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Abstract: We compute the next-to-leading-power corrections in the N -jettiness variable

to the production of a prompt photon and a jet at next-to-leading order in perturbative

QCD in the qq̄ annihilation channel. We employ the k⊥ jet algorithm and assume that the

N -jettiness value divided by the jet transverse momentum is the smallest parameter in the

problem; in particular it should be small compared to the jet radius R.
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1 Introduction

A robust description of hard scattering processes at the LHC requires significant theo-

retical innovations. Such innovations encompass many different aspects of collider theory

including computation of scattering amplitudes at high orders of QCD and electroweak per-

turbation theory [1–30], development of subtraction and slicing schemes for real-radiation

contributions [31–53], refinement of parton shower programs [54–61] and their interfaces

to fixed-order calculations [62–65], as well as advances in understanding non-perturbative

hadronization effects [66, 67].

Power corrections in the slicing schemes are one aspect of the theoretical description of

hard scattering processes at the LHC where further progress is desirable. Such corrections

appear because of the very nature of slicing computations, where one separates the phase

space for a process with N final-state particles or jets, into phase-space regions where all

N partons are resolved, and regions where only a smaller number of partons or jets are

resolved.

This separation requires a resolution variable. If the resolution variable is taken to

be very small, dependencies of cross sections on the resolution variable, originating from

resolved and unresolved regions, follow the double-logarithmic pattern, which is typical to

radiative corrections in QCD. Such dependencies on resolution variables are nearly universal

and are very well understood. However, for a better matching between the resolved and
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unresolved contributions to cross sections, it is beneficial to expose the dependence of

the unresolved contribution on the resolution variable beyond the leading terms. Such

subleading terms are referred to as power corrections.

Power corrections for different resolution variables were investigated in a large number

of publications in recent years [68–90]. The majority of these papers focused on contri-

butions that are either logarithmically enhanced for small values of a resolution variable,

or originate from emissions of soft gluon only. It is therefore unclear how to extend these

studies to arbitrary collider processes and, in particular, to go beyond the soft limit in a

general way. Amusingly, this problem exists even at the next-to-leading order in perturba-

tive QCD, where one might have thought that everything is well-understood by now.

In Ref. [91] we presented a methodology to compute subleading power corrections to

arbitrary colorless final states at NLO QCD using the N -jettiness resolution variable [45].

The next natural step is to remove the restriction on the final states, and design a way to

compute power corrections in the N -jettiness variable for arbitrary processes at colliders.

To simplify this step, in this paper we consider such corrections to the process where a

prompt photon is produced in association with a jet. Furthermore, since very little is

known about power corrections to processes with jets,1 we decided to first consider a single

partonic channel qq̄ → γ + g. For this channel, the so-called photon isolation [92] is not

needed, and we can focus on the central question that we want to discuss, namely how

the presence of a jet algorithm affects the computation of power corrections. The process

qq̄ → γ + g is well suited to study this question, since it is sufficiently simple, and we can

directly work with the relevant matrix elements to understand power corrections to the

partonic cross section.

We note that power-suppressed corrections arise also from observables or the selection

cuts that define fiducial cross sections. In this paper, we assume that observables are

such that their dependence on the N -jettiness variable is analytic.2 It is known, however,

that this is not always the case and that observables exist which induce a non-analytic

dependences of fiducial cross sections on the resolution variable [65, 78, 95–98] which

enhances the power-suppressed contributions.

The rest of the paper is organized as follows. In Section 2 we explain how the presence

of a jet in the final state affects the computation of power corrections, and define quantities

that we use in the remainder of the paper. We also summarize the method for calculating

power corrections developed in Ref. [91], that we employ in this paper. In Section 3 we

compute the power corrections in the N -jettiness variable to the process qq̄ → γ + jet.

We investigate various soft and collinear contributions, as well as subtleties related to

differences between cases when partons are clustered into a jet and cases when they are

not. We also discuss the validation of our results in Section 3. We conclude in Section 4.

1We are aware of a single paper [75] where power corrections to the production of a vector boson in

association with a jet are studied. However, in that paper only logarithmically-enhanced contributions to

power corrections have been computed, and an unconventional jet algorithm has been employed, to simplify

the computation.
2As we demonstrate below, this class of observables includes the fully-realistic inclusive sequential k⊥

jet algorithm [93, 94].
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Some technical details are discussed in appendices.

2 General remarks

We study the production of a prompt photon and a jet in hadron collisions, pp→ γ+j. We

focus on the qq̄ → γ+ g partonic channel, and do not consider any other partonic channels

in this paper. We imagine that the N -jettiness slicing scheme [41, 45, 48] is employed for

computing the NLO QCD corrections. An important ingredient for calculations in this

scheme is the differential cross section for final states with T1 < τcut, where T1 is the N -

jettiness variable, and τcut is a small quantity. To allow the choice of somewhat larger values

of τcut in practical computations, we need to construct an expansion of the qq̄ → γ + j

cross section through first subleading power in the one-jettiness variable T1 ∼ τcut.

To define a final-state jet, we require a jet algorithm. We will consider the so-called

inclusive sequential k⊥ jet algorithm [93, 94].3 We will describe how it works before ad-

dressing the question of how it impacts the calculation of power corrections.

To this end, we introduce two phase-space “distances”

dij = min(k2⊥,i, k
2
⊥,j)

R2
ij

R2
, diB = k2⊥,i, (2.1)

where k⊥,x is the transverse momentum of a parton x ∈ (i, j) defined with respect to the

collision axis. We note that dij and diB measure distances between the final-state partons

i and j, and between the final-state parton i and the beam axis, respectively. For the

quantity Rij , one typically takes

R2
ij = (ηi − ηj)

2 + f2φ(φi − φj), (2.2)

where ηi,j are pseudo-rapidities of the two partons i and j, and fφ is a function of their

azimuthal angles φi,j . We choose

fφ(φi − φj) = arccos(cos(φi − φj)), (2.3)

since this maps the difference of two azimuthal angles onto the [0, π] interval, independent

of how azimuthal angles are parametrized.

To apply the jet algorithm to a set of final-state partons PN = {1, 2, 3, .., N}, we start

by computing two lists. One of them is composed of dij ’s calculated for each (ij) pair from

PN , and the second – of diB for each i ∈ PN . We then compare the minimal values of the

two lists

dmin = min [min{dij},min{diB}] . (2.4)

If dmin is the minimum of the {dij} list, the two partons i and j are removed from PN

and replaced there by a new parton ij whose momentum is pij = pi + pj . If, however, the

minimum is provided by the {diB} list, the parton i is removed from the list PN and added

to the list of jets PJ that is empty at the start of this procedure. We continue this process

3We note that our results can be used, without any modification, for the anti-k⊥ jet clustering algorithm

as well.
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until no partons are left in the list PN . Finally, all jets with the transverse momentum

lower than a pre-selected value p⊥,cut are removed from the list of jets. Once this is done,

we associate a definite number of jets with the partonic final state described by the original

list PN .

We continue with the discussion of what this algorithm implies for the computation of

the power corrections. At leading order, we apply it to the partonic process

qa + q̄b → γ + gm. (2.5)

Therefore, the list of partons consists of a single gluon gm. This parton is moved to the list

of jets immediately, and if its transverse momentum exceeds p⊥,cut, it is identified with a

jet. Once the jet is identified, we compute the one-jettiness and find

T1 = min

{
2pmpa
Pa

,
2pmpb
Pb

,
2pmpJ
PJ

}
= 0, (2.6)

because in this case pJ = pm.

At next-to-leading order, we have to consider the process4

qa + q̄b → γ + gm + gn, (2.7)

and apply the jet algorithm to two gluons gm and gn. To simplify further steps, it is

convenient to order the two gluons in the transverse momenta, and label them in such a

way that p⊥,m > p⊥,n. The starting point for the application of the jet algorithm is the list

P2 = {m, n}. We have to find the minimum of {dmn, dmB, dnB}. Thanks to the transverse

momentum ordering, this minimum is dmn if Rmn < R, and dnB if Rmn > R. Then, in the

first (clustered) case, we have a one-jet event with the jet momentum pJ = pm+pn provided

that p⊥,J > p⊥,cut, and in the second (unclustered) case we have, potentially, two jets with

the transverse momenta p⊥,n and p⊥,m. To have a one-jet event we require p⊥,n < p⊥,cut

and p⊥,m > p⊥,cut.

Following this discussion, we can make the NLO QCD real-emission contribution to

the γ + j production explicit. To simplify the notation, we write the one-jettiness variable

with an argument which refers to the momentum of the jet used in its definition, i.e.

T1(pJ) =
∑

i∈{m,n}

min

{
2pipa
Pa

,
2pipb
Pb

,
2pipJ
PJ

}
. (2.8)

As we just described, the jet momentum depends on whether gluons are clustered into a

jet or not. We find

dσO
dτ

= N−1

∫
dΦ(pa, pb|pm, pn, pγ) |M|2(pa, pb; pm, pn, pγ) θ(p⊥,m − p⊥,n)

×
{
θ(Rmn −R) θ(p⊥,m − p⊥,cut) θ(p⊥,cut − p⊥,n) δ(τ − T1(pm)) O(pm, pγ)

+ θ(R−Rmn) θ(p⊥,[mn] − p⊥,cut) δ(τ − T1(p[mn])) O(p[mn], pγ)
}
,

(2.9)

4We do not need to consider the virtual corrections to the process in Eq. (2.5) because they will only

contribute at T1 = 0.
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where N is the normalization factor, O is an observable that depends on the jet momentum

and the momentum of the photon, and dΦ is the phase space that will be defined in the

next section. We use p[mn] to denote the sum of the gluon momenta, p[mn] = pm + pn.

To simplify the notation, we will absorb the θ-functions, that ensure that the transverse

momentum of the jet is larger than the transverse-momentum cut, into the definition of

the observable O. Hence, from now on, we will only write explicitly the R-dependent θ-

functions from the jet algorithm, as well as the θ-function that ensures that the transverse

momentum of the parton n is small.

There is an important difference in the one-jettiness functions that appear in the two

terms in the integrand in Eq. (2.9). In the first term, pJ = pm and therefore

T1(pm) = min

{
2pnpa
Pa

,
2pnpb
Pb

,
2pnpm
PJ

}
. (2.10)

In the second term, pJ = p[mn], and we find a more complicated expression for the one-

jettiness function

T1(p[mn]) =
∑

i∈{m,n}

min

{
2pipa
Pa

,
2pipb
Pb

,
2pip[mn]

PJ

}

= min

{
2pnpa
Pa

,
2pnpb
Pb

,
2pnpm
PJ

}
+min

{
2pmpa
Pa

,
2pmpb
Pb

,
2pmpn
PJ

}
.

(2.11)

To compute power-suppressed one-jettiness corrections, we need to analyze different con-

tributions to Eq. (2.9), finding kinematic regions where the one-jettiness function defined

in Eqs (2.10,2.11) is small.

If the two partons m and n have generic momenta, T1 cannot be small. For this to

occur, partons m and n should have special, singular kinematics. In general, given that

p⊥,m > p⊥,n and at least one jet is required, there are four options for the parton n:

• n is collinear to a, b or m;

• n is soft.

We will continue with the discussion of these cases separately. We choose the reference

frame where momenta of partons a and b are along the z axis, and we denote a polar angle

of a parton x by θx.

The collinear case n||a In this case, the energy of the parton n is large, En ∼ Ea ∼ Eb,

but the polar angle is small, θn ∼
√
τPJ/E2

a. At the same time the four-momentum of

the parton m is generic, i.e. Em ∼ Ea and θm ∼ 1. Clustering of m and n into a jet is

impossible because the rapidity of the parton n is very large

ηn =
1

2
ln

1 + cos θn
1− cos θn

∼ −1

2
ln
τPJ

E2
a

. (2.12)

Therefore,

R2
mn ∼ ln2

(
τPJ

E2
a

)
, (2.13)
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and, as long as

ln

(
E2

a

τPJ

)
≫ R, (2.14)

clustering of partons m and n into a single jet does not occur.5 Hence, in this case we can

write

dσcaO
dτ

=N−1

∫
dΦ(pa, pb|pm, pn, pγ)|M|2(pa, pb; pm, pn, pγ)

× δ

(
τ − 2papn

Pa

)
O(pm, pγ).

(2.15)

Note that we have dropped the constraint on the transverse momentum of the parton

n because p⊥,n ∼
√
τPa and, as long as τ is small and p⊥,cut ∼ O(Ea), the transverse

momentum of the parton n cannot exceed the cut value.

The collinear case n||b This case is analogous to the n||a case. Hence, without further

discussion, we write

dσcbO
dτ

= N−1

∫
dΦ(pa, pb|pm, pn, pγ) |M|2(pa, pb; pm, pn, pγ)

× δ

(
τ − 2pbpn

Pb

)
O(pm, pγ).

(2.16)

The collinear case m||n This case corresponds to the final-state collinear configuration.

Computing the invariant mass of partons m and n in the collinear approximation, we obtain

smn ≈ EmEn

(
(θm − θn)

2 + sin2 θm (φm − φn)
2
)
≈ p⊥,mp⊥,nR

2
mn. (2.17)

Using the jettiness constraint, we estimate that in the collinear m||n case, the smn invariant

mass becomes

smn ∼ τPJ . (2.18)

Hence,

R2
mn ∼

τPJ

p⊥,mp⊥,n
∼ τPJ

p2⊥,cut

≪ R2. (2.19)

and the two partons are clustered into a single jet.6 The expression for the cross section

reads

dσmn
O

dτ
=

N−1

2

∫
dΦ(pa, pb|pm, pn, pγ) |M|2(pa, pb; pm, pn, pγ)

× δ

(
τ − 4pmpn

PJ

)
O(p[mn], pγ),

(2.20)

We note that we have introduced the factor 1/2, and used the m ↔ n replacement symmetry

in this kinematic configuration, to remove the pm,⊥ > pn,⊥ condition from the integrand.

5Another condition on the jet radius that restricts it from above, is derived later.
6We note that, under the assumption that p⊥,cut ∼ Ea ∼ PJ , Eqs (2.14) and (2.19) together imply that

the jet radius should satisfy the following constraint
√

τ/p⊥ ≪ R ≪ ln p⊥/τ .
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The soft case En → 0 Finally, we need to discuss the soft case where En ∼ τ . Then

p⊥,n ≪ p⊥,m ∼ p⊥,cut, and conditions that ensure these requirements can be dropped. At

the same time, since the soft gluon n can be emitted at an arbitrary angle, it is impossible

to say a priori whether it will be clustered into a jet together with m, or not. Because of

this, we write the soft contribution in such a way, that both clustered and non-clustered

cases can be described. The soft contribution reads

dσsO
dτ

= N−1

∫
dΦ(pa, pb|pm, pn, pγ)|M|2(pa, pb; pm, pn, pγ)

×Θ(Rmn, qj) δ(τ − T1(qj)) O(qj , pγ),

(2.21)

where qj is the momentum of the identified jet, and Θ(Rmn, qj) is the remnant of the angular

distance of the jet algorithms defined as follows

Θ(Rmn, qj) = θ(Rmn −R) δqj ,pm + θ(R−Rmn) δqj ,p[mn]
. (2.22)

The one-jettiness function reads

T1(qj) = min

{
2papn
Pa

,
2pbpn
Pb

,
2pmpn
PJ

}
+ δqj ,p[mn]

2pmpn
PJ

. (2.23)

The last term distinguishes between the clustered and the non-clustered cases.

Computational strategy To compute the various contributions, we adopt the strategy

discussed in Ref. [91], where we constructed Lorentz transformations for different cases,

used them to factorize the phase space for the photon and the two partons with the power

accuracy, and expanded the squared matrix element and the observable functions around

soft and collinear limits. In Ref. [91] we developed a process-independent procedure to

expand the matrix element for the production of a color-singlet final state. For simplicity,

in this paper we make use of the explicit form of the matrix element for the qq̄ → γ+ g+ g

process, to construct an expansion in the soft and collinear limits.

The required Lorentz transformations for the cases n||a and n||b, as well as for the

case when the parton n is soft, are discussed in detail in Ref. [91]. The new technical

element required here is the momenta mappings for the collinear m||n case. We describe

these mappings in Appendix A.

3 Power corrections to the γ+jet production in the qq̄ → gγ channel

3.1 Leading order

We consider the partonic process

q(pa) + q̄(pb) → γ(pγ) + g(pj), (3.1)

and associate the final-state gluon with a jet. The differential cross section of the process

in Eq. (3.1) reads

dσ0 =
NcQ

2
q(egs)

2

2sN2
c

∫
dΦab

γj

∑
col,pol

|M0|2(pa, pb, pj , pγ)
4Nc(Qqegs)2

O(pj , pγ), (3.2)
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where Qq is the quark electric charge in units of the positron charge e, gs is the (bare)

strong coupling constant, Nc = 3 is the number of colors, s = 2pa · pb and O(pj , pγ)

is the infrared-safe observable that depends on the momenta of the jet and the photon.

Furthermore,

dΦab
γj = [dpj ][dpγ ](2π)

dδ(d)(pa + pb − pγ − pj), (3.3)

is the phase space7 with

[dpx] =
ddpx

(2π)d−1
δ+(p

2
x). (3.4)

We employ the Sudakov decomposition of the photon and jet momenta to parametrize

the Born phase space. We use momenta of the incoming partons to define the basis vectors.

Then,

pj = βpa + (1− β)pb −
√
sβ(1− β) n⊥,

pγ = (1− β)pa + βpb +
√
sβ(1− β) n⊥,

(3.5)

with β ∈ [0, 1], pa,b · n⊥ = 0 and n2⊥ = −1. The transverse momentum of the jet reads

|p⊥,j | =
√
sβ(1− β). (3.6)

We use Eq. (3.5), to write the Born phase space as follows

dΦab
γj =

s−ϵΩ(d−2)

4(2π)d−2
dβ [dΩ(d−2)] β−ϵ(1− β)−ϵ =

1

8π
dβ

dφ

2π
+O(ϵ), (3.7)

where Ω(d−2) is the solid angle in d − 2 dimensions and [dΩ(d−2)] = dΩ(d−2)/Ω(d−2). The

azimuthal angles in dΩ(d−2) parametrize the direction of the vector n⊥ in the (d − 2)-

dimensional space orthogonal to pa,b.

The appropriately normalized squared matrix element for the process in Eq. (3.1),

summed over polarizations and colors reads∑
pol,col

|M0|2(pb, pa; pm, pγ)
4Nc(Qqegs)2

= CF

[
(1− ϵ)

2

(
t

u
+
u

t

)
− ϵ

]
= CF

(1− 2β + 2β2 − ϵ)

2β(1− β)
, (3.8)

where t = −2pa · pγ , u = −2pb · pγ . Finally, using the above ingredients, we write the

leading order differential cross section as

dσ0 = σ̄0 dΦ
ab
γj

(1− 2β + 2β2 − ϵ)

2β(1− β)
, (3.9)

where

σ̄0 =
16π3CFQ

2
q αQED [αs]

sNc
, (3.10)

with

[αs] =
g2sΩ

(d−2)

2(2π)d−1
=
αs

2π
+O(ϵ). (3.11)

Having discussed the cross section for the Born process, we proceed with the compu-

tation of the power corrections in the one-jettiness variable. As pointed out in Section 2,

several contributions need to be considered. We will start with the discussion of the soft

case, and continue with the collinear ones.

7Throughout the paper, we employ dimensional regularization and work in d = 4− 2ϵ dimensions.
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3.2 The soft contribution

We consider the case when the parton n is soft, which means that its energy is of order τ .

We note that this kinematic configuration has to be considered for the case when partons

m and n are clustered into a jet, and for the case when they are not. Our starting point is

Eq. (2.21) that we repeat here for convenience

dσsO
dτ

= N−1

∫
dΦ(pa, pb|pm, pn, p̃γ)|M|2(pa, pb; pm, pn, p̃γ)

×Θ(Rmn, qj) δ(τ − T1(qj)) O(qj , p̃γ).

(3.12)

We note that the normalization factor in Eq. (3.12) coincides with the one for the

leading order process qq̄ → g + γ. This means that

N−1 dΦab
γj |M0(pa, pb, pj , pγ)|2 = σ̄0 dΦ

ab
γj

(1− 2β + 2β2 − ϵ)

2β(1− β)
, (3.13)

and we will use this equation for simplifying some computations in what follows.

We also note that we have written the photon momentum in Eq. (3.12) as p̃γ . This

is done on purpose since, because of Lorentz transformations, this momentum will be

redefined as we proceed with the calculation, and we would like to reserve the notation pγ
for the photon momentum appearing in the final equations.

The soft contribution corresponds to the scaling pn ∼ τ . For the sake of convenience,

in what follows we will refer to pn as k. To construct the expansion around the soft limit,

we define the four-momentum

Pab = pa + pb, (3.14)

and perform a boost and a rescaling to remove the momentum k from the energy-momentum

conservation constraint pa+ pb = pm+k+ pγ , which is implicitly present in Eq. (3.12). We

write

λPµ
ab = [Λs]

µ
ν (Pab − k)ν . (3.15)

The matrix Λs in the above equation is the Lorentz boost. The rescaling parameter λ,

computed through first order in k ∼ τ , reads

λ ≈ 1− Pab · k
P 2
ab

. (3.16)

Performing the boost, and using the phase-space modification in the soft limit com-

puted in Ref. [91], we find

dσsO
dτ

= N−1

∫
dΦab

jγ [dk]

(
1 + 2ϵ

Pab · k
P 2
ab

)
Θ(Rmn, qj)

× |M|2(pa, pb;λΛ−1
s pj , k, λΛ

−1
s pγ) δ(τ − T1(qj)) O(qj , λΛ

−1
s pγ),

(3.17)

where pm = λΛ−1
s pj , p̃γ = λΛ−1

s pγ and p2j = p2γ = 0. Furthermore,

[dk] = dωk ω
1−2ϵ
k

Ωd−2

2(2π)d−1
[dΩk],

[
Λ−1
s

]
µν

= gµν −
kµP ν

ab − Pµ
abk

ν

P 2
ab

+O(k2). (3.18)
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Since the jet momentum qj depends on whether partons are clustered into a jet or not,

there are two possible ways for qj to transform under the soft boost and rescaling. They

are

qj = pm + pn = λΛ−1
s pj + k, if clustered,

qj = pm = λΛ−1
s pj , if not clustered.

(3.19)

The one-jettiness function also differs for the two cases. However, since

pm · pn = (λΛ−1
s pj) · k = pj · k +O(k3), (3.20)

we find that the following equation holds

T1(qj) = min

{
2pak

Pa
,
2pbk

Pb
,
2pjk

PJ

}
+ δqj ,p[mn]

2pjk

PJ
, (3.21)

and no O(k) corrections appear in the expression for the one-jettiness.

To compute dσs/dτ through first subleading correction in τ , we need to expand all

the relevant quantities in the integrand in Eq. (3.17) to first subleading order in the gluon

energy ωk. This includes the expansion of the matrix element squared, the observable and

also the function Θ(Rmn, qj) which gets modified because the angular distance between

partons j and k, and m and k is not the same. We will start with the discussion of the

matrix element.

The next-to-soft correction to the squared matrix element can be obtained from the

extension of the Burnett-Kroll-Low theorem [99, 100] to QCD. For the process qq̄ → γ+ j,

such a study was performed in Ref. [76], where it was shown that, with the required

accuracy, the squared matrix element for this process can be written in the following way

g−2
s |M|2(pa, pb, pm, k, p̃γ) ≈(
CF − CA

2

)
2pa · pb

pa · k pb · k
|M0(pa + δpa,b, pb + δpb,a, pm, p̃γ)|2

+
CA

2

2pa · pm
pa · k pm · k

|M0(pa + δpa,j , pb, pm − δpm,a, p̃γ)|2

+
CA

2

2pb · pm
pb · k pm · k

|M0|2(pa, pb + δpb,m, pm − δpm,b, p̃γ)|2.

(3.22)

The momenta shifts in Eq. (3.22) read

δpl,m = −1

2

(
k +

pm · k
pl · pm

pl −
pl · k
pl · pm

pm

)
. (3.23)

They satisfy the following equations

δpl,m + δpm,l = −k, (pl ± δpl,m)2 = ±2pl · δpl,m +O(k2) = O(k2). (3.24)

These equations ensure that with the next-to-soft accuracy, all momenta that appear in

the matrix element M0 in Eq. (3.22) are on-shell, and that the momentum conservation is

satisfied, provided that equation

pa + pb = pm + p̃γ + k, (3.25)
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holds.

According to Eq. (3.17), we need to compute the matrix element for boosted and

rescaled momenta. We will make use of the fact that the mass dimension of the |M0|2 is

zero (see Eq. (3.8)), and that it is boost-invariant. Then, the following equation holds

|M0(pa, pb, λΛ
−1
s pj , λΛ

−1
s pγ)|2 = |M0(λ

−1Λspa, λ
−1Λspb, pj , pγ)|2. (3.26)

It is easy to check, using explicit formula for the boost and the rescaling that

λ−1Λspa = pa − δpa,b, λ−1Λspb = pb − δpb,a, (3.27)

where δpa,b and δpb,a are defined in Eq. (3.23). Then, through next-to-soft terms, Eq. (3.22)

becomes

g−2
s |M|2(pa, pb, λΛ−1

s pj , k, λΛ
−1
s pγ) ≈(

CF − CA

2

)
2pa · pb

pa · k pb · k
|M0(pa, pb, pj , pγ)|2

+
CA

2

2pa · λΛ−1
s pj

pa · k pj · k
|M0(pa − δpa,b + δpa,j , pb − δpb,a, pj − δpj,a, pγ)|2

+
CA

2

2pb · λΛ−1
s pj

pb · k pj · k
|M0|2(pa − δpa,b, pb − δpb,a + δpb,j , pj − δpj,b, pγ)|2,

(3.28)

where we have used the fact that k · (λΛ−1
s pj) = k · pj with the required accuracy,

c.f. Eq. (3.20). We stress that momenta in Eq. (3.28) satisfy the leading-order energy-

momentum conservation equation

pa + pb = pj + pγ . (3.29)

Furthermore, we note a peculiar fact that the momenta transformations removed the next-

to-soft correction from the (a, b) dipole, whereas such corrections do remain in the (a, j)

and (b, j) dipoles.

Eq. (3.28) provides a suitable starting point for computing the required expansion of

the real-emission squared matrix element in the soft limit through subleading power. We

use explicit form of the leading-order matrix element squared Eq. (3.8) and find

ω2
k

g2s
|M|2(pa, pb, λΛ−1

s pj , k, λΛ
−1
s pγ) ≈ |M0|2(pa, pb, pj , pγ)

(
S1(n⃗k) +

ωk√
s
S2(n⃗k)

)
,

(3.30)

where

S1(n⃗k) =

(
CF − CA

2

)
2ρab
ρakρbk

+
CA

2

(
2ρaj
ρakρjk

+
2ρbj
ρbkρjk

)
,

S2(n⃗k) = CA

(
ρab

ρakρbk
− ρaj
ρakρjk

−
ρbj

ρbkρjk
− 2

ρjk

)
,

(3.31)

and ρxy = 1 − n⃗x · n⃗y. We stress that in deriving Eq. (3.30) no ϵ-dependent terms have

been neglected.
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We continue with the discussion of a generic observable O. We remind the reader that

O contains the constraint on the jet transverse momentum, according to our convention. To

find how the observable is affected by the momenta transformation, we note that according

to Eq. (3.22), to compute the jet momentum we always need to transform the harder gluon

m, and then either combine it with a softer gluon or not. Since

λΛ−1
s pj =

(
1− Pab · k

P 2
ab

)
pj − k

Pab · pj
P 2
ab

+ Pab
k · pj
P 2
ab

, (3.32)

and Pab · pj/P 2
ab = 1/2, we find the following result for the two cases

• clustered : qj = pm + pn = λΛ−1
s pj + k =

(
1− Pab · k

P 2
ab

)
pj +

1

2
k + Pab

k · pj
P 2
ab

,

• not clustered : qj = pm = λΛ−1
s pj =

(
1− Pab · k

P 2
ab

)
pj −

1

2
k + Pab

k · pj
P 2
ab

.

(3.33)

We can now expand the observable to the desired order in the soft approximation

O(qj , p̃γ) = O(pj , pγ) +
∑
x∈j,γ

(
−Pab · k

P 2
ab

pµx − 1

2
kµ +

k · px
P 2
ab

Pµ
ab

)
∂px,µO(pj , pγ)

+ θ(R−Rjk) k
µ∂pj ,µO(pj , pγ) +O(k2).

(3.34)

We emphasize that when gluons are clustered, the square of the jet momentum q2j ̸= 0

whereas p2j = 0. Hence, when computing the derivative ∂pj on the right-hand side of the

above equation, one should write the definition of the observable without assuming p2j = 0,

calculate the derivative, and take the p2j → 0 limit after that. This remark concerns, in

particular, the dependence of the observable O on the transverse momentum of the jet.8

It is useful to rewrite Eq. (3.34) separating the energy of the gluon ωk from its direction.

We will work in the center-of mass frame of the partonic collision, where partons a, b are

back-to-back and have equal energies. We find

O(qj , p̃γ) = O(pj , pγ) +
ωk√
s

[ ∑
x∈j,γ

(
−pµx −

√
s

2
k̂µ +

ρkx
2

Pµ
ab

)
∂px,µ

+ θ(R−Rjk)
√
s k̂µ∂pj ,µ

]
O(pj , pγ),

(3.35)

where k̂µ = (1, n⃗k).

Modification of the angular distance in the jet algorithm Similarly to the matrix

element and the observable, in Eq. (3.17) we need to expand the Θ(Rmn, qj)-function that

determines whether the gluons are clustered into a jet or not. The power correction in this

case is actually finite; for this reason it is useful to consider it separately.

8The transverse momentum of the jet can be defined through the following equation pj,⊥ =√
2(papj)(pbpj)/(papb)− p2j .
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The original η − φ distance refers to partons m and n. We have identified n with k,

but the momentum of m is expressed through the (large) momentum pj and additional

k-dependent terms. Hence, as explained in Appendix B, in the center-of-mass frame of the

colliding partons pa,b, the following relation holds

Rmn = Rjk +
ωk√
s
Rjka, (3.36)

where ωk ∼ τ is the (small) energy of the gluon k. Indices of the function R indicate that

it depends on n⃗j , n⃗k and n⃗a. Explicitly, this function reads

Rjka =
1

sin2 θj
[n⃗k × n⃗j ] ·

(
∂Rjk

∂φj
n⃗a −

∂Rjk

∂ηj
[n⃗a × n⃗j ]

)
, (3.37)

where θj and φj are the polar and azimuthal angles of the parton j. The derivation of

Eq. (3.37) is provided in Appendix B. It follows that

Θ(Rmn, qj) = Θ(Rjk, qj) +
ωk√
s
Rjka δ(R−Rjk)

(
δqj ,pj − δqj ,p[mn]

)
+O(τ2). (3.38)

The first term on the the right-hand side of Eq. (3.38) is not power-suppressed; it will

have to be combined with corrections to the matrix element, the observable and the phase

space. Therefore, this term will contribute both at leading and at next-to-leading order in

the expansion in τ .

On the contrary, the O(ωk/
√
s) term in Eq. (3.38) is already power-suppressed; it

involves two contributions with opposite signs which depend on whether the two gluons

are clustered into a jet or not. Since this is a power-suppressed contribution already, the

clustering issue is only relevant for the jettiness function, where the difference between the

two cases in the soft limit is a leading order effect.

Therefore, the power correction that originates from the expansion of Rmn in Eq. (3.38)

reads

dσs,RO
dτ

= g2s N−1

∫
dΦab

jγ [dk] |M0|2(pa, pb; pj , pγ) O(pj , pγ) δ(R−Rjk)

× S1(n⃗k)
1

ωk
√
s
Rjka (δ(τ − ωkψnc(n⃗k))− δ(τ − ωkψc(n⃗k))) ,

(3.39)

where the functions ψnc,c refer to non-clustered and clustered definitions of the one-jettiness

function, respectively. They read

ψnc = min

{
2Eaρak
Pa

,
2Ebρbk
Pb

,
2Ejρjk
PJ

}
, ψc = ψnc +

2Ejρjk
PJ

. (3.40)

Integrating over ωk in Eq. (3.39), taking the ϵ→ 0 limit and separating the integration

over directions of the vector k⃗, we obtain

dσs,RO
dτ

=
αs

2π
σ̄0

∫
dΦab

jγ

1− 2β + 2β2

2β(1− β)
O(pj , pγ) FR(n⃗a, n⃗b, n⃗j), (3.41)
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where

FR =
1√
s

∫
dΩk

2π
δ(R−Rjk) S1(n⃗k) Rjka

(
1

ψnc(n⃗k)
− 1

ψc(n⃗k)

)
. (3.42)

We have mentioned above that, when writing Eq. (3.41), we have taken the ϵ → 0 limit.

To justify this step, we note that the δ-function δ(R − Rjk) in Eq. (3.42) depends on the

polar and azimuthal angles of the gluon k, and the integration over directions of the gluon

momentum cannot produce collinear singularities. To perform it, we integrate first over

the gluon azimuthal angle φk and find

FR =
R

2π
√
s

1∫
−1

d cos θk√
R2 − (ηk − ηj)2

2∑
α=1

S1(n⃗
(α)
k )

×Rjka(n⃗a, n⃗
(α)
k , n⃗j)

(
1

ψnc(n⃗
(α)
k )

− 1

ψc(n⃗
(α)
k )

)
θ

(
π −

√
R2 − (ηk − ηj)2

)
.

(3.43)

The sum runs over two solutions for the azimuthal angle of the vector n⃗k. The parametriza-

tion reads

n⃗
(α)
k = (sin θk cosφ

(α)
k , sin θk sinφ

(α)
k , cos θk), (3.44)

where

φ
(α)
k = mod(φj ±

√
R2 − (ηk − ηj)2, 2π). (3.45)

Remaining contributions The remaining soft contributions involve modifications of

the matrix element, the phase space and the observables, but not the angular measure of

the clustering algorithm. Putting everything together, we write the result in the following

way

dσsO
dτ

= N−1[αs]

∫
dΦab

γj

dωk

ω1+2ϵ
k

[dΩk] |M0|2(pa, pb; pj , pγ) Θ(Rjk, qj) δ(τ − T (qj))

×

[
S1(n⃗k)

(
1 +

ωk√
s

{
2ϵ −

∑
x∈j,γ

(
pµx +

√
s

2
k̂µ − ρkx

2
Pµ
ab

)
∂px,µ

+ θ(R−Rjk)
√
sk̂µ ∂pj ,µ

})
O(pj , pγ) +

ωk√
s
S2(n⃗k)O(pj , pγ)

]
,

(3.46)

where all terms beyond next-to-leading-power corrections in τ have been omitted. Similarly

to what has been discussed earlier, we integrate over the gluon energy ωk using the fact

that the one-jettiness function is linear in it, c.f. Eq. (3.39). However, instead of employing

functions ψc,nc introduced earlier, we write

T (qj) = ωkψk(n⃗k), (3.47)
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which allows us to proceed without indicating whether we deal with the clustered or the

unclustered case, until later. Integrating over ωk, we find

dσsO
dτ

= N−1 [αs]

τ1+2ϵ

∫
dΦab

γj [dΩk] ψ
2ϵ
k (n⃗k)|M0|2(pa, pb; pj , pγ) Θ(Rjk, qj)

×

[
S1(n⃗k)

(
1 +

τ√
s ψk(n⃗k)

{
2ϵ −

∑
x∈j,γ

(
pµx +

√
s

2
k̂µ − ρkx

2
Pµ
ab

)
∂px,µ

+ θ(R−Rjk)
√
sk̂µ ∂pj ,µ

})
O(pj , pγ) +

τ√
s ψk(n⃗k)

S2(n⃗k)O(pj , pγ)

]
.

(3.48)

It remains to integrate Eq. (3.48) over n⃗k. This step is non-trivial because the inte-

gration is divergent, and the structure of divergences depends on whether the gluons have

been clustered in a jet or not.

Indeed, if the clustering happens, the function Θ(Rjk, qj) restricts the integration over

the gluon angle to the region around n⃗k||n⃗j , which implies that this is the only direction

that can cause collinear singularities in this case. On the contrary, if no clustering occurs,

the only possible collinear configurations are n⃗k||n⃗a and n⃗k||n⃗b.
To extract the singularities, and to re-write the integral in Eq. (3.48) in such a way that

non-trivial integrations can be performed in three dimensions, we employ the methodology

of local subtractions. Although it is fairly straightforward to construct the subtraction

terms, the present case is somewhat special because in the subleading terms the collinear

singularities are power-like. To see this, we note that in Eq. (3.48) functions S1,2(n⃗k) have

linear singularities in the collinear limits (c.f. Eq. (3.31)), leading to usual logarithmic

singularities when the integration over directions of n⃗k is performed. However, in the

subleading terms these singularities are further amplified by singularities caused by the

presence of the function 1/ψk in the integrand. We explain below how suitable subtraction

terms can be constructed in this case as well.

The clustered case We begin by considering the clustered case where the only sin-

gular direction is n⃗k||n⃗j . To subtract this singularity, we need to expand the integrand

in Eq. (3.48) around this limit. Since the one-jettiness function, as well as the function

θ(R − Rjk) do not change in the vicinity of the collinear limit, we can replace them with

their limiting values, ψk → 2Ejρjk/PJ and θ(R − Rjk) → 1, for the purpose of subtract-

ing both leading- and next-to-leading collinear singularities. It remains to expand S1,2(n⃗k)

through constant terms in the ρjk → 0 limit. We find

S1(n⃗k) =
2CA

ρkj
+

CF

β(1− β)
+
CAϵ

1− ϵ

(1− 2β + 2β2)

β(1− β)
+O(ρjk),

S2(n⃗k) = −4CA

ρkj
− CAϵ

1− ϵ

(1− 2β + 2β2)

β(1− β)
+O(ρjk).

(3.49)

To obtain these expressions, we constructed the expansion of S1,2 in ρjk, and integrated

the obtained expressions over components of n⃗k, which are transversal to the direction of

n⃗j . While one can perform this integration in the subtraction term, when the difference of
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the integrand in Eq. (3.48) and the subtraction term is constructed, one needs to keep the

dependence on the transverse components of n⃗k to make sure that all singularities of the

integrand are removed locally.

Similarly, we need to write the vector k̂ by separating its component along n⃗j from the

transversal ones. We find

√
s

2
k̂µ = (1− ρjk)p

µ
j +

ρjk
2
Pµ
ab +

√
sρjk(2− ρjk)

2
k̂µ⊥, (3.50)

where k̂µ⊥ is a four-dimensional unit vector ( k̂µ⊥k̂⊥,µ = −1), orthogonal to n⃗j . Using this

decomposition, we obtain

S1(n⃗k)
( ∑

x∈j,γ

(
pµx +

√
s

2
k̂µ − ρkx

2
Pµ
ab

)
∂px,µ −

√
sk̂µ ∂pj ,µ

)
=

− CA

{
2pµγ − 1− 2β

2(1− ϵ)

[
pµa
β

−
pµb

(1− β)
− (1− 2β)

β(1− β)
pµγ

]}(
∂pj ,µ − ∂pγ ,µ

)
+O(ρjk),

(3.51)

where we have expanded S1(n⃗k) around the n⃗k||n⃗j limit and have averaged over directions

of kµ⊥.

We use Eqs (3.49,3.51) to write the linear power correction, that originates from the

clustered case, in the following way

dσs,NLP
O
dτ

∣∣∣
cl
=
N−1[αs]√

sτ2ϵ

(
PJ

2
√
s

)1−2ϵ

dΦab
γj |M0(pa, pb, pj , pγ)|2

×
(
Sc +

∫
[dΩk] Fcl

k

)
O(pj , pγ).

(3.52)

In Eq. (3.52) Sc is the integrated subtraction term given by

Sc =
2CF

β(1− β)
− CA(1− 2β + 2β2)

β(1− β)

+
CA

ϵ

{
2pµγ − 1− 2β

2(1− ϵ)

[
pµa
β

−
pµb

(1− β)
− (1− 2β)

β(1− β)
pµγ

]}(
∂pj ,µ − ∂pγ ,µ

)
,

(3.53)

and

Fcl
k =

2
√
s θ(R−Rjk)

PJ ψk

[
S2(n⃗k)

− S1(n⃗k)

((
pµj −

√
s

2
k̂µ −

ρjk
2
Pµ
ab

)
∂pj ,µ +

(
pµγ +

√
s

2
k̂µ −

ργk
2
Pµ
ab

)
∂pγ ,µ

)]

− CA

ρjk

[
− 4

ρjk
+

(1− 2β)

2β(1− β)

√
2

√
ρjk

(n⃗k,⊥ · n⃗a) +
(1− 2β + 2β2)

β(1− β)

(
1−

(n⃗k,⊥ · n⃗a)2

2β(1− β)

)]

− CA

ρjk

[
2pµγ − (1− 2β)

2β(1− β)
(n⃗k,⊥ · n⃗a)

√
s k̂µ⊥ +

√
2s

√
ρjk

k̂µ⊥

] (
∂pj ,µ − ∂pγ ,µ

)
.

(3.54)
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The transverse vector n⃗k,⊥, which parametrizes spatial components of the four-vector k⊥,

is defined by the following equation

n⃗k = (1− ρjk)n⃗j +
√
ρjk(2− ρjk) n⃗k,⊥, (3.55)

with n⃗k,⊥ · n⃗j = 0. Integration over directions of the vector n⃗k in Eq. (3.52) is finite and,

therefore, is performed in the three-dimensional space.

The non-clustered case. We continue with the non-clustered case, where the singular-

ities arise if n⃗k||n⃗a or n⃗k||n⃗b. We construct the expansion of the integrand in Eq. (3.48)

around these limits, closely following what has been done in the clustered case. To this end,

we again replace θ(R − Rjk) → 1, and ψk(n⃗k) → 2Exρxk/Px where x ∈ (a, b), depending

on the collinear limit that we consider.

We first construct the expansion of the integrand for the n⃗k||n⃗a case. The expansion

of the functions S1,2 for n⃗k||n⃗a reads

S1(n⃗k) =
2CF

ρak
+ CF +

CA

1− ϵ

β

1− β
+O(ρak),

S2(n⃗k) = − CA

1− ϵ

(1− ϵ+ β)

1− β
+O(ρak),

(3.56)

where we have averaged over directions of the vector n⃗k which are orthogonal to n⃗a. It is

peculiar that S2(n⃗k) does not have the corresponding collinear singularity.

We also need to re-write the vector k̂ that appears in Eq. (3.48), separating its com-

ponents orthogonal to the collision axis, and averaging over their directions. To this end,

we write √
s

2
k̂µ = (1− ρak)p

µ
a +

ρak
2
Pµ
ab +

√
sρak(2− ρak)

2
kµ⊥, (3.57)

where kµ⊥ is related to the spatial direction perpendicular to n⃗a. With this we get

S1(n⃗k)
∑
x∈j,γ

(
pµx +

√
s

2
k̂µ − ρkx

2
Pµ
ab

)
∂px,µ =

2CF

ρak

[(
pµj + βpµa − β̄pµb

)
∂pjµ +

(
pµγ + β̄pµa − βpµb

)
∂pγµ

]
(3.58)

+

{[
CA

2(1− ϵ)β̄

(
pµj (1 + 2β) + βpµa − β̄pµb

)
+ CF

(
pµj − βpµa + β̄pµb

)]
∂pjµ

+

[
CF

(
pµγ − β̄pµa + βpµb

)
− CA

2(1− ϵ)β̄

(
pµγ(1− 2β)− β̄pµa + βpµb

) ]
∂pγµ

}
+O(ρak),

where we introduced the short-hand notation β̄ = 1− β.

The last potential collinear singularity to consider is n⃗k||n⃗b. The analysis in this case

follows steps discussed in connection with n⃗k||n⃗j and n⃗k||n⃗a singularities. We find

S1(n⃗k) =
2CF

ρbk
+ CF +

CA

1− ϵ

1− β

β
+O(ρbk),

S2(n⃗k) = − CA

1− ϵ

(2− β − ϵ)

β
+O(ρbk),

(3.59)
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where we have averaged over directions of the vector k orthogonal to the collision axis.

Writing momentum k̂ in terms of pb and the transverse component,

√
s

2
k̂µ = (1− ρbk)p

µ
b +

ρbk
2
Pµ
ab +

√
sρbk(2− ρbk)

2
kµ⊥, (3.60)

and averaging over directions of k⊥, we find

S1(n⃗k)
∑
x∈j,γ

(
pµx +

√
s

2
k̂µ − ρkx

2
Pµ
ab

)
∂px,µ =

2CF

ρbk

[(
pµj − βpµa + β̄pµb

)
∂pj ,µ +

(
pµγ − β̄pµa + βpµb

)
∂pγ ,µ

]
(3.61)

+

{[
CA

2(1− ϵ)β

(
pµj (3− 2β)− βpµa + β̄pµb

)
+ CF

(
βpµa − β̄pµb + pµj

)]
∂pj ,µ

+

[
CF

(
β̄pµa − βpµb + pµγ

)
+

CA

2(1− ϵ)β

(
pµγ(1 + 2β)− β̄pµa + βpµb

) ]
∂pγ ,µ

}
+O(ρbk).

We use the above results to write the linear power correction to the non-clustered

contribution in the following way

dσs,NLP
O
dτ

∣∣∣
nc

=
N−1[αs]√

sτ2ϵ

(
1√
s

)1−2ϵ

dΦab
γj |M0(pa, pb, pj , pγ)|2

×
(
P 1−2ϵ
a Sca + P 1−2ϵ

b Scb +

∫
[dΩk] Fnc

k

)
O(pj , pγ).

(3.62)

The terms Sca and Scb describe the integrated subtraction term for the limit n⃗k||n⃗a and

n⃗k||n⃗b respectively; all the 1/ϵ divergences are collected there. These terms read

Sca = 2CF + CA
β

β̄
− CA

ϵ

(1 + β)

β̄

− 1

ϵ

{[
CA

2(1− ϵ)β̄

(
pµj (1 + 2β) + βpµa − β̄pµb

)
+ CF

(
pµj − βpµa + β̄pµb

)]
∂pj ,µ

+

[
CF

(
pµγ − β̄pµa + βpµb

)
− CA

2(1− ϵ)β̄

(
pµγ(1− 2β)− β̄pµa + βpµb

) ]
∂pγ ,µ

}
,

(3.63)

and

Scb = 2CF + CA
β̄

β
− CA

ϵ

(2− β)

β

− 1

ϵ

{[
CA

2(1− ϵ)β

(
pµj (3− 2β)− βpµa + β̄pµb

)
+ CF

(
pµj + βpµa − β̄pµb

)]
∂pj ,µ

+

[
CF

(
pµγ + β̄pµa − βpµb

)
+

CA

2(1− ϵ)β

(
pµγ(1− 2β)− β̄pµa + βpµb

) ]
∂pγ ,µ

}
.

(3.64)
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The remaining integral over directions of the vector k⃗ in Eq. (3.62) is finite, and can be

performed in three dimensions. The function Fnc
k reads

Fnc
k =

√
s θ(Rjk −R)

ψk

[
S2(n⃗k)− S1(n⃗k)

∑
x∈j,γ

(pµx +

√
s

2
k̂µ − ρxk

2
Pµ
ab) ∂px,µ

]

−

{
PaCA

ρak

[
− 1

2β̄

√
2

√
ρak

(n⃗k,⊥a · n⃗j)−
1

β̄

(
1 +

(n⃗k,⊥a · n⃗j)2

2β̄

)]

+
PbCA

ρbk

[
− 1

2β

√
2

√
ρbk

(n⃗k,⊥b · n⃗j)−
1

β

(
1 +

(n⃗k,⊥b · n⃗j)2

2β

)]}

+
Pa

ρak

{
Sµ
a,pj∂pj ,µ + Sµ

a,pγ∂pγ ,µ

}
+
Pb

ρbk

{
Sµ
a,pj∂pj ,µ + Sµ

a,pγ∂pγ ,µ

}
β↔β̄
pa↔pb

,

(3.65)

where

Sµ
a,pj =

CA

2β̄

[
(pµj + pµa)

(n⃗k,⊥a · n⃗j)2

β̄
+ (n⃗k,⊥a · n⃗j)

√
sk̂µ⊥

+

√
2 (n⃗k,⊥a · n⃗j)√

ρak

(
pµj + βpµa − β̄pµb

)]
+ CF

[
2
pµj + βpµa − β̄pµb

ρak
(3.66)

+ pµj − βpµa + β̄pµb +

√
2

√
ρak

(
(n⃗k,⊥a · n⃗j)Pµ

ab +
√
s k̂µ⊥

)]
,

Sµ
a,pγ = −CA

2β̄

[
(pµb − pµγ)

(n⃗k,⊥a · n⃗j)2

β̄
− (n⃗k,⊥a · n⃗j)

√
sk̂µ⊥

−
√
2 (n⃗k,⊥a · n⃗j)√

ρak

(
pµγ + β̄pµa − βpµb

) ]
+ CF

[
2
pµγ + β̄pµa − βpµb

ρak
(3.67)

+ pµγ − β̄pµa + βpµb +

√
2

√
ρak

(
−(n⃗k,⊥a · n⃗j)Pµ

ab +
√
s k̂µ⊥

)]
.

In the above equations we again have used β̄ = 1−β, and we introduced the unit transverse

vectors n⃗k,⊥a, n⃗k,⊥b defined as follows

n⃗kx = (1− ρxk)n⃗x +
√
ρxk(2− ρxk) n⃗k,⊥x, x ∈ (a, b). (3.68)

This completes our discussion of the soft contribution to next-to-leading-power corrections.

The final result is obtained as a sum of Eqs (3.41,3.52,3.62). These results still contain

1/ϵ poles which, however, are only present in the integrated subtraction terms. These 1/ϵ

poles cancel against the ones from the collinear contributions to power corrections that we

will now discuss.

3.3 The case n||a

We consider the collinear n||a case. Our starting point is Eq. (2.15) which we repeat here

for convenience

dσcaO
dτ

= N−1

∫
dΦ(pa, pb|p̃j , pn, p̃γ)|M|2(pa, pb; p̃j , pn, p̃γ)δ

(
τ − 2papn

Pa

)
O(p̃j , p̃γ). (3.69)
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We note that we renamed pm → p̃j for reasons explained earlier.

To extract the subleading one-jettiness contribution, we proceed in the same way as

in the case of the color-singlet production [91]. To align the current notations with that

reference, we will re-name pn → k. Following the discussion in Ref. [91], we decompose the

momentum k as

k = (1− x)pa + k̃a, (3.70)

where (1− x) = k · Pab/pa · pb. The momentum conservation becomes

xpa + pb = p̃j + p̃γ + k̃a. (3.71)

Since the invariant masses of vectors Q̃ = p̃j + p̃γ and Q̃ + k̃a are the same [91], one can

obtain the latter by performing the Lorentz boost of the former. We denote the required

Lorentz boost by Λa,
9 and write

p̃j + p̃γ + k̃a = pj + pγ , (3.72)

with

pj = Λap̃j , pγ = Λap̃γ . (3.73)

Using the boost and the parametrization of the phase space from Ref. [91], we find

dσca

dτ
=
CF [αs]P

1−ϵ
a

2τ1+ϵ
N−1

1∫
0

dx dΦxa,b
γj

[
dΩ(d−2)

n

]
(1− x)−ϵ

(
1 +

ϵρ∗ak
2

)

× O(Λ−1
a pj ,Λ

−1
a pγ)

∑
pol,col

C−1
F g−2

s τ |M(pb, pa, k,Λ
−1
a pj ,Λ

−1
a pγ)|2.

(3.74)

In Eq. (3.74) dΦxa,b
γj denotes the phase space of partons with momenta pj,γ , produced in a

collision of a parton with momentum xpa and pb, and

ρ∗ak =
2Paτ

s(1− x)
. (3.75)

The boost matrix Λa depends on the four-vector k̃a, which can be parametrized as

k̃a =
2kpa
s

(pb − pa) + k⊥,a. (3.76)

The vector k⊥,a is orthogonal to pa,b. Since the emission angle of the gluon with the

momentum k relative to the collision axis scales as θ ∼
√
τ/

√
s, the transverse momentum

k⊥,a scales as k⊥,a ∼
√
τ . This implies that kpa ∼ τ .

As follows from Eq. (3.74), to compute the power corrections, we need to expand both

the matrix element and the observable in τ . Since Λ−1
a pj and Λ−1

a pγ deviate from pj,γ by

terms proportional to k̃a ∼
√
τ , we need to expand the observable O up to the second

order in k̃a. Furthermore, the expansion around collinear limits introduces soft (x → 1)

9This matrix is given explicitly in Appendix A of Ref. [91].
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singularities in the expansion terms. These singularities need to be extracted, and we

discuss below how we deal with this problem.

We note in this respect that in the current paper we work with the particular matrix

element squared, and we do not attempt to repeat a more general approach described in

Ref. [91] for colorless final states. Hence, we use the explicit form of the matrix element

squared of the process q̄+ q → ggγ, and the explicit expression for the boost, to construct

the expansion of the matrix element squared and the observable through next-to-leading

power. Collecting terms that become singular in the x→ 1 limit, we find

dσca,NLP

dτ

∣∣∣
x→1

=
[αs]

τ1+ϵ

P 1−ϵ
a τ

2s
σ̃0

×
1∫

0

dx dΦxa,b
γj

(1− 2β + 2β2 − ϵ)

ββ̄
(1− x)−1−ϵ

×

{
2(1 + ϵ)CF

(1− x)
− (1 + β − ϵ)CA

(1− ϵ)β̄
+

2βCA

(1− x)(1− ϵ)β̄

− CA

[
β(1− 2β)pµa − β̄(1− 2β)pµb + pµj

2β̄(1− ϵ)

]
∂pj ,µ

+ CA

[
β(1− 2β)pµb − β̄(1− 2β)pµa + pµγ

2β̄(1− ϵ)

]
∂pγ ,µ

+ 2CF

[(
βpµa − β̄pµb

)
∂pj ,µ +

(
β̄pµa − βpµb

)
∂pγ ,µ

]}
O(pj , pγ).

(3.77)

We note that the parameter β in this case refers to the Sudakov parametrization of momenta

pj,γ , and β̄ = 1−β. The required parametrization can be obtained from Eq. (3.5) provided

that one replaces there pa → xpa and s→ xs. The same applies to the phase space dΦxa,b
γj

– one can use Eq. (3.7) provided that s is replaced with xs there.

It follows from Eq. (3.77) that there is a logarithmic and a power-like singularity in

the term that contains an observable O(pj , pγ), and a logarithmic singularity in the terms

with derivatives of the observable O. The logarithmic singularities are standard; we deal

with them by expressing (1−x)−1−ϵ in Eq. (3.77) through δ(1−x) and plus-distributions.

On the contrary, power-like singularities are unusual, and the easiest way to deal with

them is to integrate by parts. We write

1∫
0

dx
F (x)

(1− x)2+ϵ
= − 1

1 + ϵ

1∫
0

dx (1− x)−1−ϵ ∂F

∂x
, (3.78)

where we made use of the fact that the boundary term at x = 0 drops out because it

corresponds to a collision where the parton a has a vanishing four-momentum.

In the context of Eq. (3.77), the function F (x) is a product of the phase-space element

that contains the factor x−ϵ, and the observable O. In fact, O is the only quantity where

computation of the derivative with respect to x requires further discussion. The dependence
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of the observable O on x arises through the dependences of pj and pγ on this variable. We

find

∂xO(pj , pγ) =
1

2

(
βpµa +

1

x
(pµj − β̄pµb )

)
∂pj,µO +

1

2

(
β̄pµa +

1

x
(pµγ − βpµb )

)
∂pγ,µO. (3.79)

Since at this point all the divergences are logarithmic, it is straightforward to extract them

by rewriting 1/(1− x)1+ϵ through the plus-distributions and the function δ(1− x).

Putting everything together, we find that the divergent contribution reads

dσca,NLP

dτ

∣∣∣
div

=
[αs]

ϵ

Pa

2s
(τPa)

−ϵ σ̃0 dΦ
ab
γj

(1− 2β + 2β2 − ϵ)

ββ̄

×

{
CF

[(
pµj − βpµa + β̄pµb

)
∂pj ,µ +

(
pµγ − β̄pµa + βpµb

)
∂pγ ,µ

]

+ CA

[
(1 + β)

β̄
+

1

2β̄

(
pµj (1 + 2β) + βpµa − β̄pµb

)
∂pj ,µ

− 1

2β̄

(
pµγ(1− 2β)− β̄pµa + βpµb

)
∂pγ ,µ

]}
O(pj , pγ).

(3.80)

We note that all momenta in the above expression are evaluated at x = 1; this is indi-

cated, in particular, by the fact that it contains the phase-space element dΦab
γj . The finite

contribution to the NLP cross section evaluates to

dσca,NLP

dτ

∣∣∣
fin

=
[αs]Pa

s
σ̃0

(1− 2β + 2β2)

2ββ̄

×
1∫

0

dx dΦxa,b
γj

{
− 4δ(1− x)

(
CF +

3CAβ

4β̄

)
− CA L0(1− x)

(
1 + β

β̄

)

+ CF L0(1− x)

[
(β̄pµa − βpµb − pµγ)∂pγ ,µ + (βpµa − β̄pµb − pµj )∂pj ,µ

]
+ CA

δ(1− x)

2β̄

[
(β̄(1− 2β)pµa − β(1− 2β)pµb − pγ

µ)∂pγ ,µ (3.81)

+ (β(1− 2β)pµa − β̄(1− 2β)pµb + pj
µ)∂pj ,µ

]
+ CA

L0(1− x)

2β̄

[
(βpµb − β̄pµa + (1− 2β)pγ

µ)∂pγ ,µ

+ (β̄pµb − βpµa − (1 + 2β)pj
µ)∂pj ,µ

]
+

ββ̄

4(1− 2β + 2β2)
Rca(β, x, pa, pb)

}
O(pj , pγ),

where L0(1− x) = 1/(1− x)+ and Rca is given by the following expression

Rca(β, x, pa, pb) =
CF

ββ̄

[
16β4 − 32β3 + 18β2 − 2β + 5

ββ̄

(
1 +

1

x2

)
+

4(2β4 − 4β3 + 3β2 − β − 2)

ββ̄x
+ g2(x, β) p

µ
γ∂pγ ,µ + g2(x, β̄) p

µ
j ∂pj ,µ
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+ g1(x, β̄) p
µ
a∂pγ ,µ +

g1
(
x1, β̄

)
x

pµb ∂pj ,µ + g1(x, β)p
µ
a∂pj ,µ +

g1 (x1, β)

x
pµb ∂pγ ,µ

+ 4f0(β)p
µ
a

(
β̄∂pγ ,µ + β∂pj ,µ

)
+

(1 + x2)f0(β)

2x2

{[
− 2β̄2x2 pµap

ν
a − 2β2 pµb p

ν
b

− x (papb) g
µν + 2

(
x pµap

ν
γ + pµb p

ν
γ

)
+ 4xββ̄ pµap

ν
b

]
∂pγ ,ν∂pγ ,µ

+
[
(f0(β)− 2)

(
x2 pµap

ν
a + pµb p

ν
b

)
+
(
x pµγp

ν
a + pµγp

ν
b

)
+
(
x pµap

ν
j + pµb p

ν
j

)
(3.82)

− x (papb) g
µν − x

(
1− 2β2

)
pµap

ν
b + x

(
1− 4β + 2β2

)
pµb p

ν
a

]
∂pj ,ν∂pγ ,µ

+
(
pγ ↔ pj , β ↔ β̄

)}]

− CA

β̄

[
2βf0(β) + 4(1− 2β)

β̄βx
+

2f0(β)− 8β

β̄
+
f0(β)

ββ̄

[
g3(x, β) p

µ
a∂pγ ,µ

− g3(x1, β̄) p
µ
b ∂pγ ,µ − g3(x, β̄) p

µ
a∂pj ,µ + g3(x1, β) p

µ
b ∂pj ,µ

+ (1− x1)(p
µ
γ∂pγ ,µ − pµj ∂pj ,µ)− 2pµa(β̄∂pγ ,µ + β∂pj ,µ)

]]
,

with β̄ = 1− β, x1 = 1/x,

g1(x, β) = −4βf0(β) + f1(β)x+
f2(β)

x
,

g2(x, β) = f3(1− β) +
f3(β)

x2
, g3(x, β) = (1− β)(1− 2β)(1− x),

(3.83)

and

f0(β) = 1− 2β + 2β2, f1(β) =
β(14β3 − 30β2 + 19β − 4)

1− β
,

f2(β) =
−10β4 + 18β3 − 5β2 − 4β + 2

1− β
, f3(β) =

−2β4 + 3β2 + β − 1

β(1− β)
.

(3.84)

Similar to the case of the color-singlet production studied in Ref. [91], the complexity

of this result stems from the fact that we keep the observable arbitrary; for any specific

observable, the above expression significantly simplifies.

3.4 The case n||b

This case is completely analogous to the n||a one described in the previous section. Hence,

we discuss it only very briefly. The starting point is the following expression (c.f. Eq. (2.16))

dσcbO
dτ

= N−1

∫
dΦ(pa, pb|p̃j , pn, p̃γ)|M|2(pa, pb; p̃j , pn, p̃γ)δ

(
τ − 2pbpn

Pb

)
O(p̃j , p̃γ). (3.85)

After performing the boost, the momentum conservation becomes

pa + xpb = pj + pγ . (3.86)
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The jet and photon momenta are parametrized using the Sudakov decomposition as in

Eq. (3.5) but with pb replaced with xpb, and s replaced with xs.

Similar to the n||a case, the collinear expansion generates power divergences in the

x → 1 limit; these divergences are dealt with using integration by parts, as discussed in

the preceding section. Hence, without further ado, we just note that results for the n||b
case can be obtained from Eqs (3.80) and (3.81) by applying the following replacements

pa ↔ pb, β ↔ 1− β, Pa ↔ Pb, dΦxa,b ↔ dΦa,xb. (3.87)

3.5 The case n||m

As explained in Section 2, we assume that the relation between the one-jettiness value τ

and the jet radius R is such, that when the smallest scalar product is pm · pn, partons m

and n are clustered into a jet. Hence, in this case, the expression for the cross section reads

dσmn
O

dτ
= N−1

∫
dΦ(pa, pb|pm, pn, p̃γ)|M|2(pa, pb; pm, pn, p̃γ)θ(p⊥,m − p⊥,n)

× δ

(
τ − 4pmpn

PJ

)
O(p[mn], p̃γ),

(3.88)

where p[mn] = pm + pn is the jet four-momentum.

To simplify Eq. (3.88), we use the symmetry of the integrand with respect to m ↔ n

exchange, to remove the transverse momentum ordering θ(p⊥,m − p⊥,n), and divide the

cross section by two. We then use the momentum mapping described in Appendix A to

write Eq. (3.88) in the following way

dσmn
O

dτ
=

N−1

2

Ωd−2
⊥

4(2π)d−2

∫
dΦab

γj

dsmn

2π
s−ϵ
mn λ

1−2ϵ dαm [dΩd−2
⊥ ] (αm(1− αm))

−ϵ

× |M|2(pa, pb; pm, pn, λpγ) δ
(
τ − 2smn

PJ

)
O(pj + (1− λ)pγ , λpγ),

(3.89)

where smn = 2pm · pn and λ = 1 − smn/s. The vectors pj and pγ are light-like. We

emphasize that pj is not the jet momentum as follows from the first argument of the

observable function O. Furthermore, the “original” photon momentum p̃γ and the “final”

photon momentum pγ are proportional, but not equal, to each other, i.e. p̃γ = λpγ .

The rest of the computation involves the expansion of the matrix element squared, and

the observable around the collinear limit. To perform it, we use the Sudakov decomposition

of pm,n in terms of pj,γ . As shown in Appendix A, the following equations hold

pm = αmpj +
smn

s
(1− αm)pγ +

√
smnαm(1− αm)n⊥,

pn = (1− αm)pj +
smn

s
αmpγ −

√
smnαm(1− αm)n⊥,

(3.90)

where n⊥ · pj,γ = 0.

We have to use this decomposition in the matrix element squared in Eq. (3.89) and

expand it in smn ∼ τ . Such expansion generates terms of the form

pa,b · n⊥, (pa,b · n⊥)2. (3.91)
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We note that integration over directions of n⊥ is possible because both the constraint and

the observable do not depend on n⊥. Hence,

px · n⊥ → 0, (px · n⊥)2 → −pµxpνx
g⊥,µν

2(1− ϵ)
, (3.92)

where x = a, b and

gµν⊥ = gµν −
pµj p

ν
γ + pνj p

µ
γ

pj · pγ
. (3.93)

Using Eqs (3.90,3.5), we easily find

(px · n⊥)2 →
sβ(1− β)

d− 2
, x = a, b. (3.94)

To present the final result for the collinear m||n contribution to the cross section, we

also need to expand the observable O. With the required accuracy, we find10

O(pj + (1− λ)pγ , λpγ) =
[
1 +

smn

s
pµγ
(
∂pjµ − ∂pγµ

)]
O(pj , pγ). (3.95)

We are now in a position to write the result for the m||n collinear contribution. While it

is straightforward to do so, there is one peculiar aspect of the outcome of such a calculation

that we would like to discuss.

Computing the expansion of the observable and the matrix element squared, and inte-

grating over smn, αm and dΩk in Eq. (3.89), we find leading- and subleading contributions

to the cross section in the expansion in τ

dσcmn,LP

dτ
=

[αs]σ̄0 2
ϵ P−ϵ

J CA

8τ1+ϵ
dΦab

γj

[
− 8

(1− 2β + 2β2)

β(1− β)ϵ
+ · · ·

]
O(pj , pγ), (3.96)

dσcmn,NLP

dτ
=

[αs]σ̄0 CA 2ϵP 1−ϵ
J

8sτ ϵ
dΦab

γj

[
− 2

(4β4 − 8β3 + 2β2 + 2β − 1)

β2(1− β)2ϵ

− 4
(1− 2β + 2β2)

β(1− β)ϵ
pµγ
(
∂pjµ − ∂pγµ

)
+ · · ·

]
O(pj , pγ), (3.97)

where ellipses stand for terms without the ϵ→ 0 poles.

A peculiar aspect of the above result is that if we combine the subleading (NLP)

contribution in Eq. (3.97) with the collinear and soft contributions discussed earlier, we do

not immediately observe the cancellation of 1/ϵ poles. In fact, it only happens after one

integrates by parts over β in Eq. (3.97). This integration is particularly simple, because

the term without derivatives of the observable in Eq. (3.97) can be written as

(4β4 − 8β3 + 2β2 + 2β − 1)

β2(1− β)2
=

d

dβ

(
(1− 2β + 2β2)(1− 2β)

β(1− β)

)
. (3.98)

Since dΦab
γj ∼ β−ϵ(1− β)−ϵ dβ, integration by parts over β is straightforward. We find

dσcmn,NLP

dτ
=

[αs]σ̄0 CA 2ϵP 1−ϵ
J

4sτ ϵϵ
dΦab

γj

(1− 2β + 2β2)

2β(1− β)

×
{
− 4pγ,µ

(
∂µpj − ∂µpγ

)
+ 2(1− 2β)

d

dβ

}
O(pj , pγ) + · · · .

(3.99)

10We remind the reader that since in this case partons are clustered into a jet, one needs to write the

observable without assuming p2j = 0, compute the derivative and take the limit p2j = 0 only after that.
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Writing the derivative of the observable with respect to β as derivatives with respect to pj
and pγ , we obtain

dσcmn,NLP

dτ
=

[αs]σ̄0 CA 2ϵP 1−ϵ
J

4sτ ϵϵ
dΦab

γj

(1− 2β + 2β2)

2β(1− β)

{
− 4pγ,µ

+ (1− 2β)

[
pa,µ
β

−
pb,µ

(1− β)
− (1− 2β)

β(1− β)
pγ,µ

]}(
∂µpj − ∂µpγ

)
O(pj , pγ) + · · · .

(3.100)

The representation of the divergent contribution in Eq. (3.100) turns out to be suitable for

establishing the cancellation of the 1/ϵ poles among all next-to-leading-power contributions.

We quote here the result for the remaining finite terms in the m||n configuration, that

we obtain in addition to the divergent ones in Eq. (3.100)

dσcmn,NLP

dτ

∣∣∣
fin

=
[αs]σ̄0 PJ

8s
dΦab

γj

{
CA

3

[
6(1− 2β + 2β2)

β2(1− β)2
− 11

β(1− β)
− 22

+

(
1

β(1− β)
+ 22

)
pγ,µ

(
∂µpj − ∂µpγ

)]
− 6CF

(1− 2β + 2β2)

β2(1− β)2

}
O(pj , pγ).

(3.101)

We note that we have taken the ϵ→ 0 limit in the above equation.

3.6 The final result for the power corrections to qq̄ → γ + j at NLO QCD

Having calculated all the contributions required to obtain the next-to-leading-power cor-

rections to the production of a photon and a jet in the qq̄ annihilation channel, we combine

them into the final result. The cancellation of the 1/ϵ poles occurs separately for the clus-

tered and non-clustered cases, leaving the ln τ terms behind. The final result is obtained

by combining

• the clustered contributions given in Eqs (3.52,3.100,3.101);

• the unclustered ones from Eqs (3.62,3.80,3.81);

• the contribution in Eq. (3.41) that arises because of the modification of the angular

distance of the jet algorithm due to the soft recoil.

We therefore write

dσNLP
O
dτ

=
dσNLP

O
dτ

∣∣∣
cl
+

dσNLP
O
dτ

∣∣∣
nc

+
dσs,RO
dτ

, (3.102)

where the last term can be found in Eq. (3.41) and the two other contributions read

dσNLP
O
dτ

∣∣∣
cl
=

[αs]σ̃0PJ

2s
dΦab

γj

(1− 2β + 2β2)

2ββ̄

{
− CF

ββ̄
+
CA

6

(
23− 22

1− 2β + 2β2

)
− CA

2
ln

(
τPJ

2s

)[
4pµγ − (1− 2β)

(
pµa
β

−
pµb
β̄

− (1− 2β)

ββ̄
pµγ

)] (
∂pjµ − ∂pγµ

)
− CA

2

[
11

3
pµγ − 2(1− 2β)ββ̄

(1− 2β + 2β2)

(
pµa
β

−
pµb
β̄

− (1− 2β)

ββ̄
pµγ

)] (
∂pjµ − ∂pγµ

)
+

∫
[dΩk] Fcl

k

}
O(pj , pγ),

(3.103)
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and

dσNLP
O
dτ

∣∣∣
nc

=
[αs]σ̃0
s

(1− 2β + 2β2)

2ββ̄

{
Pa

1∫
0

dx dΦxa,b
γj Ca(x, β, Pa, pa, pb, pj , pγ)

+ Pb

1∫
0

dx dΦa,xb
γj Ca(x, β̄, Pb, pb, pa, pj , pγ) + dΦab

γj

∫
[dΩk] Fnc

k

}
O(pj , pγ).

(3.104)

In the above equation, we have introduced the function Ca defined as follows

Ca(x, β, Pa, pa, pb, pj , pγ) =

[
δ(1− x) ln

(
τPa

s

)
− L0(1− x)

]{
1 + β

β̄
CA

+

(
CF

(
pµj − βpµa + β̄pµb

)
+
CA

2

(1 + 2β)pµj + βpµa − β̄pµb
β̄

)
∂pjµ

+

(
CF

(
pµγ − β̄pµa + βpµb

)
− CA

2

(1− 2β)pµγ − β̄pµa + βpµb
β̄

)
∂pγµ

}
(3.105)

− δ(1− x)

[
CAβ

β̄

[(
pµj + βpµa − β̄pµb

)
∂pjµ +

(
pµγ + β̄pµa − βpµb

)
∂pγµ

]
+ 2CF +

2β

β̄
CA

]
+

ββ̄

4(1− 2β + 2β2)
Rca(β, x, pa, pb)

}
.

Functions Fcl
k , Fnc

k andRca(β, x, pa, pb) have been already introduced in Eqs (3.54,3.65,3.82),

respectively.

3.7 Numerical checks

In this section, we provide a numerical validation of the next-to-leading-power corrections

presented in Section 3.6, focusing on partonic cross sections for various transverse-momenta

cuts. Hence, we choose

O(pj , pγ) = θ(p⊥,j − p⊥,cut), (3.106)

and compute the cross section

σnum(τmax, τmin) =

τmax∫
τmin

dτ
dσγj
dτ

O(pj), (3.107)

for several small values of τmin and τmax, using the exact matrix element for qq̄ → γ+gg, and

the phase space for the three-particle final state. To this end, we implement the expression

shown in Eq. (2.9) in a numerical code. Since we work at small but non-vanishing τ ,

dimensional regularization is not needed, as one-jettiness provides an infra-red cutoff. We

use
√
s = 200 GeV, Pa = Pb = Pj =

√
s/2, R = 0.4, and set [αs] and σ̃o to one.

At the same time, for (sufficiently) small values of τmin, τmax, the same integrated cross

section can be computed using leading and next-to-leading-power contributions derived in

this paper,

dσγj
dτ

=
dσLPγj
dτ

+
dσNLP

γj

dτ
+ . . . (3.108)
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p⊥,cut(GeV)
CNLP,LL CNLP,NLL

analytic fitted analytic fitted

20 32.00 32.0(3) 69.27(6) 71(1)

25 20.25 20.1(3) 31.29(3) 31.9(9)

30 13.88 13.9(3) 14.13(3) 14.5(8)

Table 1. Comparison of the subleading coefficients CNLP,LL and CNLP,NLL obtained using the fit

against the analytic calculation for different cuts on the jet’s transverse momenta. See text for

further details.

Verifying that the two results actually agree provides a check on the next-to-leading-power

corrections reported in this paper.

We note that it is challenging to check the correctness of the next-to-leading-power

corrections with decent accuracy; the reason is that the integral in Eq. (3.107) is dominated

by the double- and single-logarithmic, leading-power contributions. Our strategy is to

subtract them from σnum(τmax, τmin) by considering

σ̄num(τmax, τmin) = σnum(τmax, τmin)−
τmax∫

τmin

dτ
dσLPγj
dτ

O(pj), (3.109)

and fit σ̄ which receives contributions from the subleading terms only. To present the

results, we write the higher-order power corrections in the following form

√
s

(
dσγj
dτ

−
dσLPγj
dτ

)
= ln ν CNLP,LL + CNLP,NLL + ν ln ν CNNLP,LL

+ ν CNNLP,NLL + · · · ,
(3.110)

where ν = τ/
√
s and the ellipses indicate the neglected power corrections at higher orders

in the expansion in ν.

We determine the C-coefficients in Eq. (3.110) by fitting σ̄num computed for νmin =

10−5 and choosing O(40) points for νmax from the interval νmax ∈ [5× 10−5, 5× 10−3]. We

note that we do not fit all the C-coefficients in Eq. (3.110) simultaneously. Instead, we first

extract the leading-log coefficient CNLP,LL from data and verify its consistency with the

analytic result. Once this is accomplished, we assume that the CNLP,LL is correct, subtract

it from σ̄num(τmax, τmin) and fit the difference for the coefficient CNLP,NLL. The value of the

obtained coefficient CNLP,NLL is then compared to the analytic results derived this paper,

c.f. Eqs (3.103) and (3.104).

The comparison of the numerical and analytic results for the power corrections is shown

in Table 1 for different values of the transverse-momentum cut. It follows from Table 1

that the agreement is quite impressive, especially given the smallness of the sub-leading

contributions in the region of the fit.

Another useful illustration of the correctness of the next-to-leading-power corrections

computed in this paper is provided in Figure 1. There we plot ratios of analytic and
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numerical NLO cross sections σnum(τmax, τmin); the important point is that different number

of terms in the τ -expansion are retained in the analytic results shown there. It is clear from

the plot that the inclusion of full next-to-leading-power corrections extends the region of

the ν values, where the numerical and analytical results agree, indicating the correctness

of the latter.

Figure 1. The comparison of the “exact” cross section σnum (c.f. Eq. (3.107) and its various

approximations obtained by different truncations of the expansion in smallN -jettiness. The analytic

approximations including the leading-power (LP) contributions, the LP + leading-logarithmic (LL)

next-to-leading-power (NLP) correction, and the LP + full NLP corrections. The three curves in

the plot become indistinguishable for τ < 10−3.

4 Conclusions

In this paper we have derived, for the very first time, the subleading power corrections in

the one-jettiness variable to a process with the final-state jet. We focused on the partonic

process qq̄ → γ + j since it is sufficiently simple to directly work with the relevant matrix

elements, and it does not require the photon-isolation procedure to get a physical result.

We employed a fully-realistic k⊥ jet algorithm in this study.

We have shown that the method for computing power corrections developed by us in

Ref. [91] to describe production of arbitrary color-singlet final states in hadron collisions,

remains effective also for processes with final-state jets. Key elements of this approach are

momenta redefinitions and Lorentz transformations; they are familiar from the discussion

of general subtraction schemes at NLO and NNLO (see [101] and references therein).

Our study of power corrections can be extended in several ways in the future. First, in

this paper we have relied on the explicit form of the matrix element and did not attempt
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to design a process-independent framework similar to what has been done in Ref. [91] for

the color-singlet final states. It will be interesting to understand how to generalize this

approach to final states with arbitrary number of jets, where the analytic expressions for

relevant matrix elements cannot be used.

Second, it is worthwhile to extend the current analysis to processes with an on-shell

vector boson in the final state. Although such an extension should be straightforward, the

gauge-boson on-shell constraint may require some care with Lorentz transformations and

momenta redefinitions.

Third, the major reason for the complicated analytic expressions for the power cor-

rections is the derivatives of observables. For this reason, it will be useful to design a

framework that will allow one to treat them as changes in kinematics of observable quan-

tities in a more universal and easy-to-handle way.

Finally, it would be interesting to extend the analysis of power corrections in the N -

jettiness variable to next-to-next-to-leading order. Although the complexity of this task

remains outstanding, we hope that the improved understanding of the power corrections

provided by this paper and also by Ref. [91] constitutes a good starting point for attempting

it.
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A Phase-space parametrization for the final-state collinear limit

In this appendix, we derive the momenta mapping and the phase-space parametrization

that is suitable for describing the final-state collinear limit. The goal is to map the mo-

mentum conservation condition

pa + pb = pm + pn + p̃γ , (A.1)

onto

pa + pb = pj + pγ , (A.2)

where p2j = 0 and p2γ = p̃2γ = 0. The momentum pj is related to the momentum of the

final-state jet, but it is not identical to it.

To construct the momentum pj , we write it as a linear combination of two vectors

pmn = pm + pn and Pab = pa + pb,

pj =
1

λ

(
pmn −

pmn · Pab

P 2
ab

Pab

)
+ xPab. (A.3)

Since the four-vector in brackets is orthogonal to Pab, we find

x =
pj · Pab

P 2
ab

=
1

2
. (A.4)
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Furthermore, using p2γ = p̃2γ = 0, we obtain

Pab · pj = Pab · pmn −
1

2
smn, (A.5)

where smn = 2pm · pn.
The parameter λ in Eq. (A.3) is adjusted to ensure that p2j = 0. We find

λ = 1− smn

P 2
ab

. (A.6)

Finally, using Eq. (A.3), we express pmn in terms of pj

pmn = λpj + (1− λ)Pab, (A.7)

which immediately implies the following relation for the photon momenta

p̃γ = λpγ . (A.8)

Our goal is to rewrite the phase space for m, n and γ̃ in such a way that expansion

in smn ∼ τ at fixed pj,γ becomes possible. Below we sketch the derivation of the relevant

formula; its detailed discussion in a broader context can be found in Ref. [102].

We begin by writing∫
[dpm][dpn][dp̃γ ](2π)

dδ(Pab − pm − pn − p̃γ) =∫
dsmn

2π
[dpmn][dp̃γ ](2π)

dδ(Pab − pmn − p̃γ)

∫
[dpm][dpn](2π)

dδ(pmn − pm − pn),

(A.9)

As the next step, we consider the integral over [dpmn][dp̃γ ] in the rest frame of Pab and find

[dpmn][dp̃γ ](2π)
dδ(Pab − pmn − p̃γ) = dΩγ̃ N

(
1− smn

P 2
ab

)d−3

, (A.10)

where N is a function of P 2
ab only, and dΩγ̃ is the solid angle that parametrizes the direction

of the photon momentum p⃗γ̃ or, equivalently, of p⃗mn. To relate this result to the phase-

space of pj and pγ , we use Eq. (A.3). It follows from that equation that in the rest frame

of Pab, the directions of p⃗j and p⃗mn coincide. Thus,

[dpmn][dp̃γ ](2π)
dδ(Pab − pmn − p̃γ) = λd−3[dpj ][dpγ ](2π)

dδ(Pab − pj − pγ). (A.11)

The relation between pγ and p̃γ is given in Eq. (A.8). Putting everything together, we

arrive at the final formula for the phase space that is suitable for describing the collinear

limit∫
[dpm][dpn][dp̃γ ](2π)

dδ(Pab − pm − pn − p̃γ) =

∫
[dpj ][dpγ ](2π)

dδ(Pab − pj − pγ)

×
s∫

0

dsmn

2π
λd−3

∫
[dpm][dpn](2π)

dδ(pmn − pm − pn).
(A.12)

– 31 –



To use this formula for computing power corrections, we need to understand how to

integrate over pm and pn in the vicinity of the collinear m||n limit. To this end, we use pj
and pγ as basis vectors for the Sudakov decomposition of pm and pn. We find

pm = αmpj + βmpγ + p⊥,

pn = αnpj + βnpγ − p⊥.
(A.13)

If the invariant mass smn = 2pm · pn is small, and pj is the collinear direction, then αm ∼
αn ∼ 1, βm,n ∼ smn/P

2
ab and |p⊥| ∼

√
smn/P 2

ab. Using the Sudakov decomposition, we easily

find the following parametrization of the (mn) phase space∫
[dpm][dpn](2π)

dδ(pmn − pm − pn)

=
s−ϵ
mn Ω

(d−2)
⊥

4(2π)d−2

1∫
0

dαm [dΩ
(d−2)
⊥ ] (αm(1− αm))

−ϵ ,

(A.14)

where the azimuthal angle describes directions of the vector p⊥ in Eq. (A.13). With this

parametrization, it is possible to expand the explicit matrix element squared for qq̄ → γgg

in the collinear m||n kinematics. Indeed, since

pm = αmpj +
smn

s
(1− αm)pγ +

√
smnαm(1− αm)n⊥,

pn = (1− αm)pj +
smn

s
αmpγ −

√
smnαm(1− αm)n⊥,

(A.15)

and smn ∼ τ , it is straightforward to construct the expansion through next-to-leading

power.

B A shift in Rmn

In this appendix, we discuss the change in Rmn induced by the soft boost. According to

our notation, the momentum of the parton m is a boosted and rescaled pj , whereas the

parton n is assigned the momentum k. Then, the following relation between pm, pj and k

holds

pµm =

(
1− ωk

2Ej

)
pµj − kµ

2
+
k · pj
2Ej

tµ, (B.1)

where tµ = (1, 0⃗), we work in the center-of-mass frame of colliding partons a and b, Ej is

the energy of j, γ, a, b, and ωk is the energy of the parton m. We can rewrite the above

formula in the following way

pm =

(
1− ωk

2Ej
(1 + cos θkj)

)
pj −

ωk

2
(0, n⃗k − cos θkjn⃗j) . (B.2)

We can also write pm as follows

pm =
Em

Ej
pj + Ej (0, n⃗m − n⃗j) , (B.3)
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where we work to first order in the difference between pm and pj caused by the emission of

a gluon.

We can match the two equations if we choose

Em = Ej

(
1− ωk

2Ej
(1 + cos θkj)

)
, (B.4)

and

n⃗m = n⃗j −
ωk

2Ej
(n⃗k − cos θkjn⃗j) . (B.5)

We assume that vectors n⃗m and n⃗j are parametrized as follows

n⃗x = (sin θx cosφx, sin θx sinφx, cos θx), (B.6)

where x = m, j, and the z-axis is aligned with the vector n⃗a. Then,

[n⃗m × n⃗j ] · n⃗a = sin θm sin θj sin (φj − φm) . (B.7)

At the same time,

[n⃗m × n⃗j ] · n⃗a = − ωk

2Ej
[n⃗k × n⃗j ] · n⃗a. (B.8)

Since θm ∼ θj , we easily find

φm − φj ≈
ωk

2Ej sin
2 θj

[n⃗k × n⃗j ] · n⃗a +O(ω2
k). (B.9)

Similarly,

θm − θj ≈
ωk

2Ej sin θj
[n⃗k × n⃗j ] · [n⃗a × n⃗j ]. (B.10)

We can use these results to derive the difference between Rmn and Rjγ . Expanding in

Taylor series, we obtain

Rmn = Rjk +
ωk

2Ej sin
2 θj

[n⃗k × n⃗j ] ·
(
∂Rjk

∂φj
n⃗a −

∂Rjk

∂ηj
[n⃗a × n⃗j ]

)
+O(ω2

k). (B.11)

For the jet algorithm in Eq. (2.2), we find

−
∂Rjk

∂φj
=
fφ(φjk) sgn(sinφjk)

Rjk
, (B.12)

where φjk = φj − φk.
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