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1 Introduction

A robust description of hard scattering processes at the LHC requires significant theo-
retical innovations. Such innovations encompass many different aspects of collider theory
including computation of scattering amplitudes at high orders of QCD and electroweak per-
turbation theory [1-30], development of subtraction and slicing schemes for real-radiation
contributions [31-53], refinement of parton shower programs [54-61] and their interfaces
to fixed-order calculations [62-65], as well as advances in understanding non-perturbative
hadronization effects [66, 67].

Power corrections in the slicing schemes are one aspect of the theoretical description of
hard scattering processes at the LHC where further progress is desirable. Such corrections
appear because of the very nature of slicing computations, where one separates the phase
space for a process with N final-state particles or jets, into phase-space regions where all
N partons are resolved, and regions where only a smaller number of partons or jets are
resolved.

This separation requires a resolution variable. If the resolution variable is taken to
be very small, dependencies of cross sections on the resolution variable, originating from
resolved and unresolved regions, follow the double-logarithmic pattern, which is typical to
radiative corrections in QCD. Such dependencies on resolution variables are nearly universal
and are very well understood. However, for a better matching between the resolved and



unresolved contributions to cross sections, it is beneficial to expose the dependence of
the unresolved contribution on the resolution variable beyond the leading terms. Such
subleading terms are referred to as power corrections.

Power corrections for different resolution variables were investigated in a large number
of publications in recent years [68-90]. The majority of these papers focused on contri-
butions that are either logarithmically enhanced for small values of a resolution variable,
or originate from emissions of soft gluon only. It is therefore unclear how to extend these
studies to arbitrary collider processes and, in particular, to go beyond the soft limit in a
general way. Amusingly, this problem exists even at the next-to-leading order in perturba-
tive QCD, where one might have thought that everything is well-understood by now.

In Ref. [91] we presented a methodology to compute subleading power corrections to
arbitrary colorless final states at NLO QCD using the N-jettiness resolution variable [45].
The next natural step is to remove the restriction on the final states, and design a way to
compute power corrections in the N-jettiness variable for arbitrary processes at colliders.
To simplify this step, in this paper we consider such corrections to the process where a
prompt photon is produced in association with a jet. Furthermore, since very little is
known about power corrections to processes with jets,! we decided to first consider a single
partonic channel ¢qg — 7 + g. For this channel, the so-called photon isolation [92] is not
needed, and we can focus on the central question that we want to discuss, namely how
the presence of a jet algorithm affects the computation of power corrections. The process
qq — v + g is well suited to study this question, since it is sufficiently simple, and we can
directly work with the relevant matrix elements to understand power corrections to the
partonic cross section.

We note that power-suppressed corrections arise also from observables or the selection
cuts that define fiducial cross sections. In this paper, we assume that observables are
such that their dependence on the N-jettiness variable is analytic.? It is known, however,
that this is not always the case and that observables exist which induce a non-analytic
dependences of fiducial cross sections on the resolution variable [65, 78, 95-98] which
enhances the power-suppressed contributions.

The rest of the paper is organized as follows. In Section 2 we explain how the presence
of a jet in the final state affects the computation of power corrections, and define quantities
that we use in the remainder of the paper. We also summarize the method for calculating
power corrections developed in Ref. [91], that we employ in this paper. In Section 3 we
compute the power corrections in the N-jettiness variable to the process qg — v + jet.
We investigate various soft and collinear contributions, as well as subtleties related to
differences between cases when partons are clustered into a jet and cases when they are
not. We also discuss the validation of our results in Section 3. We conclude in Section 4.

"We are aware of a single paper [75] where power corrections to the production of a vector boson in
association with a jet are studied. However, in that paper only logarithmically-enhanced contributions to
power corrections have been computed, and an unconventional jet algorithm has been employed, to simplify
the computation.

2As we demonstrate below, this class of observables includes the fully-realistic inclusive sequential k.
jet algorithm [93, 94].



Some technical details are discussed in appendices.

2 General remarks

We study the production of a prompt photon and a jet in hadron collisions, pp — v+7. We
focus on the q¢ — v+ g partonic channel, and do not consider any other partonic channels
in this paper. We imagine that the N-jettiness slicing scheme [41, 45, 48] is employed for
computing the NLO QCD corrections. An important ingredient for calculations in this
scheme is the differential cross section for final states with 77 < 7eut, where 77 is the N-
jettiness variable, and 7., is a small quantity. To allow the choice of somewhat larger values
of 7oyt in practical computations, we need to construct an expansion of the qg — v + j
cross section through first subleading power in the one-jettiness variable 71 ~ 7cyt.

To define a final-state jet, we require a jet algorithm. We will consider the so-called
inclusive sequential k| jet algorithm [93, 94].> We will describe how it works before ad-
dressing the question of how it impacts the calculation of power corrections.

To this end, we introduce two phase-space “distances”

2
<12 1.2 ij 2
dl] = mln(ku_,i, kl,j) szé]’ dZB = kl,i’ (21)
where k| ; is the transverse momentum of a parton = € (4, j) defined with respect to the
collision axis. We note that d;; and d;p measure distances between the final-state partons
¢ and j, and between the final-state parton ¢ and the beam axis, respectively. For the
quantity I;;, one typically takes

RE = (mi —nj)” + f2(ei — @5), (2.2)

where 7); ; are pseudo-rapidities of the two partons i and j, and f, is a function of their
azimuthal angles ¢; ;. We choose

folpi = j) = arccos(cos(pi — ¢j)), (2.3)

since this maps the difference of two azimuthal angles onto the [0, 7] interval, independent
of how azimuthal angles are parametrized.

To apply the jet algorithm to a set of final-state partons Py = {1,2,3,.., N}, we start
by computing two lists. One of them is composed of d;;’s calculated for each (ij) pair from
Py, and the second — of d;g for each i € Py. We then compare the minimal values of the
two lists

dmin = min [min{d;; }, min{d;p}]. (2.4)

If dyin is the minimum of the {d;;} list, the two partons i and j are removed from Py
and replaced there by a new parton ¢j whose momentum is p;; = p; + p;j. If, however, the
minimum is provided by the {d;p} list, the parton i is removed from the list Py and added
to the list of jets Pj that is empty at the start of this procedure. We continue this process

3We note that our results can be used, without any modification, for the anti-k, jet clustering algorithm
as well.



until no partons are left in the list Py. Finally, all jets with the transverse momentum
lower than a pre-selected value p| .4 are removed from the list of jets. Once this is done,
we associate a definite number of jets with the partonic final state described by the original
list Py.

We continue with the discussion of what this algorithm implies for the computation of
the power corrections. At leading order, we apply it to the partonic process

Ga+ @ — ¥+ gm- (25)

Therefore, the list of partons consists of a single gluon gn,. This parton is moved to the list
of jets immediately, and if its transverse momentum exceeds p cys, it is identified with a
jet. Once the jet is identified, we compute the one-jettiness and find

. 2PmPa 2PmPb  2DmPJ
; =1 — 0 2 . 6
1 ! { Pa ’ Pb ’ P J ’ ( )

because in this case p; = pn.

At next-to-leading order, we have to consider the process?

qd + Qb — ’}/ + gm + gn, (27)

and apply the jet algorithm to two gluons g, and g,. To simplify further steps, it is
convenient to order the two gluons in the transverse momenta, and label them in such a
way that p| m > p1 ». The starting point for the application of the jet algorithm is the list
P, = {m,n}. We have to find the minimum of {dmn, dmp,dnp}. Thanks to the transverse
momentum ordering, this minimum is dyy, if Run < R, and dyp if Ry, > R. Then, in the
first (clustered) case, we have a one-jet event with the jet momentum p; = pm+pn provided
that pj ;> pJ cut, and in the second (unclustered) case we have, potentially, two jets with
the transverse momenta p| , and p| . To have a one-jet event we require p| 4 < P cut
and pj m > P cut-

Following this discussion, we can make the NLO QCD real-emission contribution to
the v + j production explicit. To simplify the notation, we write the one-jettiness variable
with an argument which refers to the momentum of the jet used in its definition, i.e.

Tips)= 3 min { DiDa 2DiDb psz}.

e (2.8)
ie{mn} Fa By Ey

As we just described, the jet momentum depends on whether gluons are clustered into a
jet or not. We find

dop

- = N /d@(pa,pblpm,pn,pw) |M|2(Pay Pb; Py Prs Py) O(PLm — Pin)

X {G(Rmn - R) e(pL,m - pL,cut) e(pL,cut - pi,n) 5(7— - ﬂ(pm)) O(pmap’y) (2'9)

=+ G(R - Rmn) e(pj_,[mn] - pJ_,Cut) 5(7— - ﬂ(p[mn])) O(p[mn}7p’y)}>

4We do not need to consider the virtual corrections to the process in Eq. (2.5) because they will only
contribute at 77 = 0.



where A is the normalization factor, O is an observable that depends on the jet momentum
and the momentum of the photon, and d® is the phase space that will be defined in the
next section. We use ppy, to denote the sum of the gluon momenta, piyy = pm + pa.

To simplify the notation, we will absorb the #-functions, that ensure that the transverse
momentum of the jet is larger than the transverse-momentum cut, into the definition of
the observable O. Hence, from now on, we will only write explicitly the R-dependent 6-
functions from the jet algorithm, as well as the #-function that ensures that the transverse
momentum of the parton n is small.

There is an important difference in the one-jettiness functions that appear in the two
terms in the integrand in Eq. (2.9). In the first term, p; = pm and therefore

(2.10)

2 2 2
ﬂ(pm) _ min{ PnPa  4PnPb pnpm} .

P, ' B, P;

In the second term, pj = plua), and we find a more complicated expression for the one-

jettiness function

. [ 2pipa 2pipy 2PiPfmn)
ﬂ(p[mn}): Z mln{ P, B Py

i€{m,n} (2.11)
_ min 2paPa 2P0Pb 2PuPm 4 min 2PmPa 2PmDb  2PmPn
P, P, Py P, B, Py [

To compute power-suppressed one-jettiness corrections, we need to analyze different con-
tributions to Eq. (2.9), finding kinematic regions where the one-jettiness function defined
in Egs (2.10,2.11) is small.

If the two partons m and n have generic momenta, 7; cannot be small. For this to
occur, partons m and n should have special, singular kinematics. In general, given that
Plm > Pl and at least one jet is required, there are four options for the parton n:

e 1 is collinear to a, b or m;
e 1 is soft.

We will continue with the discussion of these cases separately. We choose the reference
frame where momenta of partons a and b are along the z axis, and we denote a polar angle
of a parton x by 0,.

The collinear case n||a In this case, the energy of the parton n is large, Ey, ~ E, ~ Ep,

but the polar angle is small, 8, ~ \/7P;/E2. At the same time the four-momentum of
the parton m is generic, i.e. Fyn ~ E, and 6, ~ 1. Clustering of m and n into a jet is
impossible because the rapidity of the parton n is very large

1. 14 cosby, 1. 7Py
=ln—— S, 2.12
"In 2][11—0089n ZnEg (2.12)
Therefore,
TPy
RE‘m ~ 1n2 <‘E2) y (213)



and, as long as

E2
In <a> > R, (2.14)
TPJ
clustering of partons m and n into a single jet does not occur.” Hence, in this case we can
write
dogy -1 2
o =N [ d®(@as polpm, pas )M (Pas Pb; P, P, )

(2.15)

2pq
X 0 (T - Iijn> 0(pm>p'y)-

Note that we have dropped the constraint on the transverse momentum of the parton
n because p| n ~ /7P, and, as long as 7 is small and p| oy ~ O(E,), the transverse
momentum of the parton n cannot exceed the cut value.

The collinear case n||b This case is analogous to the n||a case. Hence, without further
discussion, we write

dag’
dr

:N_l/d(p(pa7pb|pm7pmp'y) |M|2(pa7pb§pm7pmp'y)

) (2.16)
X 0 (T — %Pn) O(pm, Dvy)-
b

The collinear case m||n  This case corresponds to the final-state collinear configuration.
Computing the invariant mass of partons m and n in the collinear approximation, we obtain

Smn ~ BBy ((9m - en)Z + Sin2 O (‘Pm - @n)2> ~ pL,mpL,nRgm- (2-17)

Using the jettiness constraint, we estimate that in the collinear m||n case, the sy, invariant
mass becomes
Smn ~ TPj. (2.18)

Hence,

TP TP
Ry~ —1~ L «R2 (2.19)
PlLmPln P cut

and the two partons are clustered into a single jet. The expression for the cross section
reads

dcrg"‘_./\f*1
dr 2

4pmp
X (7‘ — ;J ") O(Pfmn]s Py )5

/dcb(pa,pblpm,pmp»y) | M?(Pas Pb; Py Pus Do)
(2.20)

We note that we have introduced the factor 1/2, and used the m <+ n replacement symmetry
in this kinematic configuration, to remove the py, | > p, | condition from the integrand.

® Another condition on the jet radius that restricts it from above, is derived later.
5We note that, under the assumption that Di,cut ~ Eq ~ Py, Eqs (2.14) and (2.19) together imply that
the jet radius should satisfy the following constraint /7/p1 < R < lnp, /7.



The soft case E,, — 0 Finally, we need to discuss the soft case where F,, ~ 7. Then
Pin < Dlm~ Dl cut, and conditions that ensure these requirements can be dropped. At
the same time, since the soft gluon n can be emitted at an arbitrary angle, it is impossible
to say a priori whether it will be clustered into a jet together with m, or not. Because of
this, we write the soft contribution in such a way, that both clustered and non-clustered
cases can be described. The soft contribution reads

do,

I :N_l/d<I>(pa,pb!pm,pmpy)\/\/l\z(pa,pb;pm,pn,pw)

X O(Rumn, q;) 6(1 — Ti(q5)) O(gj:py),

where ¢; is the momentum of the identified jet, and ©(Rmy, g;) is the remnant of the angular

(2.21)

distance of the jet algorithms defined as follows

O(Rmn, ¢j) = 0(Rmn — R) 0g; pn + 0(R — Rinn) g, ,ppn- (2.22)
The one-jettiness function reads
. [ 2papn 2pppn 2PmPn 2PmPn
Ti(q5) = mln{ P B P 04, Pl P, (2.23)

The last term distinguishes between the clustered and the non-clustered cases.

Computational strategy To compute the various contributions, we adopt the strategy
discussed in Ref. [91], where we constructed Lorentz transformations for different cases,
used them to factorize the phase space for the photon and the two partons with the power
accuracy, and expanded the squared matrix element and the observable functions around
soft and collinear limits. In Ref. [91] we developed a process-independent procedure to
expand the matrix element for the production of a color-singlet final state. For simplicity,
in this paper we make use of the explicit form of the matrix element for the ¢q¢g — v+¢g+g
process, to construct an expansion in the soft and collinear limits.

The required Lorentz transformations for the cases n|la and n||b, as well as for the
case when the parton n is soft, are discussed in detail in Ref. [91]. The new technical
element required here is the momenta mappings for the collinear m||n case. We describe
these mappings in Appendix A.

3 Power corrections to the v+jet production in the qg — g7 channel

3.1 Leading order

We consider the partonic process

q(pa) + a(pv) — v(py) + 9(p5), (3.1)

and associate the final-state gluon with a jet. The differential cross section of the process
in Eq. (3.1) reads

egs b |MO|2(pa7pbvpjap’Y)
don = <1>a O(p;, , 3.2
o= o / NelQuege ) .

col pol



where @), is the quark electric charge in units of the positron charge e, g is the (bare)
strong coupling constant, N, = 3 is the number of colors, s = 2p, - p, and O(p;,p-)
is the infrared-safe observable that depends on the momenta of the jet and the photon.
Furthermore,

A2 = [dp;][dp)(27)0 (pa + py — Py — ;) (3.3)

is the phase space” with
ddpx 2
[dpct?] = (271_)6[,1 5+(pz)' (34)

We employ the Sudakov decomposition of the photon and jet momenta to parametrize

the Born phase space. We use momenta of the incoming partons to define the basis vectors.
Then,

Pj = Bpa+ (1= B)pp — /(1 = B) ni,
py = (1= B)pa + Bpp + /sB(1 — B) ny,

with 8 € [0,1], pgp- 11 =0 and ni = —1. The transverse momentum of the jet reads

— \/3B(1 = B). (3.6)

We use Eq. (3.5), to write the Born phase space as follows

(3.5)

IpL;

s—€N(d—2) 1 d
s (d-2)7 g—c(q _ Ay—¢ _ dyp
4(27)d-2 dg [dQ2 |7 (1=8)" = 87rdﬁ o + O(e), (3.7)

where Q(4=2) is the solid angle in d — 2 dimensions and [dQ(?~?)] = dQ@=2) /Q(@=2) The
azimuthal angles in dQ(?~2) parametrize the direction of the vector n, in the (d — 2)-

b _
dod; =

dimensional space orthogonal to pg p.
The appropriately normalized squared matrix element for the process in Eq. (3.1),
summed over polarizations and colors reads

| Mol? Py, Pa; Pms D7) (I1—¢) ([t w L (1-28+282—¢)
Z 4Nc(Qqegs)? = Cp [ 2 (u + t) —E] =CFf 28(1 = B) , (3.8)

where t = —2p, - p,, u = —2p, - py. Finally, using the above ingredients, we write the

pol,col

leading order differential cross section as
(1-28+26%—¢)

dog = 5o d®% BA_F (3.9)
where 30 Q2 o]
_ 167°CrQ; aqeD |0
5o = - Q , (3.10)
with 20(d-2)
_ g as
(] = 2oL = ar + O(e). (3.11)

Having discussed the cross section for the Born process, we proceed with the compu-
tation of the power corrections in the one-jettiness variable. As pointed out in Section 2,
several contributions need to be considered. We will start with the discussion of the soft
case, and continue with the collinear ones.

"Throughout the paper, we employ dimensional regularization and work in d = 4 — 2¢ dimensions.



3.2 The soft contribution

We consider the case when the parton n is soft, which means that its energy is of order 7.
We note that this kinematic configuration has to be considered for the case when partons
m and n are clustered into a jet, and for the case when they are not. Our starting point is
Eq. (2.21) that we repeat here for convenience

dos _ 5 -
77‘9 =N 1/d<1>(pa,pb!pm,pn,py)IMV(pa,pb;pm,pn,pw)

d
X @(Rmmqj') §(r — 7-1(‘11')) O(ijﬁw)-

We note that the normalization factor in Eq. (3.12) coincides with the one for the

(3.12)

leading order process g7 — g + y. This means that

1-28+2B%—¢)
28(1-p8)

and we will use this equation for simplifying some computations in what follows.

N d® | Mo(pa s g, o) = 59 a2 ¢ (3.13)

We also note that we have written the photon momentum in Eq. (3.12) as p,. This
is done on purpose since, because of Lorentz transformations, this momentum will be
redefined as we proceed with the calculation, and we would like to reserve the notation p,
for the photon momentum appearing in the final equations.

The soft contribution corresponds to the scaling p, ~ 7. For the sake of convenience,
in what follows we will refer to p, as k. To construct the expansion around the soft limit,
we define the four-momentum

Pup = pa + Db, (3.14)

and perform a boost and a rescaling to remove the momentum k from the energy-momentum
conservation constraint pg +pp = pm + k + p,, which is implicitly present in Eq. (3.12). We
write

APE = A (Poy — k)Y (3.15)

14

The matrix Ag in the above equation is the Lorentz boost. The rescaling parameter A,
computed through first order in k& ~ 7, reads
Py -k

2
Pab

Ar1—

(3.16)

Performing the boost, and using the phase-space modification in the soft limit com-
puted in Ref. [91], we find

dao

. Py -k
=N~ /dCD b [dK] (1+26 : ) O (R, 45)
ab

X [M*(pa, po; MM pj, K AN py) 0(7 — Tilgz)) O(gz, AL 'ps),

where py, = )\Aglpj, Dy = )\As_lp7 and p? = pg = 0. Furthermore,

(3.17)

Qd-2 kHPY — Ph kY

1 2e —1 _ o 2



Since the jet momentum ¢; depends on whether partons are clustered into a jet or not,
there are two possible ways for ¢; to transform under the soft boost and rescaling. They

are
= pm 4 pn = M pi + k, if clustered,
q; Pm T Pn ; s ]')] (319)
qj = pm = AN, 'p;, if not clustered.
The one-jettiness function also differs for the two cases. However, since
Pm - Pn = (AAs_lpj) k= bj - k+ O(k'?’), (3'20)
we find that the following equation holds
[ 2pak 2ppk 2pjk 2pjk
Ti(gj) = mm{ P, P P 45 >P[mn] ?J’ (3.21)

and no O(k) corrections appear in the expression for the one-jettiness.

To compute do®/dr through first subleading correction in 7, we need to expand all
the relevant quantities in the integrand in Eq. (3.17) to first subleading order in the gluon
energy wg. This includes the expansion of the matrix element squared, the observable and
also the function O(Rmn,q;) which gets modified because the angular distance between
partons j and k, and m and k is not the same. We will start with the discussion of the
matrix element.

The next-to-soft correction to the squared matrix element can be obtained from the
extension of the Burnett-Kroll-Low theorem [99, 100] to QCD. For the process ¢qg — v+ J,
such a study was performed in Ref. [76], where it was shown that, with the required
accuracy, the squared matrix element for this process can be written in the following way

9;2|M’2(pa7pbapma kaﬁ’y) ~

Ca\ 2pa-py 5
<CF — > ai‘./\/lo(pa + (5pa,b,pb + 5pb,aapm7p'y)|2

2 ) pa-kp-k (3.22)
Ca 2pa-p L, 3.22
7}%';71%“1']{?'/\40@@ + 6Pa.j» Pos Pm — OPm,as Py)|
Ca 2pp- pm 2 ~ N2
e 0 -9 .
T Mol (Pas Py + 0Pb.ms P — P )|
The momenta shifts in Eq. (3.22) read
1 Dm - k ok
Opm = —3 (k + Sy - pm) : (3.23)
D1 Pm Pi - Pm
They satisfy the following equations
Sptm + 0pmy = —k, (D1 % 6pim)? = £2p1 - Opim + O(K?) = O(K?). (3.24)

These equations ensure that with the next-to-soft accuracy, all momenta that appear in
the matrix element My in Eq. (3.22) are on-shell, and that the momentum conservation is
satisfied, provided that equation

Pa + Db = P + By + K, (3.25)

~10 -



holds.

According to Eq. (3.17), we need to compute the matrix element for boosted and
rescaled momenta. We will make use of the fact that the mass dimension of the |Mp|? is
zero (see Eq. (3.8)), and that it is boost-invariant. Then, the following equation holds

| Mo (pas o, MG Dy AMS P[P = [Mo(A ™" Aspa, A Aspy, pj, o) - (3.26)
It is easy to check, using explicit formula for the boost and the rescaling that
AilAspa = Pa — 5pa,b7 AilAspb =Pb — 5pb,a7 (327)

where 6pq, and 6py, o are defined in Eq. (3.23). Then, through next-to-soft terms, Eq. (3.22)
becomes

95 2| M2 (Pas Py, AN s, Ky A ps) &
(CF - C;A> mwo(pa,pb,w,py)!z
Cy 2pg - )\As_lpj
2 Pa * k bj - k
Cy 2py - )\As_lpj
2 g kpyk

(3.28)
|Mo(Pa — 0Pap + 0Pajs Db — ODbas Dj — ODj.as )|

| Mo|2(Pa — 0Paps Pb — OPba + Db s Dj — OPjbs P)| %

where we have used the fact that & - ()\As_lpj) = k - p; with the required accuracy,
c.f. Eq. (3.20). We stress that momenta in Eq. (3.28) satisfy the leading-order energy-

momentum conservation equation

Pa + Db = Dj + Dy (3.29)

Furthermore, we note a peculiar fact that the momenta transformations removed the next-
to-soft correction from the (a,b) dipole, whereas such corrections do remain in the (a,j)
and (b, 7) dipoles.

Eq. (3.28) provides a suitable starting point for computing the required expansion of
the real-emission squared matrix element in the soft limit through subleading power. We
use explicit form of the leading-order matrix element squared Eq. (3.8) and find

CL)Q _ _ N w =
gflg ‘M’2(paapb7)\As 1pj7 ka )‘As 1p’y) ~ ‘MO‘Q(paapbvpjvp’y) (Sl(nk) + 7]; S2(nk)> )
(3.30)

where

C 2 C 2047 20pi
2 ) pakper 2 \PakPjk  PokPjk

SQ('FI:]C) — CA < pab o pa] . pb] o ) ’
PakPok  PakPjk  PbkPjk  Pjk

(3.31)

and pyy = 1 — 7, - 1,. We stress that in deriving Eq. (3.30) no e-dependent terms have
been neglected.

- 11 -



We continue with the discussion of a generic observable 0. We remind the reader that
O contains the constraint on the jet transverse momentum, according to our convention. To
find how the observable is affected by the momenta transformation, we note that according
to Eq. (3.22), to compute the jet momentum we always need to transform the harder gluon
m, and then either combine it with a softer gluon or not. Since

_ Pab'k Pab'p' k'p‘
Mp, = (1-="2")p — k2" 1 P,—57 3.32
s Pj ( Pa2b )pj Pa?b + bP3b7 ( )

and Py - pj/P% = 1/2, we find the following result for the two cases

Py -k 1 k-p;
o clustered : ¢j = pm +pn = A, 'pj + k= (1 — an2> i + ik + Pabejy
ab ab (333)
Py -k k-
e not clustered : ¢j = pm = M 'p; = (1 - % pj — k + Pup 5]
Pab Pab

We can now expand the observable to the desired order in the soft approximation

~ Pyp - k 1 k "Dz
O(gj, ) = O(pj,py) + Z (_ P2 Pi — ikﬂ + P2 be) Op, 11O (5, )
z€jy ab ab

+ 0(R — Rji,) k'0p, ,O(pj, py) + O(K?).

(3.34)

We emphasize that when gluons are clustered, the square of the jet momentum qu #0
whereas pjz = 0. Hence, when computing the derivative d,, on the right-hand side of the
above equation, one should write the definition of the observable without assuming p? =0,
calculate the derivative, and take the p? — 0 limit after that. This remark concerns, in
particular, the dependence of the observable O on the transverse momentum of the jet.®

It is useful to rewrite Eq. (3.34) separating the energy of the gluon wy, from its direction.
We will work in the center-of mass frame of the partonic collision, where partons a,b are
back-to-back and have equal energies. We find

Z < Py — lku*‘ e PH) Oy
re (3.35)

+0(R — Ry) /s K0y,

N W
O(qj,py) = O(pj,py) + 75

O(pjvp’y)a

where k# = (1,7},).

Modification of the angular distance in the jet algorithm Similarly to the matrix
element and the observable, in Eq. (3.17) we need to expand the ©(Run, gj)-function that
determines whether the gluons are clustered into a jet or not. The power correction in this
case is actually finite; for this reason it is useful to consider it separately.

8The transverse momentum of the jet can be defined through the following equation p; | =
\20ep:) (Pp))/ (paps) — 3.
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The original n — ¢ distance refers to partons m and n. We have identified n with &,
but the momentum of m is expressed through the (large) momentum p; and additional
k-dependent terms. Hence, as explained in Appendix B, in the center-of-mass frame of the
colliding partons p, p, the following relation holds

Wi
Rmn = Rjk: + %

where wy ~ 7 is the (small) energy of the gluon k. Indices of the function R indicate that

Rikas (3.36)

it depends on 7i;, 7} and 7i,. Explicitly, this function reads

ORj i ORj i ﬁ-])
6(pj 877]' J ’

1
Rika = —5— g X 7] -
7ka Sinzej[ k J] (

(3.37)

where 0; and ¢; are the polar and azimuthal angles of the parton j. The derivation of
Eq. (3.37) is provided in Appendix B. It follows that

W
O (R, qj) = O(Rjk, q5) + 7

The first term on the the right-hand side of Eq. (3.38) is not power-suppressed; it will

Rija 6(R— Rjk) (5qj,pj - 6‘1j7p[mn]> + 0(72)~ (3.38)

have to be combined with corrections to the matrix element, the observable and the phase
space. Therefore, this term will contribute both at leading and at next-to-leading order in
the expansion in 7.

On the contrary, the O(wy/+/s) term in Eq. (3.38) is already power-suppressed; it
involves two contributions with opposite signs which depend on whether the two gluons
are clustered into a jet or not. Since this is a power-suppressed contribution already, the
clustering issue is only relevant for the jettiness function, where the difference between the
two cases in the soft limit is a leading order effect.

Therefore, the power correction that originates from the expansion of Ry, in Eq. (3.38)
reads

=g2 N! / d®9 [dk] |Mol?(pa; pvi s Py) O(pj, py) 6(R — Rji) 5.39)
3.39

x S (k) Rijka (6(T — wrthnc(7iy)) — (T — witbe(7ik)))

wk\f
where the functions 9y ¢ refer to non-clustered and clustered definitions of the one-jettiness
function, respectively. They read

e = in{2Eapak 2Eppur 2Ejpjk
nc —

2E;pji
P, ' B ' Py '

Py

} s e =tYnc + (3.40)

Integrating over wy in Eq. (3.39), taking the ¢ — 0 limit and separating the integration
over directions of the vector E, we obtain

Ao oy w 1—26+26° o
1r = 27_[_O'()/\dq)J,y W O(p],pw) fR(TLa,nb7nj), (341)
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where

Fr= / U0 SR — Ry Si(7ik) Ropa (wniﬁk) - wc(lﬁk)> . (3.42)
We have mentioned above that, when writing Eq. (3.41), we have taken the ¢ — 0 limit.
To justify this step, we note that the d-function §(R — R;;) in Eq. (3.42) depends on the
polar and azimuthal angles of the gluon k, and the integration over directions of the gluon
momentum cannot produce collinear singularities. To perform it, we integrate first over
the gluon azimuthal angle ¢ and find

d cos 6y,
Fr= Si(n
27Tf / \/R2 77k — 773 Z

a=1

(3.43)
5 (e) 1 1 2 2
X Rjka(Tla, 1y, ,n])< —~= = - >9<7r— R? — (i —m5)? ) .
Une(i) i) v
The sum runs over two solutions for the azimuthal angle of the vector 7. The parametriza-
tion reads
ﬁ](fa) = (sin 0, cos g@,(ca) ,sin 0, sin go,(f), cos O,), (3.44)
where
o1 = mod(i & /R — (i — )2, 2m). (3.45)

Remaining contributions The remaining soft contributions involve modifications of
the matrix element, the phase space and the observables, but not the angular measure of
the clustering algorithm. Putting everything together, we write the result in the following
way

do? _ o dw
Tf =N "o ]/dq) b 1+]§€ [dQ%] [Mo|*(Pa, Pv; Py, Py) O(Rjk, q5) 6(7 — T (g5))
W,

5 \/EA Pkzx
St (7ik) (1 + /s {26 - zg,y (h + Tk“ 9 - P2,) Op, (3.46)

~ w
+ (R — Ryp) V5" 0y, 1) Oy, ) + 7’;

where all terms beyond next-to-leading-power corrections in 7 have been omitted. Similarly

SQ(ﬁk)O(pjvp'y) )

to what has been discussed earlier, we integrate over the gluon energy wj using the fact
that the one-jettiness function is linear in it, c.f. Eq. (3.39). However, instead of employing
functions 1) nc introduced earlier, we write

T (qj) = witi (i), (3.47)
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which allows us to proceed without indicating whether we deal with the clustered or the
unclustered case, until later. Integrating over wy, we find

dUS — as a €=
(TTO — 1T[l+l€ /d@v’;[dﬂk] V() Mol (Pas Po; Pjs Py) ©(Rjk, q5)
. T \/EA Pkx
S g (- S Sy
TEJ,Y

+O(R = Rip)V/5k" 0, ) ) Olpj, ) + Sa (i) Oy, p1) |

-
V'8 (1)

It remains to integrate Eq. (3.48) over 7;. This step is non-trivial because the inte-
gration is divergent, and the structure of divergences depends on whether the gluons have
been clustered in a jet or not.

Indeed, if the clustering happens, the function ©(Rjy, g;) restricts the integration over
the gluon angle to the region around 7i;||7i;, which implies that this is the only direction
that can cause collinear singularities in this case. On the contrary, if no clustering occurs,
the only possible collinear configurations are 7ix||7, and 7ix||7p.

To extract the singularities, and to re-write the integral in Eq. (3.48) in such a way that
non-trivial integrations can be performed in three dimensions, we employ the methodology
of local subtractions. Although it is fairly straightforward to construct the subtraction
terms, the present case is somewhat special because in the subleading terms the collinear
singularities are power-like. To see this, we note that in Eq. (3.48) functions S 2(7i%) have
linear singularities in the collinear limits (c.f. Eq. (3.31)), leading to usual logarithmic
singularities when the integration over directions of 77 is performed. However, in the
subleading terms these singularities are further amplified by singularities caused by the
presence of the function 1/ in the integrand. We explain below how suitable subtraction
terms can be constructed in this case as well.

The clustered case We begin by considering the clustered case where the only sin-
gular direction is 7ix||7;. To subtract this singularity, we need to expand the integrand
in Eq. (3.48) around this limit. Since the one-jettiness function, as well as the function
9(R — Rji;) do not change in the vicinity of the collinear limit, we can replace them with
their limiting values, vy, — 2FE;p;r/Py and 6(R — Rj;) — 1, for the purpose of subtract-
ing both leading- and next-to-leading collinear singularities. It remains to expand Sj 2 (i)
through constant terms in the p;p — 0 limit. We find
2
Sl(ﬁk):2CA+ Cr n Cae (1-28+20 )+O(ij)7
pej  BL=p) 1—e B(1-P)

40y  Cyue (1-28+283%)
ki 1—e  B(1-75)

To obtain these expressions, we constructed the expansion of S12 in pji, and integrated

(3.49)

+ O(pjk)-

the obtained expressions over components of 7, which are transversal to the direction of
7;. While one can perform this integration in the subtraction term, when the difference of
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the integrand in Eq. (3.48) and the subtraction term is constructed, one needs to keep the
dependence on the transverse components of 77, to make sure that all singularities of the
integrand are removed locally.

Similarly, we need to write the vector k by separating its component along 7i; from the
transversal ones. We find

Vs Pik spik(2 — pjk) ;

Tk'u = ( pj )p] + iP ab + J 9 J k/i? (350)
where I%i is a four-dimensional unit vector ( l%il% L = —1), orthogonal to 7i;. Using this
decomposition, we obtain

. V8o Pk
Sl(nk)( Z (2 + ?k’“ :vpu) P, — V/sk* 6p]7u> =
e (3.51)

1-2 b " 1-2
- CA{M a0 —f) [pﬁ N (1p—bﬁ) N 2(1 —?) pﬁf] } O = 0prn) + Ol

where we have expanded S} (7)) around the 7 ||7i; limit and have averaged over directions
of kY.
We use Eqs (3.49,3.51) to write the linear power correction, that originates from the

clustered case, in the following way

doy™ ™ N oo ((Pr T )2
dr o - \/ETQG <2\/§> d(byj |M0(pa7pbap]7p7)’ (352)
X (Sc + /[ko] f;?) O(pj, py)-
In Eq. (3.52) S, is the integrated subtraction term given by
o _ 2Cr ~ Ca(l—28+25%)
ENCICG)) B(1-p) (3.53)
Ca 1-28 [pa  py  (1-2p) '
* 6{21“5 BT [6 C(-p) B p’ﬂ } oy = B,
and
cl __ 2\/5 0(R — Rjk) —
Fr = P, i Sa (k)
— S1(7ik) <(P§L - \f];u ngpu)ap]’“ + (pﬁ + iku pﬂ{kp“)apw,u> ]
(3.54)
Caj o4, (1=29) V6(77 .ﬁ)+ﬂj_2ﬁ+2y)<y_0%¢4ﬂf>
k| e 280=B) o YT BL-B) 26(1 - B)
CCal, ., (1—-2B) po V25 _
Pk 2]9“/ 26(1 — 6) (nk 1 na)\/> k \/pj—kkJ_ (apj,,u 81’7:#) :
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The transverse vector 7ig |, which parametrizes spatial components of the four-vector &,
is defined by the following equation

ik = (1 — pj)7ij + 1/ pjk(2 — pjk) ik, 1, (3.55)

with 7, | - ; = 0. Integration over directions of the vector 77, in Eq. (3.52) is finite and,
therefore, is performed in the three-dimensional space.

The non-clustered case. We continue with the non-clustered case, where the singular-
ities arise if 7ig||7, or 7ig||7p. We construct the expansion of the integrand in Eq. (3.48)
around these limits, closely following what has been done in the clustered case. To this end,
we again replace (R — Rj;) — 1, and ¢y (7ly) — 2E,pgr/ Py where x € (a,b), depending
on the collinear limit that we consider.

We first construct the expansion of the integrand for the 7iy||7i, case. The expansion
of the functions S; o for 7i;||7l, reads

. 2C C
Sl(nk) = £ +CF+% 44‘0(/)@]6),
pakc (1 el+ 66) v (3:56)
N A -
Salie) = —1 = =5+ Olow).

where we have averaged over directions of the vector 7l which are orthogonal to 7i,. It is
peculiar that S3(7i)) does not have the corresponding collinear singularity.

We also need to re-write the vector k that appears in Eq. (3.48), separating its com-
ponents orthogonal to the collision axis, and averaging over their directions. To this end,

5 - s 2 — pak
{k“:(l—pak)pg—i-p;kptfb—f— p“’“(Q pat) (3.57)

we write

where k:ﬁ is related to the spatial direction perpendicular to 7i,. With this we get

S1(7ik) Z (pg + \f]%u - %P:b) Oy =

€y
2C _ _
pa: [ (0 + B0l = Bo}) Opype+ (0 + Bok — Bf) Oy (3.58)
c , _
+ { Q(TAE)IB (P?(l +25) + Bra — ﬂp’z;”) +Cr (p;* — Bl + Bp’,;”) ] Opy
| Cr (5 = v+ 59} - 2(10_/46)5 (P (1 —28) —5péf+ﬁpff)]8pw} + Olpar),

where we introduced the short-hand notation 8 =1 — 3.
The last potential collinear singularity to consider is 7ig||7,. The analysis in this case
follows steps discussed in connection with 7 ||7; and 7 (|7, singularities. We find

$10) = 28 oA LP L o),
Pok ¢ b (3.59)
v Ca (2-B-¢
So(iiy) = T 5 + O(pok)

17 -



where we have averaged over directions of the vector k orthogonal to the collision axis.
Writing momentum k in terms of p, and the transverse component,

Vs Pk $pvk(2 — pok)
7/& = (1 — poi)p} + 5 Ph + 5 kY, (3.60)
and averaging over directions of k|, we find
. VS, PE
S1(7k) Z (W5 + 5K = 7 Pay) Opos =
T€jyy
28 Tk — gor 4 Bpt) 0 i Bpl + Bpl) 8 3.61
Pbk Pj Bra + By ) Opju + (pv Bra +pr) Py - (3.61)
Ca

g

Cr (Bpk — By, +p4) +

20— 0B (p7(3 —2f) — Bpe + Bp;j) +Cp (Bpf; e p;,)

Ca

+ 2(1— )8

(P (1+28) — Bpk + o)) ] C%,u} + O(pk)-

We use the above results to write the linear power correction to the non-clustered
contribution in the following way

dO_BNLP N—l[as] < 1 )126 dq)ab
y

Vs
X <P;—2€Sm + PI%S, + / [d€2] f;i’c) O(pj, py)-

== | Mo(pas o> ) py) |
2¢ J‘ 0\FPas Pby Pjy Py
dT nc \/ET (362)

The terms S., and S, describe the integrated subtraction term for the limit 7iy||7, and
nik| |7y respectively; all the 1/e divergences are collected there. These terms read

5. =20p + 0,0 Callth)

B € B

- 1{ 2(163‘6)5 (p7(1 +28) + Bpy — Bpéj) +Cr (pﬁ-‘ — PBra + Bpéf) ] Opjn (3.63)
_ C _
+ |Cr (pt — Bl + Bpl)) — Q(TAG)B (ph(1 —28) — Bpk + Bp))) ] 6p~/,#}a
and
_ B Cy(2-P)
Scb—QCF-I-CAB—T 3
Ca

_1{

Cr (P4 + Bl — Bp)) +

20— B (]#(3 —2B) — Bri + Bpff) + Cp <p5 + Bpk — Bpff) ] Opju (3.64)
Ca

* 21— 0B

(Pg(l —28) — Bl + ﬁpf) ] 81077#}‘
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The remaining integral over directions of the vector k in Eq. (3.62) is finite, and can be
performed in three dimensions. The function /¢ reads

f]?C _ \/g H(R]k - R)

So(it) — Si(i) 3 (0 + L0k Lot a]

(o =
- fa _i—ﬂ(lu *)—_< W)
Pak 28 \/Pak " B 23
3.65
PbCA 1 f 1 nk Lb ’I’Lj)z ( )
e | 28 \//T( oo ) = !
P, B,
t M{Sg:pjap%“ + S ap'wli} Dok {Sap apa pt Sapyapvau} b5 )
Pa<>Pb
where
c Fota 72 . L o
Sap; = Tg [(p;‘L +pg)(m5j) + (g, 1a - 75)V/ sk,
2 (g, La " 71 3 v} + Bpt — By
+W(p§‘+ﬂpg‘—ﬂp5)}+ap2 — b (3.66)
@ a
_ N ) A
9] = B+ B+ o (o TPl + VS ) |
C Fota 72 . o
Stp, = -2£ (P _Pﬁ)M — (Tlk, La - T15)V/skY
Y 26 B
V2 (7lk. Lo - 7 5 P4 -+ Byt — )
V2l ) %])(p%rﬁpg—ﬁpf)] +CF[2 u o b (3.67)

\/‘% (—(ﬁ,wa i) P+ /5 12;*1) } .

In the above equations we again have used 3 = 1— /3, and we introduced the unit transverse

+ph — Boly + Bp), +

vectors 1y, | q, Tk, 15 defined as follows

ﬁkx - (1 - pxk)ﬁx + sz(2 - ka) ﬁk,l_za T e (a) b) (368)

This completes our discussion of the soft contribution to next-to-leading-power corrections.
The final result is obtained as a sum of Eqgs (3.41,3.52,3.62). These results still contain
1/e poles which, however, are only present in the integrated subtraction terms. These 1/¢
poles cancel against the ones from the collinear contributions to power corrections that we

will now discuss.

3.3 The case n||a

We consider the collinear n||a case. Our starting point is Eq. (2.15) which we repeat here
for convenience

do%® - . . - . 2pap .
TS =N 1/dq)(pa,pb!pj,pn,py)!M\z(pa,pb;pj,pn,p7)<5 (T— 5 “) O(pj,py)- (3.69)
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We note that we renamed p, — p; for reasons explained earlier.

To extract the subleading one-jettiness contribution, we proceed in the same way as
in the case of the color-singlet production [91]. To align the current notations with that
reference, we will re-name p, — k. Following the discussion in Ref. [91], we decompose the
momentum k as

k=(1-2)ps+ ];/'m (3.70)
where (1 —z) = k- Pyy/pa - pp- The momentum conservation becomes
TPq + Pb = ﬁj +]5'y + Igw (3'71)

Since the invariant masses of vectors Q = p;j + py and Q + k, are the same [91], one can
obtain the latter by performing the Lorentz boost of the former. We denote the required
Lorentz boost by A,,” and write

ﬁj +ﬁ7 + ]%a =Py +p’Y7 (372)

with
pj = Aaﬁjy p’Y = Aaﬁ'y- (373)
Using the boost and the parametrization of the phase space from Ref. [91], we find

1
do®®  Cplag|Pi~¢, zab (d—2) —c Pak
dr — 2rlte N /dx Ay [dQ” } (1-2) L+ 2

(3.74)
x O i A py) Y Cplal T |M (s, pas by Ay s, AL 1)1

pol,col

In Eq. (3.74) dfbﬁ?’b denotes the phase space of partons with momenta p; ., produced in a
collision of a parton with momentum zp, and p,, and

2P, T

Pak = m (3.75)

The boost matrix A, depends on the four-vector l;:a, which can be parametrized as

-~ %,
oy = 2P

a

T(pb —Pa) + ki (3.76)
The vector k, , is orthogonal to p,p. Since the emission angle of the gluon with the
momentum k relative to the collision axis scales as 8 ~ \/7/4/s, the transverse momentum
ki q scales as k| 4 ~ /7. This implies that kp, ~ 7.

As follows from Eq. (3.74), to compute the power corrections, we need to expand both
the matrix element and the observable in 7. Since A;lpj and Aglp7 deviate from p;, by
terms proportional to ko ~ /7, we need to expand the observable O up to the second
order in k,. Furthermore, the expansion around collinear limits introduces soft (z — 1)

9This matrix is given explicitly in Appendix A of Ref. [91].
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singularities in the expansion terms. These singularities need to be extracted, and we
discuss below how we deal with this problem.

We note in this respect that in the current paper we work with the particular matrix
element squared, and we do not attempt to repeat a more general approach described in
Ref. [91] for colorless final states. Hence, we use the explicit form of the matrix element
squared of the process ¢+ ¢ — ggy, and the explicit expression for the boost, to construct
the expansion of the matrix element squared and the observable through next-to-leading
power. Collecting terms that become singular in the x — 1 limit, we find

do.ca,NLP _ [as] P{}—e7_~
Cdr e 7'1JrE 25 0
/ dax dq)xab - 26 +7262 - 6) (1 _ x)—l—e
) pp
2(1+€ CF _ (1+8-¢€Ca 28C x4
(1- (1-¢)p (1-=)(1—€)B

(3.77)

26(1—¢)

5 1_2B 5(1_25)1%1 +p’Y
+ CA |: (1 _ 6) :| apmﬂ

+2CF [(Bps — By) Op;n + (Brh — Bp’af)f)pw]}@(pj,pv)-

[ﬁ (1- 25 P — B(1 = 28)py + v}

We note that the parameter S in this case refers to the Sudakov parametrization of momenta
Pj~, and = 1— . The required parametrization can be obtained from Eq. (3.5) provided
that one replaces there p, — xp, and s — xs. The same applies to the phase space d(Ifm b
— one can use Eq. (3.7) provided that s is replaced with xs there.

It follows from Eq. (3.77) that there is a logarithmic and a power-like singularity in
the term that contains an observable O(pj,p,), and a logarithmic singularity in the terms
with derivatives of the observable O. The logarithmic singularities are standard; we deal
with them by expressing (1 —z)™17¢ in Eq. (3.77) through §(1 — ) and plus-distributions.

On the contrary, power-like singularities are unusual, and the easiest way to deal with
them is to integrate by parts. We write

1 1
F(z) oF
d = dz (1 — € — 3.78
/ . (1 —x)2te 1+6/ z(l-2z) Ox’ (3.78)
0 0

where we made use of the fact that the boundary term at x = 0 drops out because it

corresponds to a collision where the parton @ has a vanishing four-momentum.

In the context of Eq. (3.77), the function F'(x) is a product of the phase-space element
that contains the factor £7¢, and the observable O. In fact, O is the only quantity where
computation of the derivative with respect to = requires further discussion. The dependence
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of the observable O on z arises through the dependences of p; and p, on this variable. We
find

0,0;.:) = 5 (B0t + 30 = 50)) 9y, 0+ 5 (B + L0 = B0t ) 8,0 (370

Since at this point all the divergences are logarithmic, it is straightforward to extract them
by rewriting 1/(1 — 2)'™¢ through the plus-distributions and the function §(1 — x).
Putting everything together, we find that the divergent contribution reads

dfiﬁpdw=[iggiwfmwmd¢g<lQﬁ;;52@
X {CF (pg‘—ﬁp +5pb> Opy + (P2 — Bpk + BP)) pW]
ey (1+/6’)+7( H1 4 28) + Bt 5}9) (3.80)
Y o= PPy ) Oy
~ %5 L (ph(1 = 28) — Bpt + Bpl') O, }O(pj,pv).

We note that all momenta in the above expression are evaluated at x = 1; this is indi-
cated, in particular, by the fact that it contains the phase-space element d@gg. The finite
contribution to the NLP cross section evaluates to

do®NUP ) ag)Py . (128 +26%)

fin S 0 265
1

X /dx d@xab { —46(1 — x) <C + 3CA5> —Cy4 Lo(1—2) (1;6>
0

46

+ Cp Lo(1 — x) [(Bpé‘ — By = )0, + (Bl — By — 1)y, w}

+Ca 5(125 ?) [(5(1 —28)ply — B(1 - 2/3)175 - pv“)apmu (3.81)
+ (B(1 —2B)pl — B(1 —28)p), +pj“)3pj,u]
+@?ﬁ£@@% Aot + (1~ 28)p,")0y.

B
41— 2B + 282
where Lo(1 —x) =1/(1 —x)4 and Re, is given by the following expression

166 — 3283 41832 — 26 +5 (1+1>
8B

+ (B}, — Bpk — (1 +28)p;*") pj,u} + Rca(ﬁ,x,pa,pb)} O(pj, py);

C
Rca(ﬁy ﬂf,pa,Pb) = ﬂig

428 —46° + 35 — 5 — 3
i (26 55255 B 2)_{_92(%5)]9#;3%7“4_92( ﬁ)p] pjo

2
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g1 (1, 5)
pgapjw + g1 (z, ﬁ)pgapj,u + Tpgapmu

(1+2%) fo(B)

222

2 g1 (1,
1) ity + 2D

+4f0(B)pk (BOp, 1+ BOp, ) + { [_ 28222 plpt — 28 plipy
—z (papy) 9" + 2 (x iy + ppY) + 4263 pé‘pZ} O Op
+ [(fo(ﬁ) —2) («® plipl + oiy) + (z phpl + phpy) + (x Pl + phpy)  (3.82)

— o (pam) 9" — w (1= 26%) phy + @ (1= 48 + 268) /0|0y, 10,
+ (py ¢ pj, B+ B) }]

_ Ca|28/0(B) +4(1 - 265) n 2fo(B) = 85 n fo(B)
s BB B Ba

— g3(x1, B) D}, Op o — 93(2, B) POy, 1 + 93(21, B) D} Op, 1

(95(2. 8) DLy, 4

+(1 - fl)(pijapmu - p?apj,u) - QPZ(Bapwu + /Bapj,u)}] )

with B =1—f, z; = 1/,

01(2,8) = —4Bfo(8) + (B + 20,
H08) z (3.83)
g2(x,8) = fs(1 = B) + = 5=, ga(w, ) = (1= A)(1 —26)(1 — x),

and

3 anpg2 _
fo(B) =1—28+282, fi(8) = 2148 3106 ; 196 —4)

Similar to the case of the color-singlet production studied in Ref. [91], the complexity

(3.84)

f2(8)

of this result stems from the fact that we keep the observable arbitrary; for any specific
observable, the above expression significantly simplifies.

3.4 The case n||b

This case is completely analogous to the n||a one described in the previous section. Hence,
we discuss it only very briefly. The starting point is the following expression (c.f. Eq. (2.16))

da(cgb
dr

_ N - - - 2 .
=N 1/d<1>(pa,pb!pj,pn,py)IMIQ(pa,pb;pj,pmpyﬁ (T— éf,f“) O(pj,py). (3.85)

After performing the boost, the momentum conservation becomes

Pa + TPy = Dj + D (3.86)
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The jet and photon momenta are parametrized using the Sudakov decomposition as in
Eq. (3.5) but with p, replaced with xpy, and s replaced with zs.

Similar to the n||a case, the collinear expansion generates power divergences in the
x — 1 limit; these divergences are dealt with using integration by parts, as discussed in
the preceding section. Hence, without further ado, we just note that results for the n||b
case can be obtained from Eqs (3.80) and (3.81) by applying the following replacements

Parpy, Be1—f, P, Py, do™ o do®e?, (3.87)

3.5 The case n|jm

As explained in Section 2, we assume that the relation between the one-jettiness value 7
and the jet radius R is such, that when the smallest scalar product is pm - pn, partons m
and n are clustered into a jet. Hence, in this case, the expression for the cross section reads

mn
dojy

- =N_l/dé(pa,pblpm,pmﬁy)!MIQ(pa,pb;pm,pn,ﬁy)H(m,m—pl,n)

o (3.88)
x4 <T - ;J n> O(p[mn]vﬁ’y)a

where piun] = Pm + pn is the jet four-momentum.

To simplify Eq. (3.88), we use the symmetry of the integrand with respect to m <> n
exchange, to remove the transverse momentum ordering 6(pi m — pi ), and divide the
cross section by two. We then use the momentum mapping described in Appendix A to
write Eq. (3.88) in the following way

dagﬂ N—l le_72 / b dsl‘l‘ll‘l _ 1—2 d—2 _
= dos’ San A7 dang [T (am(1 — o)) ™€
d—2 v mn m 1 m m

dr 2 4(2m) 27 (3.89)

2s
X | MI?(pa, Pb; Dms Pu, ADy) 6 (T - Pi:“) O(pj + (1 = X)py, Apy),

where smn = 2pm - pn and X = 1 — sua/s. The vectors p; and p, are light-like. We
emphasize that p; is not the jet momentum as follows from the first argument of the
observable function O. Furthermore, the “original” photon momentum p, and the “final”
photon momentum p, are proportional, but not equal, to each other, i.e. p;, = Ap,.

The rest of the computation involves the expansion of the matrix element squared, and
the observable around the collinear limit. To perform it, we use the Sudakov decomposition
of P, in terms of p; . As shown in Appendix A, the following equations hold

S
Pm = ampj; + ﬂ(l - am)p'y + Smnam(l - am)nj_a
S
Smn (3.9())
Pn = (1 - am)pj + ?ampw - Smnam(l - am)nj_a

where n| -p;, = 0.
We have to use this decomposition in the matrix element squared in Eq. (3.89) and
expand it in sm, ~ 7. Such expansion generates terms of the form

Pap -1, (Pap-ni)’ (3.91)
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We note that integration over directions of n is possible because both the constraint and
the observable do not depend on n ;. Hence,

g1,
pe-nL =0, (pr-mi)®— —phpl Ff”e) (3.92)
where z = a, b and
Hov v M
PP~y +DiD
g =gt — L (3.93)
Pj - Dy
Using Eqgs (3.90,3.5), we easily find
1
(P - nL)Z - Sﬁfl 25), x=a,b. (3.94)

To present the final result for the collinear m|[n contribution to the cross section, we
also need to expand the observable ©. With the required accuracy, we find!°

s
O(pj + (1 = A)py, Apy) = [1 + :u P»’i (apju - 6177#)] O(pj, py)- (3.95)

We are now in a position to write the result for the m|[n collinear contribution. While it

is straightforward to do so, there is one peculiar aspect of the outcome of such a calculation
that we would like to discuss.

Computing the expansion of the observable and the matrix element squared, and inte-
grating over Smn, am and d€; in Eq. (3.89), we find leading- and subleading contributions
to the cross section in the expansion in 7

dgmn,LP [045]60 9¢ PJ—eCA b (1 — 28+ 2/@2)
P R L 2 [ S ga=pe | Owap)s (3.96)
dO.Cmn,NLP B [as]a.o CA 26P}*€d(1)ab _2(464_863_1_252_'_26_1)
dr N 8sT€ I B2(1 — B)%e
(1-28+2p8%
T AP AP ) (g . . '
B(1—p)e Py (Opj = Opyu) + O(pj: pr), (3.97)

where ellipses stand for terms without the e — 0 poles.

A peculiar aspect of the above result is that if we combine the subleading (NLP)
contribution in Eq. (3.97) with the collinear and soft contributions discussed earlier, we do
not immediately observe the cancellation of 1/e poles. In fact, it only happens after one
integrates by parts over 8 in Eq. (3.97). This integration is particularly simple, because
the term without derivatives of the observable in Eq. (3.97) can be written as

(4p' - 88 +282+26—1) _ d <(1 —28+28%)(1 - Qﬁ)) (3.98)
B*(1 - B)? ds B(1—B) ' '
Since d@‘;l; ~ [7¢(1 — )~¢ dg, integration by parts over g is straightforward. We find
domn NP a ]50 Cp 2°P) € qopur (L—28+25%)
dr 4sTe 2B(1 - B()i (3.99)
(0 - ) 20— 290 | O+

10We remind the reader that since in this case partons are clustered into a jet, one needs to write the
observable without assuming p? = 0, compute the derivative and take the limit p? = 0 only after that.
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Writing the derivative of the observable with respect to 8 as derivatives with respect to p;
and p,, we obtain

dO_Cmn,NLP B [Oés]5’0 CA 26P}*€

dr - 4sT€e

b
dod;

25(1-5)

T B CRL S LR

The representation of the divergent contribution in Eq. (3.100) turns out to be suitable for

(1—-28+23?%) { 4
Vol
(3.100)

establishing the cancellation of the 1/e poles among all next-to-leading-power contributions.
We quote here the result for the remaining finite terms in the m||n configuration, that
we obtain in addition to the divergent ones in Eq. (3.100)

_asloo Py, [ Ca [6(1 — 26+ 25%) 11
o Ss dq)”{s[ Fa-p2  Ba-B
1 (1—-28+23%)
+ (ﬂ(l —B) + 22) Dy, (‘%Lj o a;gw) ] —6CF B2(1 — B)? } O(pjspy)-

We note that we have taken the ¢ — 0 limit in the above equation.

dO’Cm“’NLP
dr

(3.101)

3.6 The final result for the power corrections to qg — v + 7 at NLO QCD

Having calculated all the contributions required to obtain the next-to-leading-power cor-
rections to the production of a photon and a jet in the ¢¢ annihilation channel, we combine
them into the final result. The cancellation of the 1/e poles occurs separately for the clus-
tered and non-clustered cases, leaving the In7 terms behind. The final result is obtained
by combining

e the clustered contributions given in Eqgs (3.52,3.100,3.101);
e the unclustered ones from Eqs (3.62,3.80,3.81);

e the contribution in Eq. (3.41) that arises because of the modification of the angular
distance of the jet algorithm due to the soft recoil.

We therefore write

s,R
dUgLP _ dO'gLP dUgLP dog ? (3.102)
dr dr lea d7  Inc dr
where the last term can be found in Eq. (3.41) and the two other contributions read
do NP _ [as]a—opjdq)ab (1-28+ 25%) | Cr N Ca 03 22
dr la 2s R 2086 BB 6 1—28+ 232
Ca, (TP pa vy, (1-2B)
- 21n< P ) [41’5 - (1-2p) (5 =5 5 )| O On)
(3.103)

Ca [11 20-28)B8 (pa py (1-2P)
-S 5 -dmren (55N )| e

+/[dﬂk] fﬁl} O(pjs py)s
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and

NLP
doy
dr

1
aglag (1 — 28+ 2432 va
= [ ] 0 ( 5 ﬁ ){Pa/dl' dq)fyfb Ca($aB,Paapa7pbvpjap'y)
0

nc S 2ﬂ6
(3.104)

1
+Pb/d$ AL Co(, B, Py, Pbs Pas P py) + AL /[ko] J?C} O(pj, py)-
0

In the above equation, we have introduced the function C, defined as follows

Ca($7/87pa7pavpb7pj7p’y) = |:(5(1 —.T) hl <7—Pa> _[,0(1 —ZE):| {1_/;ﬁCA

S

_ 1+ 28)p! + Bpl — Bp),
+<Cp<p7—ﬁp5+6p5)+c;f‘( B)pjﬁﬁp 5pb>aw

Ca (1= 28)p4 — Bl +Bpéf> 5 }
9 B Py

[(p;‘ + Bk — Bp)y ) O, + (P4 + Boly — Bpy)) @w}

BB
I =281 23

¥ (OF (v — Bt + Bl (3.105)

51— ) [0,45

p
2
+20r+ Ly
B
Functions Ff!, F2¢ and Rea (8, Z, Pa, pp) have been already introduced in Egs (3.54,3.65,3.82),

respectively.

Rca(/@a w7paapb)}-

3.7 Numerical checks

In this section, we provide a numerical validation of the next-to-leading-power corrections
presented in Section 3.6, focusing on partonic cross sections for various transverse-momenta
cuts. Hence, we choose

O(pj,py) = 0(PLj — PLcut), (3.106)
and compute the cross section

Tmax

Gnum(Tmax;Tmin): /dT

Tmin

doy;

. O(pj), (3.107)

for several small values of Ty, and Tmax, using the exact matrix element for ¢¢ — v+gg, and
the phase space for the three-particle final state. To this end, we implement the expression
shown in Eq. (2.9) in a numerical code. Since we work at small but non-vanishing 7,
dimensional regularization is not needed, as one-jettiness provides an infra-red cutoff. We
use /s =200 GeV, P, =P, = P; =/s/2, R = 0.4, and set [o] and &, to one.

At the same time, for (sufficiently) small values of Tiin, Tmax, the same integrated cross
section can be computed using leading and next-to-leading-power contributions derived in
this paper,

da’yj d LP dO.NLP

Tvj vj
= . 1
=y (3.108)
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CNLP,LL CNLPNLL
Pl cut (GGV) " .
analytic ‘ fitted analytic ‘ fitted
20 32.00 | 32.0(3) || 69.27(6) | 71(1)
25 20.25 | 20.1(3) || 31.29(3) | 31.9(9)
30 13.88 | 13.9(3) || 14.13(3) | 14.5(8)

Table 1. Comparison of the subleading coefficients Cnrp 11, and Cnrp,nLr obtained using the fit
against the analytic calculation for different cuts on the jet’s transverse momenta. See text for
further details.

Verifying that the two results actually agree provides a check on the next-to-leading-power
corrections reported in this paper.

We note that it is challenging to check the correctness of the next-to-leading-power
corrections with decent accuracy; the reason is that the integral in Eq. (3.107) is dominated
by the double- and single-logarithmic, leading-power contributions. Our strategy is to
subtract them from oyym (Tmax, Tmin) by considering

Tmax do’LP
Onum (Tma)(7 Tmin) = Unum('rmaxa 7_min) - dr dj—j O(pj), (3109)

Tmin

and fit & which receives contributions from the subleading terms only. To present the
results, we write the higher-order power corrections in the following form

doy; daI;]P
Vs > 4 Inv Cnpp,Ln + OnpNLL + v Inv OnNLP,LL
T dr (3.110)

+ v ONNLPNLL + * -+ »

where v = 7/4/s and the ellipses indicate the neglected power corrections at higher orders
in the expansion in v.

We determine the C-coefficients in Eq. (3.110) by fitting dnum computed for vy, =
107° and choosing O(40) points for vy from the interval vyay € [5x 107°,5 x 1073]. We
note that we do not fit all the C-coefficients in Eq. (3.110) simultaneously. Instead, we first
extract the leading-log coefficient Cnrp,1, from data and verify its consistency with the
analytic result. Once this is accomplished, we assume that the Cxi,p 1, is correct, subtract
it from Gpum (Tmax, Tmin) and fit the difference for the coefficient Cnpp n1L. The value of the
obtained coefficient Cni,p nLL is then compared to the analytic results derived this paper,
c.f. Egs (3.103) and (3.104).

The comparison of the numerical and analytic results for the power corrections is shown
in Table 1 for different values of the transverse-momentum cut. It follows from Table 1
that the agreement is quite impressive, especially given the smallness of the sub-leading
contributions in the region of the fit.

Another useful illustration of the correctness of the next-to-leading-power corrections
computed in this paper is provided in Figure 1. There we plot ratios of analytic and
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numerical NLO cross sections opym (Tmax, Tmin); the important point is that different number
of terms in the 7-expansion are retained in the analytic results shown there. It is clear from
the plot that the inclusion of full next-to-leading-power corrections extends the region of
the v values, where the numerical and analytical results agree, indicating the correctness
of the latter.

qq-y+99
1.0100
v's =200 GeV
100754 P, it =20 GeV
R=0.4
1.0050 Tmin = 0.002 GeV
E
g 1.0025 A
s b
S—
]
=
= 1.0000 _mag&&mﬁum&maemasmgmgage—eaaaggegg _____
< ®0gy
o
o]
0.9975 A
0.9950 1 —=— LP coefficients only
LP + NLP,LL
® LP+ NLP,LL + NLP,NLL
0.9925 A
T
1072 10-1

Tmax (GeV)

Figure 1. The comparison of the “exact” cross section opum (c.f. Eq. (3.107) and its various
approximations obtained by different truncations of the expansion in small N-jettiness. The analytic
approximations including the leading-power (LP) contributions, the LP + leading-logarithmic (LL)
next-to-leading-power (NLP) correction, and the LP + full NLP corrections. The three curves in
the plot become indistinguishable for 7 < 1073.

4 Conclusions

In this paper we have derived, for the very first time, the subleading power corrections in
the one-jettiness variable to a process with the final-state jet. We focused on the partonic
process qq — v + j since it is sufficiently simple to directly work with the relevant matrix
elements, and it does not require the photon-isolation procedure to get a physical result.
We employed a fully-realistic k| jet algorithm in this study.

We have shown that the method for computing power corrections developed by us in
Ref. [91] to describe production of arbitrary color-singlet final states in hadron collisions,
remains effective also for processes with final-state jets. Key elements of this approach are
momenta redefinitions and Lorentz transformations; they are familiar from the discussion
of general subtraction schemes at NLO and NNLO (see [101] and references therein).

Our study of power corrections can be extended in several ways in the future. First, in
this paper we have relied on the explicit form of the matrix element and did not attempt
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to design a process-independent framework similar to what has been done in Ref. [91] for
the color-singlet final states. It will be interesting to understand how to generalize this
approach to final states with arbitrary number of jets, where the analytic expressions for
relevant matrix elements cannot be used.

Second, it is worthwhile to extend the current analysis to processes with an on-shell
vector boson in the final state. Although such an extension should be straightforward, the
gauge-boson on-shell constraint may require some care with Lorentz transformations and
momenta redefinitions.

Third, the major reason for the complicated analytic expressions for the power cor-
rections is the derivatives of observables. For this reason, it will be useful to design a
framework that will allow one to treat them as changes in kinematics of observable quan-
tities in a more universal and easy-to-handle way.

Finally, it would be interesting to extend the analysis of power corrections in the N-
jettiness variable to next-to-next-to-leading order. Although the complexity of this task
remains outstanding, we hope that the improved understanding of the power corrections
provided by this paper and also by Ref. [91] constitutes a good starting point for attempting
it.
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A Phase-space parametrization for the final-state collinear limit

In this appendix, we derive the momenta mapping and the phase-space parametrization
that is suitable for describing the final-state collinear limit. The goal is to map the mo-
mentum conservation condition

Pa + Pb = Pm + Dn ‘f‘ﬁ’y» (A'l)

onto
Pa + Db = Dj + Dy, (A.2)

where p? = 0 and p% = ]3% = 0. The momentum p; is related to the momentum of the
final-state jet, but it is not identical to it.
To construct the momentum p;, we write it as a linear combination of two vectors

DPmn = Pm + pn and Py = pg + py,

1 P - P,
=3 (pon = PP ) P (A3
ab

Since the four-vector in brackets is orthogonal to P, we find

_piPw 1 (A.4)

Pz 2
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Furthermore, using pgy = ji,% = 0, we obtain

1
Py *Pj = Fab Pmn — §3mna (A-5)

where smn = 2pm * Pa-
The parameter A in Eq. (A.3) is adjusted to ensure that pJQ. = 0. We find

S
A:l—Plz‘;. (A.6)

Finally, using Eq. (A.3), we express pm, in terms of p;
Pan = Apj + (1 = A) Py, (A.7)
which immediately implies the following relation for the photon momenta
Py = Apy- (A.8)

Our goal is to rewrite the phase space for m,n and 4 in such a way that expansion
in suq ~ 7 at fixed p;, becomes possible. Below we sketch the derivation of the relevant
formula; its detailed discussion in a broader context can be found in Ref. [102].

We begin by writing

/ (dpn][dpa] [45,](27) 'SPy — pn — po — ) =
(A.9)

/ d;:;ﬂ [dpmn] [dﬁ’y](zw)dé(f}ab — Pmn — ]57) /[dpm] [dpn](27r)d5(pmn — Pm — pn),

As the next step, we consider the integral over [dpma][dp,] in the rest frame of Py, and find

d—3
_ _ S
[dPmn] [P+ ](27) 6 (Papy — pran — Pry) = dQs N <1 - ;;;) : (A.10)
a

where N is a function of Pgb only, and d{25 is the solid angle that parametrizes the direction
of the photon momentum p5 or, equivalently, of pm,. To relate this result to the phase-
space of p; and p,, we use Eq. (A.3). It follows from that equation that in the rest frame
of Py, the directions of pj and piu, coincide. Thus,

[dpmn] [dﬁv](%r)dé(Pab — Pmn — Dy) = Adig[dpj] [dpv](%r)d(s(Pab —Pj — Pv)- (A.11)

The relation between p, and p, is given in Eq. (A.8). Putting everything together, we
arrive at the final formula for the phase space that is suitable for describing the collinear
limit
[ dmmlidp) (45,121 5(Pus ~ = pn = 2) = [ ldpylldp ) 2) 5P, — 95 )
y (A.12)

: / d;i;:n )\d_g /[dpm] [dpn]@ﬁ)dé(pm“ — Pm — pn).
0
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To use this formula for computing power corrections, we need to understand how to
integrate over py and p, in the vicinity of the collinear m||n limit. To this end, we use p;
and p, as basis vectors for the Sudakov decomposition of py and p,. We find

Pm = QmPj + Bmp'y +p1,

(A.13)
Pn = Qnpj + /Bnp'y -

If the invariant mass smn = 2pm - pa is small, and p; is the collinear direction, then ou, ~

n~ 1, Bun ~ Smn/ be and [pi| ~ 1/ Smn/ be. Using the Sudakov decomposition, we easily
find the following parametrization of the (mn) phase space

/ [dpm] [Ape] (27) 26 (Pran — Pov — )

= 0ld-2) | ) (A.14)
= 4(27T)Ld 5 /dam [dQyy ](am(l—am))%,
0

where the azimuthal angle describes directions of the vector p, in Eq. (A.13). With this
parametrization, it is possible to expand the explicit matrix element squared for qg — vgg
in the collinear m||n kinematics. Indeed, since

S
Pm = OmpPy t;m (1 - am)p'y + \/Smnam(l - Oém)nj_,

(A.15)

Pn = (1 - am)pj + ampw \/Smnam am)nJ_7

and Sgmn ~ T, it is straightforward to construct the expansion through next-to-leading

power.

B A shift in R,

In this appendix, we discuss the change in Ry, induced by the soft boost. According to
our notation, the momentum of the parton m is a boosted and rescaled p;, whereas the
parton n is assigned the momentum k. Then, the following relation between py, p; and k

holds P
Wk bj
o (1 — 25 ) pp ]t“ B.1

where t* = (1, 6), we work in the center-of-mass frame of colliding partons a and b, E; is
the energy of j,7,a,b, and wy is the energy of the parton m. We can rewrite the above
formula in the following way

w . S
Pm = <1 - ﬁ(l + cos Hk])> - Ek (0, iy, — cos O;7i;) . (B.2)
We can also write py, as follows
En S
Pm = 7°Dj + E; (0, fim — 715) (B.3)
J
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where we work to first order in the difference between py and p; caused by the emission of
a gluon.
We can match the two equations if we choose

En = E <1 - %(1 + cos ekj)> , (B.4)
j
and
. o W -
M = T — E (Ml — cos O;ii;) . (B.5)

We assume that vectors 7y, and 7i; are parametrized as follows
T = (sin @, cos g, sin b, sin p,, cos b,,), (B.6)

where x = m, j, and the z-axis is aligned with the vector 7i,. Then,

[l X 115] - g = sinfp, sin b sin (¢; — @m) . (B.7)
At the same time,
- S = Wk - S =
[Tim X Ti5] - g = — = [Tik X 7] - g (B.8)
il Ta 28, il Ta

Since 0, ~ 0;, we easily find

oYk m L m1R 2
Similarly,
O — 0, Sk 7 x ) - [ x 7). (B.10)

- 2Ej sin 9]'
We can use these results to derive the difference between Ry, and Rj;,. Expanding in

Taylor series, we obtain

Wk

ORji. OR;y,
e — n —
2F; sin? 0;

Ruw = Rji. +
mn Jk 84,0]' a 377]'

7y, x 7] - ( [7iq ¥ ﬁj]> + O(w}). (B.11)

For the jet algorithm in Eq. (2.2), we find

_BRjk _ fo(@jir) sgn(sin ;i)

, B.12
B; R, (B.12)

where @ = ©; — @
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