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b → c semileptonic sum rule: Extension to angular observables
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Lepton flavor universality is a key prediction of the Standard Model of particle physics and any
violation of it immediately indicates the existence of new physics. Given the recent more than 4σ
discrepancy in charged current semileptonic B meson decays and the absence of evident signals
at the large hadron collider, independent cross-checks become invaluable. In this context, b → c
semileptonic sum rules based on heavy quark symmetry are interesting since they allow us to check
the consistency of experimental results. In this paper, we report newly found sum rules among
angular observables of mesonic and baryonic b → clν decays holding exactly in the large mass limit
of heavy quarks. Moreover, we investigate corrections to the sum rule in realistic situations and
discuss phenomenological implications.
———————————————————————————————————————————
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I. INTRODUCTION

The b → c semileptonic sum rule for RHc = BR(Hb →
Hcτν)/BR(Hb → Hcℓν) with ℓ = e, µ, is shown as [1–4]

RΛc

RSM
Λc

− αR
RD

RSM
D

− βR
RD∗

RSM
D∗

= δR, (1)

where the coefficients satisfy αR + βR = 1 and are inde-
pendent of new physics (NP) contributions. δR is found
to be small compared to current experimental uncertain-
ties, enabling us to apply it as a robust consistency check
of experimental results. Note that B (D) and B∗ (D∗)
form the lowest-lying beauty (charming) meson heavy
quark doublet and Λb (Λc) corresponds to the lowest-
lying beauty (charming) baryon. Hence, the sum rule
is satisfied among ground-state to ground-state transi-
tions. Recently, based on the heavy quark effective the-
ory (HQET) [5, 6], another relation has been derived for
mesonic and baryonic differential decay rates [7]

κw
Λc

ζ(w)2
− 2 (κw

D + κw
D∗)

(1 + w)ξ(w)2
≈ 0, (2)

where κw
Hc

= dΓHc/dw with ΓHc = Γ(Hb → Hcτν) are

defined for w = (m2
Hb

+ m2
Hc

− q2)/(2mHb
mHc

) and q2

being the invariant mass of the leptons. Equation (2)
holds exactly in the large mass limit of heavy quarks,
i.e., mb,c ≫ ΛQCD. Also, Eq. (2) can be rewritten as

κw
Λc

κw,SM
Λc

− α
κw
D

κw,SM
D

− β
κw
D∗

κw,SM
D∗

≈ 0, (3)

again satisfying α+ β = 1. Then, Eq. (1) is obtained by
integrating numerators and denominators over w, and by

normalizing with the decay widths of light-lepton modes.
In other words, the HQET is explicitly shown to be a
pillar of the robust b → c semileptonic sum rule for RHc

.
Given the more than 4σ discrepancy between the Stan-

dard Model (SM) prediction and the experimental value
of RD and RD∗ [8], a tremendous number of NP inter-
pretations have been explored, and the relations which
enable us to cross-check the consistency of the experi-
mental results become more important. In this paper,
we provide sum rules involving angular observables, e.g.,
the forward-backward asymmetry of the charged lepton,

AHcl
FB =

(
ΓHc
cθl>0 − ΓHc

cθl<0

)/(
ΓHc
cθl>0 + ΓHc

cθl<0

)
, (4)

where ΓHc

cθl≷0 denotes the decay rates satisfying cos θl ≷

0 with cθl being short for cos θl and θl being the angle
between the charmed-hadron and the charged lepton in
the bottomed-hadron rest frame, as well as the charged-
lepton polarization observable,

PHc

l =
(
ΓHc

λl=1/2 − ΓHc

λl=−1/2

)/(
ΓHc

λl=1/2 + ΓHc

λl=−1/2

)
,

(5)

where ΓHc

λl
is the rate with λl denoting a charged-lepton

polarization. In the case of l = τ , only the experimental
measurement of PD∗

τ is currently available and its un-
certainty is still as large as O(100)% [9]. In future Belle
II could determine PD

τ at 3% level and PD∗

τ at about
15% [10–12]. Baryon observables measured at on-going
and future colliders [13–16] can be compared with the
predictions via sum rules with up-coming Belle II input
[11].
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The outline of this letter is as follows: In Sec. II, we
introduce our framework and present the new sum rule
involving double-differential decay rates. In Sec. III, we
investigate corrections to the sum rule and discuss phe-
nomenological implications. Sec. IV is devoted to the
conclusion.

II. b → c SEMILEPTONIC SUM RULE OF
ANGULAR OBSERVABLES

We assume that the NP contributes to the b → clν̄l
transitions in the following form:

Leff = −4GFVcb√
2

[
(1 + Cl

VL
)Ol

VL
+ Cl

SL
Ol

SL
(6)

+ Cl
SR

Ol
SR

+ Cl
TO

l
T

]
.

The effective operators are defined at µ = µb as

Ol
VL

= (cγµPLb)(lγµPLνl), Ol
SL

= (cPLb)(lPLνl), (7)

Ol
SR

= (cPRb)(lPLνl), Ol
T = (cσµνPLb)(lσµνPLνl),

where l = e, µ, τ , PL(R) = (1 ∓ γ5)/2, and σµν =

(i/2)[γµ, γν ] with σµνγ5 = −(i/2)ϵµνρσσρσ.
#1 NP con-

tributions are encoded into the Wilson coefficients (WCs)
Cl

X with X = VL, SL,R and T . The SM case corresponds
to Cl

X = 0. In the following, motivated by the discrep-
ancy in RD(∗) , we will focus on the tauonic NP scenario,
i.e., l = τ [3, 24, 25].
Let us provide a new sum rule holding among the

double-differential decay rates,

κ
wcθl ,λl

Λc

ζ(w)2
−

2
(
κ
wcθl ,λl

D + κ
wcθl ,λl

D∗

)
(1 + w)ξ(w)2

= 0, (8)

where κ
wcθl ,λl

Hc
= d2ΓHc

λl
/dw dcθl

#2 and the leading-order

Isgur-Wise (IW) functions, ζ(w) and ξ(w), are intro-
duced for Λb → Λc and B → D(∗), respectively. The
relation holds for any cθl and each λl as well as any
w under the heavy quark symmetry, i.e., at the lead-
ing order of the IW expansion and the limit of heavy
quark hadron masses satisfying mb ≈ mB ≈ mΛb

and
mc ≈ mD ≈ mD∗ ≈ mΛc

. Summing up both lepton po-
larizations and integrating over cθl reproduces the single-
differential decay rate sum rule, Eq. (2). This finding

leads us to propose two new sum rules involving Aτ
FB

and Pτ for each to be tested experimentally:#3

• Sum rule for the forward-backward asymmetry of

the charged lepton: (AHcτ
FB /AHcτ, SM

FB )(RHc
/RSM

Hc
).

• Sum rule for the τ -polarization difference:
(PHc

τ /PHc,SM
τ )(RHc

/RSM
Hc

).

Their explicit forms are shown in Eqs. (10) and (11) in-
cluding corrections. See AppendixC for the construction
in the heavy quark limit. It is noted that the tauonic
total decay width in the denominator of Eqs. (4) and (5)
is canceled with that in the numerator of RHc

. PD
τ is

interesting since it is known to be useful to distinguish
NP models which explain the RD(∗) anomaly [1, 26–30].
Therefore confirming experimental results with the one
involving PHc

τ provides an important cross-check.

III. CORRECTIONS TO THE SUM RULE AND
IMPLICATION

Let us check how large corrections exist in the sum
rules. In reality, the heavy quark symmetry is violated
by higher-order corrections in the heavy quark expansion.
The heavy flavored hadron masses include corrections as
well as the heavy quark mass. In the HQET, they are
expressed as [31–33]

mHQ
≃ mQ

(
1 +

Λ̄

mQ
+

∆m2

2m2
Q

)
, (9)

where mQ is a heavy quark mass parameter. Also,
Λ̄ and ∆m parametrize a light quark contribution and
the heavy quark kinetic energy in a hadron, respec-
tively, and are of the order of the QCD scale ΛQCD.
Moreover, higher-order corrections to the IW func-
tions of O(ΛQCD/2mQ) and O(Λ2

QCD/4m
2
Q) enter in the

Hb → Hc transition form factors. We will use the
HQET form factor input from Refs. [33, 34].#4 Then
numerical formulae of (PHc

τ /PHc,SM
τ )(RHc

/RSM
Hc

) and

(AHcτ
FB /AHcτ, SM

FB )(RHc
/RSM

Hc
) are obtained for mesonic

and baryonic decays (see Eqs. (B3)–(B8) in Appendix B).
Combining three relations where the coefficients α and β
are determined such that |1+Cτ

VL
|2 and Re[(1+Cτ

VL
)Cτ∗

SR
]

terms are vanishing (see, e.g., Refs. [1–4] for such a pre-
scription), the sum rules are derived as

#1 We assumed that the charged mediator of b → clν transition is
much heavier than the typical energy scale of bottomed-hadron
decays. Lepton flavor is assumed to be conserved. Also, all light
neutrinos are assumed to be left-handed. For studies including
right-handed neutrinos see Refs. [17–23].

#2 See AppendixA for details. Also, the sum rule holds for light-

lepton modes as well.
#3 Uncertainties from form factor as well as experimental measure-

ments will be reduced by normalizing with light-lepton decay
widths.

#4 To be precise we used the fit result of the z210 scenario for the
B → D(∗) transition and the b̂1,2 ̸= 0 scenario for the Λb → Λc

transition.
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PΛc
τ

PΛc,SM
τ

RΛc

RSM
Λc

− αPτ

PD
τ

PD,SM
τ

RD

RSM
D

− βPτ

PD∗

τ

PD∗,SM
τ

RD∗

RSM
D∗

= δPτ
, (10)

AΛcτ
FB

AΛcτ,SM
FB

RΛc

RSM
Λc

− αAτ
FB

ADτ
FB

ADτ,SM
FB

RD

RSM
D

− βAτ
FB

AD∗τ
FB

AD∗τ,SM
FB

RD∗

RSM
D∗

= δAτ
FB
. (11)

If the corrections, δPτ
and δAτ

FB
, are small enough (even when their uncertainties are taken into account) compared

to the experimental uncertainties, the sum rules are useful to check the consistency of the experimental results simply
by neglecting the correction terms. Even when the experimental values are determined so precisely that δPτ

and δAτ
FB

are not negligible, the sum rules could be applied to discriminate the NP scenarios. The corrections, δPτ
and δAτ

FB
,

consist of bilinears of the WCs as δY =
∑
ij

Cτ
i C

τ∗
j δijY with Y = Pτ , A

τ
FB, and are approximately expressed, ignoring

uncertainties, as

δPτ ≃ −0.149Re[(1 + Cτ
VL

)Cτ∗
SL

]− 0.036
(
|Cτ

SL
|2 + |Cτ

SR
|2
)
− 0.136Re[Cτ

SL
Cτ∗

SR
] + 0.540Re[(1 + Cτ

VL
)Cτ∗

T ]− 0.892|Cτ
T |2,
(12)

δAτ
FB

≃ +2.73Re[(1 + Cτ
VL

)Cτ∗
SL

] + 21.2Re[(1 + Cτ
VL

)Cτ∗
T ]− 46.2|Cτ

T |2 − 0.503Re[Cτ
SL

Cτ∗
T ] + 11.2Re[Cτ

SR
Cτ∗

T ], (13)

with αPτ
= 1 − βPτ

≃ −0.258, αAτ
FB

= 1 − βAτ
FB

≃
2.53. In the absence of the NP contribution, i.e.,
within the SM, the corrections vanish as δPτ = δAτ

FB
=

0. Also, we obtain PHc,SM
τ RSM

Hc
≃ 0.10,−0.12,−0.10

and AHcτ,SM
FB RSM

Hc
≃ 0.11, −0.0094, −0.0082 for Hc =

D, D∗, Λc, respectively. In AppendixD, Figs. 1 and 2 re-
spectively show the probability distributions of αY and
δijY stemming from the form factor inputs.
For the central values, the coefficients involving the

tensor operator in δijPτ
are larger than the others, e.g.,

δTT
Pτ

≃ −0.9, while the scalar coefficients are smaller.
Besides, the tensor coefficients are O(10) in δAτ

FB
, while

δVLSL

Aτ
FB

is about a few. The former mainly comes from mis-

matches between (AD∗τ
FB /AD∗τ,SM

FB ) and (AΛcτ
FB /AΛcτ,SM

FB )
as seen from Eqs. (B7) and (B8). In these numerical

formulae, the coefficients are large because AHcτ,SM
FB is

suppressed for Hc = D∗, Λc.
As seen in Figs. 1 and 2, the uncertainty of αPτ

is less
than 3%, while αAτ

FB
has ∼ 10% uncertainty. Regarding

δPτ
, the uncertainties of the scalar coefficients are 30–

40%, while those of the tensor are ∼ 10% for ij = VLT
and ∼ 4% for TT . Similarly, in δAτ

FB
, the uncertainty

is ∼ 20% except for the ij = SLT case where we have
∼ 100% uncertainty.#5

Let us estimate δPτ
and δAτ

FB
with the WCs which are

determined by performing a global fit to the current ex-
perimental values of RD(∗) and FD∗

L [35]. The results
are summarized in Table I. We consider three ‘single op-

#5 In the SLT case, the relative uncertainty is large, because the
central value is suppressed by a cancellation among the contri-
butions.

erator’ scenarios and three ‘single leptoquark (LQ)’ sce-
narios. In AppendixD, Figs. 3 and 4 respectively show
δPτ and δAτ

FB
at each benchmark point. We define the

central value by fitting the probabilities to Gaussian dis-
tributions. Out of three single operator scenarios, the
SL case predicts δPτ ∼ 0.05, while the others predict
δPτ = O(10−3). Among three LQ scenarios, only the
S1 LQ scenario yields δPτ ∼ −0.04, while the other two
scenarios predict at most 1% level in δPτ . On the other
hand, δAτ

FB
can be largely deviated from 0 and become

as large as O(−1) in the SL and R2 LQ scenarios. The
T and S1 LQ scenarios predict smaller corrections. It is
noted that the SR and U1 LQ scenarios predict δAτ

FB
= 0

Scenario Parameter Value Pull δPτ δAτ
FB

SR Cτ
SR

0.182 3.9 −0.001 0

SL Cτ
SL

−0.57± 0.86i 4.3 0.05 −1.6

T Cτ
T 0.02± 0.13i 3.8 −0.004 −0.38

R2 Cτ
SL

= 8.4Cτ
T −0.09± 0.56i 4.4 −0.008 −0.7

S1 Cτ
SL

= −8.9Cτ
T 0.02± 0.13i 4.1 −0.04 0.05

U1 Cτ
VL

,ϕ 0.075, ±0.466π 4.4 −0.003 0

TABLE I. Corrections to the sum rules, δPτ and δAτ
FB

, in the

single operator (SR, SL, T ) and single leptoquark scenarios
(R2, S1,U1). The first column represents the scenario, whose
relevant WCs are listed in the second. For U1 LQ, we consider
the U(2)-flavored scenario, satisfying Cτ

SR
= −3.7eiϕCτ

VL
. See

Ref. [35] for the detail. The best-fit values of the WCs at the
µb scale are shown in the third, and the fit quality is expressed
by the pull in the forth, whose definition is found in Ref. [35].
The last two columns provide the central values of δPτ and
δAτ

FB
in each scenario.
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and hence they are removed from the figure.
In summary, the correction to the sum rule δY can be

large for Y = Aτ
FB and at most ∼ 5% for Y = Pτ . This

means that the sum rule involving Aτ
FB is more sensitive

to the NP effect and can be useful to discriminate the
scenarios if the experimental uncertainties are compara-
ble. While checking the experimental consistency with
the τ -polarization sum rule will be important too. Cur-
rently, future experimental prospects are available only
for PD

τ and PD∗

τ . Although estimating the uncertainty
of the product of observables, e.g., PHc

τ RHc , needs care-
ful study as some of the uncertainties in each observable
should correlate to each other, it is highly encouraged in
light of the new angular sum rules.

IV. CONCLUSION

In this paper, we extended the previous studies of the
b → c semileptonic sum rule for the single-differential
decay rates and found a new relation for the double-
differential decay rates, which holds exactly in the heavy
quark limit. We then derived two sum rules involving
the τ -polarization observable, Pτ , and the charged lepton
forward-backward asymmetry, Aτ

FB. In reality, the heavy
quark symmetry is violated and the sum rules receive
corrections from higher-order effects in the heavy quark
expansion, i.e., the realistic mass spectrum and the inclu-
sion of higher-order terms of the IW functions. We also
evaluated these corrections numerically. Using HQET-
based form factors, we demonstrated that currently the
sum rule coefficients, αPτ and αAτ

FB
, can be determined

with precisions of approximately 3% and 11%, respec-
tively. To reduce the uncertainty of these coefficients,
experimental input of Λb → Λcµν and Lattice calcu-
lations are important. Furthermore, we estimated the
corrections in the NP scenarios motivated by the RD(∗)

anomaly. It is found that these corrections are at most
∼ 5% for the τ -polarization sum rule, Eq. (10), while they
can reach around −100% for the Aτ

FB case, Eq. (11), de-
pending on the NP scenarios. These new sum rules will
provide independent cross-checks of experimental results.
By testing both angular sum rules, we can better explore
and tell apart NP scenarios. These results encourage
the feasibility study at on-going and future experiments
[11, 13–16].
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Appendix A: Differential decay rate

Here, let us write the double differential decay rates of B → D(∗)lν̄ and Λb → Λclν̄ for each l-lepton polarization
such that

d2Γλl(B → Dlν̄)

dq2d cos θl
=

G2
F |Vcb|2ηEW

√
QD

+QD
−

256π3m3
B

q2
(
1− m2

l

q2

)2 (
Aλl

0 +Aλl
1 cos θl +Aλl

2 cos2 θl

)
, (A1)

d2Γλl(B → D∗lν̄)

dq2d cos θl
=

G2
F |Vcb|2ηEW

√
QD∗

+ QD∗
−

512π3m3
B

q2
(
1− m2

l

q2

)2 (
Bλl
0 + Bλl

1 cos θl + Bλl
2 cos2 θl

)
, (A2)

d2Γλl(Λb → Λclν̄)

dq2d cos θl
=

G2
F |Vcb|2ηEW

√
QΛc

+ QΛc
−

512π3m3
Λb

q2
(
1− m2

l

q2

)2 (
Cλl
0 + Cλl

1 cos θl + Cλl
2 cos2 θl

)
, (A3)

with ηEW being an electroweak correction and

QHc
± = (mHb

±mHc
)
2 − q2 . (A4)
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The squared-amplitudes for B → Dlν̄ are given by

A+1/2
0 = |1 + Cl

VL
|2m

2
l

q2
(Hs

Vt
)2 + |Cl

SL
+ Cl

SR
|2(Hs

S)
2 + 2Re[(1 + Cl

VL
)(Cl

SL
+ Cl

SR
)∗]

ml√
q2

Hs
Vt
Hs

S , (A5)

A+1/2
1 = 2|1 + Cl

VL
|2m

2
l

q2
Hs

Vt
Hs

V0
− 8Re[(1 + Cl

VL
)Cl∗

T ]
ml√
q2

Hs
Vt
Hs

T (A6)

+ 2Re[(1 + Cl
VL

)(Cl
SL

+ Cl
SR

)∗]
ml√
q2

Hs
V0
Hs

S − 8Re[(Cl
SL

+ Cl
SR

)Cl∗
T ]Hs

SH
s
T ,

A+1/2
2 = |1 + Cl

VL
|2m

2
l

q2
(Hs

V0
)2 + 16|Cl

T |2(Hs
T )

2 − 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

Hs
V0
Hs

T , (A7)

A−1/2
0 = −A−1/2

2 = |1 + Cl
VL

|2(Hs
V0
)2 + 16|Cl

T |2
m2

l

q2
(Hs

T )
2 − 8Re[(1 + Cl

VL
)Cl∗

T ]
ml√
q2

Hs
V0
Hs

T , (A8)

A−1/2
1 = 0 . (A9)

For B → D∗lν̄, they are given by

B+1/2
0 = |1 + Cl

VL
|2m

2
l

q2
(
(HV+)

2 + (HV−)
2 + 2(HVt)

2
)
+ 2|Cl

SL
− Cl

SR
|2H2

S + 16|Cl
T |2
(
(HT+)

2 + (HT−)
2
)

− 4Re[(1 + Cl
VL

)(Cl
SL

− Cl
SR

)∗]
ml√
q2

HVt
HS − 8Re[(1 + Cl

VL
)Cl∗

T ]
ml√
q2

(
HV+

HT+
−HV−HT−

)
, (A10)

B+1/2
1 = 4|1 + Cl

VL
|2m

2
l

q2
HV0

HVt
− 4Re[(1 + Cl

VL
)(Cl

SL
− Cl

SR
)∗]

ml√
q2

HV0
HS

− 16Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

HVtHT0 + 16Re[(Cl
SL

− Cl
SR

)Cl∗
T ]HSHT0

, (A11)

B+1/2
2 = |1 + Cl

VL
|2m

2
l

q2
(
2(HV0)

2 − (HV+)
2 − (HV−)

2
)
+ 16|Cl

T |2
(
2(HT0)

2 − (HT+)
2 − (HT−)

2
)

− 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
2HV0

HT0
−HV+

HT+
+HV−HT−

)
, (A12)

B−1/2
0 = |1 + Cl

VL
|2
(
2(HV0

)2 + (HV+
)2 + (HV−)

2
)
+ 16|Cl

T |2
m2

l

q2
(
2(HT0

)2 + (HT+
)2 + (HT−)

2
)

− 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
2HV0

HT0
+HV+

HT+
−HV−HT−

)
, (A13)

B−1/2
1 = 2|1 + Cl

VL
|2
(
(HV+

)2 − (HV−)
2
)
+ 32|Cl

T |2
m2

l

q2
(
(HT+

)2 − (HT−)
2
)

− 16Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
HV+HT+ +HV−HT−

)
, (A14)

B−1/2
2 = |1 + Cl

VL
|2
(
− 2(HV0)

2 + (HV+)
2 + (HV−)

2
)
+ 16|Cl

T |2
m2

l

q2
(
− 2(HT0)

2 + (HT+)
2 + (HT−)

2
)

+ 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
2HV0

HT0
−HV+

HT+
+HV−HT−

)
. (A15)
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The squared-amplitudes for Λb → Λclν̄ are given by

C+1/2
0 = |1 + Cl

VL
|2m

2
l

q2
(
(HH+

V⊥
)2 + (HH−

V⊥
)2 + (HH+

V0
)2 + (HH−

V0
)2
)
+ 16|Cl

T |2
(
(HH+

T⊥
)2 + (HH−

T⊥
)2
)

+ (|Cl
SL

|2 + |Cl
SR

|2)
(
(HH+

S )2 + (HH−
S )2

)
+ 4Re[Cl

SL
Cl∗

SR
]HH+

S HH−
S

+ 2Re[(1 + Cl
VL

)Cl∗
SL

]
ml√
q2

(
HH+

V0
HH+

S +HH−
V0

HH−
S

)
+ 2Re[(1 + Cl

VL
)Cl∗

SR
]
ml√
q2

(
HH+

V0
HH−

S +HH−
V0

HH+
S

)
+ 8Re[(1 + Cl

VL
)Cl∗

T ]
ml√
q2

(
HH+

V⊥
HH+

T⊥
+HH−

V⊥
HH−

T⊥

)
, (A16)

C+1/2
1 = 2|1 + Cl

VL
|2m

2
l

q2
(
HH+

V0
HH+

V+
+HH−

V0
HH−

V+

)
+ 2Re[(1 + Cl

VL
)Cl∗

SL
]
ml√
q2

(
HH+

V+
HH+

S +HH−
V+

HH−
S

)
+ 2Re[(1 + Cl

VL
)Cl∗

SR
]
ml√
q2

(
HH+

V+
HH−

S +HH−
V+

HH+
S

)
+ 8Re[(1 + Cl

VL
)Cl∗

T ]
ml√
q2

(
HH+

V0
HH+

T+
+HH−

V0
HH−

T+

)
+ 8Re[Cl

SL
Cl∗

T ]
(
HH+

T+
HH+

S +HH−
T+

HH−
S

)
+ 8Re[Cl

SR
Cl∗

T ]
(
HH+

T+
HH−

S +HH−
T+

HH+
S

)
, (A17)

C+1/2
2 =|1 + Cl

VL
|2m

2
l

q2
(
(HH+

V+
)2 + (HH−

V+
)2 − (HH+

V⊥
)2 − (HH−

V⊥
)2
)
+ 16|Cl

T |2
(
(HH+

T+
)2 + (HH−

T+
)2 − (HH+

V⊥
)2 − (HH−

V⊥
)2
)

+ 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
HH+

V+
HH+

T+
+HH−

V+
HH−

T+
−HH+

V⊥
HH+

T⊥
−HH−

V⊥
HH−

T⊥

)
, (A18)

C−1/2
0 =|1 + Cl

VL
|2
(
(HH+

V+
)2 + (HH−

V+
)2 + (HH+

V⊥
)2 + (HH−

V⊥
)2
)
+ 16|Cl

T |2
m2

l

q2
(
(HH+

T+
)2 + (HH−

T+
)2 + (HH+

T⊥
)2 + (HH−

T⊥
)2
)

+ 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
HH+

V+
HH+

T+
+HH−

V+
HH−

T+
+HH+

V⊥
HH+

T⊥
+HH−

V⊥
HH−

T⊥

)
, (A19)

C−1/2
1 =2|1 + Cl

VL
|2
(
(HH+

V⊥
)2 − (HH−

V⊥
)2
)
+ 32|Cl

T |2
m2

l

q2
(
(HH+

T⊥
)2 − (HH−

T⊥
)2
)

+ 16Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
HH+

V⊥
HH+

T⊥
−HH−

V⊥
HH−

T⊥

)
, (A20)

C−1/2
2 =|1 + Cl

VL
|2
(
(HH+

V⊥
)2 + (HH−

V⊥
)2 − (HH+

V+
)2 − (HH−

V+
)2
)
+ 16|Cl

T |2
m2

l

q2
(
(HH+

T⊥
)2 + (HH−

T⊥
)2 − (HH+

T+
)2 − (HH−

T+
)2
)

+ 8Re[(1 + Cl
VL

)Cl∗
T ]

ml√
q2

(
HH+

V⊥
HH+

T⊥
+HH−

V⊥
HH−

T⊥
−HH+

V+
HH+

T+
−HH−

V+
HH−

T+

)
. (A21)

The hadronic helicity amplitudes, Hs
X and HX , for B → D(∗)lν are given in the HQET description as [29, 36]

Hs
V0

= mB

√
rD(w2 − 1)

q̂2D

[
(1 + rD)h+ − (1− rD)h−

]
,

Hs
Vt

= mB

√
rD
q̂2D

[
(1− rD)(w + 1)h+ − (1 + rD)(w − 1)h−

]
, (A22)

Hs
S = mB

√
rD(w + 1)hS ,

Hs
T = −mB

√
rD(w2 − 1)hT ,
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and

HV± = mB
√
rD∗

[
(w + 1)hA1

∓
√

w2 − 1hV

]
,

HV0
= mB

√
rD∗

q̂2D∗
(w + 1)

[
(rD∗ − w)hA1

+ (w − 1)(rD∗hA2
+ hA3

)
]
,

HVt
= −mB

√
rD∗(w2 − 1)

q̂2D∗

[
(w + 1)hA1

+ (rD∗w − 1)hA2
+ (rD∗ − w)hA3

]
, (A23)

HS = −mB

√
rD∗(w2 − 1)hP ,

HT± = ±mB

√
rD∗

q̂2D∗

[
1− rD∗(w ∓

√
w2 − 1)

] [
hT1 + hT2 +

(
w ±

√
w2 − 1

)
(hT1 − hT2)

]
,

HT0
= −mB

√
rD∗

[
(w + 1)hT1

+ (w − 1)hT2
+ 2(w2 − 1)hT3

]
,

where q̂2Hc
= q2/m2

Hb
= 1−2rHcw+r2Hc

and rHc = mHc/mHb
are defined. Regarding Λb → Λclν, they are summarized

as [33, 37]

HH±
V+

= mΛb

√
2rΛ
q̂2Λ

{√
w − 1

[
(1 + rΛ)f1 + (w + 1)(f2rΛ + f3)

]
∓
√
w + 1

[
(1− rΛ)g1 − (w − 1)(g2rΛ + g3)

]}
,

HH±
V⊥

= mΛb

√
2rΛ

[√
w − 1f1 ∓

√
w + 1g1

]
, (A24)

HH±
V0

= mΛb

√
2rΛ
q̂2Λ

{√
w + 1

[
(1− rΛ)f1 + f2(1− wrΛ) + f3(w − rΛ)

]
∓

√
w − 1

[
(1 + rΛ)g1 − g2(1− wrΛ)− g3(w − rΛ)

]}
,

HH±
S = mΛb

√
2rΛ

(√
w + 1h′

S ±
√
w − 1h′

P

)
,

HH±
T+

= mΛb

√
2rΛ

{√
w − 1

[
h1 − h2 + h3 − (w + 1)h4

]
±

√
w + 1h1

}
,

HH±
T⊥

= mΛb

√
2rΛ
q̂2Λ

{√
w − 1

[
(1 + rΛ)h1 − (1− wrΛ)h2 − (w − rΛ)h3

]
±

√
w + 1

[
(1− rΛ)h1 − (w − 1)(h2rΛ + h3)

]}
.

To be self-complete, we introduce the HQET form factors as

⟨D|c̄γµb|B⟩ =
√
mBmD

[
h+(v + v′)µ + h−(v − v′)µ

]
,

⟨D|c̄b|B⟩ =
√
mBmD(w + 1)hS , (A25)

⟨D|c̄γµγ5b|B⟩ = ⟨D|c̄γ5b|B⟩ = 0 ,

⟨D|c̄σµνb|B⟩ = −i
√
mBmD hT

(
vµv′ν − v′µvν

)
,

for the B → D transitions, and

⟨D∗|c̄γµb|B⟩ = i
√
mBmD∗hV ε

µνρσϵ∗νv
′
ρvσ ,

⟨D∗|c̄γµγ5b|B⟩ =
√
mBmD∗

[
hA1

(w + 1)ϵ∗µ − (ϵ∗ · v) (hA2
vµ + hA3

v′µ)
]
,

⟨D∗|c̄γ5b|B⟩ = −
√
mBmD∗(ϵ∗ · v)hP ,

⟨D∗|c̄b|B⟩ = 0 , (A26)

⟨D∗|c̄σµνb|B⟩ = −
√
mBmD∗εµνρσ

[
hT1

ϵ∗ρ(v + v′)σ + hT2
ϵ∗ρ(v − v′)σ + hT3

(ϵ∗ · v)(v + v′)ρ(v − v′)σ
]
,
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for B → D∗. For Λb → Λblν, they are given as

⟨Λc|c̄γµb|Λb⟩ = ū(p′, s′)
[
f1γµ + f2vµ + f3v

′
µ

]
u(p, s) ,

⟨Λc|c̄γµγ5b|Λb⟩ = ū(p′, s′)
[
g1γµ + g2vµ + g3v

′
µ

]
γ5 u(p, s) ,

⟨Λc|c̄ b|Λb⟩ = h′
S ū(p′, s′)u(p, s) , (A27)

⟨Λc|c̄γ5b|Λb⟩ = h′
P ū(p′, s′) γ5 u(p, s) ,

⟨Λc|c̄ σµν b|Λb⟩ = ū(p′, s′)
[
h1 σµν + i h2(vµγν − vνγµ) + i h3(v

′
µγν − v′νγµ) + i h4(vµv

′
ν − vνv

′
µ)
]
u(p, s) ,

where u(p, s) are spinors with momentum p and spin s. Moreover, v = p/mHb
and v′ = p′/mHc

satisfying v · v′ =
w = (m2

Hb
+m2

Hc
− q2)/(2mHb

mHc
) are introduced. The form factors fi, gi, and hi are functions of w and expressed

in the heavy quark limit as [5, 38]

h+ = hV = hA1
= hA3

= hS = hP = hT = hT1
= ξ(w) ,

h− = hA2
= hT2

= hT3
= 0 , (A28)

f1 = g1 = h′
S = h′

P = h1 = ζ(w) ,

f2 = f3 = g2 = g3 = h2 = h3 = h4 = 0 ,

where ξ(w) and ζ(w) are the leading-order IW functions for ground-state mesons and ground-state baryons, respec-
tively, satisfying ξ(1) = ζ(1) = 1. For the mesonic transition, we take corrections of the heavy quark expansion into
account at O(αs, Λ̄/mb,c, Λ̄

2/m2
c) [34]. For the baryonic transition, by following Refs. [33, 39], we take corrections of

heavy quark expansion into account at O(αs, Λ̄/mb,c, αsΛ̄/mb,c, Λ̄
2/m2

c).

Appendix B: Generic formula

In this appendix, we provide a set of numerical formulae of the charged-lepton polarization and the forward-backward
asymmetry. They are defined by

PHc

l =
ΓHc

λl=1/2 − ΓHc

λl=−1/2

ΓHc

λl=1/2 + ΓHc

λl=−1/2

, ΓHc

λl
=

∫ wHc,max

1

dw

∫ 1

−1

dcθl
d2Γλl(Hb → Hclν)

dw dcθl
, (B1)

AHcl
FB =

ΓHc
cθl>0 − ΓHc

cθl<0

ΓHc
cθl>0 + ΓHc

cθl<0

, ΓHc

cθl>(<)0 =
∑

λl=±1/2

∫ wHc,max

1

dw

∫ 1 (0)

0 (−1)

dcθl
d2Γλl(Hb → Hclν)

dw dcθl
, (B2)

with wHc,max = (m2
Hb

+ m2
Hc

− m2
l )/(2mHb

mHc). Then, the generic formulae of (PHc
τ /PHc,SM

τ )(RHc
/RSM

Hc
) and

(AHcτ
FB /AHcτ,SM

FB )(RHc
/RSM

Hc
) are obtained as

PD
τ

PD
τ,SM

=

(
RD

RSM
D

)−1

×
(
|1 + Cτ

VL
|2 + 3.02(0.01)|Cτ

SL
+ Cτ

SR
|2 + 0.16(0.01)|Cτ

T |2 (B3)

+ 4.47(0.02)Re[(1 + Cτ
VL

)(Cτ
SL

+ Cτ
SR

)∗]− 1.06(0.03)Re[(1 + Cτ
VL

)Cτ∗
T ]
)
,

PD∗

τ

PD∗
τ,SM

=

(
RD∗

RSM
D∗

)−1

×
(
|1 + Cτ

VL
|2 − 0.09(0.01)|Cτ

SR
− Cτ

SL
|2 − 1.88(0.02)|Cτ

T |2 (B4)

+ 0.26(0.02)Re[(1 + Cτ
VL

)(Cτ
SL

− Cτ
SR

)∗]− 3.50(0.04)Re[(1 + Cτ
VL

)Cτ∗
T ]
)
,

PΛc
τ

PΛc,SM
τ

=

(
RΛc

RSM
Λc

)−1

×
(
|1 + Cτ

VL
|2 − 1.48(0.01)Re[(1 + Cτ

VL
)Cτ∗

SR
]− 0.97(0.01)Re[(1 + Cτ

VL
)Cτ∗

SL
]

− 1.47(0.02)Re[Cτ
SL

Cτ∗
SR

]− 0.92(0.01) (|Cτ
SL

|2 + |Cτ
SR

|2) (B5)

− 3.59(0.05)Re[(1 + Cτ
VL

)Cτ∗
T ]− 3.30(0.03) |Cτ

T |2
)
,
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ADτ
FB

ADτ,SM
FB

=

(
RD

RSM
D

)−1

×
(
|1 + Cτ

VL
|2 + 1.19(0.01)Re[(1 + Cτ

VL
)(Cτ

SR
+ Cτ

SL
)∗]

+ 2.40(0.03)Re[(1 + Cτ
VL

)Cτ∗
T ] + 3.04(0.04)Re[(Cτ

SR
+ Cτ

SL
)Cτ∗

T ]
)
, (B6)

AD∗τ
FB

AD∗τ,SM
FB

=

(
RD∗

RSM
D∗

)−1

×
(
|1 + Cτ

VL
|2 − 2.61(0.60)Re[(1 + Cτ

VL
)(Cτ

SR
− Cτ

SL
)∗] + 31.4(5.9)Re[(1 + Cτ

VL
)Cτ∗

T ]

− 107(17) |Cτ
T |2 + 12.7(2.9)Re[(Cτ

SR
− Cτ

SL
)Cτ∗

T ]
)
, (B7)

AΛcτ
FB

AΛcτ,SM
FB

=

(
RΛc

RSM
Λc

)−1

×
(
|1 + Cτ

VL
|2 + 6.87(0.63)Re[(1 + Cτ

VL
)Cτ∗

SR
] + 1.87(0.12)Re[(1 + Cτ

VL
)Cτ∗

SL
]

− 19.6(1.2)Re[(1 + Cτ
VL

)Cτ∗
T ] + 115(10) |Cτ

T |2 (B8)

+ 26.1(2.6)Re[Cτ
SR

Cτ∗
T ] + 0.020(0.008)Re[Cτ

SL
Cτ∗

T ]
)
.

The number in parentheses denotes the uncertainty, e.g., 3.02(0.01) means 3.02 ± 0.01, that comes from the form
factor input and is approximated by Gaussian distributions. The result agrees with Ref. [35] within uncertainty.

Appendix C: More on the sum rule in the heavy quark limit

In the heavy quark limit, the sum rule for the double-differential decay rates of Eq. (8) can be transformed as

κ
w,+1/2
Λc

− κ
w,−1/2
Λc

κ
w,+1/2
Λc SM − κ

w,−1/2
Λc SM

= αPτ

HQL

κ
w,+1/2
D − κ

w,−1/2
D

κ
w,+1/2
D SM − κ

w,−1/2
D SM

+ βPτ

HQL

κ
w,+1/2
D∗ − κ

w,−1/2
D∗

κ
w,+1/2
D∗ SM − κ

w,−1/2
D∗ SM

, (C1)

κw
Λc+

− κw
Λc−

κw SM
Λc+

− κw SM
Λc−

= α
Aτ

FB

HQL

κw
D+ − κw

D−
κw SM
D+ − κw SM

D−
+ β

Aτ
FB

HQL

κw
D∗+ − κw

D∗−
κw SM
D∗+ − κw SM

D∗−
, (C2)

where the differential decay rates in denominators are the SM ones, i.e., Cτ
X = 0. Also κw,λτ

Hc
=

dΓHc
λτ

dw , κw
Hc± =

±
∫ ±1

0
dcθτ

d2ΓHc

dwdcθτ
, and d2ΓHc

dwdcθτ
=

d2ΓHc
+1/2

dwdcθτ
+

d2ΓHc
−1/2

dwdcθτ
are defined. The coefficients are given by

αPτ

HQL =
2

1 + w

ζ(w)2

ξ(w)2
κ
w,+1/2
D SM − κ

w,−1/2
D SM

κ
w,+1/2
Λc SM − κ

w,−1/2
Λc SM

=
(1 + rD)2(1 + ρ2τ − w(1− 2ρ2τ ))− 6rDρ2τ (1 + w)

4rD(1− 2ρ2τ + w2(2− ρ2τ ))− 6w(1− ρ2τ )(1 + r2D)
,

α
Aτ

FB

HQL =
2

1 + w

ζ(w)2

ξ(w)2
κw SM
D+ − κw SM

D−
κw SM
Λc+

− κw SM
Λc−

=
−(1− r2D)ρ2τ

2(1− ρ2τ + r2D(1 + ρ2τ )− 2rDw)
, (C3)

where ρτ = mτ/
√
q2 and ri = mi/mB are defined. They are independent of the leading-order IW functions ζ(w) and

ξ(w), and satisfy αHQL + βHQL = 1 as the sum rule should hold in the SM limit. αHQL and βHQL are independent of
NP contributions CX and hence the sum rule holds in any NP model captured in Eq. (6). Similar to the construction
of the sum rule for RHc , the sum rules involving angular observables, Eqs. (10) and (11), are obtained by integrating
numerators and denominators over w, and by normalizing with the decay widths of light-lepton modes. It is noted
that Γ(Hb → Hcτν) dependence is canceled in the combinations of PHc

τ RHc and AHc

FB RHc for each.
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Appendix D: Figures

In this appendix, we show the plot of probability distributions. In each plot, we generated 20K Monte Carlo samples
assuming the form factor parameters have Gaussian probability distributions. Figure 1 (Fig. 2) shows the probability

distribution of αPτ (αAτ
FB
) and coefficients in the corrections to the sum rule, δijPτ

(δijAτ
FB

). Here, the results are not

normalized. Also, correlations exist among the distributions, but they are not shown. Figure 3 (Fig. 4) shows the
probability distribution of the correction δPτ (δAτ

FB
) for the benchmark scenarios in Table I. The correction is zero in

the SR and U1 LQ scenarios, and hence, is omitted.
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FIG. 1. Probability distribution of αPτ and the corrections δijPτ
.
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FIG. 2. Probability distribution of αAτ
FB

and the corrections δijAτ
FB

.
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FIG. 3. Probability distribution of the correction δPτ based on the benchmark NP scenarios shown in Table I.
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FIG. 4. Probability distribution of the correction δAτ
FB

based on the benchmark NP scenarios shown in Table I.
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