟨ f̄fs|M(t)⟩|2 =
∣∣∣∣∣ q
p

∣∣∣∣∣2 |g−(t)|2|Ā f̄fs |
2 =

∣∣∣∣∣ q
p

∣∣∣∣∣2 |Ā f̄fs |
2 e−Γt

2

[
cosh

∆Γ t
2
− cos (∆M t)

]
= (1 − afs)

e−Γt

2

[
cosh

∆Γ t
2
− cos (∆M t)

]
(104)

Γ(M̄(t)→ ffs) = |⟨ ffs|M̄(t)⟩|2 =
∣∣∣∣∣ p
q

∣∣∣∣∣2 |g−(t)|2|A ffs |
2 =

∣∣∣∣∣ p
q

∣∣∣∣∣2 |A ffs |
2 e−Γt

2

[
cosh

∆Γ t
2
− cos (∆M t)

]
= (1 + afs)

e−Γt

2

[
cosh

∆Γ t
2
− cos (∆M t)

]
(105)

Γ(M̄(t)→ f̄fs) = |⟨ f̄fs|M̄(t)⟩|2 = |g+(t)|2|Ā f̄fs |
2 = |Ā f̄fs |

2 e−Γt

2

[
cosh

∆Γ t
2
+ cos (∆M t)

]
(106)

I have neglected O(a2
fs) corrections in Eq. (105) and will do so from now on. From these four equations one can extract afs, |Ā f̄fs |

2/|A ffs |
2,

and the overall normalization. The second quantity determines the direct CP asymmetry

Adir
CP(M → f̄fs) =

|A ffs |
2 − |Ā f̄fs |

2

|A ffs |
2 + |Ā f̄fs |

2
, (107)

which is different for every decay mode, while afs is universal and can be determined by combining many different decay channels. Since
four observables depend on three quantities, there is redundant information in Eqs. (103–106), which can be used to eliminate experimental
uncertainties. One may worry about the charge symmetry of the detector and add a parameter ϵc for some unaccounted charge asymmetry
to the formulae. Likewise one can do so with a parameter ϵp for the production asymmetry between M and M̄. As shown in Ref. [106] one
cannot disentangle Adir

CP(M → f̄fs) from ϵc, as these quantities always appear in the same combination. However, it is possible to identify
afs and ϵp uniquely from the four measurements associated with Eqs. (103–106). Thus insufficient knowledge of neither ϵc nor ϵp is a
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show-stopper for a measurement of afs. The time-dependent CP asymmetry associated with Eqs. (103–106) reads

aCP(M(t)→ f̄fs) ≡
Γ(M̄(t)→ ffs) − Γ(M(t)→ f̄fs)
Γ(M̄(t)→ ffs) + Γ(M(t)→ f̄fs)

. (108)

One usually uses semileptonic decays to measure afs, i.e. one uses ffs = Xℓ+ν with e.g. X = D−, D∗−, or the fully inclusive final state. Then
aCP(M(t)→ ℓ̄+ν) is called semileptonic CP asymmetry. Inserting Eqs. (104) and (105) into Eq. (108) gives

aCP(M(t)→ f̄fs) = afs + Adir
CP(M → ffs). (109)

we note that the time-dependence cancels between numerator and denominator in Eq. (108). Moreover, the measurement of afs requires no
flavor tagging [107]. Defining the untagged decay rate as

Γ[ f , t] = Γ(M(t)→ f ) + Γ(M̄(t)→ f ), (110)

one finds from Eqs. (103–106) [88, 106]:

afs,unt(t) =
Γ[ ffs, t] − Γ[ f̄fs, t]
Γ[ ffs, t] + Γ[ f̄fs, t]

= Adir
CP(M → ffs) +

afs

2
−

afs

2
cos(∆M t)

cosh(∆Γt/2)
. (111)

Thus one does not have to pay the price of the lower statistics of a tagged sample. Unlike the tagged asymmetry in Eq. (109) the untagged
version in Eq. (111) depends on t, which is a welcome feature to separate Adir

CP from afs and signal from background. Note that at t = 0 there
is no sensitivity to afs as M needs time to mix into M̄(t). Adding charge and production asymmetries, ϵc will only change the first term,
while ϵp only appears in the time-dependent second term [106]. One needs another observable to extract afs then, for example the “right-
sign asymmetry” aright ≡ (Γ(M(t)→ ffs) − Γ(M̄(t)→ f̄fs))/(Γ(M(t)→ ffs) + Γ(M̄(t)→ f̄fs)) which equals Adir

CP(M → ffs) in the absence of
ϵc [106].

One can probe direct CP violation in M± → f ±fs decays and, if one finds a null result, one may gain confidence that Adir
CP(M → ffs) also

vanishes in the neutral mode of interest and that one further has ϵc under control. If in addition there is no ϵp
8, one could use time-integrated

measurements:

Afs,unt ≡

∫ ∞
0 dt[Γ[ ffs, t] − Γ[ f̄fs, t]]∫ ∞
0 dt[Γ[ ffs, t] + Γ[ f̄fs, t]]

=
afs

2
x2

M − y2
M

x2
M − 1

, (112)

with xM ≡ ∆M/Γ and yM ≡ −∆Γ/Γ which we have already encountered for the case M = D in Eq. (56). For the semileptonic decays one
often studies dilepton asymmetries at B factories by comparing the number N++ of decays (M(t), M̄(t))→ ( f , f ) with the number N−− of
decays to ( f̄ , f̄ ) for f = Xℓ+νℓ. Then one finds afs = (N++ − N−−)/(N++ + N−−) in time-integrated measurements. Also in K−K̄ mixing one
studies time-independent CP-violating quantities; aK

fs can be measured in semileptonic Klong decays. I will discuss aK
fs and aD

fs together with
mixing-induced CP violation in Sec. 5.3.

The experimental situation for CP violation in B−B̄ mixing is as follows:

ad,exp
fs = −0.0021 ± 0.0017 . HFLAV [37] (113)

as,exp
fs = −0.0006 ± 0.0028 , LHCb [108] (114)

The number for ad,exp
fs is an average of BaBar, Belle, and LHCb measurements presented in Refs. [109–112] and earlier, less precise values

from CLEO, OPAL, ALEPH, and DØ. All measurements have used semileptonic decays. Since we have precise data on ∆Γs in Eq. (49),
we can combine Eqs. (94–96) to place a bound on ϕs, the CP phase in Bs−B̄s mixing:

as
fs =

∣∣∣∣∣∣ Γs
12

Ms
12

∣∣∣∣∣∣ sin ϕs =
∆Γs

∆Ms
tan ϕs = (4.40 ± 0.20) · 10−3 tan ϕs (115)

so that Eq. (114) implies

ϕs = −0.14
+0.60
−0.52 =

(
−7.8

+34
−30

)◦
, (116)

showing that the CP phase in Bs−B̄s mixing is not very well constrained. In Sec. 6 we will see that the SM prediction for ϕs is unmeasurably
small, so that as

fs is a BSM topic. The measurement in Eq. (55) does not leave much space for BSM contributions to arg Ms
12 and BSM

contributions to arg Γs
12 are somewhat exotic and can barely exceed a few percent, so that we need a reduction of the error in as

fs by at least
a factor 10 compared to Eq. (114).

ad
fs can more easily be enhanced by BSM physics, because Γd

12 is suppressed by two powers of λ. Furthermore, |Md
12| in the denominator

is 35 times smaller than |Ms
12| in as

fs, which lifts |ad
fs| into a region which is better accessible by experiment. ad

fs will be discussed in Sec. 6.
One can use many more decays beyond semileptonic ones, examples for flavor-specific decays to measure ad

fs are Bd → J/ψK+π−,
Bd → D+s D−, Bd → D−K+, and multi-body decays with strangeness S = ±1. When studying those decays it is mandatory to include the

8There is no production asymmetry in B factories, but ϵp , 0 could occur from different acceptances of Bd and B̄d related to the asymmetric beam energies
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Adir
CP term in time evolution formulae like Eq. (111). For as

fs the decays Bs → D−s π
+ and Bs → D−s X with X = π+π+π−, π+K+K−, or any other

X with zero strangeness come to mind.
In summary, to fully determine the time evolution of any meson-antimeson system governed by Eqs. (70) and (72) one must calculate

and measure the three quantities ∆M, ∆Γ, and afs, the latter of which determines the fundamental CP phase ϕ = arg(−M12/Γ12) which
describes CP violation in mixing through |q/p| , 1. The relations between the phenomenological quantities ∆M, ∆Γ, afs and the theoretical
quantities |M12|, |Γ12|, ϕ are given in Eqs. (93) and (94) as well as Eqs. (95) and (96). The mentioned quantities are universal in the sense that
they appear in the time-dependent decay rate of any M(t)→ f decay and do not depend on f . The smallness of afs is understood within the
SM in K−K̄ , D−D̄ , and Bs−B̄s mixing from the structure of the CKM matrix which aligns the phases of M12 and ±Γ12 to a large degree
and suppresses sin ϕ, and in B−B̄ mixing from the smallness of |Γ12/M12|, which holds also in BSM theories. ϕ can be best measured in
flavour-specific decays and the corresponding CP asymmetry afs ≡ 1 − |q/p|2 can be measured without flavor tagging.

5.3 Mixing-induced CP asymmetries, CP violation in K− K̄ mixing, and time-dependence of exclusive decays
We have seen in Sec. 3 that mixing-induced CP asymmetries can provide a clean access to fundamental CP-violating quantities in the gold-
plated decay modes, which essentially only involve a single CP-violating phase, i.e. the penguin pollution is suppressed or even absent.
In the following we first study a mixing-induced CP asymmetry in Kaon physics. Subsequently, to derive expressions like Eqs. (41) and
(54) for the mixing-induced CP asymmetries, we will study Γ(M(t))→ f for a given final state f . I have already derived the corresponding
expression for the case f = ffs in Eqs. (103–106). In the beginning I take f arbitrary and will later specify to the case f = fCP used in
Eqs. (41) and (54).

Next I elaborate further on the decay amplitudes A f = A(M → f ) and Ā f = A( M̄ → f ) introduced in Eq. (26) for f = fCP and before
Eq. (44) for any f . Their precise definition is

(2π)4δ(4)(pM − p f )A f = N f i⟨ f |S |M⟩, (2π)4δ(4)(pM − p f )Ā f = N f i⟨ f |S |M̄⟩. (117)

with the S-matrix

S ≡ Texp
[
−i

∫
d4 x Hint

]
(118)

involving Hint = −Lint which is the hamiltonian of the electroweak interaction of the SM (possibly amended by BSM terms), in the interac-
tion picture. The decay rate is calculated from |A f |

2, |Ā f |
2 and multiplies these expressions with inverse powers of π and other numerical

factors. All these factors are absorbed into the normalization factor N f such that Γ(M → f ) = |A f |
2, cf. the calculation in Eqs. (44) and (45).

N f is the same for A f , Ā f , A f̄ , and Ā f̄ . In two-body decays the amplitudes are just numbers, because the kinematics in fixed. In multi-body
decays the amplitudes depend on the kinematical variables specifying the studied point in the Dalit plot. The variation of CP asymmetries
over the Dalitz plot is extensively used in the experimental analyses, e.g. to find regions with a large strong phase difference between the
tree and penguin amplitudes adding to A f to maximize |Adir

CP|. In decays into polarized final states (like J/ψϕ) or differential decay rates the
amplitudes are further labeled with the polarization of the final state or, equivalently, with the angular momentum quantum number.

If we switch off QCD and replace the external hadrons by quark states, we can simply calculate A f and Ā f in perturbation theory. In the
case of tree-level decays, Eq. (170) is expanded to second order in Hint (i.e. to second order in gw) and we find Feynman diagrams with one
virtual W boson connecting the quark line with the decaying b, c, or s quark with a quark or lepton line.

The key quantity to describe mixing-induced CP violation is the combination

λ f =
q
p

A f

A f
. (119)

λ f encodes the essential feature of the interference of the M → f and M̄ → f decays: arg λ f is the relative phase between Ā f /A f (stemming
from the decay) and −M12 (from q/p in Eq. (97)).

In a first application, I discuss the decays of neutral Kaons into two charged or neutral pions. Kaons are simpler than D or Bd,s, because
the observables are expressed in terms of the mass eigenstates, so that no explicit time appears in the formulae.

A neutral K or K meson state is a superposition of KH = Klong and KL = Kshort. At short times the decays of the Kshort component of
our Kaon beam will vastly dominate over the Klong decays and one can access the decay rates Γ(Kshort → ππ) for ππ = π+π−, π0π0. At large
times, say, after 20 times the Kshort lifetime, our beam is practically a pure Klong beam and we can study the CP-violating Γ(Klong → ππ)
decays. For this discussion I switch to the eigenbasis of strong isospin I:

|π0π0⟩ =

√
1
3
| (ππ)I=0⟩ −

√
2
3
| (ππ)I=2⟩ ,

|π+π−⟩ =

√
2
3
| (ππ)I=0⟩ +

√
1
3
| (ππ)I=2⟩ , (120)

The strong interaction respects strong-isospin symmetry to an accuracy of typically 2%, so that we can neglect any rescattering between the
I = 0 and I = 2 states. Any direct CP violation requires two interfering amplitudes which differ in their weak and strong phases. Since we
can neglect all final states beyond π+π− and π0π0, we encounter a two-state problem in which (ππ)I=0 can only scatter elastically into itself
and the same statements holds for (ππ)I=2. Consequently, neither strong-isospin eigenstate can interfere with another state and no direct CP
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violation contributes to the famous CP-violating quantity

ϵK ≡
⟨(ππ)I=0|Klong⟩

⟨(ππ)I=0|Kshort⟩
. (121)

Abbreviating A0 ≡ A(ππ)I=0 , Ā0 ≡ A(ππ)I=0 and (see Eq. (119)) λ0 ≡ λ(ππ)I=0 I insert Eq. (78) into Eq. (121) to find

ϵK =
1 − λ0

1 + λ0
. (122)

The experimental value [1]

ϵ
exp
K = ei ϕϵ (2.228 ± 0.011) × 10−3 with ϕϵ = (43.5 ± 0.5)◦ = (0.97 ± 0.01)

π

4
. (123)

therefore allows us to determine λ0, which in our example is apparently close to 1. The number in Eq. (123) is calculated Eq. (120) from the
measured quantities A(Klong → π+π−)/A(Kshort → π+π−) and A(Klong → π0π0)/A(Kshort → π0π0) by expressing |π+π−⟩ and |π0π0⟩ in terms of
|(ππ)I⟩ with Eq. (120). In our case with |A0| = |Ā0| (absence of direct CP violation in a K → fCP decay) we have |λ0| = |q/p|. With Eq. (122)
we find

ϵK ≃
1
2

[1 − λ0] ≃
1
2

(
1 −

∣∣∣∣∣ q
p

∣∣∣∣∣ − i Im λ0

)
(124)

up to corrections of order ϵ2
K . Remarkably, from the real and imaginary part of ϵK we infer two CP-violating quantities:

aK
fs = 4Re ϵK = 2

(
1 −

∣∣∣∣∣ q
p

∣∣∣∣∣) (125)

and the deviation of Im λ0 from 0. We have already encountered the first quantity, thus Re ϵK quantifies CP violation in mixing. The second
quantity, Im λ0, is sensitive to the studied final state and measures mixing-induced CP violation in the decay K → (ππ)I=0.

In the further discussion I exploit two more features of Kaon physics: Firstly, ∆ΓK = Γshort up to corrections of Γlong/Γshort = 0.002.
Secondly, Γshort is almost completely dominated by Kshort → (ππ)I=0. The second largest contribution is Kshort → (ππ)I=2, whose decay rate
is smaller by a factor of 500. Thus

Γ12 =
∑

f

⟨K| f ⟩⟨ f |K̄⟩ ≃ A∗0Ā0 = |A0|
2 Ā0

A0
(126)

implying Ā0/A0 = Γ12/|Γ12| and, using Eq. (88),

λ0 ≃ −
2MK ∗

12 − i ΓK ∗
12

∆MK + i∆ΓK/2
ΓK

12

|ΓK
12|
=

2|MK
12|e

−iϕK + i |ΓK
12|

∆MK + i∆ΓK/2
, where ϕK = arg

−MK
12

ΓK
12

 . (127)

With Eqs. (95) and (96) we can trade MK
12 for ∆MK and ΓK

12 for ∆ΓK :

λ0 ≃ 1 − iϕK
∆MK

∆MK + i∆ΓK/2
, Im λ0 ≃ −ϕK

4∆M2
K

4∆M2
K + ∆Γ

2
K

. (128)

Here and I the following I neglect higher-order terms in ϕK . In Eq. (93) we can also use Eqs. (95) and (96) to find

aK
fs =

4∆ΓK∆MK

4∆M2
K + ∆Γ

2
K

ϕK (129)

We can now relate ϵK in Eq. (124) to the desired CP phase ϕK and start with the phase:

tan ϕϵ =
Im ϵK

Re ϵK
=
−2 Im λ0

aK
fs

=
2∆MK

∆ΓK
= 0.947 ± 0.002, (130)

where I have used the experimental numbers in Eqs. (10) and (11) in the last step. We realize that ϕϵ gives redundant information, it is
determined by ∆MK and ∆ΓK and insensitive to the CP phase of interest. The result in Eq. (130), amounting to ϕϵ = 43.45◦ ± 0.051◦, is in
reasonable agreement with the experimental value in Eq. (123). One may use Eq. (130) to derive

sin(ϕϵ ) =
2∆MK√

4∆M2
K + ∆Γ

2
K

, (131)

and to express |q/p| and Im λ0 in Eq. (124) in terms of ϕϵ to find the compact formula

ϵK ≃
1
2

sin(ϕϵ )eiϕϵϕK + O(ϕ2
K). (132)

In the real part of this expression only O(ϕ2
K) terms have been neglected, while the imaginary part is also affected by approximating ∆ΓK by

Γ(Kshort → (ππ)I=0), which might explain the ∼ 2σ tension in tan ϕϵ between Eqs. (123) and (130).
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Next we determine aK
fs from a flavour-specific decay: With Eqs. (78) and (92) one easily finds

AL ≡
Γ(Klong → ℓ+ν π−) − Γ(Klong → ℓ−ν̄ π+)
Γ(Klong → ℓ+ν π−) + Γ(Klong → ℓ−ν̄ π+)

=
1 − |q/p|2

1 + |q/p|2
≃

aK
fs

2
=

1
2

sin(2ϕϵ ) ϕK + O(ϕ2
K), (133)

where I have used Eq. (131); AL should be used with ϕϵ = 43.45◦ ± 0.051◦ or sin ϕϵ = 0.68776 ± 0.00063 found from ∆ΓK and ∆MK in
Eqs. (10) and (11); and in the prefactor sin ϕϵ in Eq. (132) this should be done as well.

The data [1] are

Aexp
L = (3.32 ± 0.06) × 10−3 (134)

and give

ϕ
exp
K = (6.64 ± 0.12) × 10−3. (135)

This number is in good agreement with

ϕ
exp
K = (6.48 ± 0.03) × 10−3. (136)

found from the experimental value for |ϵK | in Eq. (132) with Eq. (132). The accuracy of the various approximation used in the derivations
of the formulae above is discussed in [91].

Next I will generalize Eqs. (103–106) to the case of any decay M(t)→ f , thus f is not necessary flavor-specific or CP eigenstate. We
seek

Γ(M(t)→ f ) = |⟨ f |M(t)⟩|2 , Γ(M̄(t)→ f ) =
∣∣∣⟨ f |M̄(t)⟩

∣∣∣2 (137)

and inserting Eq. (82) leads to an expression involving A f and Ā f as well as |g±|2 and g∗+(t) g−(t) quoted in Eq. (83). The amplitudes appear
in the normalization of Γ(M(t)→ f ) and Γ(M̄(t)→ f ) and otherwise combine with q/p to λ f :

Γ(M(t)→ f ) = N f |A f |
2 e−Γt

{1 +
∣∣∣λ f

∣∣∣2
2

cosh
∆Γ t

2
+

1 −
∣∣∣λ f

∣∣∣2
2

cos(∆M t)

− Re λ f sinh
∆Γ t

2
− Im λ f sin (∆M t)

}
, (138)

Γ(M̄(t)→ f ) =N f |A f |
2 1

1 − afs
e−Γt

{1 +
∣∣∣λ f

∣∣∣2
2

cosh
∆Γ t

2
−

1 −
∣∣∣λ f

∣∣∣2
2

cos(∆M t)

− Re λ f sinh
∆Γ t

2
+ Im λ f sin(∆M t)

}
. (139)

We recall Eq. (18) for the definition of the CP-transformed state. In the M(t)→ f̄ decay rates it is advantageous to keep A f while trading
A f for λ f :

Γ(M(t)→ f̄ ) =N f

∣∣∣∣A f

∣∣∣∣2 e−Γt (1 − afs)
{1 + |λ f |

−2

2
cosh

∆Γ t
2
−

1 − |λ f |
−2

2
cos(∆M t)

− Re
1
λ f

sinh
∆Γ t

2
+ Im

1
λ f

sin(∆M t)
}
, (140)

Γ(M̄(t)→ f̄ ) =N f

∣∣∣∣A f

∣∣∣∣2 e−Γt
{1 + |λ f |

−2

2
cosh

∆Γ t
2
+

1 − |λ f |
−2

2
cos(∆M t)

− Re
1
λ f

sinh
∆Γ t

2
− Im

1
λ f

sin(∆M t)
}
. (141)

Eqs. (138–139) and Eqs. (140–141) are our master formulae to calculate any time-dependent decay rate of interest.
For f = ffs we have λ f = 1/λ f = 0 and reproduce Eqs. (103–106). Defining the mixing asymmetry,

A0(t) =
Γ(M(t)→ f ) − Γ(M(t)→ f̄ )
Γ(M(t)→ f ) + Γ(M(t)→ f̄ )

, (142)

we find to order afs:

A0(t) =
cos(∆M t)

cosh(∆Γ t/2)
+

afs

2

[
1 −

cos2(∆M t)
cosh2(∆Γ t/2)

]
. (143)

Note that A0(t) is not a CP asymmetry. Instead Γ(M(t)→ f ) ∝ |⟨M|M(t)⟩|2 quantifies the probability that an “unmixed” M decays to f at
time t, while Γ(M(t)→ f̄ ) ∝ |⟨M|M(t)⟩|2 does so for the corresponding probability for the process M → M → f . The asymmetry A0(t)
can be employed to measure ∆M. To determine the expression describing the ARGUS discovery of Bd−B̄d mixing one must integrate
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Eqs. (139) and (141) over t to find the probabilities
∫ ∞

0 dt|⟨Bd |Bd(t)⟩|2,
∫ ∞

0 dt|⟨B̄d |Bd(t)⟩|2, and their B̄d(t) counterparts, to which the numbers
N+−, N++, and N−− of opposite-sign and like-sign dilepton events are related. The integrated quantities determine xd ≡ xBd = ∆MdτBd (and
further depend on the tiny yd ≡ −∆ΓdτBd/2), as we have seen in Eq. (19).

Next we apply our master formulae to decays into CP eigenstates, M → fCP, thus | f̄CP⟩ = ηCP,f | fCP⟩with CP quantum number ηCP,f = ±1.
I will set afs to zero, because we are interested in large CP asymmetries like in Eq. (41), compared to which afs is negligible. Thus, I use
|q/p| = 1 in the following. The time-dependent CP asymmetry reads

a fCP (t) =
Γ(M̄(t)→ fCP) − Γ(M(t)→ fCP)
Γ(M̄(t)→ fCP) + Γ(M(t)→ fCP)

. (144)

Using Eq. (138) and Eq. (139) one finds

a fCP (t) = −
Adir

CP cos(∆M t) + Amix
CP sin(∆M t)

cosh(∆Γ t/2) + A∆Γ sinh(∆Γ t/2)
+ O(afs) , (145)

with (for f = fCP)

Adir
CP =

1 −
∣∣∣λ f

∣∣∣2
1 +

∣∣∣λ f

∣∣∣2 , Amix
CP = −

2 Im λ f

1 +
∣∣∣λ f

∣∣∣2 , A∆Γ = −
2 Re λ f

1 +
∣∣∣λ f

∣∣∣2 . (146)

where I have used the notation of [88, 113]. The interpretation of Adir
CP as the direct CP asymmetry is possible, because I have set |q/p| = 1,

so that |λ fCP | = |Ā fCP/A fCP |. Note that |Adir
CP|

2 + |Amix
CP |

2 + |A∆Γ|2 = 1. Experimentally one can study the time-dependence of a f (t) and read off
the coefficients of cos(∆M t) and sin(∆M t), so that one can determine |λ f | and Im λ f .

In a gold-plated M → fCP decay we have |λ fCP | = 1 and thus Adir
CP = 0 in Eqs. (145), (25), (53), and (146). Furthermore,

Amix
CP = −Im λ fCP . (147)

Moreover, the phase of

Ā fCP

A fCP

= −
Vq1bV∗q2q3

AT

V∗q1bVq2q3 AT
= −

Vq1bV∗q2q3

V∗q1bVq2q3

(148)

is trivially read off from the phase of the CKM elements, which are here exemplified for a b→ q1q̄2q3 decay. AT is the “tree” amplitude
introduced after Eq. (25). In B physics, where we also know the phase of q/p from Eq. (98), we can therefore directly relate the measured
Im λ fCP to phases of CKM elements, if M → fCP is gold-plated.

In Bd → J/ψK[→ π+π−] one finds (with ηJ/ψK[→π+π−] = −1)

λJ/ψKshort = −
V∗tbVtd

V∗tbVtd︸   ︷︷   ︸
VcbV∗csVusV∗ud

V∗cbVcsV∗usVud︸           ︷︷           ︸ (149)

from −
q
p

from −
ĀB̄d→J/ψK̄

ABd→J/ψK

ĀK̄→ππ

AK→ππ

≃ −e−i2β (150)

Thus

Amix
CP (Bd → J/ψKshort) = −Im λJ/ψKshort = − sin(2β) (151)

We had motivated this result earlier from considerations of the box diagram and using the standard CKM phase convention for V , for
which the second factor in Eq. (149) is real. In Eq. (40) the result of Eq. (149) was quoted as ϕmix

CP,Bd
= 2β. The same derivation for

Amix
CP (Bs → (J/ψϕ)l) reads

λ(J/ψϕ)l = (−1)l V∗tbVtsVcbV∗cs

V∗tbVtsV∗cbVcs
= (−1)lei2βs (152)

Amix
CP (Bs → (J/ψϕ)l) = −Im λ(J/ψϕ)l = −(−1)l sin(2βs) (153)

A∆Γ = −Re λ(J/ψϕ)l = −(−1)l cos(2βs) (154)

which was quoted as ϕmix
CP,Bs

= −2βs in Eq. (51). We further recognize A∆Γ in Eq. (53).
One can also identify gold-plated modes in Bd,s decays to CP non-eigenstates [114]. For example, Bs → D−s K+ is a b̄→ c̄us̄ decay

interfering with B̄s → D−s K+, which is a b→ uc̄s mode [92, 93, 115, 116]. (The valence quark s, s̄ makes the final state a uc̄ss̄ state,
with the s and s̄ ending up in D−s and K+, permitting the mentioned interference.) The mentioned decay mode is gold-plated, because
there is no penguin contribution. Since f = D−s K+ is not a CP eigenstate, we cannot expect |Ā f /A f | = 1 and (|Ā f |

2 − |A f |
2)/((|Ā f |

2 + |A f |
2)

is not a CP asymmetry. In studies of decays to CP non-eigenstates one fits the four expressions in Eqs. (138–141) to the four decay
modes, in the exemplied decay these are Bs(t)→ D−s K+, B̄s(t)→ D−s K+, Bs(t)→ D+s K−, and B̄s(t)→ D+s K−. The ratio Ā f /A f not only
involves the CP phase of interest, but also a strong phase δ. While δ cancels from λ fCP in decays to CP eigenstates, this is not the case for
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CP non-eigenstates, where Ā f and A f are completely unrelated. Studying the four decay rates one can extract four quantities, which are
arg λD−s K+ = −γ − ϕ

mix
CP,Bs

+ δ, arg λD+s K− = −γ − ϕ
mix
CP,Bs

− δ, |λD−s K+ | = 1/|λD+s K− |, and the overall normalization [92, 93, 115, 116]. The LHCb

analysis of
( )
B̄s(t)→ D∓s K± has found [109]

γ + ϕmix
CP,Bs

=
(
79+12
−11

)◦
(155)

With ϕmix
CP,Bs

from Eq. (55) this complies with the result found for γ from other measurements, but the large error in Eq. (155) currently limits
the information on ϕmix

CP,Bs
or γ from this measurement. Unlike in Bd → J/ψKs and Bs → J/ψϕ, there is no penguin pollution at all in decays

like Bs(t)→ D−s K+, in which mixing-induced CP violation stems from the interference of b→ cūs and b̄→ cūs̄ (or in the corresponding
decays with s→ d) amplitudes.

To avoid penguin pollution, one can also exploit the interference of b→ cūs and b→ uc̄s amplitudes in decays to
( )
D̄, in which the

D meson is identified in a CP eigenstate like π+π− [47], which also works for direct CP asymmetries [48]. The penguin pollution in
Bd → J/ψKs and Bs → J/ψϕ is discussed above after Eqs. (43) and (55). In the future one could precisely determine ϕmix

CP,Bd,s
(together

with γ) from Bd →
( )
D̄Kshort and Bs →

( )
D̄ϕ, where no penguin pollution is present. Another issue concerns the neutral Kaon: In future more

precise measurements one may further wonder whether the CP violation in K−K̄ mixing will lead to a bias in the extraction of 2β from
Bd → J/ψK[→ π+π−]. If the K meson does not decay instantaneously, it undergoes K−K̄ oscillations, which introduces some sensitivity
to ϵK . This effect, however, is calculable and one can correct for it [117, 118].

Flavor tagging at a hadron collider costs statistics, but one can exploit the lifetime difference ∆Γs to determine the cosines of CP-
violating phases of mixing-induced CP asymmetries from untagged decays, as pointed out by Dunietz [90]. We can add Eqs. (138) and
(139) to find the untagged decay rate, which was defined in Eq. (110). For clarity, I express the result in terms of ΓL,H = Γs ± ∆Γs/2:

Γ[ f , t] = A e−ΓL t + B e−ΓH t

with A = A( f ) =
|A f |

2

2

(
1 + |λ f |

2
)

(1 − A∆Γ) =
|A f |

2

2

∣∣∣1 + λ f

∣∣∣2
B = B( f ) =

|A f |
2

2

(
1 + |λ f |

2
)

(1 + A∆Γ) =
|A f |

2

2

∣∣∣1 − λ f

∣∣∣2 (156)

where I have used Eq. (146). With the precisely measured ΓL,H we can fit the measured time evolution of a chosen
( )
B̄s → f decay to

Eq. (156) to extract A( f ) and B( f ). The ratio A( f )/B( f ), from which |A f |
2 drops out, provides information on λ f without determining it

completely. If one fits the time evolution to a single exponential exp(−iΓeff t), one can calculate A( f )/B( f ) from Γeff [88, 119], one therefore
often calls this approach effective lifetime method. It is, however, safer to fit the time evolution to the two-exponential formula than to use
Γeff , which needs a good control of detection efficiencies.

In gold-plated Bs → fCP decays, we can use |λ fCP | = 1 to infer A∆Γ = −Re λ fCP from Eq. (146), so that

A = A( fCP) = |A fCP |
2 (1 + Re λ fCP ) = |A fCP |

2
(
1 + cos ϕmix

CP,Bs→ fCP

)
,

B = B( fCP) = |A fCP |
2 (1 − Re λ fCP ) = |A fCP |

2
(
1 − cos ϕmix

CP,Bs→ fCP

)
. (157)

Here ϕmix
CP,Bs→ fCP

is the phase of λ fCP , which quantifies the mixing-induced CP violation in the studied decay. We have encountered the special
case ϕmix

CP,Bs
≡ ϕmix

CP,Bs→(J/ψϕ)l=0,2
in our discussion of Bs−B̄s mixing and quoted A∆Γ for this case in Eq. (154). Thus for the gold-plated decays

into CP eigenstates we can determine cos ϕmix
CP,Bs→ fCP

from the ratio A( fCP)/B( fCP). The method works as well for gold-plated decays into

CP non-eigenstates, in which case one needs the time evolution for both
( )
B̄s → f and

( )
B̄s → f̄ .

Prominent applications of the lifetime method have addressed Bs decays to ρ0Kshort, D(∗)±
s K∗∓ [90], D∗+s D∗−s , J/ψϕ , ρ0ϕ, Bs → K∗K̄∗

[120], and the rare decay Bs → µ+µ−, which is an important new-physics analyzer [121]. Another application is the measurement of ∆ΓCP

through lifetime studies of D(∗)+
s D(∗)−

s [88].
The ongoing search for CP violation in D−D̄ mixing is discussed in detail in [95]. The slow D−D̄ oscillations make this difficult, one

can safely expand the time evolution formulae in Eqs. (138–141) to the second order in t; the physical interpretation of the coefficients of
the linear and quadratic terms were derived in Ref. [122]. The prime effort in the search for CP violation in D−D̄ mixing is devoted to
the interference of Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) decay amplitudes, where a meson produced as D decays
through a c→ dus̄ amplitude, which is proportional to λ2. In time the D evolves into a superposition of D and a tiny admixture of D̄, which
decays with the CF c̄→ dūs̄ amplitude. Interference is possible because of the valence ū quark in D, so that the final state has the same
quark content dus̄ū as the final state of the D̄ decay. The standard analysis studying D→ Kshortπ

+π− gives both afs and Im λKshortπ+π− , From
Ref. [95] one finds the 2025 world averages

afs = 2
(
1 −

∣∣∣∣∣ q
p

∣∣∣∣∣) = 0.008 ± 0.104, arg λKshortπ+π− = −0.056
+0.047
−0.051. (158)

In summary, mixing-induced CP violation in gold-plated modes, which are dominated by a single combination of CKM elements, can
give access to fundamental CP phases, without the problem of penguin pollution. Prime examples are the measurements of 2β and 2βs

from Bd,s decays to charmonium. There are gold-plated modes with no penguin pollution at all like the decay
( )
B̄s(t)→ D∓s K± involving CP

non-eigenstates. In K−K̄ mixing Im ϵK quantifies mixing-induced CP violation in K → ππ, while Re ϵK quantifies CP violation in mixing.
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In D−D̄ mixing the most promising avenue to mixing-induced CP violation and CP violation in mixing utilizes the interference of DCS
c→ dus̄ and the CF c̄→ dūs̄ decays.

6 Meson-antimeson mixing in the Standard Model and beyond

The confirmation of the KM mechanism of CP violation, which lead to the 2008 Nobel Prize for Kobayashi and Maskawa, required the proof
that the CP phase δKM ≃ γ extracted from the measured ϵK correctly predicts ϕmix

CP,Bs
= 2β as measured by the asymmetric B factories BaBar

and Belle built for this purpose. Both ϵK and ϕmix
CP,Bs

involve other parameters beyond the CP phases; one needs two quantities to construct
the UT in Fig. 3. Thus the prediction of ϕmix

CP,Bs
from ϵK also needed measurements and SM predictions of other, CP-conserving quantities;

altogether they constrain the allowed region for the apex of the UT in the ρ̄-η̄ plane. From Fig. 3 one realizes that the measurement of
Amix

CP (Bd → J/ψKshort) = − sin(2β) defines an inclined line in the ρ̄-η̄ plane which intersects the point (1, 0). The litmus test for the KM
mechanism was the confirmation that this line indeed intersects the previously determined allowed region. The CP-conserving input for
the described UT analysis were the ratio of the semileptonic b→ u and b→ c branching ratios determining one side of the UT trough
|Vub/Vcb| ≃ λRu and ∆Md determining the other side Rt through ∆Md ∝ |Vtd |

2 ∝ |Rt |
2|Vcb|

2. This procedure would not have been possible
without the theory effort to calculate these quantities, which include with ϵK and ∆Md two different meson-antimeson mixing systems. At
the beginning of the 1990s it was unclear, whether prediction beyond semi-quantitive estimates were possible at all.

As will be discussed in this section, predictions of flavor-changing processes involve a perturbative piece, obtained by loop calculations
in perturbative QCD, and a non-perturbative calculation of hadronic matrix elements. The gold standard for the latter are computations with
lattice QCD, in which the QCD path integral is discretized on a space-time lattice and calculated with Monte-Carlo techniques. In the early
1990s lattice QCD studies were still in an exploratory stage and, for example, did not include dynamical quarks (i.e. instead employed the
“quenched approximation”) even at the time Belle and BaBar went into operation. The field of precision flavor physics, with the scope on
FCNC processes in K and B physics, was founded in the late 1980s by Buras who initiated a program addressing the calculation of radiative
corrections to essentially all FCNC processes. The aim —and result— of this endeavour were robust predictions with theoretically well-
founded uncertainties, which, moreover, could be systematically reduced with additional calculational effort to match the size of shrinking
error bars of modern experiments. I mention a few milestones in this paragraph (for overviews see Refs. [123, 124]). To establish the field,
conceptual problems had to be solved to define a rigorous theoretical framework for the calculations. This progress included the proofs
of proper factorization of infrared singularities and of the renormalization-scheme independence [125] of the predicted observables, the
development of the correct treatment of bilocal matrix elements [126–128], and the understanding of the renormalization of evanescent
operators [125, 129].

Both ∆Md,s in B−B̄ mixing and the largest contribution to ϵK calculated from the K−K̄ mixing amplitude involve box diagrams with
top quarks, the QCD corrections are proportional to αs(mt) ∼ 0.1 and perturbation theory was found to work well [130]. For K−K̄ mixing,
however, also contributions with light u, c quarks in the box diagrams are relevant for ϵK and are even dominant for ∆MK . Since the
leading-order prediction for ∆MK fell short of the experimental value by more than a factor of 2, there was doubt that perturbation theory
works for K−K̄ mixing and uncontrolled additive hadronic long-distance effects were invoked to explain the experimental value of ∆MK .
The issue was alleviated by QCD corrections and Ref. [127] established short-distance dominance of ∆MK in agreement with the expected
suppression of additive long-distance effects by a factor of Λ2

QCD/m
2
c . By 1995 all QCD contributions to |∆F| = 2 transitions with heavy

or light internal quarks had been calculated at the two-loop level [127, 128, 130, 131] and a complete QCD-corrected prediction of ϵK in
terms of (ρ̄, η̄) became possible [131]. The corrections to ∆MK were disturbingly large and called for a calculation of one higher order in
αs, requiring a three-loop calculation [132]. With the corresponding result of Ref. [133] ϵK has become a high-precision observable [134].

The path to precision required a parallel effort on hadronic matrix elements. One result of the definition of the perturbative framework
was the observation that a certain arbitrary element, the dependence on the renormalization scheme, must cancel between perturbative
pieces and hadronic matrix elements. This criterion eliminated hadronic models and, more generally, any approach without control over
the renormalization scheme, from the theorists’ toolbox and strengthened the case for lattice-QCD computations. There were also early
analytical methods compatible with precision perturbative calculations, most prominently QCD sum rules [135, 136]. In Kaon physics the
large-Nc framework (a systematic expansion in terms of the inverse number of colors) gave the correct value for the hadronic matrix element
of K−K̄ mixing [137].

In the remainder of this section I will first discuss the Yukawa interaction in the SM, which is the origin of flavor mixing. Then, in
Sec. 6.2, I will explain the concept of an effective hamiltonian, exemplified for |∆B| = 2 transitions and applied to ∆Md,s. Here also precise
SM predictions for these quantities and the associated phenomenology will be presented. In Sec. 6.3 the effective |∆B| = 1 will be introduced
and applied to mixing-induced CP asymmetries and Γd,s

12 , with numerical predictions for ∆Γd,s and ad,s
fs . Sec. 6.4 covers K−K̄ mixing with

predictions for ϵK and ∆MK and presents the overall picture on the UT from all quantities discussed in this section.

6.1 Yukawa interaction as the origin of flavor violation
The W boson is the gauge boson related to the quantum numbers (I, I3) of the weak isospin. The SM implements maximal parity violation
by placing right-handed quark field into singlets of the weak gauge group SU(2), while left-handed quark fields reside in doublets

Q1 =

(
u′L
d′L

)
, Q2 =

(
c′L
s′L

)
, Q3 =

(
t′L
b′L

)
. (159)
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SU(2) doublets have weak isospin quantum number I = 1/2 with I3 = ±1/2 for the up-type and down-type component, respectively. The
prime at the quark fields indicates that these fields are weak eigenstates (a.k.a. as gauge or interaction eigenstates). SU(2) gauge symmetry
dictates that the weak interaction is built from the doublets Q j which leaves no room for the CKM matrix V at this stage. Thus we conclude
that V must stem from a transformation of the weak eigenstates in Eq. (159) to the physical quark fields dL, . . . tL in Eq. (8) and that (uL, dL),
(cL, sL), and (tL, bL) are not SU(2) doublets.

To understand the relation between weak and physical quark eigenstate fields we must study the mechanism to generate fermion masses
in the SM. Mass terms in the lagrangian involve quark fields of both chiralities, for example mt t̄RtL + mt t̄LtR for the top quark. Such a
term cannot be simply added to the lagrangian, because it violates SU(2) symmetry. But it is possible to give masses to fermions by
employing gauge-invariant terms with the Higgs doublet field H = (G+, v + (h0 + iG0)/

√
2)T by introducing the Yukawa interaction. The

corresponding lagrangian for quarks reads

Lq
Y = −

∑
j,k=1,2,3

[
Yd

jk Q̄ j H d′k,R + Yu
jk Q̄ j H̃ u′k,R

]
+ H.c., (160)

where H̃ = v + h0−iG0
√

2
,−G−)T is the charge-conjugate Higgs doublet. The Yukawa interaction involves two complex 3 × 3 matrices Yd and

Yu with row and column indices j and k referring to the three fermion generations. We can readily identify the terms in Eq. (160) which are
proportional to the Higgs vacuum expectation value v = 174 GeV:

Lq
Y ⊃ Lq

m = −
∑

j,k=1,2,3

(d′L, s′L, b
′
L) Md


d′R
s′R
b′R

 + (u′L, c
′
L, t
′
L) Mu


u′R
c′R
t′R


 (161)

with the quark mass matrices

Md = Ydv and Mu = Yuv. (162)

With four unitary rotations we can diagonalize the two mass matrices. To this end we rotate the quark fields as
d′L,R
s′L,R
b′L,R

 = S d
L,R


dL,R

sL,R

bL,R

 ,

u′L,R
c′L,R
t′L,R

 = S u
L,R


uL,R

cL,R

tL,R

 (163)

and choose the four unitary matrices S d,u
L,R such that the mass matrices in the new basis of physical quark fields are diagonal,

M̂u ≡


mu 0 0

mc 0
0 0 mt

 = S u†
L MuS u

R M̂d ≡


md 0 0

ms 0
0 0 mb

 = S d†
L MdS d

R. (164)

One cannot choose non-unitary matrices for this purpose, because this would destroy the kinetic term of the lagrangian. The physical quark
field eigenstates are also called mass eigenstates. Next we observe that all unitary rotations drop out in the flavour conserving couplings
of the gauge bosons, because they appear as S d†

L S d
L = . . . S

u†
R S u

R = 1 in the vertices. This is the origin of the important feature of the SM
that there are no flavor-changing neutral currents at tree-level, meaning that Z boson, photon, and gluon all couple flavor-diagonal! The W
vertex, however, involves

LW =
gw
√

2

[
ū′jL γ

µd′kL + d̄′kL γ
µu′jL W−µ

]
=

gw
√

2

∑
j,k=1,2,3

[(
S u†

L S d
L

)
jk

ū jL γ
µdkL W+µ +

(
S d†

L S u
L

)
k j

d̄kL γ
µu jL W−µ

]
,

which coincides with Eq. (8) for V = S u†
L S d

L. Thus the CKM matrix is indeed unitary and stems from the mismatch of rotations of left-
handed up-type and down-type quark fields from the weak basis to the physical basis. The unitarity of V is automatic in the SM, it is not
possible to “test CKM unitarity” by comparing SM predictions against a theory with SM particles but non-unitary V . Such a theory is
inconsistent and renders FCNC loops divergent which impedes any experimentally testable prediction.

When the Yukawa interaction in Eq. (160) is expressed in terms of the physical quark fields, Yd and Yu are diagonal and the SM Higgs
boson field h0 couples also flavor-diagonally. Contrary to the case of the neutral gauge bosons, the absence of flavour-changing Higgs
couplings is not a consequence of any symmetry, but originates from the minimality of the Higgs sector. This is an ad-hoc choice in the
construction of the SM, there is no reason why Nature does not provide several Higgs doublets. Already in a two-Higgs-doublet model
(2HDM) the four Yukawa matrices cannot all be brought to diagonal form and one expects flavour-changing couplings of the three neutral
Higgs bosons of the 2HDM. Thus one finds contributions to, say, K−K̄ mixing at tree-level, mediated by a new Higgs boson H0 with s̄dH0

coupling. Meson-antimeson mixing is instrumental to constrain the parameter spaces of multi-Higgs-doublet models. This also holds true
for multi-Higgs boson models, in which the FCNC couplings are switched off by invoking new symmetries, because a charged Higgs boson
can contribute to meson-antimeson mixing amplitudes at loop-level like the W boson.

The electroweak and strong interactions of the SM are constrained by a powerful principle, gauge symmetry, which dictates that the
boson-fermion and boson-boson couplings of a given interaction involve the same coupling constant. With the two parameters of the
Higgs potential, the three gauge couplings and θQCD quantifying strong CP violation, this makes six parameters in total. By contrast,
the quark Yukawa sector with the matrices Yd and Yu involves 10 physical parameters, which determine six quark masses and the four
parameters of V . In the lepton sector there are 10 or 12 parameters, depending on whether neutrinos are Majorana or Dirac fermions. There



Meson-antimeson mixing 31

a several hierarchies in the elements of Yd,u, resulting in mu < md ≪ ms ≪ mc ∼ mb ≪ mt and the pattern in V described by the Wolfenstein
parametrization in Eq. (17). An explanation of these features is the subject of flavor model building, which aims at reducing the number of
parameters from symmetry considerations (see e.g. Ref. [138]) and finding dynamical explanations of their values [139].

Another ad-hoc feature of the Yukawa sector is the number of fermion generations. Why did Nature provide us with three fermion
families (and the CP violation which came with it)? Could there be more? The information from meson-antimeson mixing helped us to
constrain the parameter space of a hypothetical fourth fermion generation by severely constraining the mixing of the fourth family with the
other generations [140–142], paving the way for the exclusion of a fourth fermion generation by more than 5σ [143].

In summary, flavor violation encoded in V appears in the weak interaction of W bosons, but originates from the Yukawa interaction of
the Higgs field. The diagonalization of Yd and Yu rotates the quark fields from eigenstates of the weak interaction to mass eigenstates. V
is a remnant of these unitary rotations. Thus flavor physics probes the Yukawa sector of the SM, which is poorly understood and involves
10 free parameters in the quark sector. The loop suppression of FCNC processes like meson-antimeson mixing amplitudes results form the
minimality of the SM Higgs sector and is a priori absent in models with more than one Higgs doublet, which involve neutral Higgs bosons
with FCNC couplings.

6.2 Effective |∆B| = 2 hamiltonian and Standard-Model prediction for ∆Md,s

In the following I derive the formalism needed to calculate the mass difference for the Bd−B̄d and Bs−B̄s mixing system. The central
element is an effective hamiltonian describing the ∆B = 2 transition mediated by the box diagrams proportional to (VtbV∗tq)2. We can cover
the cases q = d and q = s simultaneously, because the corresponding effective hamiltonians only differ by the exchange d ↔ s.

So far we have applied perturbation theory to the electroweak interaction only, while the strong interaction is fully contained in H0 in
Eq. (60). In order to apply perturbative methods to QCD as well, we must first separate short-distance and long-distance interactions from
each other. Short-distance QCD is associated with high energy and mass scales, far above the scale ΛQCD ∼ 400 MeV determining the size
of typical strong binding energies. Due to the asymptotic freedom of QCD one can apply perturbation theory to the short-distance piece
of the studied process by calculating Feynman diagrams with quarks and gluons. Long-distance QCD is non-perturbative and confines
the external quarks of our box diagrams in Fig. 1 into mesons. The theoretical tool for the desired separation is the Operator Product
Expansion (OPE), which expresses a hadronic amplitude as a sum of terms which factorize into a short-distance Wilson coefficient and a
hadronic matrix element containing the long-distance QCD effects. The Wilson coefficients are calculable in perturbation theory and the
contributions are categorized by the order of αs = g2/(4π) to which they are calculated, where g is the QCD coupling constant. These
coefficients depend on the heavy masses in the problem, the dependence of the meson-antimeson mixing amplitudes on MW and mt is fully
contained in the Wilson coefficients. The hadronic matrix elements instead contain the dynamics associated with Compton wavelengths of
order ΛQCD, which cannot resolve the W propagation. For instance, the box diagram of B−B̄ mixing with two heavy top quarks reduces to
a point-like four-quark interaction for the long-distance piece of the transition amplitude; pictorially we can shrink the heavy box diagram
to a point for the long-distance piece of the B−B̄ mixing amplitude.

The result of the OPE is an effective field theory with a simpler interaction, in our case described by four-quark vertices whose effective
coupling constants are the Wilson coefficients. Technically, one distinguishes light and heavy degrees of freedom, the quantum fields
describing the former are kept as dynamical degrees of freedom, while the fields corresponding to the heavy particles are removed from the
theory, their effect is fully contained in the Wilson coefficients. In the following mheavy represents MW or mt while mlight stands for mb, mc,
or ΛQCD, while smaller quark masses are set to zero. The corresponding effective hamiltonian Heff is designed to reproduce the S-matrix
elements of the Standard Model up to corrections of order (mlight/mheavy)n where n is a positive integer:

⟨ f |Te−i
∫

d4 xHSM
int (x)|i⟩ = ⟨ f |Te−i

∫
d4 xHeff (x)|i⟩

[
1 + O

(
mlight

mheavy

)n ]
(165)

I explain the method with an effective hamiltonian which reproduces the amplitude for B−B̄ mixing up to corrections of order m2
b/M

2
W .

That is, I employ Eq. (165) for the case i = B̄ and f = B (where B = Bd or Bs), mlight = mb and mheavy = MW ∼ mt. In the effective theory
H0 and H1 in Eq. (60) are replaced by

H0 = HQCD(f=5), H1 = Heff = HQED(f=5) + H |∆B|=2. (166)

Here the first terms is the usual QED hamiltonians with 5 “active flavours”, meaning that there is no top quark included and H |∆B|=2 described
the weak interaction mediated by the ∆B = 2 box diagrams proportional to (VtbV∗tq)2 and their ∆B = −2 counterparts with outgoing b quark
lines and CKM factor (V∗tbVtq)2. Also in HQCD(f=5) there is no top quark field.

Adapted to the process under study, H |∆B|=2 only encodes the physics related to B−B̄ mixing, but does not describe other weak processes
such as meson decays. The ∆B = 2 transition of the box diagram in Fig. 1 is mediated by an effective four-quark coupling, the four-quark
operator

Q = qLγνbL qLγ
νbL with q = d or s, (167)

shown in Fig. 5. We have

H |∆B|=2 =
G2

F

4π2 (VtbV∗tq)2 C |∆B|=2(mt, MW , µ) Q(µ) + H.c., (168)
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b

q

q

b

Fig. 5 The four-quark operator Q for Bq−B̄q mixing with q = d or s.

where the lengthy prefactor of Q is just the effective coupling constant multiplying the four-quark interaction of Fig. 5. The Fermi constant
GF , which is proportional to 1/M2

W , enters quadratically and thus contains four powers of 1/mheavy.
The CKM elements of the box diagram are factored out to get a real Wilson coefficient C |∆B|=2(mt, MW , µ) and has mass dimension two.

µ is the renormalization scale, familiar from any QCD calculation. Just as any other interaction term, also Q must be renormalized. The
renormalized operator Q depends on µ through the renormalization constant ZQ(µ) via Q = ZQQbare and (in a mass-independent scheme
like MS) the latter dependence is only implicit through g(µ), where g is the QCD coupling constant.9 The coefficient C |∆B|=2 is calculated
from the definition of Heff in Eq. (165): We compute the ∆B = 2 process both in the Standard Model and with the interactions of Heff

and adjust C |∆B|=2 such that the two results are the same, up to corrections of order m2
b/M

2
W . Obviously we cannot do this with mesons as

external states i and f . But a crucial property of Heff is the independence of the Wilson coefficient on the external states. We can calculate
it for an arbitrary momentum configuration for the external quarks as long as the external momenta are of the order of mlight. That is, we
do not need to know the complicated momentum configuration of quarks bound in a hadron. In this step, we switch from the Heisenberg
picture to the interaction picture for HQCD(f=5), because we perform the calculation in an entirely perturbative world with external quark
rather than hadron states. The strong coupling is determined at a renormalization scale of the order of mheavy, where g is small enough to
expand amplitudes in αs. Furthermore, we write C |∆B|=2 as an expansion in αs:

C |∆B|=2 = C |∆B|=2,(0) +
αs(µ)

4π
C |∆B|=2,(1) + . . . (169)

Since we aim at an expansion of the B−B̄ mixing amplitude in terms of mlight/mheavy, we can expand the box diagram of Fig. 1 in terms of
the momenta of the external quarks, which are at most of order mb. Thus to leading order in mb/MW (“leading power”) we can simply set
the external momenta to zero. Now the “effective theory side” of Eq. (165) involves the tree-level diagram corresponding to

⟨ f |Te−i
∫

d4 xHeff (x)|i⟩(0) ≃ −i
∫

d4 x⟨ f |Heff(x)|i⟩(0) = −i
∫

d4 x⟨ f |H |∆B|=2(x)|i⟩(0)

= −i(2π)4δ(4)(p f − pi)
G2

F

4π2 (VtbV∗tq)2 C |∆B|=2,(0) ⟨ f |Q|i⟩(0)

where |i⟩ = |pb, sb; pq, sq⟩ and | f ⟩ = |pq, sq; pb, sb⟩ are the external states characterized by the momenta and spins of the quarks. The
superscript “(0)” indicates the lowest order of QCD everywhere. Since ⟨ f |Q|i⟩ reproduces the spinor structure (“Dirac algebra”) of the box
diagram, the coefficient C |∆B|=2,(0) inferred from this matching calculation is solely determined in terms of the loop integral and therefore
only depends on MW and mt.

The matching calculation becomes more interesting at the next-to-leading order (NLO) of QCD. Now HQCD enters the matching cal-
culation and we must dress both the box diagram and the effective diagram in Fig. 5 with gluons in all possible ways. Denoting the SM
amplitude by

M = M(0) +
αs

4π
M(1) + . . . , (170)

our NLO matching calculation amounts to the determination of C |∆B|=2,(1) from

−M(0) −
αs

4π
M(1) =

G2
F

4π2 (VtbV∗tq)2
[
C |∆B|=2,(0) +

αs

4π
C |∆B|=2,(1)

] [
⟨Q⟩(0) +

αs

4π
⟨Q⟩(1)

] 1 + O  m2
b

M2
W

 + O (
α2

s

)
(171)

On the RHS the external states are omitted for simplicity of notation and I have expanded ⟨Q⟩ ≡ ⟨ f |Q|i⟩ in αs as well. The QCD corrections
to the box diagram inM(1) not only depend on the light scales, i.e. external momenta and light quark masses, they also suffer from infrared
(IR) divergences. These divergences signal the breakdown of QCD perturbation theory at low energies. However, the gluonic corrections
to Fig. 5, which are comprised in ⟨Q⟩(1), exactly reproduce the infrared structure of the SM diagrams, with the same IR divergences and the
same dependence on the light mass scales. Collecting the O(αs) terms from Eq. (171),

−M(1) =
G2

F

4π2 (VtbV∗tq)2
[
C |∆B|=2,(0)⟨Q⟩(1) +C |∆B|=2,(1)⟨Q⟩(0)

]
, (172)

9The analogy with the renormalization of the QCD coupling constant is more obvious if one interprets the product CZQQbare in a different way: By grouping ZQ with C
rather than Q one recognizes C as a renormalized coupling constant. The notion of a “renormalized” operator instead of a ”renormalized Wilson coefficient” has historical
reasons.
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one finds identical IR structures on the LHS and in the first term in the square brackets, while C |∆B|=2,(1) only contains heavy masses and no
IR divergences. We conclude that the IR structure of the SM amplitude properly factorizes with an “infrared-safe” C |∆B|=2. The reason for the
successful IR factorization is the fact that for a soft gluon connecting two external quark lines the box diagram and the four-quark operator
look the same, so that the region of the loop integral with small loop momentum gives the same result for −M(1) and C |∆B|=2,(0)⟨Q⟩(1). There
is only a mismatch stemming from the hard loop momenta, which are not IR sensitive and feed into the other term in Eq. (172), namely
C |∆B|=2,(1)⟨Q⟩(0).

Our quark-level calculation is meaningful for C |∆B|=2, but not for ⟨Q⟩. In order to make a theoretical prediction for the B−B̄ mixing
amplitude, we must compute ⟨B|Q| B̄⟩ with nonperturbative methods such as lattice QCD.

Next I derive the result for the leading-order (LO) Wilson coefficient C |∆B|=2,(0). In a first step let us decomposeM(0) as

M(0) =
∑

j,k=u,c,t

V jbV∗jq VkbV∗kqM
(0)
jk ⟨Q⟩

(0), q = d or s, (173)

whereM(0)
jk ⟨Q⟩

(0) is the result of the box diagram containing internal quark flavours ( j, k) with the CKM elements factored out. We then
write

M
(0)
jk = −

G2
F

4π2 M2
W S̃ (x j, xk) (174)

with x j = m2
j/M

2
W . The function S̃ (x j, xk) is symmetric, S̃ (x j, xk) = S̃ (xk, x j). Using CKM unitarity to eliminate VubV∗uq = −VtbV∗tq − VcbV∗cq

one finds Eq. (173):

−M(0) =
G2

F

4π2 M2
W

[(
VtbV∗tq

)2
S (xt) + 2VtbV∗tq VcbV∗cqS (xc, xt) +

(
VcbV∗cq

)2
S (xc)

]
⟨Q⟩(0). (175)

S and S̃ are related as

S (x j, xk) = S̃ (x j, xk) − S̃ (x j, 0) − S̃ (0, xk) + S̃ (0, 0), for j, k = c, t,

S (x) ≡ S (x, x), (176)

for zero up-quark mass. In Eq. (175) the last two terms are tiny, because xc ∼ 10−4 and

S (xc) = O(xc), S (xc, xt) = O(xc ln xc). (177)

where we recognize the GIM suppression discussed after Eq. (13), as four O(1) loop functions combine to something much smaller. There
is no GIM suppression in top loops, because xt ∼ 4. The dominant contribution to Eq. (173) involves

S (xt) = xt

[
1
4
+

9
4

1
1 − xt

−
3
2

1
(1 − xt)2

]
−

3
2

[
xt

1 − xt

]3

ln xt ≈ 2.3. (178)

The tiny charm contribution does not contribute to C |∆B|=2,(0) at all; to accommodate for it we must refine our operator product expansion to
include higher powers of (mlight/mheavy) in Eq. (165). We can read off C |∆B|=2,(0) from Eqs. (171) and (175):

C |∆B|=2,(0)(mt, MW , µ) = M2
W S (xt). (179)

The functions S (x) and S (xc, xt) are called Inami-Lim functions [144].
The factorization in Eqs. (165) and (171) also solves another problem: No largely separated scales appear in C |∆B|=2(mt, MW , µ) provided

that we take µ = O(MW ,mt), so that no large logarithms can spoil the convergence of the perturbative series. µ enters our matching
calculation at NLO as ln(µ/MW ) in C |∆B|=2 (1) and though αs(µ). While no explicit µ-dependence is present in our LO result in Eq. (179),
there is an implicit µ-dependence through mt(µ), which is a running quark mass (typically defined in the MS scheme). The mentioned
ln(µ/MW ) term in C |∆B|=2,(1) has two sources: Firstly, there is already a ln(µ/MW ) term inM(1), familiar to us from matrix elements with
MS-renormalized UV divergences. Secondly, M(1) contains the large logarithm ln(mb/MW ) which is split between matrix elements and
Wilson coefficients as

ln
mb

MW
= ln

mb

µ
+ ln

µ

MW
. (180)

This feature is clear from Eq. (172), because ⟨Q⟩(1) can only contain ln(mb/µ), as it is independent of MW , and conversely C |∆B|=2 is
independent of light scales like mb.

The scale µtW = O(MW ,mt) at which we invoke Eq. (171) to find C |∆B|=2 is called the matching scale (or factorization scale) and
C |∆B|=2(mt, MW , µtW ) has a good perturbative behaviour. Similarly, no large logarithms occur in ⟨Q(µb)⟩, if we choose a scale µb ∼ mb in
the matrix element. Since H |∆B|=2 does not depend on the unphysical scale µ, we can choose any value for µ, but this value must be the
same in C(µ) and ⟨Q(µ)⟩. That forces us to either relate C(µtW ) to C(µb) or to express ⟨Q(µb)⟩ in terms of ⟨Q(µtW )⟩ in such a way that large
logarithms

αn
s lnn µtW

µb
(181)
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are summed to all orders n = 0, 1, 2 . . . in perturbation theory. This can be achieved by solving the renormalization group (RG) equation
for either C(µ) or ⟨Q(µ)⟩. All steps of this procedure are analogous to the calculation of the running quark mass, which can be found in any
textbook on QCD. RG-improvement promotes our LO result to a leading-log quantity:

C |∆B|=2,(0)(mt, MW , µb) = u(0)(µb, µtW )C |∆B|=2,(0)(mt, MW , µtW ) (182)

⟨Q(µtW )⟩ = u(0)(µb, µtW )⟨Q(µb)⟩ (183)

u(0)(µb, µtW ) =

(
αs(µtW )
αs(µb)

) γ
(0)
+

2β(5)
0 with γ(0)

+ = 4. (184)

In flavor physics expressions like “leading-order (LO)” and “next-to-leading order (NLO)” are meant to include the RG resummation,
because fixed-order calculations are not common. I.e. “(N)LO” really means “(next-to-)leading log”.

The evolution factor u(0)(µb, µtW ) depends on the anomalous dimension of Q, which equals (αs/(4π))γ(0)
+ to leading-log accuracy. β( f )

0 =

11 − 2 f /3 is the first term of the QCD β function. One usually writes

C |∆B|=2(mt, MW , µb) = ηBbB(µb)C |∆B|=2,(0)(mt, MW , µtW ) (185)

where all dependence on µb is absorbed into bB(µb) and all heavy scales reside in ηB. This factorization is possible to all orders in αs. It
is trivially verified in the LO approximation of Eq. (184), where one simply has u(0)(µb, µtW ) = ηBbB(µb). The anomalous dimension γ(0)

+ is
calculated from the UV-divergent pieces of the one-loop diagrams found by dressing Q in Fig. 5 with a gluon. In Eq. (185) mt is understood
as mt(mt) (and not as mt(µtW )). In this way ηB is independent of µtW to the calculated order; the residual µtW dependence is already tiny in
the NLO result. The NLO result for C |∆B|=2 comprises all terms of order αn+1

s lnn(µtW/µb) and includes two ingredients: first, the two-loop
diagrams in which the box is dressed with an additional gluon in all possible ways [130] and second, the NLO evolution factor u(1)(µb, µtW )
refining u(0) in Eq. (184) by corrections of order αs found by calculating the two-loop contribution γ(1)

+ to the anomalous dimension of Q
[125].

ηB mildly depends on xt = m2
t /M

2
W and in practice one can treat it as a constant number [130]:

ηB = 0.55, bB(µb = mb = 4.2 GeV) = 1.5. (186)

The dependences of bB on µb and the chosen renormalization scheme cancel in the product bB(µb)⟨Q(µb)⟩. The quoted number is for the
MS–NDR scheme, where “NDR” refers to the treatment of the Dirac matrix γ5. Details on this topic can be found in [125]. We see that
the impact of short-distance QCD corrections is moderate, since ηB bB(µb) = 0.84. The NLO calculation of Ref. [130] has found only small
two-loop corrections and the remaining uncertainty affects ηB is around 2%. Combining Eqs. (168), (179) and (185) we arrive at our final
result for the |∆B| = 2 hamiltonian:

H |∆B|=2 =
G2

F

4π2 M2
W (VtbV∗tq)2 ηB S (xt)bB(µb)Q(µb) + H.c. (187)

Turning to the non-perturbative piece of the B−B̄ mixing amplitude, we first introduce the conventional parameterization of the hadronic
matrix element,

⟨Bq|Q(µb)|B̄q⟩ ≡
2
3

M2
Bq

f 2
Bq

BBq (µb) ≡
2
3

M2
Bq

f 2
Bq

B̂Bq

bB(µb)
(188)

with the Bq meson decay constant fBq and the bag factor, which is sometimes chosen as BBq (µb) and in other occasions as B̂Bq = BBq (µb)bB(µb).
The second parameterization incorporates the feature that the dependence on renormalization scheme and scale must cancel between bB(µb)
and BBq (µb), so that one can quote numbers for the scheme and scale independent quantity B̂Bq without referring to details of the renormal-
ization. The parameterization in Eq. (188) is chosen in such a way that BBq (µb) = B̂Bq/bB(µb) is close to one for µb ∼ mb. With the help of
our effective field theory we have reduced the problem of long-distance QCD in B−B̄ mixing to the calculation of a single number. Lattice
gauge theory computations cover the ranges [145, 146]

fBd

√
B̂Bd = (210 ± 11) MeV, fBs

√
B̂Bs = (254 ± 12) MeV, ξ =

fBs

√
B̂Bs

fBs

√
B̂Bs

= 1.216 ± 0.016. (189)

The quoted hadronic uncertainties are the dominant source of uncertainty for the extraction of |VtbVtq| from the measured ∆MBq .
Putting Eqs. (187) and (188) together we find the desired element of the B−B̄ mass matrix:

Mq
12 =

⟨Bq|H |∆B|=2| B̄q⟩

2MBq

=
G2

F

12π2 ηB MBq B̂Bq f 2
Bq

M2
W S

( m2
t

M2
W

) (
VtbV∗tq

)2
. (190)

We can now use ∆Md = 2|Md
12 to determine |Vtd |:

∆Md = (0.51 ± 0.02) ps−1
(
|Vtd |

0.0086

)2
 fBd

√
B̂Bd

210 MeV


2

. (191)
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For ∆Ms = 2|Ms
12| one finds

∆Ms = (16.3 ± 0.6) ps−1
(
|Vts|

0.04

)2
 fBd

√
B̂Bd

254 MeV


2

. (192)

∆Ms involves |Vts| which is fixed by CKM unitarity to |Vts| = 0.98|Vcb|. Thus if one uses |Vcb| as input, ∆Ms is a direct test of the SM without
sensitivity to (ρ̄, η̄). Eq. (192) reproduces the experimental value in Eq. (48) for |Vcb| = 0.0426

+0.0022
−0.0019.

As mentioned after Eq. (48), we can determine the side Rt from the ratio ∆Md/∆Ms which is proportional to |Vtd/Vts| = 1.02 λRt, where
the factor 1.02 subsumes the higher-order terms in λ mentioned in the text after Eq. (48). With ξ from Eq. (189) and MBs/MBd = 1.017 we
find the “pocket calculator formula”:

Rt =
1

1.02 λ

√
∆Md

∆Ms

√
Ms

Md
ξ = 0.905

0.225
λ

√
∆Md

0.507 ps−1

√
17.77 ps−1

∆Ms

ξ

1.216
. (193)

In summary, Mq
12 can be calculated with the help of an OPE with a particularly simple result, involving only a single Wilson coefficient

C |∆B|=2 and a single hadronic ∆B = 2 matrix element ⟨Bq|Q|B̄q⟩. The former is calculated to NLO in QCD perturbation theory; the missing
three-loop contribution inflicts an error of 4% on this coefficient. The hadronic matrix elements in Eq. (189) are determined from lattice
QCD with a current accuracy of slightly less than 11%. ∆Mq ≃ 2|Mq

12| ∝ |VtbV∗tq|
2 determines |Vtq| with a current precision of 11%, with

the theoretical uncertainty dominated by the lattice calculations of the hadronic parameters in Eq. (189). Since CKM unitarity fixes |Vts| =

0.98|Vcb|, measurements of ∆Ms directly probe the SM, but this test currently suffers from the controversy on the value of |Vcb|. The ratio
∆Md/∆Ms ∝ |Vtd/Vts|

2 ∝ R2
t provides a precise determination of the side Rt of the UT, because the perturbative coefficient and the implicit

dependence on |Vcb| drops out and the uncertainty of the hadronic parameter ξ in Eq. (189) is below 1.5%. Easy-to-use formulae for
phenomenological analyses are given in Eqs. (191–193).

6.3 Effective |∆B| = 1 hamiltonian and Standard-Model predictions for ∆Γd,s and ad,s
fs

B decays are processes in which the beauty quantum number changes by one unit. The tree-level contribution to such decays involves the
exchange of one W boson and the corresponding effective four-quark operator is obtained by contracting the W line to a point. Thus the
|∆B| = 1 hamiltonian found in this way is modeled after the Fermi theory of beta decay. H |∆B|=1 comprises many operators, because there are
many non-leptonic decay channels; one further categorizes the different terms by the other flavor quantum numbers. For example, b→ cūd
decays are described by Hb→cūd = H∆B=∆C=∆D=1 + H.c. and when mentioning H |∆B|=1 one usually only refers to the piece which applies to
the studied decay. Another reason for the proliferation of operators compared to the Fermi theory is QCD: When we include diagrams with
gluons we find new contributions in which color indices are contracted in a different way compared to the original operator found from the
tree diagram with W exchange. For the description of b→ s decays one needs

H |∆B|=1 =
4GF
√

2

− λs
t

( 6∑
i=1

CiQi +C8Q8

)
− λs

u

2∑
i=1

Ci(Qi − Qu
i ) + V∗usVcb

2∑
i=1

CiQcu
i + V∗csVub

2∑
i=1

CiQuc
i

 + H.c. , (194)

with

λs
a = V∗asVab , (195)

where a = u, c, t and λs
t = −λ

s
c − λ

s
u. GF stands for the Fermi constant. The operators are [147]

Q1 = Qc
1 = s̄αLγµcβL c̄βLγ

µbαL , Q2 = Qc
2 = s̄αLγµcαL c̄βLγ

µbβL , (196)

Qu
1 = s̄αLγµuβL ūβLγ

µbαL , Qu
2 = s̄αLγµuαL ūβLγ

µbβL , (197)

Qcu
1 = s̄αLγµuβL c̄βLγ

µbαL , Qcu
2 = s̄αLγµuαL c̄βLγ

µbβL , (198)

Quc
1 = s̄αLγµcβL ūβLγ

µbαL , Quc
2 = s̄αLγµcαL ūβLγ

µbβL . (199)

Q3 = s̄αLγµbαL
∑

q

q̄βLγ
µqβL , Q4 = s̄αLγµbβL

∑
q

q̄βLγ
µqαL , (200)

Q5 = s̄αLγµbαL
∑

q

q̄βRγ
µqβR , Q6 = s̄αLγµbβL

∑
q

q̄βRγ
µqαR , (201)

Q8 =
gs

16π2 mb s̄Lσ
µνT abR Ga

µν (202)

with color indices α and β. The operators are depicted in Fig. 6. Those in Eqs. (196–199) are called current-current operators and are
generated by tree diagrams. For the current-current operators Q1,2 and Qu

1,2 we can draw the penguin diagrams of Fig. 6, which require
a counterterm proportional to a linear combination of the four-quark penguin operators Q3−6. This feature is called operator mixing.
Other diagrams giving rise to operator mixing are those found by dressing the diagrams in the first row of Fig. 6 with a gluon. Thus e.g.
also Qcu

1 and Qcu
2 mix with each other. Furthermore, diagrams like the one in Fig. 2 match onto penguin operators, so that their Wilson

coefficients depend on mt/MW . The corresponding hamiltonian for b→ d transitions is found from Eq. (194) by changing the CKM factors
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Fig. 6 Upper row: Operators in H∆B=1 of Eqs. (194–202). The operators of H∆B=−1 = H∆B=1 † are found by reversing the direction of
the quark lines. Lower row: Penguin diagrams describing the mixing of Q(u)

2 in Eqs. (196) and (197) into the penguin operators Q3−6 in
Eqs. (200) and (201)

to λd
a = V∗adVab and replacing the s field by d in the definitions of the operators. The Wilson coefficients are the same.
Operator mixing implies that the renormalization group equations for the Wilson coefficients C1−6 are coupled, so that the low-energy

values C j(µb) also depend on the initial conditions Ck(µtW ) of other coefficients. At two-loop level and beyond, the four-quark operators also
mix into the chromomagnetic penguin operator. The RG evolution factor u(0)(µb, µtW ) of Eq. (184) is replaced by matrices in the case of
H |∆B|=1, the term proportional to λs

t involves a 7 × 7 RG evolution matrix and the terms with the other three CKM factors instead involve (the
same) 2 × 2 matrix. This 2 × 2 matrix is diagonal if one switches from the operator basis (Qx

1,Q
x
2) (with x = u, c, cu, uc) to (Qx

+,Q
x
−) where

Qx
± = (Qx

2 ± Qx
1)/2. The first diagonal element, i.e. the anomalous dimension of Qx

+, is the sames as for Q in Eq. (167), which explains the
notation in Eq. (184), and γ(0)

− = −8. Details on H |∆B|=1 and the RG evolution of its coefficients can be found in Refs. [124, 125, 148–151],
which report the two-loop results for the NLO anomalous dimension matrix and the NLO initial conditions for the Wilson coefficients,
Ck(µtW ). The calculation of the latter involve the one-loop QCD corrections to the SM b decay amplitude and the corresponding corrections
to the four quark operators. The NNLO result for H |∆B|=1, which required a three-loop calculation, has been presented in Ref. [152].

As a first application, I discuss the mixing-induced CP asymmetries, for which we do not need to know the values of the Wilson
coefficients. The amplitudes A f and Ā f of Eq. (117) read, with Hint of Eq. (118) replaced by H |∆B|=1 = H∆B=1 + H∆B=−1,

A f = ⟨ f |H∆B=1|B⟩, Ā f = ⟨ f |H∆B=−1|B̄⟩ (203)

where I have expanded the S-matrix to the lowest order in GF .
Taking the CP phase ϕmix

CP,Bs
(equal to −2βs in the SM) as an example, we identify the terms with Q1,2 in Eq. (194) as responsible for the

dominant tree amplitude. Neglecting penguin contributions we set λs
u = 0 and replace λs

t by −λs
c. Then

A(J/ψϕ)l =
4GF
√

2
λs∗

c

∑
j

C j ⟨(J/ψϕ)l|Q
†

j |Bs⟩, Ā(J/ψϕ)l =
4GF
√

2
λs

c

∑
j

C j ⟨(J/ψϕ)l|Q j|B̄s⟩. (204)

Applying the CP transform of Eq. (15) to the quark currents in Q j on finds CPQ j(CP)† = Q†j . Then we insert (CP)†CP = 1 into our matrix
element and use Eq. (23) and ηCP,(J/ψϕ)l = (−1)l to find

Ā(J/ψϕ)l =
4GF
√

2
λs

c

∑
j

C j ⟨(J/ψϕ)l|(CP)†CPQ j(CP)†CP|B̄s⟩ = −
4GF
√

2
(−1)l λs

c

∑
j

C j⟨(J/ψϕ)l|Q
†

j |Bs⟩ = −(−1)l λ
s
c

λs∗
c

A(J/ψϕ)l (205)

which fills in the missing details of the derivation of Ā(J/ψϕ)l/A(J/ψϕ)l in Eq. (152).
Next I discuss the calculation of Γd,s

12 . There is no contribution of H |∆B|=2 to Γd,s
12 , because ⟨Bq|H |∆B|=2|B̄q⟩ has no absorptive part. The

relevant contributions instead come from two transitions mediated by H |∆B|=1. We expanding the S-matrix to second order:

S = Texp
[
−i

∫
d4 x

(
H |∆B|=2(x) + H |∆B|=1(x)

)]
= −i

∫
d4 x H |∆B|=2(x) −

1
2

∫
d4 x d4y T

[
H |∆B|=1(x)H |∆B|=1(y)

]
+ . . . (206)

where the dots represent terms which do not contribute to |∆B| = 2 transitions. The ∆B = 2 matrix element in the effective theory then reads

Σ12 = M12 −
i
2
Γ12 = ⟨B|H |∆B|=2(0)|B̄⟩ −

i
2
⟨B|

∫
d4 x T

[
H |∆B|=1(x)H |∆B|=1(0)

]
|B̄⟩. (207)

The LO contributions to Γ12, which stem from the second term in Eq. (207), are shown in Fig. 7 for the case of Bs−B̄s mixing. The
contribution from the second, bilocal term Eq. (207) to B−B̄ mixing is much smaller than the one from H |∆B|=2, which is enhanced due to
the heavy top mass entering Eq. (178) while Γ12 scales like m2

b. Therefore we can neglect the bilocal contribution in M12 and only need to
consider it for Γ12. From this observation we also verify that |Γ12/M12| = O(m2

b/m
2
t ), which we I used in the discussion after Eq. (91).
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Fig. 7 Second-order contribution of H|∆B|=1 to Bs−B̄s mixing. The diagrams with two charm quarks, found by contracting the W lines in
the corresponding box diagrams to a point, constitute the dominant contribution to Γs

12 and involve two insertions of Q2 of Eq. (196).

Eqs. (94–96) relate Γq
12 and Mq

12 to ∆Γq and aq
fs for q = d or s:

∆Γq

∆Mq
≃ −Re

Γ
q
12

Mq
12

, aq
fs ≃ Im

Γ
q
12

Mq
12

. (208)

The calculation of the ratio Γq
12/M

q
12 has two advantages over the calculation of Γq

12: The dependence on Vcb = Aλ2, which normalizes the
CKM parameter Vtq, drops out from the ratio. Furthermore, the dominant contribution to Γq

12 is proportional to the hadronic matrix element
in Eq. (188) which also enters Mq

12 and therefore cancels to a large extent from the ratio.
Γ

q
12 involves two novel features compared to Mq

12: Firstly, it is calculated in a power series in ΛQCD/mb which results from an OPE
with mb as the hard scale called Heavy Quark Expansion (HQE) [153, 154]. Technically, one expands the loop diagrams of Fig. 7 in the
inverse of the external b-quark momentum and matches the different terms onto matrix elements of local ∆B = 2 operators. These operators
are pictorially found by contracting the hard loop momentum in bilocal diagrams like those in Fig. 7 to a point, leading to the effective
interaction of Fig. 5. Higher powers of 1/mb in the coefficients come with higher dimensions of the corresponding operators, thus the 1/mb

corrections to the leading-power result involve dimension-7 operators, whose matrix elements have an extra power of ΛQCD compared to
Eq. (188) (entering e.g. as a power of MB − mb). Thus the prediction of Γq

12 is a double expansion in the two parameters ΛQCD/mb and
αs(mb). Secondly, the leading-power contribution involves two operators, apart from Q in Eq. (77) this is [155]

Q̃S = q̄αLbβR q̄βLbαR (209)

with matrix element

⟨Bq|Q̃S (µ2)|Bq⟩ =
1
3

M2
Bq

f 2
Bq

B̃′S ,Bq
(µ2) (210)

With B′S ,Bs
(mb) = 1.31 ± 0.09 and B′S ,Bd

(mb) = 1.20 ± 0.09 [146] we find this matrix element smaller than ⟨Bq|Q|Bq⟩ in Eq. (188) and the
uncertainty in Γq

12/M
q
12 from these matrix element is not an issue in the predictions of the quantities in Eq. (208).

For the discussion of aq
fs it helps to decompose Γq

12 as [156]

Γ
q
12 = −(λq

c)2Γcc
12 − 2λq

cλ
q
uΓ

uc
12 − (λq

u)2Γuu
12 (211)

= −(λq
t )2

Γcc
12 + 2

λ
q
u

λ
q
t

(
Γcc

12 − Γ
uc
12

)
+

(
λ

q
u

λ
q
t

)2 (
Γuu

12 + Γ
cc
12 − 2Γuc

12

) . (212)

Here the superscript labels the quark flavors on the two internal lines, −(λs
c)2Γcc

12 is shown in Fig. 7. To prepare for the normalization to
Mq

12 ∝ λ
q 2
t I have traded λq

c = −λ
q
t − λ

q
u for λq

t in the second line of Eq. (212). We observe that the terms proportional to λq
u/λ

q
t and (λq

u/λ
q
t )2

are GIM-suppressed, since they vanish for mc = mu.
To discuss ∆Γq/∆Mq and ad

fs it is useful to define real parameters a, b and c through [157]

Γd
12

Md
12

=
λd 2

t

M12

[
−Γcc

12 + 2
(
Γuc

12 − Γ
cc
12

) λd
u

λd 2
t
+

(
2 Γuc

12 − Γ
cc
12 − Γ

uu
12

) λd 2
u

λd 2
t

]

≡ 10−4
[
c + a

λd
u

λd
t
+ b

λd 2
u

λd 2
t

]
. (213)

a, b, and c depend on the particle masses and, in particular, are functions of

z =
m2

c

m2
b

(214)

By calculating Γab
12 one finds that a is linear in z. b is proportional to (λq

u/λ
q
t )2 and negligible, because it is proportional to z3 at LO and αsz2

at NLO. Furthermore we verify from Eq. (35) that both |λs
u/λ

s
t | ∝ λ

2 and Re (λd
u/λ

d
t ) ∝ cosα are small; in the latter case this stems from the

fact that α happens to be close to 90◦. Thus ∆Γq/∆Mq = −Re (Γq
12/M

q
12) is dominated by c for both q = d and q = s.
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For aq
fs, however, one observes

aq
fs =

[
a Im

λd
u

λd
t
+ b Im

(λd
u)2

(λd
t )2

]
· 10−4 ∝ z (215)

from Eq. (213), so that ad
fs is suppressed w.r.t. ∆Γd/∆Md by a factor of z. Furthermore, in as

fs there is an additional CKM suppression from
Im (λs

u/λ
s
t ) ∝ λ2 ≃ 0.05.

With

λd
u

λd
t
=

1 − ρ̄ − iη̄
(1 − ρ̄)2 + η̄2 − 1 . (216)

we can express Im (λd
u/λ

d
t ) in terms of UT parameters. Neglecting the small term with b one finds

ad
fs = Im

λ
q
u

λ
q
t

a · 10−4 = −
η̄

(1 − ρ̄)2 + η̄2 a · 10−4 = −
sin β
Rt

a · 10−4 (217)

from Eq. (215). From the third expression one realizes that a future improved measurement of ad
fs in Eq. (113) will define a circle in the

ρ̄-η̄ plane which gives complementary information to the circle found from ∆Md , the line from Amix
CP (Bd → J/ψKshort) = − sin(2β), and other

standard observables used in UT phenomenology, see Fig. 8. From Eq. (217) one easily finds the equation for the desired new circle:

(η − Rfs)2 + (1 − ρ)2 = R2
fs with Rfs = −

a

2ad exp
fs

, (218)

where ad exp
fs denotes the experimental value of ad

fs. Thus the circle is centered on the vertical line with ρ̄ = 1 and intersects the point
(ρ̄, η̄) = (1, 0); its radius Rfs is slightly larger than 1 if the SM describes ad

fs correctly.
The last expression in Eq. (217) involves the two quantities inferred from measurements of Amix

CP (Bd → J/ψKshort) and ∆Md . Thus
measuring all of Amix

CP (Bd → J/ψKshort), ∆Md , and ad
fs over-constrains β and Rt and thus constitutes a probe of BSM physics in Bd−B̄d

mixing alone, without the need of input from other quantities. Pictorially, BSM physics in Bd−B̄d mixing will reveal itself in this way if
the intersection of the circles from ∆Md and ad

fs will not be spiked by the line inferred from Amix
CP (Bd → J/ψKshort).

The OPE matches the result of the diagrams in Fig. 7 (and the corresponding ones with one or two up quarks) onto local ∆B = 2 operators
to yield an expression of the form

Γab
12 =

G2
Fm2

b

24πMBq

[
Hab(z)⟨Bq|Q|B̄q⟩ + H̃ab

S (z)⟨Bq|Q̃S |B̄q⟩
]
+ O

(
ΛQCD

mb

)
, (219)

with new Wilson coefficients Hab(z) and H̃ab
S (z). The diagrams of Fig. 7 determine them to LO, for the NLO and NNLO results one had to

calculate diagrams with one and two extra gluons, respectively, as well as the corresponding diagrams for the ∆B = 2 operators.
Γ

q
12 has been calculated to LO in Refs. [154, 158–163] with focus on the predictions of ∆Γs and ad

fs. The NLO prediction of the
contribution with the large Wilson coefficients C1, C2, and C8 to ∆Γs was presented in Refs. [155, 156, 164], the NLO results for ad,s

fs
and ∆Γd were derived in Refs. [155, 157, 164]. The NLO contribution with the small (of order 0.05) four-quark penguin coefficients
C3 . . .C6 was obtained in Ref. [165, 166]. The NNLO calculation of the three-loop diagrams has been tackled in terms of an expansion in
z. The contribution calculated first only involved three-loop diagrams with fermion loops [167–169]. Ref. [166] contains the NNLO results
with one C8 and one four-quark coefficient, which only involve two-loop diagrams. The numerically most important piece of the NNLO
prediction stems from three-loop diagrams with two current-current operator coefficients C1,2, found in an expansion to order z in Ref. [170]
and to order z50 in Ref. [171], except for the charm mass effects in the tiny gluon self-energy diagrams, which are only known to order
z6. The result of Ref. [170] is satisfactory for ∆Γq, but not for aq

fs ∝ z, for which the calculation in Ref. [171] was needed. Ref. [166] also
contains a first step towards NNNLO, with the calculation of two-loop diagrams proportional to C2

8 .
The cited calculations are all for the leading-power term, i.e. they address QCD corrections to Hab(z) and H̃ab

S (z) in Eq. (219). The
NNLO predictions are [171]

∆Γs

∆Ms
= (4.370.23

−0.44scale ± 0.12matrixel. ± 0.791/mb ± 0.05input) × 10−3 (MS)

∆Γs

∆Ms
= (4.270.36

−0.37scale ± 0.12matrixel. ± 0.791/mb ± 0.05input) × 10−3 (PS) (220)

The two results correspond to the modified minimal subtraction (MS) and potential-subtracted (PS) renormalization schemes. The depen-
dence on renormalization scheme and scale diminishes order-by-order of αs; it is commonly used as an estimate of the uncertainty related
to the omission of unknown higher orders of αs. The indicated scale dependence of the NNLO result in Eq. (220) is slightly below 9%,
which is larger, but close to the experimental error in Eq. (49). The second uncertainty stems from the ratio of the hadronic matrix elements,
i.e. from B′S ,Bs

/BBs . The dominant source of uncertainty are the poorly know matrix elements of the dimension-7 operators entering the
ΛQCD/mb corrections. Moreover, the coefficients of the dimension-7 operators are only known to LO [172], and an NLO calculation is
necessary for a meaningful lattice-continuum matching of the matrix elements. The last uncertainty in Eq. (220) stems from the physical
parameters, mostly from CKM elements. One should keep in mind that their values and uncertainties are found under the assumption that
there is no new physics in the quantities entering the global fit of ρ̄ and η̄ from data. Thus future measurements in tension with the presented
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SM predictions may not necessarily be related to new physics in the quoted quantities but instead in the quantities from which ρ̄ and η̄ are
determined.

Currently, we are far away from a measurement of ∆Γd with a precision comparable to ∆Γs in Eq. (49). The SM predictions for ∆Γd/∆Md

and ∆Γs/∆Ms are almost equal and, for the time being, one can use

∆Γd

∆Md
= 0.963

∆Γs

∆Ms
(221)

for the results in both renormalization schemes. Once better measurements than those summarized in Eq. (46) will be available, one should
use the precise formulae of Ref. [171].

One can use the experimental values in Eqs. (20) and (48) to predict [171]

∆Γd =
∆Γd

∆Md
∆Mexp

d = (0.00211 ± 0.00045) ps−1, ∆Γs =
∆Γs

∆Ms
∆Mexp

s = (0.077 ± 0.016) ps−1 (222)

from Eq. (220), with the numbers being the averages of the MS and PS schemes. The benefit of a future measurement of ∆Γd will be a
precise test of BSM physics in Γd,s

12 through the ratio ∆Γd/∆Γs, because most of the uncertainties in Eq. (220) drop out from this ratio.
The NNLO predictions for the coefficients in Eq. (213) are [171]

a = 12.2 ± 0.6, b = 0.23 ± 0.06 (223)

and a breakdown of the different sources of uncertainties can be found in Ref. [171]. c in Eq. (213) essentially equals 104 · Re (Γd
12/M

d
12) =

−104 · ∆Γd/∆Md , which amounts to

c = −42 ± 9. (224)

Using the values from a recent global fit [173],

λd
u

λd
t
= (0.0105 ± 0.0107) − (0.4259 ± 0.0091)i,

λs
u

λs
t
= −(0.00877 ± 0.00043) + (0.01858 ± 0.00038)i, (225)

one finds [171]

ad
fs = − (5.21 ± 0.32) × 10−4, as

fs = (2.28 ± 0.14) × 10−5 .

Note that the parameters a, b, c for Bs−B̄s mixing are slightly different from those in Bd−B̄d mixing, similar to the situation in Eq. (221).
The smallness of as

fs compared to ad
fs stems from the small imaginary part of the CKM factor in Eq. (225), Im (λs

u/λ
s
t ) ≃ η̄λ2.

In Ref. [174] it was pointed out that ad
fs is very sensitive to new physics in Md

12, as a small BSM CP phase spoils the approximate phase
alignment of Γd

12 and Md
12, so that ad

fs picks up a term with the large coefficient c in Eq. (224) which is not suppressed by z. This analysis
was later extended to BSM physics in Γd

12 [175, 176]. If one parameterizes BSM physics as

Γ
q
12

Mq
12

=
Γ

q
12,SM

Mq
12,SM

dq
NPeiϕq

NP , (226)

with dq
NP > 0 and a BSM CP phase ϕq

NP, one finds [157, 174, 175]

aq
fs = aq

fs,SM dq
NP cos ϕq

NP −
∆Γq,SM

∆Mq,SM
dq

NP sin ϕq
NP. (227)

Thus new physics enhances aq
fs with a lever arm of (∆Γq,SM/∆Mq,SM)/aq

fs,SM multiplying sin ϕq
NP. This enhancement factor equals 8 for

q = d and 190 for q = s when using the central values in Eqs. (220) and (226). While the effect of BSM physics is spectacular for as
fs, the

experimental value in Eq. (55) permits only BSM contributions of a few degrees in Ms
12. Γs

12 cannot receive sizable BSM contributions
either. Still, for ϕs

NP = −5◦ and ds
NP = 1 we find aq

fs enhanced by more than a factor of 15 to as
fs = 4 · 10−4. The room for BSM physics in ad

fs
is larger, because a precise SM prediction for Md

12 suffers from the unclear situation with Vcb and Vub and the doubly Cabibbo-suppressed
Γd

12 can receive BSM contributions as well, so that |ad
fs| above 10−3 cannot be excluded now.

In summary, the decay matrix element Γd,s
12 determines ∆Γd,s and ad,s

fs . While Γd,s
12 originates from a ∆B = 2 transition, there is no

contribution from the |∆B| = 2 hamiltonian to this quantity, which instead involves two |∆B| = 1 interactions as shown in Fig. 7. The
corresponding |∆B| = 1 hamiltonian in Eq. (194) describes decays of b-flavored hadrons; Γq

12 receives contributions from all decays to final
states which are common to Bq and B̄q, as shown in Eq. (99). ∆Γs is precisely measured and a calculation of QCD corrections to Γq

12 at
NNLO was necessary to bring the perturbative uncertainty to a level which is similar to the experimental error. A future measurement of ad,s

fs
will define the circle of Eq. (218) in the ρ̄-η̄ plane, which gives new information on (ρ̄, η̄), complementary to other constraints. In particular,
in combination with ∆Md and Amix

CP (Bd → J/ψKshort) a measurement of the CP asymmetry ad
fs will over-constrain the UT and provide a SM

test of BSM physics in Bd−B̄d mixing without the need of external input from other observables entering the global UT fit. ∆Γd and as
fs

play roles as BSM physics tests; in the case of as
fs already small BSM CP phases can enhance this quantity from its tiny SM prediction to a

value accessible at experiment.
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η̄
Δmd
Δms

Ru Rt

adfs
β

ρ̄

ϵK

Fig. 8 Contraints on the unitarity triangle from ∆Md/∆Ms, ϵK , ad
fs, and Amix

CP (Bd → J/ψKshort) = − sin(2β), schematically for a hypothetical
perfect agreement with the SM and no uncertainties.

6.4 Effective hamiltonians for K− K̄ mixing with predictions for ϵK and ∆MK, overall picture of the UT
The formalism to describe CP violation in K−K̄ mixing and the relation of CP asymmetries to the CP phase ϕK = arg(−MK

12/Γ
K
12) has

been presented in Eqs. (120–136). The quantity ϵK introduced in Eq. (121) encodes both CP violation in mixing and mixing-induced CP
violation, while the semileptonic CP asymmetry AL = aK

fs/2 of Eq. (133) is a measure of only the former type of CP violation. AL and
Re ϵK provide the same information on ϕK . In contrast to B−B̄ and D−D̄ mixing Im ϵK encoding mixing-induced CP violation in the decay
K → (ππ)I=0 does not provide new information compared to aK

fs and also determines ϕK , see Eq. (132). I will now show how ϵK is calculated
in the SM.

In K−K̄ mixing it is common practice to adopt the standard phase convention for the CKM matrix in which VusV∗ud is real and positive.
Starting from from Eq. (89), we write

ϕ = arg
−MK

12

ΓK
12

 ≃ Im MK
12

|MK
12|
− arg(−ΓK

12) = 2
 Im MK

12

∆Mexp
K

+ ξK

 (228)

where

2ξK ≡ − arg(−ΓK
12) ≃ − arg

−A0

A0

 . (229)

In Eq. (228) I have used that the phases of both MK
12 and −ΓK

12 are small in the standard CKM phase convention and further traded |MK
12| for

the experimental ∆MK/2. Furthermore, in Eq. (229) the saturation of Γ12 by A∗0 A0 in Eq. (126) has been used. Inserting Eq. (228) into our
result for ϵK in Eq. (132) gives

ϵK ≃ sin(ϕϵ )eiϕϵ

 Im MK
12

∆Mexp
K

+ ξK

 . (230)

The term with ξK encodes the CP-odd phase in K → (ππ)I=0, which we expect to appear in a quantity measuring mixing-induced CP
violation. It only contributes −6% to ϵK [177] (a recent lattice determination finds |ξK | slightly larger [178]) and will be briefly discussed
below. The ballpark contribution to ϵK stems from Im MK

12, i.e. from the familiar K−K̄ box diagram.
The LO ∆S = 2 transition amplitudeM(0) corresponding to the K−K̄ mixing box diagram in Fig. 1 is found from the corresponding

∆B = 2 expression in Eq. (175) by the substitutions b→ s and q→ d in the CKM elements. Everything else is unchanged, in particular we
encounter the same Inami-Lim functions as in B−B̄ mixing. An important difference is the hierarchy among the three CKM combinations
in Eq. (175), the smallness of (VtsV∗td)2 ≃ A4λ10(1 − ρ − iη)2 compensates the large size of S (xt) and the terms with S (xc, xt) and S (xc)
become important, where I recall the definition xq ≡ m2

q/M
2
W . For ϵK in Eq. (230) we need the imaginary parts of the CKM factors. To

lowest order in the Wolfenstein expansion one finds

Im (VtsV∗td)2 ≃ 2(Aλ2)4λ2 η (1 − ρ), 2 Im (VtsV∗tdVcsV∗cd) ≃ −Im (VcsV∗cd)2 ≃ 2(Aλ2)2λ2 η (231)

and the numerical hierarchy becomes evident from Aλ2 = |Vcb| = 0.04. Thus, in addition to S (xt) in Eq. (178) we also need S (xc) =
xc + O(x2

c ) and

S (xc, xt) = −xc ln xc + xc

[
x2

t − 8xt + 4
4(1 − xt)2 ln xt +

3
4

xt

xt − 1

]
+ O(x2

c ln xc). (232)

These three contributions require a very different treatment of their QCD corrections. The term with S (xt) follows the pattern which we
discussed for B−B̄ mixing, leading to the effective hamiltonian in Eq. (187). There is only one difference between the QCD correction
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factor ηBbB(µb) in Eq. (187) and its counterpart ηttbK(µ) in the |∆S | = 2 hamiltonian: The RG evolution of the coefficient of the local
operator

Q = dLγνsL dLγ
νsL. (233)

must be carried to a lower scale µK = O(1 GeV) and to this end one must match Q from five-flavour QCD to three-flavour QCD at an
intermediate scale µbc = O(mc). This requires to change f = 5 to f = 3 in the evolution of Eq. (184) for µK ≤ µ ≤ µbc. Beyond LO there is
also a threshold correction C |∆S |=2, f=3(µbc)/C |∆S |=2, f=5(µbc), which is numerically very small.

The other two contributions, with light charm and up quarks on the internal lines, require the consideration of terms with two |∆S | = 1
hamiltonians. We have encountered this piece as the second term of Σ12 in Eq. (207) in the discussion of |∆B| = 2 transitions. This term does
not only contribute to Γ12, but also to M12 but is negligible in the case of |∆B| = 2 transitions. In K−K̄ mixing the transition amplitude at
intermediate scales µbc ≤ µ ≤ µtW involves both a local |∆S | = 2 hamiltonian and the bilocal matrix element with two copies of the |∆S | = 1
hamiltonian, both of which are obtained from their |∆B| = 1, 2 counterparts by appropriately replacing the quark fields in the operators and
changing the CKM elements. When we arrive at the renormalization scale µbc, we must match our ∆S = 2 amplitude of the five-flavour
theory to an amplitude in a theory which only has u, d, and s as dynamical quark fields. For µ ≤ µbc the ∆S = 2 transition solely involves
the local ∆S = 2 operator of Eq. (233), just as in the case of the top quark contribution proportional to (VtsV∗td)2 discussed first. The two-
step matching of the contributions with (VcsV∗cd)2 and VcsV∗cdVtsV∗td with the RG evolution between the scales µtW and µbc leads to a result
in which the product of αs and the large logarithm ln xc is summed to all orders in perturbation theory. The final result for the effective
hamiltonian reads

H |∆S |=2 =
G2

F

4π2 M2
W

[
(VtsV∗td)2 ηtt S (xt) + 2VtsV∗tdVcsV∗cd ηct S (xc, xt) + (VcsV∗cd)2 ηcc xc

]
bK(µK)Q(µK) + h.c. (234)

with the QCD corrections encoded in ηtt, ηct, and ηcc, with a common factor bK(µK) factored out. The hadronic matrix elements is
parametrized as

⟨K|Q(µK)|K⟩ =
2
3

M2
K f 2

K
B̂K

bK(µK)
, (235)

where MK = 497.6 MeV [1] and fK = 156 MeV [179] are Kaon mass and decay constant, respectively. With MK
12 = ⟨K|H

|∆S |=2|K̄⟩ we can
determine Im MK

12 in terms of B̂K and write for ϵK in Eq. (230):

1.21 · 10−7 = B̂K

[
Im (VtsV∗td)2 ηtt S (xt) + 2 Im

(
VtsV∗tdVcsV∗cd

)
ηct S (xc, xt) + Im (VcsV∗cd)2 ηcc xc

]
. (236)

Here the number on the LHS originates from

1.21 · 10−7 =
12π2 ∆Mexp

K

G2
F f 2

K MK M2
W sin ϕϵ

(
|ϵ

exp
K | − ξ̃K sin ϕϵ

)
(237)

where I have used the numbers quoted in this report as well as GF = 1.1663710−5 GeV−2 and MW = 80.370 GeV. In Eq. (237) ξ̃K ∼ 0.6ξK

subsumes ξK in Eq. (230) and the bilocal contribution to Im MK
12 from two insertions of the |∆S | = 1 hamiltonian [178, 180, 181], i.e. the

bilocal “long-distance” matrix element ⟨K|
∫

d4 x T
[
H |∆S |=1(x)H |∆S |=1(0)

]
|K̄⟩ contributes to both ΓK

12 and MK
12. The effect of the term with ξ̃K

in Eq. (237) can be implemented as a 3% reduction of the RHS via |ϵexp
K | − ξ̃K sin ϕϵ ≃ 0.97|ϵexp

K |. We can use Eq. (231) to express Eq. (236)
in terms of ρ̄ and η̄. Dividing Eq. (236) by 2λ2 with λ = 0.225 and trading A for |Vcb| = Aλ2 one finds

1.20 · 10−6 = B̂K |Vcb|
2 η

[
|Vcb|

2 (1 − ρ)ηttS (xt) + ηct S (xc, xt) − ηcc xc

]
, (238)

where a tiny term of order λ2 (to be found in Ref. [182]) has been neglected.
Since the perturbative calculation of ηct, and ηcc involves an expansion in αs(µbc) ∼ 0.3, we must calculate these coefficients to higher

order than in the case of ηtt. The development of the effective-hamiltonian framework and the LO calculation of H |∆S |=2 was performed by
Gilman and Wise [147] for the case of a top quark mass far below MW . The calculation confirmed the results for ηtt and ηcc found before
with other methods [183, 184]. Later the LO calculation was extended to the case of a heavy top quark [185].

The motivation for the NLO calculation of H |∆S |=2 was, in the first place, to find out whether RG-improved perturbation theory works at
all in a non-leptonic process involving low scales with αs ≳ 0.3. While the NLO calculation of ηtt, which only involves αs(µtW ), showed a
good behaviour of the perturbative series [130], the fate of a reliable prediction of ϵK depended on the control over ηct, and ηcc. The NLO
calculation of ηcc indeed showed a disturbingly large positive correction of 65%, which, however, could be traced back to an accidental
cancellation among different terms in the LO result which was weakened at NLO [127]. The NLO correction to ηct implied an upward shift
of 31% of this quantity [128, 131], which is of the expected size of a correction proportional to αs(mc). The NLO calculation further permits
control over the definition of the quark masses, the numbers quoted below for ηtt, ηct, and ηcc correspond to the use of the MS scheme, i.e.

xq ≡
(
m̄q(m̄q)/MW

)2
is to be used in Eqs. (236) and (238).
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To calculate ∆MK = 2|MK
12| cos ϕK ≃ 2 Re MK

12 we decompose ∆MK into a short-distance piece from the local contribution to MK
12 and a

long-distance piece from the bilocal contribution with two |∆S | = 1 hamiltonians:

∆MK = ∆MSD
K + ∆MLD

K

∆MSD
K ≡

1
mK

Re ⟨K|H |∆S |=2|K̄⟩, ∆MLD
K ≡ −Re

i
2mK

∫
d4 x ⟨K|H |∆S |=1(x) H |∆S |=1(0)|K̄⟩, (239)

which again is specific to the standard CKM phase convention, for which the dominant CKM combination (VusV∗ud)2 is real. While the tiny
contribution proportional to (VtsV∗td)2 is relevant for ξ̃K in Eq. (237), it is negligible for ∆MK and omitted in Eq. (239). Since the CKM
factor is real, the dispersive part of the bilocal matrix element entering ∆MLD

K is identical to the real part. The dispersive part of the mixing
amplitude has been explained after Eq. (73).

The values for the QCD coefficients in Eq. (234) are

ηtt = 0.5765 ± 0.0065 (NLO) [130], ηct = 0.496 ± 0.047 (NNLO) [133], ηcc = 1.87 ± 0.76 (NNLO) [132]. (240)

The value for ηtt is an update taken from Ref. [132] using m̄t(m̄t) = (163.7 ± 1.1) GeV. The MS top mass is smaller than the pole mass quoted
in the context of collider physics by roughly 8 GeV. ηcc depends steeply on mc, the quoted value is for m̄c(m̄c) = (1.279 ± 0.0013) GeV,
which should be kept in mind when comparing the NNLO value in Eq. (240) with the NLO values in Refs. [127, 128, 131]. With today’s
precise value of mc, the uncertainties of mc and other input parameters has no relevance. The uncertainties of ηcc and ηct are dominated
by the scale uncertainty, estimated by varying µbc around m̄c. This uncertainty will diminish once perturbative calculations beyond NNLO
will be performed. The NNLO result for ηct in Eq. (240) is larger than the NLO result of Ref. [128] by just 8.5%, which testifies to a
good behavior of the perturbative series. The NNLO result for ηcc, however, shows the same pathological situation as the NLO result of
Ref. [127, 128]. The correction is large, increasing ηcc by 36% over the NLO value [132], which exceeds the LO value by 65%, so that ηcc

more than doubled due to two-loop and three-loop QCD corrections.
This development has immediate consequences for ∆MK , as with Eqs. (234) and (235) we find from Eq. (239):

∆MSD
K =

G2
F

6π2 f 2
K MK B̂K

(
Re (VcsV∗cd)

)2
ηccm2

c (241)

where M2
W xc = m2

c has been used. The contributions with other CKM factors amount to 1% and are negligible.
Using the values for MK and fK quoted below Eq. (235), m̄c(m̄c) = 1.279 GeV, and Re (VcsV∗cd) = −0.218 we obtain

∆MSD
K

∆Mexp
K

= (1.16 ± 0.47) B̂K (242)

where I further used the experimental value of Eq. (11). A full NNLO prediction further requires a two-loop lattice-continuum matching
of the hadronic matrix element, i.e. of B̂K , which involves the matching of the MS result to a different renormalization scheme suited for
a non-perturbative calculation. Ref. [186] presents this calculation for B̂K and the application of the result to an average of different lattice
computations to find B̂K = 0.7627 ± 0.0060. Thus Eq. (242) boils down to

∆MSD
K

∆Mexp
K

= (0.89 ± 0.36), (243)

implying short-distance dominance of ∆MK . The long-distance contribution lacks the prefactor m2
c of Eq. (241) and should therefore be

smaller by a factor of Λ2
QCD/m

2
c ∼ 0.1. There are exploratory lattice calculations of ∆MLD

K plus certain terms contained in ∆MSD
K , employing

the feature that this calculation is easier in QCD with four active flavours because the GIM cancellation beween charm and up contributions
improves the UV behaviour of the calculated quantity [187, 188].

ϵK in Eq. (238) defines a hyperbola in the ρ̄-η̄ plane characterized by ηttS (xt) and

ηct S (xc, xt) − ηcc xc (244)

shown in Fig. 8. In Ref. [134] it has been observed that the pathological term in ηcc xc drops out from this combination, so that the
prediction of ϵK does not inherit the uncertainty from the poor convergence of the perturbative series of ηcc. The first term ηct S (xc, xt) is
parametrically larger by a factor of the large logarithm ln xc, so that the term cancelling with ηcc xc is numerically sub-leading and therefore
has a smaller impact on ηctS (xc, xt). The cancellation can be understood by switching to a different form of Eq. (234) via the replacement
VcsV∗cd → −VusV∗ud − VtsV∗td [134]. The resulting prediction for ϵK reads [134]

|ϵK | = (2.16 ± 0.18) × 10−3 B̂K

0.7625
(245)

for ρ̄ = 0.16, η̄ = 0.38, |Vcb| = (42.2 ± 0.8) · 10−3, and the quark masses quoted above. The largest uncertainty in Eq. (245) stems fro the
input parameters, the perturbative uncertainty is down to 3%. The hyperbola of Eq. (238) reads with ηtt in Eq. (240) and ηct S (xc, xt) −
ηcc xc = (7.98 ± 0.18) · 10−4 [134]:

1.20 · 10−6 = B̂K |Vcb|
2 η

[
|Vcb|

2 (1 − ρ)(1.36 ± 0.02) + (7.98 ± 0.18) · 10−4
]
. (246)
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Fig. 9 Contraints on the unitarity triangle from global fits to all quantities constraining (ω̄, ε̄). The upper and lower plots are from
CKMfitter [189] and UTfit [74], respectively. The 68% C.L. contours for (ω̄ε̄) are indicated. CKMfitter uses a Frequentist approach in
which systematic errors and theoretical uncertainties are scanned over, which results in a larger 68% C.L. region than the Bayesian
approach of UTfit. The 3ϑ regions found by both groups are similar.
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The first term in the square bracket stemming from ηttS (xt) contributes about 3/4 to |ϵK |, so that |Vcb| essentially contributes to |ϵK | with the
fourth power. The value of |Vcb| is controversial, the determinations from exclusive and inclusive semileptonic B decays do not agree. For
the lower value, found from exclusive decays, the hyperbola from ϵK is not consistent with other constraints on the apex (ρ̄, η̄) of the UT.

Finally, ∆ΓK in Eq. (10) has defied any calculation from first principles. For this we need ΓK
12, which is completely dominated by the

isospin-0 amplitude A0, see Eq. (126). The experimental fact |A0| ≃ 22|A2| is called “∆I = 1/2 rule” and no analytical calculation could
reproduce the value of |A0/A2|.

Fig. 8 shows the constraints on the apex of the unitarity triangle from the mixing-related observables discussed in this review. The actual
situation from global fits to all measured quantities sensitive to ρ̄, η̄ is illustrated in Fig. 9, which shows the results from the two major
groups performing such analyses, CKMfitter and UTfit.

To study BSM physics one may parameterize the BSM contributions in a model-independent way by foreseeing parameters modifying
magnitude and phase of Md,s,K

12 and constrain these in conjunction with ρ̄ and η̄ in a global fit [72–74]. Ref. [74] find thatO(20%) BSM effects
are allowed in |Md,s

12 | and Im MK
12, while there is less space for new physics in the phases of Md,s

12 . With the result of the model-independent
fit one can constrain any BSM model of interest, unless the model correlates different mixing observables.

BSM models addressing the gauge sector or Dark Matter are usually agnostic about the flavor structure, so that predictions rely on
additional assumptions on the flavor sector. A widely studied approach is minimal flavor violation (MFV), which organizes the flavour
pattern of the SM Yukawa interactions in Eq. (161) in terms of small symmetry-breaking parameters called spurions [190, 191]. The MFV
approach assumes that the same spurions governing Eq. (161) also determine the flavor structure of the studied BSM model, so that the
new interaction involve the same CKM elements as the SM contributions. This reduces the BSM sensitivity of FCNC processes drastically
and was originally motivated to permit lighter BSM particles in the reach of contemporary experiments. However, for instance in models
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with more than one Higgs doublet, one even finds imprints on meson-antimeson mixing in the MFV case [192–199]. Some of the cited
papers have considered the special case of the Minimals Supersymmetric Standard Model with decoupled heavy superpartners, resulting in
a 2HDM in which a neutral heavy Higgs boson affects Bs−B̄s mixing in a critical way. If one relaxes the MFV hypothesis by adding a third
spurion to the two spurions of the SM, one also finds large effects in meson-antimeson mixing observables [200].

7 Conclusions

This review article summarizes the theoretical formalism and the phenomenological methodology of K−K̄ , D−D̄ , Bd−B̄d , and Bs−B̄s

mixing. All these meson-antimeson mixing systems involve |∆F| = 2 transitions, in which the flavor quantum number F = S ,C or B
characterizing the meson changes by two units. The relevant 2 × 2 matrix M − iΓ/2 is composed of the hermitian mass and decay matrix
and meson-antimeson mixing occurs because M12 − iΓ12/2 , 0. Upon diagonalization of M − iΓ/2 one finds the two mass eigenstates,
which are superpositions of the particle state |M⟩ and the antiparticle state |M̄⟩ and follow exponential decay laws. Meson-antimeson
mixing is characterized by four quantities, the mass and width differences between the two mass eigenstates as well as the CP asymmetries
in flavor-specific decays and a chosen exclusive decay. I have presented the formulae connecting these quantities to M12 and Γ12 and
the Standard-Model (SM) predictions for them. While all four mixing complexes follow the same pattern, the numerical values of the
corresponding quantities are very different with, for example,

( )
B̄s mesons oscillating very rapidly while the very slow D−D̄ oscillations had

impeded their discovery for a long time.
Another objective has been the recapitulation of the historical development of the field since the early 1950s, highlighting how the study

of meson-antimeson mixing helped to shape the SM. The confirmation of the Kobayashi-Maskawa mechanism of CP violation needed a
firm prediction of the size of mixing-induced CP violation in Bd−B̄d mixing from the CP-violating quantity ϵK in K−K̄ mixing, the Bd−B̄d

oscillation frequency, and the semileptonic B branching ratios for decays with and without charm in the final state. The needed predictions
involved a rigorous theoretical basis and sophisticated calculational tools, which were developed in the late 1980s and early 1990s and
proceeded along three avenues: (i) the establishment of a framework for perturbative calculations of short-distance QCD corrections, (ii)
the advancement of lattice-QCD computations as a first-principle method to tackle long-distance QCD, and (iii) the identification of sizable
theoretically clean mixing-induced CP asymmetries such as Amix

CP (Bd → J/ψKshort). The theoretical progress was not only instrumental for
the precise determination of CKM elements, which are fundamental parameters of the SM Yukawa sector, but also lead to the identification
of “gold-mines” for the search for BSM physics, namely theoretically clean observables with sensitivity to new physics. With the exception
of the width difference in the K−K̄ system, all above-mentioned observables could be calculated in K−K̄ , Bd−B̄d , and Bs−B̄s mixing
with good accuracy. D−D̄ mixing, however, has defied any calculation from first principles, with theory failing even at order-of-magnitude
predictions for mass and width differences.

Meson-antimeson mixing processes are highly sensitive to BSM physics, with the potential to reveal virtual effects of new particles with
masses far above 100 TeV. To disentangle BSM physics from SM contributions one must determine the CKM elements together with the
parameters of the studied BSM model; especially (ρ̄, η̄) determined from the global fit of Fig. 9 will be “contaminated” by BSM physics in
the meson-antimeson mixing observables. At present, the identification of BSM physics in this way is impeded by the controversies on the
values of |Vcb| and |Vub| found from inclusive and exclusive decays. With better experimental possibilities for B physics at future runs of
the LHC, with higher luminosity at Belle II, and further at the FCC-ee, mixing-induced CP asymmetries will become an important tool to
discover or constrain BSM physics in rare decays. For example, if the flavor anomalies observed today in angular observables and branching
fractions of B→ Kℓ+ℓ− and Bs → ϕℓ+ℓ− decays will manifest themselves also in the corresponding mixing-induced CP asymmetries, this
will constitute an unambigous discovery of BSM physics. On the theoretical side, continued effort is needed to keep up with the ever
decreasing experimental error bars, especially better lattice-QCD predictions are highly desirable. Lattice QCD is further likely to emerge
as the best avenue to address D−D̄ mixing. Finally, in the field of BSM physics flavor and collider observables will always go hand-in-hand
to identify allowed parameter spaces and meson-antimeson mixing observables play an important role to this end.
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