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1 Introduction

Subtraction schemes for higher-order QCD computations are essential for improving the
reliability of theoretical predictions in the context of collider physics. For next-to-next-
to-leading order (NNLO) computations, significant progress in developing such schemes
for massless partons occurred in recent years [1-15]. To extend these results to massive
partons, further scheme-dependent calculations are required. In this paper, we describe a
computation of the integral of the double-emission eikonal function for two massive emitters
whose momenta are at an arbitrary angle to each other. This integral is an important
ingredient needed for making the nested soft-collinear subtraction scheme applicable to
processes with heavy quarks. Calculations of a similar integral in the context of two
different slicing schemes have been reported earlier in Refs. [16, 17].



In principle, one can attempt to integrate the eikonal function for two massive emitters
analytically, but this approach rapidly becomes unnecessarily complicated. Because of
this, in the current paper we pursue a semi-analytic approach where we extract all 1/e
divergences of the integrated eikonal function analytically, and construct a representation
for the finite remainder that can be computed numerically without a regulator.

Our approach to this problem is based on the observation that soft and collinear
singularities of the eikonal function can be easily subtracted. This observation was used in
the calculation of the N-jettiness soft function at NNLO QCD described in Ref. [20]. It
was also used very recently in the computation of the integral of the eikonal function of
massless and massive emitters with momenta at arbitrary angles to each other [21]. In this
paper, we largely follow the approach of Ref. [21], although there are important differences
between the massive-massless and the massive-massive cases. These differences can be
summarized by noticing that the massive-massless case has stronger infra-red singularities
but simpler integrals, whereas in the massive-massive case the situation is reversed.

The rest of the paper is organized as follows. In Section 2 we introduce the eikonal
function, explain our conventions, and define the integral of the eikonal function that is
needed in the context of the nested soft-collinear subtraction scheme [1]. In Section 3,
the integral of the single-emission eikonal function, and the so-called iterative contribution
to the double-emission eikonal function are discussed. In Section 4 we explain how the
integral of the non-iterative piece of the double-emission eikonal function is computed. We
describe in detail the subtraction of infra-red singularities, and explain how to express
the different contributions that arise along the way through easier-to-compute phase-space
integrals. We explain how to extract the infra-red and collinear singularities from such
integrals, and construct finite remainders that are computed numerically. In Section 5, we
discuss the results including the 1/¢ terms, the implementation of the finite remainders in a
numerical code, and multiple checks that have been performed to ensure their correctness.
We conclude in Section 6. Useful technical details including definitions of integrals, and
aspects of their calculation can be found in appendices.

2 Conventions

We follow Ref. [21] and study a generic partonic process

0= hi(p1) + -+ hn(pn) + Hop1(ppy1) + -+ + Hy(pn) + f1(k1) + fa(k2), (2.1)

where h; and H; are massless and massive partons, respectively, and f; 2 are two massless,
potentially unresolved partons which can be either two gluons or a gq pair. We consider
the double-soft limit, k1, ke — 0, with all other momenta in Eq. (2.1) fixed. In this limit,
the amplitude squared of the process in Eq. (2.1) factorizes. It becomes [22]:

'n fact, this is what was done in Ref. [17] for a particular scheme choice. We also note that the analytic
calculation for the back-to-back kinematics in the context of the nested subtraction scheme was performed
in Ref. [18]. Earlier, a numerical computation of a similar quantity was performed in Ref. [19].
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Quantities that appear in the above equations include two Casimir operators of the
SU(3) group, Ca = 3,Tr = 1/2, the bare strong coupling constant g5, as well as the
color-correlated matrix elements of the process without two soft partons

(MEDED ({ph)? = (MUPYHHT: - Tj, Tre - THM{p))) (2.4)
MU ()P = (M{p})ITs - TjIM{p})) - (2.5)

The quantities T'; are the color-charge operators [23], and {.., ..} denotes an anti-commutator.
Sums in Eqgs. (2.2, 2.3) run over all pairs of hard color-charged emitters.
In Eq. (2.2), the term containing the product of two single-eikonal factors

Sik) = o5 o (_pg)'éj j ), o (2.6)

is the Abelian contribution. We note that S;;(k) also appears in the single-emission eikonal
function relevant for computations at next-to-leading order.

The non-Abelian term, proportional to the color factor Cy4, is more complicated. The
eikonal function S;j(k1, k2) reads

Sij(ktl, kQ) = Sioj(kl, kg) + [meZ”(kl, k?g) + m]2 ﬁ(k)l, kg)] , (2.7)
where quantities that appear inside the square brackets, explicitly depend on the masses of
the two emitters, m; ;. In addition to this explicit dependence, both functions S%(k:l, k2)
and S[;(kl, ka) implicitly depend on these masses, since the momenta of hard emitters are
on-shell, p%j = mf o

The first term in Eq. (2.7), Sloj(k:l, k2) is the same for massless and massive emitters

[22]. Tt reads

(1—¢) [(pi-ki)(pj - ko) +i< ]
(k1 - ka)? (pi - k12)(pj - k12)
_ (pi - pj)? [ _ (pi - k1)(pj - ko) +i 4 ]
2(pi - k1) (pj - k2)(pi - k2)(pj - k1) (pi - k12)(p; - k12)
(pi - pj) [ 9 . 2 - 1 (2.8)
2(k1 - ko) [ (pi - k1)(pj - k2)  (pj - k1)(pi - k2) (P - k12)(pj - F12)

[(pi - k1) (p; - ko) +1i <> 4]°
- <4+ (pi - k1)(pj - k2)(pi - k2)(pj - k1)> ] ’

Spi(ky, kg) =

_l’_




where we have used the abbreviation k2 = kj+ka. The other two contributions in Eq. (2.7)
are only relevant for the massive emitters. The function Sj7(k1, k2) is given by [24]2

(pi - pj)(p; - k12)
2(pi - k1) (pj - k2)(pi - k2)(pj - k1) (pi - k12)

S (ky, ko) =

2.9
i 1 (e ) 29
2(k1 - k2)(pi - k12)(pj - k12) \ (pi - k1)(pj - k2) — (pi - k2)(pj - k1))
In the quark-antiquark case, the eikonal function Z;;(k1, k2) reads
Iij(kl,kg) — [(p 1) (p] 2)+Z<_>]] (p p])( 1 2) ’ (210)

(k1 - k2)? (pi - k12) (pj - k12)

and there is no difference between massive and massless emitters.
It is convenient to make use of the color conservation

N
S TIM({p)) =0, (2.11)
i=1

and the symmetry of functions S;; = Sj; and I;; = Ij; to write

Z&J o, ) MU ({p}) 2 st k) M ({p}) 2, (2.12)

7.] ’L<]
Z (k) MU ({p}) 2 Z (k) |MED ({p}) 2, (2.13)
1<J
where
Sij = 285 — Sii — Sjj, (2.14)

To compute the required double-soft contributions, we have to integrate the corre-
sponding eikonal functions §ij and Ej over the phase space of two unresolved partons with
momenta ki 2. Working within the nested soft-collinear subtraction scheme [1], we have to
fix the reference frame, and restrict energies of unresolved partons by introducing an upper
cut-off Fhax. Furthermore, energies of unresolved partons must be ordered. We call the
parton with the larger (smaller) energy m(n), and refer to their momenta as ky n, instead
of k1,2, which describe momenta without energy ordering.

We define the required double-emission phase-space integrals as [1]

& [SijSu) = / (k] [dEn]€ (Bmax — k%) 0 (ki — k) Sij(km)Ski(kn), (2.16)

S [Ei;] = / [dkm][dkn]6 (Bmax — ki) 0 (ki — k3) Zij (km, kn) , (2.17)

2A different expression for S77 is found in Ref. [5]. However, both expressions give the same result after
summing over i, 7 in Egs. (2.2, 2.3) thanks to colour conservation.



where the eikonal function Z;; is either g'ij (for gg emission) or iij (for ¢q emission), and

d41k

[dk] = Wa

(2.18)

is the phase-space element. We note that d = 4 — 2¢ is the space-time dimension.?

We use the homogeneity of the eikonal functions to extract the dependence of the result
on Fpax; we explained how to do that in Ref. [21]. Without repeating this discussion here,
we simply quote the result for the correlated part

$[5] = _45% /[dlm] (a6 (1= ln- P) O (ln - P — - P)Ziy (). (2.19)

max

The auxiliary four-vector P in the above equation reads P = (1,0). An identical formula
applies to the product of two single eikonal functions &[S;;Sk].

Our goal is to compute the required soft integrals for two massive emitters. As we
already noted, the masses of partons ¢ and j are m; j, respectively. The squares of their
four-momenta p; ; are then p?,j = mf ;- We can choose a reference frame to integrate the
eikonal function. The integral in Eq. (2.19) is boost-invariant, but a particular choice
P = (1,6) defines the laboratory frame where both heavy partons ¢ and j move with
different velocities. In the lab frame, the momenta p; ; are characterized by energies or,
equivalently, velocities ; ; and their directions. We write

Pij =M% (1, Bij Rij) (2.20)

where v; ; =1/,/1 — B?j.
However, as we discussed in Ref. [21], it is beneficial to work in a different frame where
one of the heavy partons is at rest. In this frame

P = (1,vn), pi=mi(1,0), p; =FE;(1,vym;), (2.21)

with v¢ = v;, v = B; and 7; = —K;. Furthermore, v;; is the relative velocity of partons i
and j, and F; and 7i; are the energy and the direction of a parton j in the rest frame of i.

The relation between these and the laboratory-frame quantities is easy to establish.
We find

pip;j

7

o (1-8)01-57)
o \/1 (1— Bifjcosby)?’ (2.22)

L 1 <1 152 )
Nt * Ny = — _ y
t J Vij 1-— B,ﬁj COS Qij

where cos6;; = K; - Kj. As we will see, the integrated eikonal function depends on 7i; - 775,

E; = = m;y;y; (1 — Bifj cos 0i5) ,

v;j, and vy, and all these quantities can be expressed in terms of the parameters in the
laboratory frame using Eq. (2.22).

3We use dimensional regularization to regulate soft and collinear divergences throughout this paper.



3 Single emission and iterations

To compute the iterated part of the double-real emission function, we need to integrate the
product of two single-emission eikonal functions. The integral reads

1
4e e

max

S[S:jSkm] = / (Al ] [Al]5(1 = I - P)O(lny - P — Ly - P) S5 (I) St (la).  (3.1)

The gluon momenta Iy, », are defined as Iy n = l%n(l, M), With ﬁﬁm = 1. We calculate the

integral in Eq. (3.1) directly in the laboratory frame, i.e. P = (1,0). Writing 10 = w %,
and integrating over w, we find

N? Pij Pk
&[5 Skm] = 2 < J > <m , 3.2
[SijSkm] R2EE \ pumpim /= \ Pnpon (3.2)

where pry =1 — B, - By, With B n = fimn. Furthermore, we use

Qd-1)
Ne = W’ (3.3)

(1)
<>z:/0g2(§_1) (3.4)

is the integral over directions of the parton x.
Using integrals defined in Appendix B, we write Eq. (3.2) as

and

N2 2 2
S15i%m] = apa— I3 iy pigs i) 17 [k s Prom)] - (3.5)

Integrals Ig) cannot be computed in closed form for arbitrary d and require an ex-
pansion in €. The depth of the required expansion depends on whether lines 4, j, k, m are
massive or massless. If all lines are massive, the integrals are finite; hence, each of them
needs to be expanded to O(g?). If, on the other hand, there are one or more massless
partons, additional singularity is generated by the angular integration, and the angular
integral for massive lines through O(£?) is needed.

We note in passing that these very deep expansions may not be necessary. Indeed, for
the purpose of subtractions, the iterative piece will have to be combined with an iteration
of Catani’s (") operator [23, 25], appearing in the virtual corrections; for the massless case,
this mechanism was explained in Ref. [9]. Similarly, also for the massive case it should lead
to a cancellation of the highest 1/&? singularities, without destroying the factorized form

as in Eq. (3.5). Because of this, the required depth of the e-expansion will be reduced.

4 Non-iterative double-real emission contribution

We consider the integral of the correlated contribution to the double-real eikonal function,
defined in Eq. (2.19). We will compute it in the rest frame of the parton i. Using the



expression for P and other momenta in the rest frame of ¢ given in Section 2, and integrating
over the energy of the gluon m, we find

_ N © dw g _
SiEul =22 ([ Sl 0(0m — ) [PZ )] ) (41)

€ mn

where py, = 1 — 07l - Ty, * = myn,

NZ

N = ( (4.2)

Emax e
4 )

Tt

and the momenta of gluons m and n to be used in Eq. (4.1) are I, = (1,7y) and [, =
w(1,7y).

Eq. (4.1) is a convenient starting point for the computation. We will focus on the
calculation of the gluon eikonal function since it is more general than the quark one.
Hence, we identify =;; with gz-j, c.f. Eq. (2.14); we will refer to $[§ij] as Gj;. The integral
in Eq. (4.1) cannot be computed numerically right away because of divergences. For two
massive emitters, these divergences appear in just two cases — i) when the gluon n becomes
soft, w — 0, and ii) when the gluons m and n become collinear to each other. We will
iteratively subtract these singularities from the integrand in Eq. (4.1) to construct a finite
quantity that can be calculated numerically. However, we stress that because of the overall
1/e factor in Eq. (4.1), it is highly non-trivial to compute all 1/¢ poles analytically even if
all sources of divergences have been removed from the integrand in that equation.

We start with the soft subtraction and write

Gij =38, [GU] + gw [GU] (4.3)

The first term corresponds to the strongly-ordered limit of Gj;,

Ny * dw ~
SulGyl = — </0 pRESE Pim 0(pim — wpim) S {WQSij(m, ﬂ)D ) (4.4)
mn

where the operator S, extracts the leading O(1/w?) singularity from the eikonal function
S;j. We will discuss the computation of this quantity in the next section.
The second term

3

— N, 0 dw = 5
SulGiy] = —4 </0 mpﬁiﬂptm — Wptn) S [wQSij(m, n)}> ) (4.5)
mn

involves the operator S,, = 1 — S,,. Hence, it does not possess a soft singularity since it is
explicitly subtracted. It remains to isolate and remove the collinear m||n singularity from
it. While such a subtraction is straightforward, we need to do it in such a way, that all
divergent contributions can be computed analytically.

To this end, we found it convenient to write S,,[G;;] as the sum of two terms

SulGijl = SulGY] + SLIAG). (4.6)



The first term reads
— 0 Na * dw — ~
S.GY)] = — </0 i3z 01 —w) S, [wzsij(m,n)} >mn. (4.7)

It corresponds to the soft-subtracted integral in case when the laboratory frame and the
rest frame of the parton ¢ coincide. The function §ij in this case depends on a single
direction, which makes the integration much simpler.

The second quantity S,[AG;;] reads

- Ny *© dw — o
Su[AGi;] = = </0 itz f(w, pem; pen) Sw [W Sij(m, n)]>mn> (4.8)
where
F (@, pems n) = P10t — wpen) — O(1 — w). (4.9)

The integral in Eq. (4.8) is divergent because of the collinear m|[n singularity of the inte-
grand. However, as we will see shortly this divergence is softer than the divergence of the
quantity S, [Gi;).

To subtract the m||n divergence, we write S,[AG;;] as the sum of two terms

SulAG;] = SulAGij]mn + SwlAGi;]n, (4.10)

where

— N, *© dw — ~
Sw [Asz]m||n = 7"4 </0 m Cmn f(wu Ptm, Ptu) Sw |:w252] (m7 n):| > ’
mn (4.11)

— N, * dw — — ~
SulAGy g = — </o Cigaz Crmn (@, ptms pin) S [WQSij(ma ﬂ)}> :
mn

3

The operator Cpy is defined as Cpun = 1 — Cun.  The operator Cyn extracts the non-
integrable part of the m||n collinear limit of the integrand, but it does not act on the
angular phase space. Since

Cmnf(wyptmyptn) = (p;ﬁi - 1) 0(1 - w) Cmm (4-12)

we find

SulAGy iy =2 ([ (o~ 000~ ) Con S [By ] ) . (03

€ mn
To simplify S, [AGijlin, we split Cunf (W, pm, pen) into two terms
Cron [0 — wpm) — (1 —w)] = Co + Ch, (4.14)
using the following decomposition pfg = 1+ (pf5 —1). The two terms are defined as follows

Co = Cran [0(pim — wpin) — 0(1 — )] = O(prem — wptn) — O(1 — w),

_ 4.15
Cp=Cun [(Péfl = 1)0(ptm — Wptn)} = (Péi = 1) [0(ptm — wptn) — 0(1 — w)Cru] - ( )



We then write
SulAGijlin = SulAGjlina + SwlAG;finbs (4.16)

where
= N, > dw _ -
Su[AGijlan,a = fl </ oz (0(pm —wpem) — 0(1 — w)) S [WQSU (mvﬂ)]> ;
N 0oo d mn (417)
_ A W — -
Sw[AGij]ﬁn,b - T </0 meSw {w25ij(m, n)}>

The quantity S, [AGijlfin,b does not require further manipulations since its integrand is

mn

O(e), c.f. Eq. (4.15); hence, we compute it numerically.

The quantity EW[AGij]ﬁma is also finite, but its integrand is not suppressed by e.
Therefore, because of the 1/e prefactor, it needs to be expanded to linear order in . To
facilitate such an expansion, we make use of the following identity

gw [wQSVU (m, n)] — gw [wzgij (m, Il):| = Aij, (4.18)
w— L
o
where
Ajj = (ij - Pnj) (PmnA— ‘pmj - Pnj) + (1 _ leJ) (ij - /)nj) (pn;j +2Pnj - pmn>' (4.19)
PranPmj Prj Proan P Prj
It follows that
Sw [AGij]ﬁn,a = Sw [AGij]ﬁn,au + Sw [AGij]ﬁn,aga (420)
where
_ N © dw
SuldGilinm = 52 (| O —pm) =0 -1)Ay) . (42)
2¢e 0o W € mn
and

— Ny ® duw w2 — w2
SulAGfina, =— </ 2
€ Vo W (4.22)

% [0(pem — wpem) — 0(1 — )] S [w2§zj<m, n)] >

mn
The integrand of the latter quantity is O(e), so that it can be computed numerically without
further ado.

Putting everything together, we write G;; as

Gij = SulGij] + S, [Gg))] + 8, [AGij]mHn + gw[AGij]ﬁn,al + gw[AGij]num, (4.23)

where four first terms on the right-hand side require further work, and the last term can
be computed numerically by taking the e — 0 limit. It reads

SwlAGijlnum = Sw[AGijlfn.a + SwlAGis]inb

= 4Ny </0°° djw In ptm [0(ptm — wptn) — O(1 — w)Crn] S [w2§iﬂ'(m’ n)} > (4.24)

mn

— 2N, </Ooo djw Inw [0(pm — wpim) — O(1 —w)] S, [w2§ij(m,n)} >

mn



We note that the four terms that require additional work have different degrees of diver-
gence, that we illustrate below

_ = 0 _
8ulGi) ~ O(™), SulGF] ~ O™,
gw [AGij]mHn ~ 0(571)7 gw[AGij}ﬁmal ~ O(Eil)'
Hence, the most challenging quantity to deal with is the strongly-ordered contribution
S.[Gij]. We discuss it in the next section.
4.1 The integral of the strongly-ordered eikonal function S, [G;j]
In this section, we discuss the integration of the strongly-ordered eikonal function S, [Gi;],
Ny > dw ~
8,06yl == /0 gz Pt (pim — wpin)Siy |25 (m, )| )
For the two-gluon case, we find
2 2 2 1 1 ;
b Pmi

S [wzgij(m,n)} = + - -
PmjPmn  PmnPrnj  PwmiPnj  Pmn Pnj PunPnj

(4.26)
+(1—v§j)( 1 1 1 )

PriPnj  PrjPun PmjPunPnj
The integration over w is straightforward
Fodw L 9 9
/0 mptnie(ﬂtm — Wpm) = —gptéptf, (4.27)

and we obtain

S[G.]__NA 2e 25[ 2 + 2 2 1 _i_i_ﬂ
il =
e 2e2 fmi7n PmjPmn  PmnPnj PmjPnj Pmn Pnj PmnPnj

1 1 1
+(1 - U?g) 2 . 3 - A )
PmjPrj PmjPmn  PmjPunPuj mn

This expression involves terms with and without pmn, and we find it convenient to separate

(4.28)

them. Hence, we write

SulGijl = SulGijlr + Su[Gijlnr. (4.29)
The first term does not contain 1/pyy; it reads

Na [ ps 21—}
S,[Giilp = — =5 ( Hn 2 1] = J . 4.30
[ ZJ}F 2¢2 Pnj ) Ptm P + p\%uj i ( )

The angular integrations are actually finite, so that S,,[Gyj]r ~ 2. Using integrals defined

in the appendix, we derive

NA 2 1 2 2
SulGusle = =525 1% [19, [pul =219, + (1 = })1%.,] (431)

~10 -



We note that unless their arguments are shown explicitly, all integrals in the above formula
should be interpreted as I[ps, pjj, pr;]-*
The remaining, non-factorizable, part is more complicated. It reads

~Na <p§ip?§ [2 2 g

SulGijlne = =35 +—-1

Pmj  Puj Prj

1 1
—(L=v) | o+ ~
Py pmipni )| ]

To simplify Eq. (4.32), we use an opportunity to rename m <« n, rewriting it in the following

Pmn

(4.32)

way

N [ pinpi |4 Py 1 1
Sw [Gij]NF = 2 1; PémPen énj —-1- (1 - /UZ2J) 2 + . . (433)
€ Pmn Pmj Pmj Pmj Pnj mn

Furthermore, we find it convenient to write

4e de 2 _ . 2¢ 2
p2E p2E = ptm;_ptn _ (Ptm 2ptn) ' (4.34)

The last term on the right-hand side in Eq. (4.34) provides a finite contribution to S, [G;]NF,
which can be computed numerically right away. Hence, we define

Na [ (0% = 0%)" [4 - puy 1 1
sulGylm =2 (m =) \1py gy (L)) )
4e Pmn P Pmj  PmjPnj mn

The remaining contribution reads

; N, + 4 — pi 1 1
Su[Gij)diy = — 24 Pin + Pin Py (=) [+ —— . (4.36)
Pmy Pmj  PmjPnj mn

4e? Pmn
Performing further m <+ n redefinition, we remove pf¢ from the integrand and obtain

- Na [ pte [4—pnj 4= pmj
S G"le: tm J m]_2
wl w]NF 42 O P + ot

11 2
—(1=vj) <2+2+ . >]> :
pmj puj PmgjPuj mn

To write the above equation in a form convenient for further analysis, we introduce the

(4.37)

following integral family

(2 _ 1
Ia1,a2,a3,a4+b4s - < as a3 a4+b45> ) (4.38)
pm“pmjpng Ptm mn

4To avoid confusion, we note that in this section we always work in the rest frame of the parton 3. This
implies that p;: = 1 — Uf, pjj =1— vfj, ptj = 1 —vi5u0, - 175, The relation of various quantities in the above
equations to their counterparts in the laboratory frame is given in Eq. (2.22).

- 11 -



and use it to write

i NA 2 2 2 2 2
div
1 L INRTL, N Y I A

A2
(4.39)
2 2 2
-u-@m4%4ﬁ4mz%+wnLq}.
Finally, the strongly-ordered contribution reads
SulGij) = SulGijlr + SulGijINF + SulGiflRE", (4.40)

where the relevant contributions are given in Eqs. (4.31,4.35,4.39).

4.2 The soft-subtracted, double-collinear contirbution

As the next step, we analyse the soft-subtracted, double-collinear contribution. It reads

SAm%mn=A“<Amjﬁgé$4wu—wmm&{ﬁ@mmww (e

€ mn

This term possesses a 1/¢ singularity at most, because pis — 1 ~ O(e). To isolate it, we
compute the m||n limit of the soft-subtracted eikonal function and find

4(it; - 7)2w?(1 — )v? dw [(ij —2) pumj +1— U%]
_l’_

Can Sw [wzg" m,n)} = 4 , 4.42

" il (w+ 1)4p2pmn (w+1)2p2 ;pon (4.42)
where 7 is the unit vector defined by the following equation

Tin = COS OnTim + SiN O™, 7+ Tl = 0. (4.43)

We note that by setting v;; — 1 in Eq. (4.42), we reproduce the soft-subtracted double-
collinear contribution for the massive-massless case, discussed in Ref. [21].

To proceed with the calculation of S, [AGij]m||n, We integrate over directions of a parton
nin Eq. (4.41), starting with the integration over 7. Using

i _ =i =0
0 — it M

iy 4.44
r'rl — T o (4.44)
we obtain
2
< [ 25 L w(2HB3w+20%) |2 pry) 10
<CmnSw [w SZJ (m7 n)] >;§ =2 (1 + w)4 PmjPmn pznjpmn ‘ (4.45)

Using this result in Eq. (4.41), we find

= 2Ny [ dw w(2 + 3w + 2w?)
SwlAG | = _5/0 me(l - w) 1+ w)

4.46

e (2= pmj) 10 19
X (ptm_l) - 3 .
PmjPmn PrajPmn mn
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We integrate over the energy w, and obtain

1

_/ dw w(2+3w+2w2)_2+ 1 +L1n()

T ) oET At w)d 12 12773
0
111 4

2 2 3 4

= ~In(2) + 11 :

+¢ <3+18 >+s (3 n(2) + C3>+O(€)

The remaining integration over directions of n is straightforward. Putting everything to-

(4.47)

gether, we find

SulAGij]min = (= 20Narw <(p;‘,i —1) [(2 ; pmg) _ 1 _2”2]] > _ (4.48)

2 .
€ mj pmj

It follows from Eq. (4.48), that Sy[AGijly|s has a 1/e singularity, since the integrand is
O(e). Finally, we express Eq. (4 48) through integrals described in the appendix and find

1
{21—4)5 1 21( )[p]]] I(—lzza[/)jj] +1

— (=0} 19, - 1000 }-

SulAGijlmjn =

(4.49)

4.3 The quantity S,[AG;lin.a,

In this section, we compute the quantity Sy,[AGijlfina, defined in Eq. (4.21). In that
equation, one can integrate over the gluon energy w. This gives

) _/\/' " 2¢e
Su[AGijlfina, = 12 <[<[/))ttn> !

The function A;; defined in Eq. (4.19) is anti-symmetric w.r.t. m <> n permutations. Using

Aij> . (4.50)

this, we find
Su[AG;]5 :N (Ptn>2€_ <"’tm>26 A (4.51)
¢ v 82 Ptm Ptn “ mn. .
Since o o
<p“‘> - <pt‘“) —4eln 2 4 03, (4.52)
Ptm Ptn Ptm

and O(g3) contribution is irrelevant for computing S, [AGij)fina, through O(e?), it follows
that the following equations hold

— Na p _
SulAGilana = T3 <4 In p:; Aij> 452 5 ([P = pin] D) +0(6). (4.53)
mn

Using the explicit expression for A;j, it is straightforward to write the above expression in
terms of integrals described in the appendix. We find

ra NA 2 2 2 2
Sul0Gibum = 44 1800~ 100 120+ 121

(4.54)
2 2 2 2
+ (1= U?j)lé,Q),l,Qe - I((),1),2,2s - 15,2),0,25 + 15,8,2,25 —(2e— _25)}=

where the change in the sign of ¢ only applies to the last index of integrals Ifb) cd.2e
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4.4 Calculation of S, [GZ(»?)]

The last quantity we require is S,, [GE?)}; it is defined in Eq. (4.7). We remind the reader
that this quantity can be understood as the integral of the eikonal function in the case
where the rest frame of the parton ¢ and the laboratory frame coincide, and where the
parton j moves with the velocity v;;. To compute S, [GZ(»?) |, we write it as an integral over
the energy w

S.lGY) = Na / ' dw A (w). (4.55)
0

7
€
To obtain the function A;j(w), we integrate over the angles of partons m and n at fixed
w. The function A;;(w), defined as

Aij(w):<w*1*2€§w [&S’ij(m,n)b : (4.56)

mn

can be written as an integral over the gluon momenta with fixed energies
dly][dl _ ~
Ajj(w) = / ["A]/[Q] 51—l P) 8(w — Iy - P) w28, [ﬁsij(zm,zn)} : (4.57)
€

The quantity N is defined in Eq. (3.3), and P = (1,0). The function A;(w) can be
computed using reverse unitarity [26] in a straightforward way. Using the integration-by-
parts technology [27, 28], we express A;;(w) in terms of eight master integrals

1 1 1
= ]_ = _— = _— =
Ji={1), & <D2>’ J3 <D3>’ Ja <D2D3>’
1 1 1 1
> <D1D4>’ 6 <D§>’ 7 <D4>’ 8 <D2D4> (4.58)

The four inverse propagators D . 4 read

-Dl - lm . lm -D2 = lm * Dy, D3 = ln * Dy, D4 = lm *Pj +ll‘l *Djs (459)
and the integration measure is defined according to the following equation

<X> - / [‘”‘R]/?“]m — Iy P)d(w — Iy - P) X. (4.60)

The four-momentum of the parton j is p; = (1,%;;), and S, [Gg-))] depends on the absolute
value of the relative velocity v;;. It turns out to be convenient to write the result in terms
of the following variable

1-— Vij

= . 4.61
1—|—Uij ( 6)

Nij

We use the differential equations in v;; to compute the required integrals; the bound-
ary conditions are easily obtained by computing the relevant integrals at v;; = 0. The
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calculation is described in Appendix C. Using the results for the master integrals, we find

< A0 Na| 11 11In(n) In*(ni;) 83 22In(2) | 1 [In’(ny)
SulGij 1= 2 5 20, tel =5+ 5 T vy | 24
2In%(n;;) 8. 11 131 1In(n;;) 1 [ In®(my)
+# - §L12(1 - 77@]) Y In(2) ln(nw) + 18 :| + % |:_ 24 (4.62)
1n2 7 7T2 . 1 .
_Elnj) — E ]n(mj) —+ L13(77ij) — 5 ln(nij)ng(mj) — C3:| ) + 0(52) .

We do not show here the O(g2) term in the square brackets, required to obtain S, [Gl(?)]
through O(e?). The corresponding result can be found in the ancillary file provided with
this submission.

5 The final results: analysis, implementation and checks

The final result for the integral of the double-emission eikonal function for two soft gluons
is obtained by combining different terms displayed in Eq. (4.23). The strongly-order contri-
bution S,[Gj;] is further split into analytic and numerical pieces as shown in Eq. (4.40). A
similar computation has been performed for the soft ¢¢ pair; for brevity, we do not discuss
it and proceed directly to the results.

5.1 Analytic expressions of the poles

In the preceding section we have isolated all divergent contributions needed for the compu-
tation of the integrated eikonal function. Hence, we are in the position to combine them,
and obtain the divergent part of the integral in an analytic form.

Many integrals required for this computation are obtained by solving the differential
equations discussed in appendices; the results are naturally expressed in terms of gener-
alized polylogarithms (GPLs) [29, 30]. Unfortunately, arguments of these GPLs are very
complicated, especially because multiple square roots of kinematic variables appear in the
course of simplifying systems of differential equations. This leads to significant problems
when a numerical evaluation of such an analytic result is attempted.

To devise a representation of the analytic result suitable for fast numerical evaluation,
we follow the same procedures as in Ref. [21]. To this end, we employ the symbol tech-
nique [31, 32] and use it to express all GPLs up to weight four through logarithms, classical
polylogarithms Li,, (n = 2,3,4) and an additional function Lip o, defined as

- e 4 e 7 ()
Lig (21, 22) = Z 272 *ZZ(H;’)? TR (5.1)

i>5>0

Since the problem of finding suitable candidate functions to express linear combinations
of GPL’s in terms of polylogs and Lis 2 is equivalent to an optimization problem, we used
the program Gurobi [33] to improve the efficiency of this procedure. In the process of
manipulating GPLs, we heavily relied on the package PolyLogTools [34-36] and used
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the library GiNaC [37, 38] to evaluate GPLs numerically. Finally, we make sure that all
functions that appear in the final result are real-valued in the physical region.

Below we showcase the divergent parts of the integrated double-emission eikonal func-
tions for both gluon and quark cases. We write

S8y SJEY 1 [1+ln(77ij)] +€12{5_21n (1_@2)_’_111(772-) | In(m)

Na Na s Vij B; 8;
LB %1112(77@) L1} In(m)in (mi7)  In(ny) In(n;) (5.2)
vij vl 4 € 2Bivi 2vi;Bj

+++++q4}+(’)(50),

Bz (% /8]
55[%1]] 1 [_ln (i) 1]
NA _82 6’Uij 3
37 2 oy , In () | In(ny)
+{18—1 (1-57)+ 35, T 35]] +vij}+0( ) (5.3)

where 7;; is defined in Eq. (4.61) and

77'21_/31' U'Zl_ﬁj
N

(5.4)

The divergent part of the quantity S,, [G( )] can be found in Eq. (4.62). The results shown
in Egs. (5.2,5.3) contain quantities g, 7. They read

q1:4L12<1—mZij)—Lig<1—%>—L (1—71) L1< "”)+L12(1—z)
z z z z

- SW () — 41n(2)In (1:) + 1o (i) I (s + 1) = In (00) In () + 410 (3 + 1) n 1)
2
+1In(z) In (m;) — 8In(z) In (m; + 1) + %IHQ (nij) — 41n(2) In (n;;) — 31n(z) In (n;;) + 71112(2)

191n(2) N 191n (n;) n 191n (n;;)

+81In(2) ln(z? — 3 5 6 | )

g> = Lis (1 . %) — 4Ly (1 — ;) + Li <1 - %) — Li ( ’7;]> + Lis(1 — 2)
43107 () 4 410 () — 410 (3 I+ 1)+ 21 ) )+ 2
() o () - R0

g3 = 2Lis (1 - %) 2Ly (1 - 7) + 2Ly ( @) +9Lip(1 — 2) — 3Lis (1 — ;)

+2In (; + 1) In (n;5) + %hl? (ni7) — 2In(2) In (n;5) — 21n(z) In (n;5) + In?(z)
+ 21n (Th’j) ,

g1 = —31n% () — 81In% (; + 1) — 8In(2) In (m;) + 81n (1) In (; + 1) + 16 In(2) In (m; + 1)

—In (n;) In (;5) + 21In(2) In (;) — iln2 (i) + 21In(2) In (n;5) — 2 In?(z) — 81n%(2)
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n 381n(2) 19In(n;) 16
3 3 3’
g5 = In (1;;) Lia (1 - %) — In (n;) Liz (1 - mg”) +1In (n;5) Lig (1 — m;5) — Liz(1 — 2) In (15)

— o ) i (1= ) = 210 () + 1n(2) 0 1) + 0(2) 02 () — 5 () In o)

38
— g nim+1)+

3
—1In(n; + 1) In? (m;5) — 2 In? (1) ,

2 mi\ 2 Lis (1 — 1) 2 N 2Lis(1 —
%Z*LiQ(l—mmJ)—fLig(l—@)—M—&—fmz( —@)+M
z 3 z 3 3 z 3

210 (1) — 5 In(2) In () — = (=) I ) + 3 I o+ 1) I )

q7:6Li3< 0 — 2 )_6L13<(m—2)mj>_4L ( z (i — ))
i (1 — 77@]) z(1— nij) Ni (7713 z)
(_ (; — )mg> oLy (_ NiNij — Z> L ( NiMij — z)
(77” —z) z (1—-2)
(1 - nlj) 1 772]) 771772]
< ("717]” > (77@77” ) —|—4L13 < M — = >
(1 )77@7713 i i 7723 Z)
(77"_2)—2L13( i >+2L3< — )—4L13 (m )
1—2 z N (1—2)n;
. . 1 — .1 =i . (2 (1 —m;j)
— 3Lig (1 — m;,; 3L - 6L — 6L —
s (1= i) + 3Lis ( Nij ) oL ( 11—z BUa =2
— 6Lis (—””> + 6Li3 (—Z( "”)> + 2Lis (—”” Z) — 9Lis <”” Z)
Nij — = Nij — = z Nij

1 —
+ 2Lig(1 — z) — 2Lis <—Z> +41n (n;) Lig(1 — 2) — 81n (n; + 1) Lig(1 — 2)

1-— 1—mn;
4 81n(2)Lia(1 — 2) + 81n (i) Liy <_ 2 m) -|-81n(17w)L12< m)

i ni + 1
— 7In (n;) Liz (1 - 7) +81n (n; + 1) Lis ( - @) — 81n(2)Lis (1 - l)
z z
— 31n(z)Liy <> + 31n (n;) Lia ) + 61n (n;;) Lis <)
mi (1= n3) ' mi (1= nig) Y mi (1 —ni)

—91In (n;) Lia (1 — n5) + 121n (n; + 1) Lip (1 — 1) — 12In(2)Lig (1 — ni;)
1 — Nij . i 1 — M
+ 51n (n;) Lig < ] 77]> + 61n(z)Liy ( 77])) In (n;) Lig (M)

. 1— 2)n 1= 2)ni
— 61n (1;;) Lis <Z1(1—_z;7n]3> — 31n(2)Liy <( ( z;z)]) + 31n (m;) Liz <m>
+ 41n(z)Lis (-M) — 51n (1) Lis < oy G EZJ ))> 61n(z)Lis <—717j_77;>
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St L <_1—n]> n () Lig (_2(1—773)> + 4In(2)Liz <_(77—Z)’7a>

Mg — Nij — = z (T]zj — Z)
NT (i — 2) Mij . U . Nij
+ In (n;;) Liz < Py p— + 41n (n;) Lis (1 7) 81n (n; + 1) Liy (1 _ 7)
+ 81n(2)Lis (1 — ﬁ) + 71n (n;) Lig <Th_z> + In (n;) Lia <(771_Z)77”>
o NiTij — 2 NiNij — 2

Catn (o Ly (=R =2y (= 2) (g — 2)
4 (m)L2<(m'j—Z)(nmz'j—Z)> 4 (”’)L2<<1—z><mmj—z>>

+ 71n (1;) Liz (1 - %) —8In(n; + 1) Lip <1 - %) + 81n(2)Lis (1 _ %>

— 41n(2)Lis (—W) — In (n;;) Liy <—””]_Z> + 31In(2)Lis <_7777J—Z>

(1-2)z (1—2)z z (1 —nij)
3ln () Lis [ MiMii % TR L1/ R W S TRV (1 B
31n () Liz < z(1 —%’)> +3in(z)Li, < ni (1 —mj)) 31n () Liz ( ni (1 —mj)>
—atn(o)tiy () s i (-2 4 B )

—In (i + 1) In® (m;;) + 61n* (m;) In () + 81n(2) In (1;) In (n;)

= 81n (1;) In (1 + 1) In (55) — 310 (1;5) In (2 — mii) — 81n(z) In (1) I (1;5)
+81In(z) In (1; + 1) In () + 31In(2) In (i) In (2 — mimi) + 21n*(2) In ()
—4In®(2)In(n; +1) — % In® (1;;) + 31n (1 — m;;) In? () + In(2) In? ()
—81n(2) In(2) In (n;;) — 31In(2) In (1 — ;) In (n;5) + 41n(2) In?(2)
_M+ZL12 (1—’§>+2Li2(1_%)_7mz( _@) TS (1_%>

3 3 3 3 z 3 z
13 7 7In® (2
1 () + (@) I )+ 2 In) I ) — ) ) I )
13 23 1n (n;;
= In(n; + 1) In () — 6(77]), (5.5)

where z = (1; 1 nij)1/2
5.2 Implementation, checks and numerical results

We combine the results described in the previous sections into a computer code where the
analytic and numerical parts of the calculation are put together. This code can be obtained
from a git-repository using the following command

git clone https://github.com/apik/SSmm.git

The code contains routines for an efficient numerical evaluation of the polylogarithms
Lip, and the Liz o function, required for the analytical part of the result. These routines
are constructed following methods described in Ref. [39]. Finite remainder functions are
integrated using the Vegas Monte-Carlo method [40] as implemented in the GSL library[41].

We continue with the discussion of the checks of the calculation. As we explained in
Section 2, integrals of the eikonal functions depend on four parameters — Eax, velocities
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https://github.com/apik/SSmm.git

Nij | Ny Gluons(MC) Gluons(DE) Quarks(MC) Quarks(DE)

2 2 || 7.9436(20) - 107* 7.9453708 - 107 * || —1.8834(5) - 107° —1.8822142- 1076
2 9 || 1.447303(9) - 1072 | 1.4473147-1072 || —3.6194(8) - 10°° —3.6179578 - 10~°
2 | 16 || 3.574673(24)-10"2 | 3.5746842- 1072 || —9.6734(18) -107° | —9.6709404 -10~°

2 | 23 || 4.918967(27)-1072 | 4.9189925- 1072 || —1.39541(23) - 10~* | —1.3953750- 10~ *

9 | 2 | 2.16337(10)- 1072 | 2.1633179 102 1.6820(8) - 1074 1.6824617 - 1074
9 9 || 3.67465(11)-10"1 | 3.6747979 1071 1.9800(15) - 1073 1.9813388- 1073
9 | 16 || 8.16731(25)-10"! | 8.1673711-10! 1.228(4)- 1073 1.2358643 - 103
9 | 23 | 1.053284(32) 1.0532756 —1.106(5) - 1073 —1.1036785- 1073

16 | 2 || 1.53621(8) 107! 1.5363543 - 1071 4.4056(13) - 1073 4.4075784 - 1073

16 | 9 | 2.10969(12) 2.1097537 4.8217(20) - 102 4.8238002 - 1072
16 | 16 || 3.57157(33) 3.5712515 4.554(5) - 1072 4.5557310 - 1072
16 | 23 || 3.9824(5) 3.9818443 2.278(9) - 1072 2.2664599 - 1072
23 | 2 | 3.55465(15) 3.5546016 2.10520(26) - 107! | 2.1051877- 107!
23 | 9 || 2.01624(27) - 10! 2.0161751 - 10? 1.1123(5) 1.1119777

23 | 16 || 1.9866(6) - 101 1.9860241 - 10! 9.204(12) - 1071 9.2047726 - 1071
23 | 23 | 1.8636(9) - 10! 1.8630407 - 10! 7.514(15) - 1071 7.5231867 - 1071

Table 1. Comparison of the finite O (") parts of the results for the integral of the double-emission
eikonal for gluon and quark cases for §; = ;. Results obtained with the numerical code (MC) are
compared with the calculation based on solving dedicated differential equations (DE) for master
integrals in the 8; = B3; case.

of partons 7 and j that we refer to as 3; ;, and the angle 0;; between them. Apart from
the dependence on Fy..x, which is rather trivial, the dependence of the final results on
the other three parameters is complex. We note that for the discussion in this section, we
always show the results for the function

4E4a

]\Z;ax [Zi]. (5.6)

OE(Biu ﬁja COS 91]) —

We also note that the numerical code in the git-repository outputs the results for this
function as well.

For the discussion of the numerical results, it is useful to consider a grid of benchmark
points. We parametrize them by a triplet of integer numbers {N;, N;, Ny}, which define
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N; | Nj | Ng || MC (gluons) | SecDec(gluons) MC (quarks) SecDec(quarks)

2 9 | 16 || 0.3477025(18) | 0.346(4) —1.5041(21) - 107* | —1.0(9) - 107*

9 | 16 | 23 || 2.40990(8) 2.397(32) 1.0100(14) - 1072 1.023(34) - 1072

16 | 23 | 9 || 9.6427(3) 9.46(28) 4.5287(6) - 101 4.54(2) - 10?
Table 2. Comparison of the finite parts for the gluon and quark integrated double-emission

eikonal functions (MC) with the results of direct numerical integration(SecDec).

Bi,; and cos 8;; according to the following equation

Ni N97T
25 25
A very useful feature of the integrated eikonal functions is their regularity in various

kinematic limits, e.g. B;; — 0 or 3; — B;. We have used the latter limit to perform
extensive checks of the results. Since this limit is regular, we directly obtain the 38; = 3;

Bi = > N,=1,...,24. (5.7)

N.
, Bj= 2—53, cos 0;; = cos (

numerical values for the function Oz from the computer code described at the beginning
of this section. They are shown in Table 1 for several benchmark points.

Reference (DE) values in that table are obtained from a high-precision numerical so-
lution of the system of differential equations for the master integrals using the package
DiffExp [42]. To explain this further, we note that if 8; = 3; = 3, the integrated eikonal
function depends on two variables only (5 and 6;;), so that methods similar to the ones
employed in our previous paper [21] apply. We then perform the IBP reduction for the
equal-velocity case, and construct a system of differential equations for all required master
integrals. Starting with simple boundary conditions at 8 = 0, where the dependence on
0;; disappears, we fix the value of the angle to the desired value and numerically solve
the system of equations with respect to a single variable 5. We compare the results of
solving the differential equations, and the results of the numerical integration in Table 1.
For all considered kinematic points excellent agreement is observed. We note that an exact
agreement is found for the 1/e poles that we do not show in Table 1 for the sake of brevity.
Finally, we note that we also compared the results of our calculation with the analytic
results of Ref. [18], that correspond to a particular case of ; = 3; and 6;; = 7, and found
excellent agreement.

To check the obtained results for two different velocities, 8; # 3;, we performed direct
numerical integration of the eikonal functions in the laboratory frame using the sector-
decomposition approach as implemented in the pySecDec package [43]. Since the structure
of singularities for 3; ; # 1 is simpler than in the case with massless emitters, it is straight-
forward to subtract the collinear m||n singularity, and then extract the soft singularity if
needed.

To prepare a suitable input for pySecDec, we write the function Oz in the following
way

1

0= = /01 e ({0~ Can)e?Zi5 0, i )

+<Cmnw25ij(w,ﬁm,ﬁn)> ) (5.8)
mn

[1]

g mn
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where the eikonal factors for gluons and quarks =;; = {g’ij,iij} need to be integrated over
directions of partons m and n, and the energy of the parton n.

The action of the Cyy, operator in Eq. (5.8) makes the first term finite in the m||n limit,
and simplifies the second one, rendering it amenable to analytic integration. In particular,
as we have seen earlier when discussing the Chy, limit, integrations over w and the directions
of partons m and n factorize. We find

1 dw 2= — -
/0 wht2e <<Cm" “ :”(w’nm’n“)>mm> (5.9)
1 1 2
=Wz (Piifé Npal + pi IV 0] - 2PijI£,1)[Piiapjjv Pij]) :

with angular integrals provided in Appendices A and B. The functions Wz are obtained
by integrating over w; they are

1—2¢

Ws= T 122 (6 —e(11 — e +4e?) — 2e*(11 + 46*) (V12— — V—c)) (5.10)
7= 62(1__255) (1-2:(1 =) +e(2—e(3 —4e)(¥1jo—c — V) - (5.11)

To integrate terms in the integrand in Eq. (5.8) with the m||n divergences subtracted,
we write them as follows

1

fscdgz/ dw w772 (FGUw, i, i) + EF G @, i i) (5.12)
0 K
1

IQQ_/O dw w E<J—“QQ(w,nm,nn)>m. (5.13)

The functions Fga,gq are finite in the w — 0 limit and are independent of the regularisation
parameter €. Angular integrations over the directions of the parton momenta have to be
performed in (d — 1)-dimensions. We treat these integrations, as well as integrations over
w using the sector decomposition [43].°

The results of this evaluation for several benchmark points are shown in Table 2, where
the finite parts of the integrated double-emission eikonal functions for three kinematic
points are given. We observe a rather satisfactory agreement between the two independent
calculations of the integral of the double-emission eikonal function.

We would like to conclude this section by showing the results for the integrated double-
emission eikonal functions for a few benchmark points. These results, shown in Tables 3,4
can be used to verify that the numerical code from the git-repository is interpreted and
used properly, including the e-dependent normalization prefactor.

6 Conclusion

In this paper, we computed the integrals of the double-emission eikonal functions for two
massive emitters whose momenta are at an arbitrary angle to each other. This result is one

SWe note that functions Fge,og are non-singular, so it is possible and, in fact, beneficial to keep them
implicit during the sector-decomposition process.
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Bi Bj  cost; g3 g2 g1 el
0.08 0.36 -0.4257 | 5.7483627 - 1072 3.3156281-1072 1.7083994 107! 3.477025(18) 1071
0.36 0.64 -0.9686 | 3.9188310-10"! 2.9983506-10"! 1.1508376 2.40990(8)
0.64 0.92 0.4258 | 7.0543274-10"! 1.3901524 4.1595510 9.6427(3)

Table 3. Benchmark results for the function Ogg, c.f Eq. (5.6).

Bi B  cosb g2 1 20
0.08 0.36 -0.4257 | 1.9161209-10"2 2.4858662-107°% —1.5041(21)-10"*
0.36 0.64 -0.9686 | 1.3062770-10"1 1.3410916-1072  1.0100(14) - 1072
0.64 0.92 0.4258 | 2.3514424-10"' 2.9111167-10"!  4.5287(6) - 10*

Table 4. Benchmark results for the function Ogg, c.f. Eq. (5.6).

of a few ingredients required for extending the nested soft-collinear subtraction scheme [1]
to processes with massive partons.

Our computation is based on the approach already described in Refs. [20, 21] where
local subtractions were used to remove potential singularities from the eikonal functions.
The subtracted terms are integrated analytically, whereas finite remainders, suitable for
numerical integration, are computed in four space-time dimensions.

We emphasize that all 1/e poles that appear in the integral of the double-soft eikonal
function are calculated analytically. The analytic results are expressed in terms of standard
logarithmic and polylogarithmic functions up to weight four, as well as the function Lig o.
This simple representation enables fast and efficient evaluation of the analytic part of the
result.

The numerical code that combines the analytic and the numerical parts of the cal-
culation can be obtained from a git-repository. We have checked it for various kinematic
cases, coming to the conclusion that, with very moderate runtimes, it provides a per mille
relative precision for generic velocities and scattering angles.
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A Massless and single-massive angular integrals

In this appendix, we define some of the angular integrals that are used for calculations in
Section 4. These integrals contain either massless propagators, or a massive and a massless
propagator.
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We fix the normalization of angular integrals in such a way that the angular volume

<1>m - <1>mn — 1 (A1)

We begin by introducing the following angular integrals,

is equal to one,

1
< n > - I7(L1) [pza] s paa # 0, (A.2)
Pmz /M
1 (0)
=1 zy] rr = = 07 A3
<pﬁwp?ny >m ab [p y] p. Pyy ( )

These integrals can be computed in a closed form, in terms of hypergeometric functions.
The results read

—n 2T~ pu1
(1) - /1 — _ 9. SV T FIL
In [pll] <1 + 1 p11> 2F1 <n, 1 g, 2 26, 1 n 1= p11> s (A4)
o) (2-2)TF(1-c—a)l(1—c—b)

P12
- F 1-g1- 22, A.
wt P2l = S A TR e —ap) 2 1(“’b’ © 2) (A.5)

B Double-massive angular integrals

We consider angular integrals with two massive propagators defined as

1
( ) =12, (oo s Pl Pan 70,0y 7 0, Py 0. (B.1)

c1 C2
Pmz Pmy

They can be mapped onto loop integrals by using the reverse unitarity [26]

0, = 2o [andEI0 kD) B2

e T (2m) (k1) (k- 12)™

where the scalar products among P, !, [ read
P.-lis=1, P =1, I?=p. =u, l%zpyy:y, li-lo = pay = w. (B.3)

The powers of the propagators ¢; may depend linearly on €. We write ¢; = a; + b;e and
assume that a; and b; are integers.

We can reduce the number of integrals with two massive propagators that need to be
computed, by using the integration-by-parts (IBP) technology [27, 28]. Because ¢; depends
on €, one has to keep powers of propagators symbolic when solving the IBP identities.
We note that since the IBP identities relate integrals whose propagator powers differ by
integers, integrals with different b;’s cannot be connected by IBP relations.

We use Kira 3 [44] to perform the IBP reduction with symbolic propagator powers.
We find that all integrals Ic(f ?CQ, with ¢; = a; +¢€b;, 1 = 1,2, can be expressed through four
master integrals

) 2) (2) 2) T
f_ (Ibls,bgs’ I1+b16,b257 Ib1€,1+b2€’ Il+b16,1+b25> . <B4)
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To compute them, we define a new integral basis

1 T
= B.5
g 1— 9% (gla g2, 93, 94) ) ( )
where @ B @
g1 = [1 - (bl + b2 + 2) 8] Ib1£,b28 + b1611+b15,b25 + b25]b18,1+b25’
g2 = €V 1- foi-)ble boe?
@) ’ (B.6)
g3 = ¢ 1—- be1€,1+b2€’
_ (2)
gas = ¢ w2 - xy‘ll-i-bls,l-‘rbza'
The integrals g1, 4 satisfy the differential equations of the form
dg = ¢(dA) g, (B.7)
where the matrix A reads
ni1+n2<2
A= > BP0 AL, (B.8)
n1=0,n2=0
with
0 0 0
—LLs—Li 0
Ago = ,
s 0 Ly— L
-L Ly -Lip Le—Ls
i 0 0
0o -4 0 0
Ao = L L L L '
I R
R
(B.9)
L 0 —Lg 0
o |0 HrL-E
0 0 L 0 7
S =Y
L Lg L L L
0 —%F -5 2 0-2-00 00-%0
0 0 0 O 0 0 00 00 0 O
Al = JAgg = ,Ag2 =
0 0 0 O 0 0 00 00 0 O
0 0 0 0 0 0 00 00 0 O
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In the above equations, we have used the following short-hand notations

L; =log(z), Ly = log(y),
L3 = log(1 — z), Ly =log(1 —y),
= log (w® — zy), Lg=log (1 —w)* — (1 —2)(1—v)),

1—+/1-— 1—1-—
log x) Ls = log <y> , (B.10)
1 1+v1—-y

o
( w?—xy>, Lm:log(l—w—mmy

l—w+v1—-—2y1l—y

w—1x—1—zy/Ww? -2y Ly = log w—y—1—yy/w?—xy ‘
w—y+vI-yy/w—zy

glz=1y=1w=1)=(1,0,0,0)", (B.11)
and rationalize the square roots in the differential equation, by changing variables

__Am )= 4no w— 2 (mmn2 + 2%)
(m+1)2 (2 +1)% (m+1)(e+1)z

(B.12)

The resulting differential equations are then simple enough, and the solution can be
straightforwardly obtained in terms of GPLs.

B.1 Two-loop double-massive integrals

In Section 4.1 we introduced the following integral family

(2) _ 1
Ia1,a2,a3,a4+b4€ - <p&%p%2ypgng&+b4a >mn ) (B.13)

and used such integrals to write the strongly-ordered contribution to the eikonal function
S.[Gij]. To compute these integrals we perform the IBP reduction with Kira 3 and identify
twelve master integrals

(2) _ 72 (2)
fi= 0 0 0,bse? fo= Io,o,o,1+b4sv f3= 0,1,0 bye’ fa= IO,l,O 14-bye?
_ 12 _ 72 _ 72
f5 - 00»171745’ f6 - 10,0,1,1+b48’ f7 - ‘[07]_71,[)457 f8 - 10,1,1,1+b48’ (B14)
_ 72 _ 72 _ 72 _ 72
fo = Il,O,l,b4s7 fio= Il,—l,l,b4e’ Ju= 11,0,1,1+b457 fi2= Il,—1,1,1+b45‘

We then construct differential equations for these master integrals by differentiating them
with respect to x = ps, ¥ = pyy and w = pgy, and using the reduction to express the result
in terms of f12.12. It is also possible to construct a canonical basis for these integrals
that we will again refer to as g. The relation between g and f reads

g=TF, (B.15)
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where

Ti1 0 0
T = 0 Ty O ) (B‘16)
T51 0 Ti3
with
(bat+2)e—1 b
o1 12 O 0 0 0 00
0 ¥5E 0 0 0 0 00
T = . , I31 = ;
0 0 Y=L 0 0 0 00
ey/w?—zy (b4+2)(bae—1) (ba+2)e
0 0 0 1-2¢ 2bg (1—2¢) 2(e—1) 00
(B.17)
0 0 SVt
(1—2¢)2
0 0 0 (11_—;55
T = (ba+2)v/T—ye2 ’
. -
by (1—2¢)2 0 0 0
_ 2(bg+2)e?  (ba+2)e((ba+2)e—1) 0 _ (bat2)e?
ba(1—2¢)? ba(1—2¢)? (1—2¢)2
and
€
T22 = 1/ 1-— yl — QETH. (B18)
The corresponding matrix A in the dlog form of differential equation dg = ed(A) g reads
2
A=) A, (B.19)
n=-—1
with
0000 0O 0000000 0—%000 0 0000 O00O0
0000 0O 0000000 0 0 000 O 000O0O0O
0000 O 00000O0O 0 0 000 0 000OO0O
0000 O 0000000O 0 0 000 O 000O0O0OO
0000 0O 0000000O0 0 0 OOO—%OOOOOO
0000 O 0000000O0 0 0 000 O 000O0O0OO
A = JAg = ,  (B.20)
0000 0O 0000000 0 0 000 O 000O0O0O
0000 0O 0000000 0 0 000 O 000O0O0OO
0000-L120000000 0 0 000 0 000OO0O
0000 Lig 0000000 0 0 00O O 000O0O0OO
%000 0 0000000 0 0 000 O 000O0O0OO
0000 2Lg 0000000 0 Z 000 0 000%00
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and

0 0 00 0 0 0 0
“L Ly-Ly 0 0 0 0 0 0
L 0 Li—Ly 0 0 0 0 0
-L —Ly —LiyL¢—Ls 0 0 0 0
—Ls 0 0 0 Ly—Ly 0 0 0
0 L 0 0 -4 —Li—Ly+Ls+Li 0 0
AO — 2 2
0 0 L0 L 0 2Ly — 2Ly 0
0 0 0o - -L ~Ln —Lis —Lo+Ls—Ls+ Lg
Lo Ly 0 0 0 0 0 0
L L _j,+Lk o 0 0 —Ls 0 0
% 0 0 0 0 0 0 0
0 0 0 0 Lg —2L1o 0 0
e 0 0 0 o0 0 0
0 L 0 0 0 o 0 0
0 Lo Ly, Lp 0 0 0 0
0 h < BoLeko oo o 0
0 0 0 0 ~L L 0 0
A 0 0 0 0 0o -4 0 0
1 p—y
0 0 0 0 0 4o Ly Lo Le
0 0 0 0 0 ,% _ L % Ls + Lzb
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
[ 0 0 0 —Lio 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Ly+ Ly —3Ls+2Lg —L1n  —L12

2Lg —L1—Ly+ Ls

R T ]

Ly Ly—Li L
Ly Ly Ly— Ly
—2Lg 2L7
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 L 0
—Ly  2I; Ls

° |, (B.21)

(B.22)

L

&

The logarithms L; 12 that appear in the above equations are defined in Eq. (B.10). The
boundary conditions are easily fixed by using

gz=1Ly=1Lw=1) =1,

(B.23)

Using the variable transformation as in Eq. (B.12), we remove square roots from the system

of equations and solve it in terms of GPLs.

C Integrals for S, [GE?)]

It remains to discuss the calculation of integrals that are needed for the term gw[GE?)], c.f.
Section 4.4. The required eight master integrals are displayed in Eq. (4.58). We use them

to define a new basis

~ J ~ I _ Vi Jae
) ey PTen
Jy= vighe® Js = v s (w + De? T = videe

(2e —1)%’ (2e —1)2 2 — 1)
7. v J7(1 — 4e)e vijde(w + 1)e 2035.J5(w + 1)e2

T (w—1)(2e —1)?

(w—1)(2c —1)2

(w—1)(2e — 1)2

These integrals satisfy the following canonical differential equations

dJ = e(dA)J,
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where

A1 O
A — , (C.3)
A1 Ao
with
—2L4 0 0 0
Ay — Ls L L) +2L,—Ly—2Ly 0 0
11 — )
%—% 0 —L1+2L2—L3—2L4 0
0 Lo L Lo L —2Ly +4Ly — 2L3 — 2Ly
L1 L
LIy 0 00
Ly Ls Ls Le Lz
————— L1 Ly i g 00 CA4
4 4 2 4 4 .
A21 - L L L L ’ ( )
by Ls g L Ly 0 00
Ls L
0 L _Ligo
—Ly+2Ly — Ly —2L5 Ly —Ls Ly 0
Aoy — Li—Ls—Le+ Ly —Ly+A4Ly— Ly —2Ls — Lg — Ly Ly — Lg 0
22 =
Ly + L3 +2Ls — L¢ — L7 —Ly+ Ly — L+ Ly 2Ly — 2Ly — Lg — Ly 0
Li—Ls Ly Ly~ Ls —2Ly +4Ly — 2L3 — 2Ly

The logarithms L; in this case are given by

Ly = log(1 — v;j), Ls = log(1 +w),

Ly = log(vij), Lg = log(1 + w + v — wvij),
L = log(1 + vjj), L7 =log(1 + w — vij + wuyj).
Ly = log(w),

The boundary conditions are easily fixed by using

Jn(vij = O) = w_2651n. (05)
Finding the solution of the system of differential equations in terms of GPLs is straight-
forward.
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