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Abstract. Observational cosmology is rapidly closing in on a measurement of the sum
Mν of neutrino masses, at least in the simplest cosmologies, while opening the door to
probes of non-standard hot dark matter (HDM) models. By extending the method of ef-
fective distributions, we show that any collection of HDM species, with arbitrary masses,
temperatures, and distribution functions, including massive neutrinos, may be represented
as a single effective HDM species. Implementing this method in the FlowsForTheMasses

non-linear perturbation theory for free-streaming particles, we study non-standard HDM
models that contain thermal QCD axions or generic bosons in addition to standard neu-
trinos, as well as non-standard neutrino models wherein either the distribution function of
the neutrinos or their temperature is changed. Along the way, we substantially improve the
accuracy of this perturbation theory at low masses, bringing it into agreement with the high-
resolution TianNu neutrino N-body simulation to ≈ 2% at k = 0.1 h/Mpc and to ≤ 21%
over the range k ≤ 1 h/Mpc. We accurately reproduce the results of simulations including
axions and neutrinos of multiple masses. Studying the differences between the normal, in-
verted, and degenerate neutrino mass orderings on their non-linear power, we quantify the
error in the common approximation of degenerate masses. We release our code publicly at
http://github.com/upadhye/FlowsForTheMassesII .
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1 Introduction

Cosmology is well on the way to measuring the sum Mν of neutrino masses, a fundamental
particle physics parameter, for the first time. The cosmological upper bounds Mν ≤ 120 meV
from joint constraints by the Planck survey [1] and Mν ≤ 72 meV by the DESI survey [2]
are rapidly converging upon the lower bound of 59 meV from terrestrial experiments [3–6].
However, these rely upon restrictive assumptions about the dark energy responsible for the
cosmic acceleration, when allowing the dark energy equation of state and its derivative to
vary weakens theMν bound by a factor of about 2−3 [7–9]. Persistent tensions and anomalies
in the cosmological data, including the Hubble tension [10–13], the S8 tension [14–17], and
the CMB lensing anomaly [1, 18], hint at a more complicated dark-sector phenomenology.
Moreover, a recent DESI+Planck analysis even prefers negative Mν [19–21], an unphysical
result possibly arising from a combination of the DESI preference for a slightly higher Hubble
parameter H0 and the Planck preference for unexpectedly strong lensing of the CMB.
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In this context, it is imperative that theoretical cosmologists study a broad range of
phenomena associated with neutrinos and other hot dark matter (HDM) models. Within
the neutrino sector, differences among the masses of the three species will be amplified by
non-linear clustering at small scales, while non-standard models could modify the number,
temperature, or distribution function of cosmological neutrinos [22–25]. Other HDM models
include the axion, theorized as a solution to the strong CP problem in quantum chromo-
dynamics [26, 27], whose thermal production in the early universe in the m ≲ eV regime
was recently studied in Refs. [28–35]. Each of these HDM models modify the gravitational
clustering of HDM, leading to subtle differences in their clustering power as well as their
impact upon scale-dependent halo bias [36, 37], differential HDM capture by halos between
HDM-rich and HDM-poor regions [38], “wakes” caused by coherent HDM streaming past
collapsed cold dark matter (CDM) halos [39], and other non-linear effects. As cosmological
data improve, such higher-order effects could be used either to confirm the standard neutrino
picture or to reject it in favor of a more complicated HDM sector, provided that we have
the theoretical and numerical tools with which to quantify HDM clustering. Since the space
of HDM models is large, tools such as non-linear perturbation theory allowing for a rapid
exploration of the parameter space are desirable.

However, hot dark matter presents a host of numerical challenges due to its large velocity
dispersion. A given HDM particle’s thermal velocity acts as an escape velocity allowing
it to stream freely out of a sufficiently small and diffuse halo. Whereas the CDM and
baryons are cold, in the sense that their velocities are determined entirely by their positions,
flattening their six-dimensional phase space to a three-dimensional sheet, we must track
all six dimensions for an HDM species. In an N-body particle simulation, sampling this
six-dimensional phase space requires a large number of particles to avoid shot noise, while
faster particles require a finer time stepping to track their gravitational deflection. Velocity
dispersion also complicates a perturbative treatment of HDM, since non-linear perturbation
theories typically begin with the continuity and Euler equations, which assume a well-defined
velocity field. These challenges are compounded by the need to include standard neutrinos,
at least two of which are massive, along with any additional HDM species. Each of these
HDM species has its own mass and momentum distribution.

We make two contributions to this velocity dispersion problem. Firstly, we extend the
effective distribution function method of Ref. [40], originally developed for non-relativistic
neutrinos, to represent any collection of HDM as a single effective hot dark matter (EHDM).
Our extension applies to relativistic as well as non-relativistic species of different masses,
temperatures, and distribution functions, provided that each species has decoupled from
all non-gravitational interactions. Our key insight is that the clustering of such a particle
depends only upon its four-velocity, rather than its mass and four-momentum separately, so
that doubling both an HDM particle’s mass and its momentum simultaneously will not affect
its clustering.

We implement the EHDM method in the FlowsForTheMasses perturbation theory of
Ref. [41], which provided the first non-linear perturbative power spectrum computation for
free-streaming HDM. FlowsForTheMasses functions by discretizing the HDM distribution
function into “flows,” each characterized by its four-velocity, so that a single EHDM flow
can represent many different HDM species. Furthermore, we show that the clustering power
of an individual HDM component of the EHDM can be recovered from a linear combination
of these same EHDM flows. This is crucial, for example, for a terrestrial detector that is
sensitive only to the electron neutrino, or only to the axion, rather than to all HDM species
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making up the EHDM.
Secondly, we trade the uniform-density momentum binning of Ref. [41] for a more

efficient binning based upon Gauss-Laguerre quadrature, taking advantage of the fact that
thermal distribution functions decay exponentially with particle momentum. Implementing
our new procedure in the code FlowsForTheMasses-II, we demonstrate the effectiveness
of this improved quadrature by reducing the low-Mν , high-k error found in Ref. [42] by
more than a factor of two. We demonstrate the accuracy of FlowsForTheMasses-II for
models containing axions and axion-like bosons in addition to neutrinos, and we apply it to
quantifying the error in the commonly-used approximation treating all three neutrino masses
as equal. Finally, we consider a pair of proposals to evade cosmological bounds on high-mass
neutrinos, one by raising and the other by lowering their mean momentum [22, 23]. While
the high-mean-momentum neutrinos are nearly indistinguishable from standard ones, the
low-mean-momentum ones cluster more non-linearly, in a manner that will allow upcoming
cosmological surveys to search for them. Thus we demonstrate the ability of non-linear
perturbation theory to explore a large parameter space of non-standard models.

This article is organized as follows. After summarizing the numerical techniques used,
in Sec. 2, we derive and thoroughly study the EHDM technique in Sec. 3, and describe
its implementation along with Gauss-Laguerre quadrature in FlowsForTheMasses-II. Our
results are split into two sections, beginning with Sec. 4, which quantifies the non-linear
enhancement of HDM clustering in a range of models. Section 5 studies the two proposals
for evading cosmological Mν bounds mentioned above, and Sec. 6 concludes.

2 Background

2.1 Cosmic neutrinos

The Standard Model of particle physics predicts exactly three neutrinos, which are uncharged,
weakly-interacting fermions whose small masses make them ultrarelativistic for much of the
universe’s history up to CMB formation. Neutrinos decouple from photons, electrons, and
positrons at a temperature of T ∼ 1 MeV, shortly before electron-positron annihilation
begins. In an idealized situation, the neutrino temperature at the end of e+e− annihilation
is (4/11)1/3 times that of the photons. Detailed calculations, however, have found that the
neutrino-to-photon energy density is some 1.47% larger than that suggested by this simple
temperature relation. This is equivalent to an increase in the effective number of neutrinos
to 3.044 [43–47], which we approximate by raising the neutrino temperature by 0.365%, to
Tν,0a

−1 = 1.9525a−1 K at scale factor a.
Much later, typically around or after electron-photon decoupling, the behavior of cosmic

neutrinos is determined by their masses, at least two of which are required to be non-zero
by neutrino oscillation experiments. Such experiments can determine only mass-squared
splittings ∆m2

21 = 74.2+2.1
−2.0 meV2 and |∆m2

31| = 2517+26
−28 meV2 rather than the absolute

neutrino mass scaleMν [6]. Furthermore, the sign of the larger splitting may be either positive
or negative, with the former implying a “normal order” (NO) of neutrino masses dominated
by a single heavy neutrino and two light ones, and the latter implying an “inverted order”
(IO) with two heavy neutrinos and a single light one. As Mν rises, the fractional difference
between the heaviest and lightest decreases, making a “degenerate order” (DO) of three equal
neutrino masses a common approximation.

Even at late times, neutrinos’ Fermi-Dirac thermal velocity distribution profoundly
affects their clustering. The subhorizon, non-relativistic clustering of a neutrino species of
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mass mν is characterized by a “free-streaming” length that is approximately the average
distance travelled by neutrinos of that mass in a comoving Hubble time H−1. On much
larger length scales, neutrinos’ free-streaming does not inhibit their clustering, and they
cluster much the same as cold matter; we call this the “clustering regime.” On scales smaller
than the free-streaming length, the “free-streaming regime,” neutrinos stream out of most
overdense regions. We define the neutrino free-streaming wave number as [48]

kFS :=

√
3Ωm(a)H(a)2

2cν(a)2
, (2.1)

where the square of the neutrino sound speed is

cν(a)
2 :=

3ζ(3)T 2
ν,0

2 ln(2)m2
νa

2
, (2.2)

and ζ(x) is the Riemann zeta function. Refs. [48, 49] demonstrated that the linear perturba-
tion ratio δρν/δρm/(ρ̄ν/ρ̄m) approaches unity at small k and k2FS/k

2 at large k, leading them
to approximate

δρν(k)

δρm(k)
≈ ρ̄ν

ρ̄m

1

(1 + k/kFS)2
, (2.3)

by interpolating between the clustering and free-streaming limits.

2.2 Multi-fluid perturbation theories

The chief difficulty with applying standard cosmological perturbation theory to HDM species
such as massive neutrinos is their significant velocity dispersion. Whereas a cold particle
beginning at a given initial position with zero velocity can be tracked to a definite final
position, HDM particles begin with a thermal distribution of initial velocities. Thus we must
track their full six-dimensional phase space distribution, rather than the three-dimensional
spatial distribution of cold particles.

In a series of articles, Dupuy and Bernardeau demonstrated that neutrinos could be
treated perturbatively by splitting their population into multiple sub-populations, each char-
acterized by a spatially-uniform zeroth-order velocity v⃗ [50–52]. Since a particle with definite
initial velocity can once again be tracked from a given initial position to a definite final
position, standard perturbative techniques may be applied. Furthermore, the direction of v⃗
affects clustering only through its angle with the Fourier vector. Thus the multi-fluid method
increases the dimensionality of the problem by two, v and v̂ · k̂, rather than three. Refer-
ences [50, 51] derived a fully relativistic linear theory for massive neutrinos in Newtonian
gauge and a general gauge, respectively, while Ref. [52] motivated a non-linear treatment; all
of these results generalize to other HDM.

The EHDM formalism to be presented in Sec. 3 is applicable to the relativistic pertur-
bation theory of Refs. [50, 51]. However, our focus here is clustering at late times, when each
HDM species is non-relativistic, and particularly on small-scale non-linear HDM clustering.
Thus we focus on multi-fluid perturbation theories in the subhorizon, non-relativistic case.
In this limit, we may to excellent approximation treat fluids as obeying the continuity and
Euler equations of classical fluid dynamics, with a gravitational potential determined from
Poisson’s equation, in a universe whose uniform expansion is given by the Hubble rate. We
restrict our consideration to spatially-flat cosmologies, though our results may be generalized
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to models with spatial curvature. Finally, we track only the scalar perturbations of each
fluid, namely, the density contrast and velocity divergence. Although vector perturbations
such as the velocity vorticity are important in small-scale, non-perturbative structures such
as virialized halos, they are negligible at the linear and mildly non-linear scales accessible to
perturbation theory [53–55].

References [50, 51] discretized the Fermi-Dirac distribution describing the initial neu-
trino momenta. Let Pi be one such lower-index three-momentum, and let τi be its value
in the limit of a homogeneous universe. Then Pi → τi at early times, and τi is itself time-
independent, making it a useful quantity for a Lagrangian description of neutrinos in mo-
mentum space. Furthermore, physics depends upon the direction of τ⃗ only through its angle
µ = cos−1(τ̂ · k̂) with the Fourier vector k⃗, so we may approximate the neutrino population
using Nτ values of the momentum magnitude τ = |τ⃗ | =

√
τ21 + τ22 + τ23 . We label these

discrete momenta using Greek indices, as τα, with integer α ∈ [0, Nτ − 1].
Reference [56] restricted the perturbation theory of Refs. [50, 51] to the subhorizon,

non-relativististic case, which is released as the code MuFLR.1 The scalar perturbations of
each “flow” α are the density contrast δα(x⃗) := ρα(x⃗)/ρ̄α − 1 and the velocity divergence
θα(x⃗) := −∇⃗ · P⃗ /(mHDMa), where mHDM is the HDM mass.2 In Fourier space, δα and θα
depend upon the magnitude k of the wave number as well as its angle with respect to the
initial momentum τ⃗α, through its cosine µ := k̂ · τ̂ . The µ-dependence of these perturbations
may be expanded in Legendre polynomials as

δk⃗α :=
∞∑
ℓ=0

(−i)ℓPℓ(µ)δ
k
αℓ, θk⃗α :=

∞∑
ℓ=0

(−i)ℓPℓ(µ)θ
k
αℓ, (2.4)

where Pℓ is the Legendre polynomial of order ℓ; we use wave number superscripts to denote

functional dependence, so δk⃗α = δα(k⃗).
Using η := log(a/ain) as our time variable,3 for initial scale factor ain, and primes to

denote derivatives with respect to η, the linear continuity and Euler equations for flow α are

(δkαℓ)
′ =

kvα
H

(
ℓ

2ℓ− 1
δkα,ℓ−1 −

ℓ+ 1

2ℓ+ 3
δkα,ℓ+1

)
+ θkαℓ,

(θkαℓ)
′ = −

(
1 +

H′

H

)
θkαℓ − δ

(K)
ℓ0

k2Φk

H2
+

kvα
H

(
ℓ

2ℓ− 1
θkα,ℓ−1 −

ℓ+ 1

2ℓ+ 3
θkα,ℓ+1

)
,

(2.5)

where δ(K) is the Kronecker delta, H = aH the conformal Hubble rate, and vα := τα/(mHDMa)
the flow speed. Since this perturbation theory is Lagrangian in momentum space, a particle
cannot move from one flow to another. Thus the only interaction between different flows
occurs through the gravitational potential Φ, given by Poisson’s equation:

k2Φk = −3

2
H2

(
Ωcb(η)δ

k
cb +

Nτ−1∑
α=0

Ωα(η)δ
k
α0

)
. (2.6)

1MuFLR is publicly available at github.com/aupadhye/MuFLR .
2Strictly speaking, the continuity and Euler equations apply to a fluid with a well-defined momentum,

rather than merely a momentum magnitude, at each point in space. However, all fluids with the same
momentum magnitude obey the same set of equations of motion. We use the term “flow” to refer to all such
fluids at once, and the same index α for all fluids with initial momentum magnitude τα.

3Throughout this article, we use log to denote the natural logarithm.
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Here, δcb is the density contrast of the CDM and baryons, which we approximate as a
single fluid labeled “cb” henceforth. It can be obtained either from a linear perturbative
treatment of the cb fluid, resulting in a fully linear perturbation theory for the neutrinos,
or from a non-linear calculation which then sources the linear Eq. (2.5) through Eq. (2.6),
known as “linear response.” The time-dependent density fractions Ωcb(η) and Ωα(η) are
respectively given in terms of their values Ωcb,0 and Ωα,0 today by H2Ωcb(η) = H2

0Ωcb,0/a

and H2Ωα(η) = H2
0Ωα,0/(a

√
1− v2α), where H0 is the value of H today.

Initial conditions at ain = 10−3 are given in Ref. [56]. Specifically,

δcb(ain) = ain +
2

3
aeq, θcb(ain) = ain, (2.7)

and

δα,0(ain, k) =
k2FS,α(1− fν)δcb(ain)

(k + kFS,α)2 − fνk2FS,α
, θα,0 = δ′α,0, (2.8)

for cb and HDM, respectively, where

k2FS,α =
3Ωm(a)H2a2m2

HDM

2τ2α
(2.9)

is a generalization of Eq. (2.2) to a flow of arbitrary velocity vα = τα/(mHDMa), shown in
Ref. [56] to obey δα,0/δm → k2FS,α/k

2 at large k. The HDM initial density monopole of
Eq. (2.8) is an interpolation between the clustering limit, δα,0 ≈ δcb, and the free-streaming
limit, δα,0 ≈ (k/kFS,α)

2(1− fν)δcb, similar to that of Eq. (2.3), from Refs. [48, 49, 57].
Reference [41] developed the first non-linear perturbative power spectrum calculation

for free-streaming HDM, such as massive neutrinos, called FlowsForTheMasses.4 It did so by
generalizing the Time-Renormalization Group (Time-RG) perturbation theory of Refs. [58,
59] to the case of a fluid with zeroth-order bulk velocity v⃗α. The result is a set of pertur-
bative mode-coupling integrals that couple different multipoles ℓ as well as wave numbers k.
Since non-linear corrections decorrelate δα and θα, Ref. [41] introduced the decorrelation
perturbation

χk
αℓ := 1− P k

α,01ℓ/
√

P k
α,00ℓP

k
α,11ℓ, (2.10)

where P k
α,bcℓ is the ℓth Legendre moment of the power spectrum,

P k⃗
α,00 =

∑
ℓ

Pℓ(µ)
2P k

α,00ℓ, P k⃗
α,11 =

∑
ℓ

Pℓ(µ)
2P k

α,11ℓ,

P k⃗
α,01 =

∑
ℓ

Pℓ(µ)
2(1− χk

αℓ)
√

P k
α,00ℓP

k
α,11ℓ,

(2.11)

and its indices 0 and 1 refer respectively to δ and θ. The non-linear equations of motion of
FlowsForTheMasses, which replace Eq. (2.5), are then

(δkαℓ)
′ =kvα

H

(
ℓ

2ℓ−1δ
k
α,ℓ−1 − ℓ+1

2ℓ+3δ
k
α,ℓ+1

)
+ θkαℓ +

2
δkαℓ

Ikα,001,001,ℓ ,

(θkαℓ)
′ =−

(
1 + H′

H

)
θkαℓ − δ

(K)
ℓ0

k2Φk

H2 + kvα
H

(
ℓ

2ℓ−1θ
k
α,ℓ−1 − ℓ+1

2ℓ+3θ
k
α,ℓ+1

)
+ 1

θkαℓ

Ikα,111,111,ℓ ,

(χk
αℓ)

′ =
2(1−χk

αℓ)

(δkαℓ)
2 Ikα,001,001,ℓ +

1−χk
αℓ

(θkαℓ)
2 I

k
α,111,111,ℓ − 2

δkαℓθ
k
αℓ

Ikα,001,101,ℓ − 1
δkαℓθ

k
αℓ

Ikα,111,011,ℓ .

(2.12)

4FlowsForTheMasses is publicly available at github.com/upadhye/FlowsForTheMasses .
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Here, the bispectrum integrals Ikα,acd,bef,ℓ are defined by their equations of motion,

(Ikα,acd,bef,ℓ)
′ = −Ξk

α,bgℓI
k
α,acd,gef,ℓ − Ξ̃k

α,egℓI
k
α,acd,bgf,ℓ − Ξ̃k

α,fgℓI
k
α,acd,beg,ℓ + 2Ak

α,acd,bef,ℓ , (2.13)

with

Ξk
α,bcℓ =

[
0 −1

k2Φi

H2δkα0
1 + H′

H

]
− kvα

H
ℓ

2ℓ−1

 δkα,ℓ−1

δkα,ℓ

0

0
θkα,ℓ−1

θkα,ℓ

+ kvα
H

ℓ+1
2ℓ+3

 δkα,ℓ+1

δkα,ℓ

0

0
θkα,ℓ+1

θkα,ℓ

 ,

Ξ̃k
α,bcℓ =

[
0 −1

0 1 + H′

H

]
,

(2.14)

where the indices b and c label the rows and columns respectively,

Ak⃗
α,acd,bef =

∫
q⃗
γk⃗q⃗p⃗acd

[
γk⃗q⃗p⃗bghP

q⃗
α,geP

p⃗
α,hf + γ q⃗,−p⃗,⃗k

egh P p⃗
α,gfP

k⃗
α,hb + γp⃗,⃗k,−q⃗

fgh P k⃗
α,gbP

q⃗
α,he

]
(2.15)

=:
∑
ℓ

Pℓ(µ)
2Ak

α,acd,bef,ℓ (2.16)

is the mode-coupling integral, and

γk⃗q⃗p⃗001 = γk⃗p⃗q⃗010 =
(q⃗ + p⃗) · p⃗

2p2
, γk⃗q⃗p⃗111 =

|q⃗ + p⃗|2q⃗ · p⃗
2q2p2

, (2.17)

while all other γabc vanish. Their initial conditions, set at η = 0 (i.e., a = ain), are

Ikα,acd,bef,ℓ = 2Ak
α,acd,bef,ℓ. (2.18)

On the right hand sides of Eqs. (2.13, 2.15), we assume summation over repeated indices.
Computation of the mode-coupling integrals Ak

α,acd,bef,ℓ of Eq. (2.16) is the most expensive
part of FlowsForTheMasses, and its acceleration using Fast Fourier Transform (FFT) tech-
niques is described thoroughly in Ref. [41].

Thus far we have not discussed precisely how τα are to be sampled from the Fermi-Dirac
distribution function FFD, or another distribution function appropriate to other HDM species.
The MuFLR and FlowsForTheMasses perturbation theories considered in Refs. [41, 56] used
equal-number-density bins. That is, the range 0 ≤ τ < ∞ was divided into Nτ intervals such
that the integrals of 4πτ2FFD(τ) over any two intervals are equal. For each α ∈ [0, Nτ − 1],
τα was chosen to be the median of the corresponding interval. In Sec. 2.3 and Sec. 3.2 we
will discuss a more efficient sampling method.

2.3 Gauss-Laguerre quadrature

Consider a function g(x), defined on [0,∞). Gauss-Laguerre quadrature (GLQ) approximates
the integral of e−xg(x) on the semi-infinite interval using NGLQ points xα and weights wα as∫ ∞

0
dx e−xg(x) ≈

NGLQ−1∑
α=0

wαg(xα). (2.19)

Here, NGLQ is a positive integer; the xα are the NGLQ roots of the NGLQth Laguerre poly-
nomial LNGLQ

(x); and the weights are given by

wα =
xα

(NGLQ + 1)2LNGLQ+1(xα)2
. (2.20)
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If g(x) is a polynomial of degree no more than 2NGLQ−1, then Eq. (2.19) is exact rather than
approximate [60]. We will find it convenient to define G(x) = e−xg(x), for which Eq. (2.19)
implies

∫∞
0 dxG(x) ≈

∑
αwαe

xαG(xα).
The error in approximation Eq. (2.19), given by Eq. (25.4.45) of Ref. [61] is

ϵGLQ =
(NGLQ!)

2

(2NGLQ)!
g(2NGLQ)(xϵ) ≈

√
πNGLQ2

−2NGLQg(2NGLQ)(xϵ) (2.21)

for some 0 ≤ xϵ < ∞, where g(2NGLQ) is the (2NGLQ)th derivative of g. The approximation
in Eq. (2.21) uses Stirling’s formula for large NGLQ. We will see that g(x) is typically x2ex

times a thermal distribution function. For the Boltzmann distribution e−x, g(x) is precisely
a polynomial, making Eq. (2.19) exactly correct for NGLQ ≥ 2. Errors for the Bose-Einstein
and Fermi-Dirac distributions are due to their difference from the Boltzmann distribution,
differences whose derivatives are at most O(1), meaning that NGLQ ≳ 10 should be highly
accurate. However, at very small length scales, we will see that g(x) is suppressed by an
additional two powers of x, leading to larger errors.

We find points and weights for GLQ using the scipy.special.roots laguerre python
function. This limits us to NGLQ ≤ 186; above this bound, double precision numbers are
inadequate for evaluating the higher-order Laguerre polynomials required for determining
the weights. We will see that NGLQ = 186 is far larger than necessary for our applications.

2.4 Effective distribution functions

The method of effective distribution functions was introduced in Ref. [40] and applied to the
case of multiple neutrinos with non-degenerate masses. We summarize their method here
before generalizing it in the next section.

Consider a neutrino species s with mass m
(s)
ν , temperature constant T

(s)
ν,0 , and lower-

index homogeneous-universe three-momentum τ
(s)
i , hence (τ (s))2 = (τ

(s)
1 )2+(τ

(s)
2 )2+(τ

(s)
3 )2.

Its distribution function is the Fermi-Dirac distribution in the relativistic limit, FFD(τ
(s)) =

(2π)−3[exp(τ (s)/T
(s)
ν,0 ) + 1]−1. The mass in a phase space volume element d3xd3τ (s) is then

g
(s)
ν m

(s)
ν FFD(τ

(s))d3xd3τ (s), where g
(s)
ν = 2 accounts for a neutrino and an antineutrino.

Defining τi = τ
(s)
i mEHDM/m

(s)
ν for some quantity mEHDM with dimensions of mass, we

may change phase space variables from τ
(s)
i to τi. The mass of multiple species in a phase

space element may now be written as
∑

s g
(s)
ν m

(s)
ν FFD(τm

(s)
ν /mEHDM)(m

(s)
ν /mEHDM)

3d3xd3τ .
Thus if we define a new EHDM particle with mass mEHDM, momentum τ , and distribution

FEHDM(τ) =
∑
s

g(s)ν

(
m

(s)
ν

mEHDM

)4

FFD

(
τm

(s)
ν

mEHDM

)
, (2.22)

then its mass density mEHDMFEHDM(τ)d
3xd3τ equals that of all neutrino species combined.

Rather than including three different-mass neutrino species into an expensive calculation
such as an N-body simulation, we may include a single particle with mass mEHDM and the
above distribution function.

3 Hot dark matter as an effective particle

3.1 Effective HDM

Before implementing the method of effective distribution functions, we discuss its applicabil-
ity to distribution functions that vary in time and space, as well as its limitations. Working
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in conformal Newtonian gauge and using conformal time T , the line element is

ds2 = a2[−(1 + 2Φ)dT 2 + (1− 2Ψ)|d⃗x|2]. (3.1)

The collisionless Boltzmann equation for particles of positive mass m and four-velocity Uµ,
hence four-momentum Pµ = mUµ, along a geodesic with affine parameter λ is

0 = Uµ ∂F

∂xµ
+

∂U i

∂λ

∂F

∂U i
= U0 ∂F

∂T
+ U i ∂F

∂xi
− Γi

µνU
µUν ∂F

∂Ui
, (3.2)

where we have used the geodesic equation, and Γi
µν is the Christoffel symbol. In particular,

the evolution of the distribution function is independent of the particle mass. For a given
initial position and four-velocity, the fractional change in every such distribution function
is identical. Thus an EHDM with a distribution function of the form of Eq. (2.22), defined
at a time after all HDM species have decoupled from any non-gravitational interactions,
will continue to represent those species thenceforth. This conclusion applies to all orders in
perturbations of the metric and the distribution function.

The stress-energy tensor for this species of mass m may also be expressed as an integral
over four-velocities:

Tµν =

∫
d3Pi√
−g

PµPν

P 0
F (x, U) =

∫
d3Ui√
−g

UµUν

U0
m4F (x, U). (3.3)

This clarifies the m4 scaling of each component of the effective distribution function of
Eq. (2.22). Since the Tµν integral scales as the fourth power of the four-momentum and
contributions from multiple species add linearly, it follows that replacing Pµ with mUµ must
lead to an effective distribution for all species s at any given position x and four-velocity U
proportional to the sum of g(s)(m(s))4F (s)(x, U) over all s.

Also evident from the above is a limitation of the effective distribution function ap-
proach. The distribution function F (s)(x, U) for an individual HDM species s records the
phase-space number density of that species, and the sum over s the total HDM phase-space
number density. However, the corresponding effective distribution function will not in general
match the individual or total HDM number densities across all of phase space. The m4 mass
scaling of Eq. (2.22) results in the correct Tµν , which has mass dimension four, but we cannot
rely on it for other quantities. Fortunately for our purposes, Tµν is sufficient for studying our
observables of interest as well as their evolution and their impact on the spacetime metric
through Einstein’s equation.

Since we are particularly interested in density perturbations, we next simplify the T 0
0

component of the stress-energy tensor. Dupuy and Bernardeau point out in Ref. [50] that
the spatial components of the lower-index four-velocity in the limit of a homogeneous uni-

verse, U
(0)
i , are constant in time. Thus they treat the constant u⃗ := (U

(0)
1 , U

(0)
2 , U

(0)
3 )T as a

Lagrangian coordinate for the particle velocity. Note that u0 := U
(0)
0 = −

√
a2 + |u⃗|2, where

|u⃗|2 = δ
(K)
ij uiuj . Our treatment in Sec. 2.2 further simplifies the perturbation theory by

working in the subhorizon, non-relativistic limit, in which the flow velocity is v⃗ ≈ u⃗/a.
Making the cosmologically valid approximation that the metric potentials Φ and Ψ

are small compared with unity, even though the matter perturbations may be large, we

have U0 = (1 + Φ)U
(0)
0 and Ui = (1 − Ψ)U

(0)
i . Since

√
−g = a4(1 + Φ − 3Ψ), we may

simplify d3Ui/(U
0√−g) ≈ −d3u⃗/(a2u0) to linear order in Φ and Ψ. Up to the same order of

approximation, these also cancel from the products U0U0 = −a−2u20 and U iUj = a−2uiuj .
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Next, let T̄µν be the spatially-averaged stress-energy tensor, representing the homoge-
neous component of the matter. Because F (x, U) is the only position-dependent quantity in
T 0
0 , its perturbation may be written

−δρ = δT 0
0 = T 0

0 − T̄ 0
0 = −m4

a4

∫
d3u⃗
√

a2 + |u⃗|2F̄ (|u⃗|)
[
F (x, U)

F̄ (|u⃗|)
− 1

]
, (3.4)

where the background, homogeneous distribution function F̄ is assumed to be a function of
the magnitude of u⃗ alone. The quantity in square brackets is the only factor that depends on
the angular components û = u⃗/|u⃗|, and angular integration projects out its monopole, i.e.,

δρ =
m4

a4

∫
d|u⃗|4π|u⃗|2

√
a2 + |u⃗|2F̄ (|u⃗|)δℓ=0(x, |u⃗|), (3.5)

where δℓ=0 :=
∫
d2û/(4π)

[
F (x, U)/F̄ (|u⃗|)− 1

]
is the monopole. Since all non-interacting

particles beginning at the same x and U will move in the same way, regardless of their
masses, all decoupled HDM species have the same δ(x, u⃗) = F (x, U)/F̄ (|u⃗|)− 1. This allows
us to reconstruct the perturbations of the individual component species by simply reweighing
the flow perturbations. That is,

δρ(s) =
g(s)(m(s))4

a4

∫
d|u⃗|4π|u⃗|2

√
a2 + |u⃗|2F̄ (s)(|u⃗|)δℓ=0(x, |u⃗|) (3.6)

for the density perturbation of the species s.
In summary, we have generalized the method of effective distributions of Ref. [40] to

the case of multiple HDM species with arbitrary masses, temperatures, and distribution
functions, at all times after the species have decoupled. We have shown its applicability to
relativistic as well as non-relativistic HDM, and demonstrated how to recover the density
perturbations of the component HDM species. A key task of perturbation theory for HDM,
then, is to determine δ(x, u⃗). References [41, 56], summarized in Sec. 2.2, did this for a
discrete set of |u⃗|. We next consider how to choose these velocities.

3.2 Discrete momenta and Gauss-Laguerre quadrature

Section 2.3 summarizes the GLQ method for approximating the integral of an exponentially-
decaying function in some parameter x, a set that includes the Bose-Einstein, Fermi-Dirac,

and Maxwell-Boltzmann distribution functions. The complication is that each F
(s)
HDM has

its own exponential decay behaviour, exp(−m
(s)
HDM|u⃗|/T

(s)
HDM,0). We therefore need to choose

an effective mass mEHDM and temperature constant TEHDM,0 for our effective HDM particle,
such that for q := mEHDM|u⃗|/TEHDM,0, FEHDM(q) declines as exp(−q) in in the range of q
contributing the most to the density, so that we can effectively apply the GLQ method.

There is no general prescription for selecting mEHDM and TEHDM,0. Motivated by the fact
that both the mean energy density and number density scale as (1 + z)3 at late times z ∼ 0
to an excellent approximation, we define for NHDM species the effective HDM mass to be

mEHDM =

∑NHDM−1
s=0 ρ̄

(s)
HDM,0∑NHDM−1

s=0 n̄
(s)
HDM,0

, (3.7)

to ensure that the contribution of each s to mEHDM is weighted by its contribution to the
total density. We further set the effective temperature according to

NHDMmEHDMTEHDM,0 =
∑
s

m
(s)
HDMT

(s)
HDM,0, (3.8)
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i.e., TEHDM,0 is the mass-weighted average temperature. Note that the effective distribution
function will not, in general, be any equilibrium distribution function, so TEHDM,0 does not
imply any physical system in thermal equilibrium at that temperature.

Reference [40] instead set mEHDM to the largest of the individual-species masses. While

this is a reasonable choice for their case of interest, in which all T
(s)
HDM,0 and TEHDM,0 are equal,

it is no longer optimal if the heaviest species is also several times colder than the rest, causing
its contribution to the total density to be subdominant. Another choice is to demand that
FEHDM(q) be proportional to exp(−q) at large q, which immediately setsmEHDM/TEHDM,0 equal

to the smallest value of m
(s)
HDM/T

(s)
HDM,0 amongst all species s. This choice is however also not

optimal in general, as the lightest and hottest species generally contribute the least to small-
scale clustering. Moreover, reducing the mass of this species will compress the distribution
functions of the more dominant species into a smaller range of q, leading to larger errors.

We emphasize that the effective distribution function technique is most effective when
all HDM species have similar mass-to-temperature ratios. In this regime, all mEHDM/TEHDM,0

choices above are likely to give similar results: we have tested this proposition by increasing
mEHDM/TEHDM,0 by a factor of two relative to Eqs. (3.7-3.8), for a three-neutrino model with
masses 42 meV, 43 meV, and 65 meV, and found a similar accuracy. Outside of this regime,
the effective distribution function technique remains mathematically valid, but accuracy will
require a large number of quadrature points. Henceforth we fix mEHDM and TEHDM,0 as per
Eqs. (3.7-3.8).

Given these definitions, we can now change the variables in FEHDM from |u⃗| to q =
mEHDM|u⃗|/TEHDM,0, i.e.,

FEHDM(q) =
1

m4
EHDM

NHDM−1∑
s=0

g
(s)
HDM(m

(s)
HDM)

4F
(s)
HDM

(
q
TEHDM,0

T
(s)
HDM,0

m
(s)
HDM

mEHDM

)
. (3.9)

Section 2.3 then tells us that an integrand should be evaluated at values qα, for 0 ≤ α ≤
NGLQ−1 equal to the NGLQ roots of the NGLQth Laguerre polynomial, for a positive integer
NGLQ. Taking the Fourier transform of x⃗ and suppressing the time-dependence of δℓ=0, we
may now approximate the perturbed density of Eq. (3.5) as

δρk⃗ =
4πmEHDMT

3
EHDM,0

a3

∫
dq q2

√
1 +

T 2
EHDM,0q

2

m2
EHDMa

2
FEHDM(q)δ

k⃗
ℓ=0(q)

≈
4πmEHDMT

3
EHDM,0

a3

NGLQ−1∑
α=0

wαe
qαq2α

√
1 +

T 2
EHDM,0q

2
α

m2
EHDMa

2
FEHDM(qα)δ

k⃗
α0

=
∑
α

ρ̄αδ
k⃗
α0 where ρ̄α :=

4πmEHDMT 3
EHDM,0

a3

∑
α

wαe
qαq2α

√
1 +

T 2
EHDM,0q

2
α

m2
EHDMa2

FEHDM(qα),

(3.10)
and δα0 is evaluated at qα, that is, |u⃗| = qαTEHDM,0/mEHDM, corresponding to momentum
τα = qαTEHDM,0. The weight wα is given by Eq. (2.20). Recall also our convention of Sec. 2.2
that a wave number superscript denotes a functional dependence upon that wave number.

These GLQ density perturbations δk⃗α correspond precisely to the flow perturbations of
Refs. [41, 56], summarized in Sec. 2.2. The effective HDM method has shown us how to
use the same flow perturbations for an arbitrary collection of HDM particles, while GLQ

has shown us how to choose the flow momenta τα efficiently. We may use these same δk⃗α to
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recover the density perturbations of individual species via

δρ(s) ≈ 4πg
(s)
HDMT 3

EHDM,0(m
(s)
HDM)4

m3
EHDMa3

NGLQ−1∑
α=0

wαq
2
αe

qα

√
1 +

T 2
EHDM,0q

2
α

m2
EHDMa2

F
(s)
HDM

(
qα

TEHDM,0

T
(s)
HDM,0

m
(s)
HDM

mEHDM

)
δk⃗α,

(3.11)
which is the discretized version of Eq. (3.6) within the GLQ scheme.

3.3 Clustering and free-streaming regimes

Our main goal is to quantify HDM clustering through its monopole density perturbation
δkα,ℓ=0. We approach this goal by considering δkα,0 in two different regimes, the clustering
and free-streaming regimes. In the clustering regime, at length scales much larger than the
free-streaming scale, each HDM flow clusters like CDM, so δkα,0 = δkm. In the free-streaming
regime, at small scales, HDM clustering is strongly suppressed with respect to the total
matter clustering. For linear HDM, δkα,0 = (kFS,α/k)

2δm, where the free-streaming wave
number of Eq. (2.9) separating the clustering and free-streaming regimes can be written

kFS,α(a)
2 =

3Ωm(a)H2

2v2α
=

3Ωm,0H2
0

2av2α
=

3Ωm,0H2
0m

2
EHDMa

2τ2α
=

3Ωm,0H2
0m

2
EHDMa

2T 2
EHDM,0q

2
α

, (3.12)

as shown in Refs. [48, 49, 56, 62]. They also confirm the ∼ 10% accuracy of the interpolation
δkα,0 ≈ (1 + k/kFS,α)

−2δkm between the two regimes.
We are especially interested in late-time non-relativistic clustering, qTEHDM,0 ≪ amEHDM,

for which the momentum integral in Eq. (3.10) simplifies to
∫
dq q2FEHDM(q)δ

k⃗(q). The

clustering limit is simple, as δk⃗(q) ≈ δkm is momentum-independent and can be factored
out of the integral. Thus δρk

HDM,clus ≈ ρ̄HDMδ
k
m. The momentum integral is then the same one

that we need to compute the average HDM density,

ρ̄HDM(a) =
4πmEHDMT

3
EHDM,0

a3

∫
dq q2FEHDM(q) ≈

4πmEHDMT
3
EHDM,0

a3

NGLQ−1∑
α=0

wαq
2
αFEHDM(qα).

(3.13)
Thus, in the clustering limit, we must choose NGLQ high enough for

∫
dq q2FEHDM(q) ≈∑NGLQ−1

α=0 wαq
2
αFEHDM(qα) to our desired level of accuracy.

The free-streaming regime is more complicated. As a rough estimate using Eq. (3.12), we
may substitute δkα,0 = (k2FS,α/k

2)δm for δm in the integral over q in Eq. (3.10). Since k2FS,α ∝
q−2
α , the result is proportional to

∫
dqFEHDM(q). This means that, unlike the clustering limit,

the free-streaming regime is dominated by lower q, and the convergence of GLQ must be
considered separately in this limit. If every single HDM species has a distribution function
that is finite down to q = 0, then the integral

∫
dq FEHDM(q) converges. If however a single

bosonic species is present, then FEHDM(q) ∝ 1/q as q → 0, leading to a logarithmic divergence
of the integral as the lower integration limit approaches zero. Thus we cannot speak rigorously
of a free-streaming limit in the general case. Furthermore, the dominance of low-qα flows
means that, at large but finite k, the total δkα,0 will receive significant contributions from

flows that are not yet in the free-streaming regime, that is, (k2FS,α/k
2)δm ≪ δkα,0 ≲ δm. Thus,

to determine the convergence criterion for GLQ, we should instead focus on the intermediate
regime between clustering and free-streaming.
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To this end, we note that each individual flow has an approximate interpolated solution
given by [48]:

δkα,0 ≈
δkm

(1 + k/kFS,α)2
=

δm
(1 + qα/qcut)2

, (3.14)

where at the second equality we have recast the k/kFS,α in terms of an infrared cutoff defined
as qcut(a, k)

2 := (3Ωm,0H2
0m

2
EHDMa)/(2k

2T 2
EHDM,0). The expression reproduces the correct

behaviors at both k ≪ kFS,α and k ≫ kFS,α limits, making it suitable for the intermediate
regime. Clearly, integrating over q in the monopole density perturbation now returns an
expression proportional to

∫
dq q2FEHDM(q)/(1+q/qcut)

2, which converges at all finite k, even
for distribution functions ∝ 1/q at low q, such as the Bose-Einstein distribution.

Thus we arrive at the convergence criteria for the application of the GLQ scheme.
Suppose we are given an effective HDM whose clustering at k ≤ kmax and a ≥ amin we would
like to compute. We must choose a sufficiently high NGLQ so that the conditions

∫
dq q2FEHDM(q) ≈

NGLQ−1∑
α=0

wαq
2
αe

qαFEHDM(qα), (3.15)

and ∫
dq

q2FEHDM(q)

(1 + q/qcut(amin, kmax))2
≈

NGLQ−1∑
α=0

wαq
2
αe

qαFEHDM(qα)

(1 + qα/qcut(amin, kmax))2
(3.16)

are both satisfied to our desired accuracy. For practical purposes, we choose kmax/
√
amin =

10 h/Mpc. We may truncate the GLQ series to α < Nτ flows for Nτ < NGLQ provided that
this truncation keeps the sums on the right hand side within our error threshold.

3.4 Convergence with NGLQ and Nτ

Figure 1 quantifies the k-dependent errors in GLQ as NGLQ is raised, by comparing estimates
of the effective HDM density contrast using various choices of NGLQ relative to a large-
NGLQ(= 70) estimate. We have assumed a νΛCDM model with three NO neutrinos of mass
Mν = 150 meV, and other parameters

Ωm,0h
2 = 0.1518; Ωb,0h

2 = 0.02242; As = 2.2× 10−9; ns = 0.9665; h = 0.6766. (3.17)

The CDM+baryon (CB) fluid is evolved using Time-RG perturbation theory, to which the
neutrinos respond linearly. For each choice of NGLQ, we use as large an Nτ as possible while
keeping qNτ−1 < 100, a convention that we adopt henceforth unless otherwise mentioned.
That is, for our choices of NGLQ of 5, 10, 20, 30, 40, 50, 70, and 100, the corresponding
settings of Nτ are, respectively, 5, 10, 20, 29, 36, 41, 50, and 61. As expected, errors grow
with k beyond the free-streaming wave number kFS = 0.04 h/Mpc. Encouragingly, they
remain under 0.2% for NGLQ = 50 and under 1.2% for NGLQ = 20, meaning that high
precision can be attained with a modest number of flows.

We may also use Eqs. (3.15-3.16) to estimate the error in GLQ for given NGLQ by com-
paring a slow but accurate numerical quadrature of the left-hand side to GLQ on the right-
hand side. Consider the high-k error in particular, with qcut specified by kmax = 10 h/Mpc
and amin = 1. For NGLQ of 5, 10, 20, 30, 40, and 50, Eq. (3.16) estimates errors of 0.84%,
0.82%, 0.74%, 0.67%, 0.59%, and 0.52%, respectively, compared with actual errors of 2.3%,
1.9%, 1.1%, 0.67%, 0.37%, and 0.18% in Fig. 1. Thus the error estimate of Eq. (3.16) is
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Figure 1. Convergence of Gauss-Laguerre quadrature for a model with three NO neutrinos of total
mass Mν = 150 meV and other parameters given by Eq. (3.17) for various choices of NGLQ. For each
NGLQ considered, we plot the fractional error incurred in the estimate of the effective HDM density
monopole δHDM, relative to an estimate of the same using NGLQ = 70.

accurate at the order-of-magnitude level, providing a rough guide to the necessary NGLQ for
a given error tolerance. Meanwhile, at low k, the error estimates of Eq. (3.15) for NGLQ of
5 and 10, respectively 5× 10−4 and 4× 10−6, somewhat overestimate the errors of Fig. 1 at
k ∼ 10−3 h/Mpc. However, as NGLQ is increased in the figure, the error seems to hit a floor
around 10−7. A larger floor ∼ 10−5 is also evident at intermediate scales k ∼ 0.1 h/Mpc.
As these are well within our error budget and subdominant to high-k errors, we do not
investigate them further.

Figure 2 considers the convergence of GLQ as we vary Nτ in the estimate of the effective
HDM monopole density contrast. With NGLQ = 100 fixed, Nτ = 60 suffices to reach qNτ−1 =
95, and we test smaller values of Nτ against the case of Nτ = 60. Evidently, for every choice
of Nτ shown, the corresponding estimate of δHDM has converged to better than 1%. Even a
modest increase in Nτ rapidly decreases the error across the whole k-range; At Nτ ≥ 45, the
errors fall below the numerical precision of ∼ 10−16 and are thus not shown in the figure. The
corresponding low-k error estimates from comparing the two sides of Eq. (3.15) are 5× 10−3

for Nτ = 20, 9×10−5 for Nτ = 25, 5×10−7 for Nτ = 30, 7×10−10 for Nτ = 35, and 2×10−13

for Nτ = 40, about an order-of-magnitude larger than the the low-k errors in Fig. 2. At high
k, the error estimates of Eq. (3.16) are: 9 × 10−5 for NGLQ = 20; 7 × 10−7 for NGLQ = 25;
2×10−9 for NGLQ = 30; 1.5×10−12 for NGLQ = 35; and 3×10−16 for NGLQ = 40. These are
about two orders of magnitude smaller than the high-k errors of Fig. 2, but scale similarly
with Nτ , demonstrating that Eqs. (3.15-3.16) are reasonable approximate guides to GLQ
convergence with Nτ .
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Figure 2. Convergence of GLQ with Nτ , for a model with three neutrinos of total mass Mν =
150 meV in the normal mass hierarchy, and other parameters given by Eq. (3.17). NGLQ = 100 is
fixed, while the number of flows Nτ is varied, and the result is compared with Nτ = 60.

3.5 Non-linear perturbation theory: FlowsForTheMasses-II

In principle, the implementation of GLQ and EHDM in FlowsForTheMasses is straightfor-
ward. EHDM simply means replacing the Fermi-Dirac distribution for neutrinos by the effec-
tive distribution function FEHDM(q) of Eq. (3.9). GLQ requires τα = qαTEHDM,0 for each flow
α, and its corresponding late-time density fraction is proportional to wαq

2
α exp(qα)FEHDM(qα),

as discussed in Sec. 3.2. However, problems arise for the smallest qα.
Reference [41] encountered numerical instabilities in the FlowsForTheMasses pertur-

bation theory applied to massive neutrinos in the high-k and high-ℓ regime. A stability
threshold kst had to be introduced, above which evolution of the perturbations was no longer
tracked, and kst was reduced dynamically as instabilities caused a reduction of the integration
step size to below ∆η = 10−6. For the fiducial model used, with Ων,0h

2 = 0.005, Ref. [41]
found it possible to stabilize FlowsForTheMasses up to kst ≳ 3 h/Mpc by truncating the
Legendre moment expansion of the power spectrum input to the mode-coupling integrals,
ℓ < Nµ,NL, meaning that Ak

α,acd,bef,ℓ was nonzero only for ℓ < 2Nµ,NL − 1. A choice of Nµ,NL

as high as 8 was found to be computationally tractable, but Nµ,NL = 6 achieved a reasonable
balance between precision and computational cost. Therefore, following [41], we adopt the
choice Nµ,NL = 6 henceforth, unless stated otherwise.

However, applying FlowsForTheMasses with Nµ,NL = 6 to a much broader range
Ων,0h

2 ≤ 0.01, Ref. [42] found that this truncation alone was inadequate for the smallest τ and
largest neutrino masses, that is, for the smallest velocities. Numerical instabilities affected
nearly 20% of their sample of 101 runs. They were able to stabilize FlowsForTheMasses

for this larger mass range by introducing a further truncation of the ℓ range of the bispec-
trum integrals Ikα,acd,bef,ℓ and the mode-coupling integrals Ak

α,acd,bef,ℓ, restricting ℓ < Nµ,AI .
They defined stability as the integration being able to reach z = 0 with kst ≥ 1.2 h/Mpc,
a definition which we adopt here. The choice of Nµ,AI = 4 or 5 was found to stabilize the
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Figure 3. Fractional differences in the z = 0 neutrino power spectra computed using various choices

of N
(0)
µ,AI relative to that computed using the largest stable N

(0)
µ,AI value, for a massive neutrino model

with Mν = 59 meV. Left: Normal mass ordering. The largest N
(0)
µ,AI achieving stability is 5. Right:

Degenerate mass ordering. All N
(0)
µ,AI are stable, so we have used N

(0)
µ,AI = 11 as the reference for

comparison.

perturbation theory, at the cost of an additional error of 1%− 2%, which they quantified by
comparison to higher Nµ,AI . While the error associated with this truncation was larger for
lower Ων,0h

2, truncation was only necessary for Ων,0h
2 > 0.006.

GLQ exacerbates this instability by requiring more low-velocity bins, necessary for accu-
rately predicting the small-scale clustering of HDM. We find that even for Mν = 59 meV, the
minimum allowed value in the normal ordering, FlowsForTheMasses is unstable. Further-
more, reducing Nµ,AI to accommodate the lowest-α flows will introduce unacceptable errors
into the larger α; that is, the Nµ,AI truncation is too aggressive for our purposes. Thus we

allow each flow α to have its own truncation, ℓ < N
(α)
µ,AI , for its I

k
α,acd,bef,ℓ and Ak

α,acd,bef,ℓ. A

full exploration of the parameter space of all N
(α)
µ,AI would be prohibitively expensive com-

putationally, and we do not consider it here. However, for a modest GLQ order NGLQ = 20,

we find that reducing only N
(0)
µ,AI is sufficient to ensure the stability of models with densities

Ων,0h
2 ≲ 0.003, while larger NGLQ can be reached for smaller neutrino masses. Henceforth,

unless otherwise mentioned, we only discuss non-linear perturbative results for which stabil-

ity may be achieved by reducing N
(0)
µ,AI alone, leaving all others at their maximum value of

2Nµ,NL − 1 = 11.
Figure 3 compares the power spectra for the Mν = 59 meV normal and degenerate mass

orderings as N
(0)
µ,AI is varied. Since our N

(0)
µ,AI truncation is less aggressive than the global

Nµ,AI truncation of Ref. [42], we find considerably smaller errors. Even N
(0)
µ,AI = 1 reaches

2.2% accuracy all the way to k = 1 h/Mpc for the degenerate ordering, with smaller errors for
the normal ordering. Furthermore, since these errors decrease with increasing neutrino mass,
and Fig. 3 considers the smallest allowed Mν , we may use 2.2% as an upper bound for all

larger masses in the case of N
(0)
µ,AI = 1; 1.2% in the case of N

(0)
µ,AI = 2; and 0.25% in the case of

N
(0)
µ,AI = 3, with higher N

(0)
µ,AI consistently under 1% for both mass orderings. Thus we regard
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Figure 4. Comparison of HDM densities δHDM, computed using the linear perturbation theory of
Sec. 2.2 with GLQ or uniform-density binning, to CLASS. We consider three degenerate-mass neutrinos
with Mν = 150 meV at z = 0.

this N
(0)
µ,AI truncation as sufficiently accurate for our purposes, though its extension to higher

masses than those considered in this article will require further consideration. Henceforth,
we refer to this new version of FlowsForTheMasses, implementing EHDM and GLQ, with

both Nµ,NL and N
(α)
µ,AI truncations, as FlowsForTheMasses-II.

3.6 Numerical accuracy

We conclude this section by assessing the numerical accuracy of GLQ and EHDM in pertur-
bation theory. We consider νΛCDM models with the cosmological parameters of Eq. (3.17)
and Mν = 150 meV neutrinos in either the normal or degenerate mass ordering. In the case
of linear perturbation theory, we compare our results to the CLASS code, in which we set the
three neutrino masses individually. Our CLASS runs fix all non-cold dark matter (NCDM)
tolerances to 10−9 and set l max ncdm=500.

Figure 4 considers the DO case in order to facilitate comparison with the degenerate-
mass multi-fluid perturbation theory of Ref. [56], which uses uniform-number-density neu-
trino bins. It demonstrates that GLQ is far more efficient than uniform bins. The number of
flows, Nτ , is directly proportional to the computational cost, since the neutrinos are the most
computationally-demanding part of the linear perturbative calculation. Evidently, GLQ with
Nτ = 35 has a k ≥ 1 h/Mpc error two orders of magnitude below that of uniform binning
with Nτ = 100. GLQ even outperforms the thousand-bin calculation by more than an or-
der of magnitude. Note that this Nτ = 35 GLQ curve is most closely comparable to the
NGLQ = 40 curve in Fig. 1, which used Nτ = 36. Both have errors ≲ 0.1%.

Next, we consider individual neutrino density monopoles in the NO case. Figure 5
demonstrates the accuracy of the combined GLQ and EHDM methods compared with CLASS,
in which the three neutrinos are considered separately. Even a modest number of GLQ
points, NGLQ = 15, agrees with CLASS to < 2% across the entire k range for the both the
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Figure 5. Comparison of HDM densities δHDM computed using the linear perturbation theory of
Sec. 2.2 implementing GLQ and EHDM, with the output of CLASS at z = 0. The model has three NO
neutrinos with Mν = 150 meV. The 42 meV (65 meV) neutrino is shown using dotted (solid) lines;
errors in the 42 meV and 43 meV neutrinos are nearly identical.

light and the heavy neutrinos separately, with somewhat larger errors for the more massive
neutrino. Larger NGLQ reduces these errors to ≤ 0.1% for k ≥ 0.002 h/Mpc. Increasing
NGLQ beyond ∼ 100 yields no discernible improvements to the accuracy, showing that the
EHDM momentum resolution is no longer a dominant source of error. We thus confirm that
the EHDM method is fundamentally sound and that GLQ is accurate for k ≤ 10 h/Mpc.

Finally, we compare uniform-density three-species binning to GLQ and EHDM in non-
linear perturbation theory, for three NO neutrinos with Mν = 150 meV. The computational
expense of FlowsForTheMasses rises in proportion to N6

µ,NL, so we restrict ourselves in this
subsection to Nµ,NL = 3, the minimum value recommended by Ref. [41]. In the calculation
with uniform-density bins, each of the three neutrinos is tracked using Nτ/3 bins of equal
density. Thus bins corresponding to different neutrino species have different densities. Since
we showed GLQ to have converged by NGLQ = 100, we use the GLQ power spectrum with
NGLQ = 100 and Nτ = 61 as the reference model against which all others are compared.

Figure 6 compares several neutrino power spectrum computations using uniform-density
as well as GLQ binning methods. Up to a numerical noise at the ∼ 0.01% level, NGLQ of
50 and 70 are nearly identical to the reference model for k ≤ 1 h/Mpc. Even NGLQ = 20 is
consistent with that noise up to k = 0.2 h/Mpc and has ≤ 2% errors up to k = 1 h/Mpc.
At large scales, k ≤ 0.3 h/Mpc, the highest-resolution uniform-density binning agrees with
all of the GLQ calculations at the percent level. However, uniform-density binning converges
slowly at high k, where a high resolution of the smallest momenta is essential to an accurate
computation. At k = 1 h/Mpc, the lowest-resolution GLQ, with NGLQ = Nτ = 20, is more
accurate than even the highest-resolution uniform-density binning using nearly a hundred
times as many bins, illustrating the advantages of Gauss-Laguerre quadrature. We also
see that the two highest-resolution uniform-density calculations disagree by ≥ 1% for k ≥
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neutrino model contains Mν = 150 meV NO masses.

0.4 h/Mpc and by ≈ 4% at k = 1 h/Mpc, justifying our use of GLQ for the reference model.
We therefore conclude that FlowsForTheMasses-II with EHDM and GLQ has converged at
about the percent level for NGLQ of 15 or 20. We proceed to apply it to neutrinos and other
HDM models.

4 Results I: Non-linear enhancement of HDM clustering

4.1 Accuracy at low Mν: solving a puzzle

Reference [42] encountered a mysterious ≈ 50% small-scale error in FlowsForTheMasses and
its companion Cosmic-Enu emulator. This error at k ≈ 1 h/Mpc is evident in compar-
isons with a series of degenerate-mass νΛCDM simulations conducted by the Euclid code-
comparison project in Ref. [63] for Mν ranging from 150 meV to 600 meV; the remaining
parameters are Ωm,0h

2 = 0.1432, Ωb,0h
2 = 0.022, As = 2.215 × 10−9, ns = 0.9619, and

h = 0.67. This error is considerably larger than the 15% − 20% error expected from the N-
body comparison of the original FlowsForTheMasses publication, Ref. [41]. The simulation
of that reference used a small volume, a box of edge length 128 Mpc/h, in order to reduce shot
noise, at the cost of neglecting larger-scale power that could flow down to smaller scales due
to non-linear clustering. This could explain some of the error, but not its Mν-independence.

Although they were unable to find a conclusive explanation for this Mν-independent
error, Ref. [42] suggested three possibilities:

1. Perturbation theory error. Non-linear perturbation theory is most accurate on quasi-
linear scales, and smaller-scale accuracy would require higher-order perturbative cor-
rections. However, lighter neutrinos cluster more linearly, so it is difficult to explain
how this error remains ≈ 50% while Mν is varied by a factor of four.
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Figure 7. Predictions of the dimensionless neutrino power spectrum at z = 0 for the degenerate-
orderingMν = 150 meV, 300 meV, and 600 meV νΛCDMmodels of Ref. [63], using a variety of compu-
tation methods. Left: The absolute neutrino power spectrum computed using FlowsForTheMasses-II
(solid), Cosmic-Enu (dashed), linear response (dotted), and N-body simulations (points). In the case
of N-body predictions, filled points correspond to (512 Mpc)3 simulation volumes and open points to
a volume of (1024 Mpc)3 for the Mν = 150 meV model. Right: Fractional errors in ∆2

ν(k) relative to
the N-body predictions.

2. Non-perturbative clustering. Perturbation theory cannot account for non-perturbative
structures such as CDM halos, which are expected to capture some portion of the
neutrino population. However, again, a fourfold change in Mν will substantially change
the number of neutrinos below the escape velocity of the typical halo, so such capture
should be strongly Mν-dependent.

3. N-body systematic biases. Reference [63] saw a 30% − 40% small-scale scatter among
the different simulation methods. This scatter could be larger if errors due to imperfect
convergence and incorrect initialization, as studied in Ref. [64], are included.

Here, we are able to conclude definitively that this 50% error is actually the combination
of two different errors. FlowsForTheMasses at k ≈ 1 h/Mpc is indeed breaking down for
higher Mν . At low Mν , an inadequate sampling of low neutrino momenta, responsible for
most of the small-scale clustering, leads to large errors. This latter error can be substantially
reduced, either by significantly increasing the number of momentum bins, or by switching to
a more efficient quadrature method such as GLQ, as we proceed to show.

Our results for a range of Mν are demonstrated in Fig. 7. The FlowsForTheMasses-II
curves use GLQ with NGLQ = 50 and Nτ = 41, while the Cosmic-Enu curves emulate
FlowsForTheMasses using Nτ = 50 uniform-density bins. Up to shot noise in the simulation,
this perturbation theory is accurate to ≈ 20% for Mν = 150 meV, ≈ 40% for Mν = 300 meV,
and ≈ 50% for Mν = 600 meV. The switch to GLQ has only a minor impact at the highest
mass shown, while the error is dominated by either higher-order or non-perturbative clus-
tering. By increasing significantly with Mν , this residual error behaves as expected of a
breakdown in perturbation theory.

We find, however, that the numerical instabilities discussed in Sec. 3.5 become severe

for Mν = 600 meV. That section defined a flow-dependent truncation ℓ < N
(α)
µ,AI of the
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a variety of neutrino simulation methods. Also shown are the linear response power spectrum of
Ref. [56] and the Cosmic-Enu emulator of Ref. [42].

number of angular modes passed to the non-linear mode-coupling integrals. Thus far, with

Mν ≤ 300 meV, we have found that reducing N
(0)
µ,AI is sufficient to stabilize the perturbation

theory to k = 1.2 h/Mpc. However, we find for Mν = 600 meV that we must extend this

truncation to the first three flows, reducing each of N
(0)
µ,AI , N

(1)
µ,AI , and N

(2)
µ,AI to 3. Evidently,

GLQ exacerbates the numerical instabilities of FlowsForTheMasses-II for large Mν .
Figure 8 provides, for the Mν = 150 meV model, further detail about the improved

low-momentum sampling in FlowsForTheMasses-II. Here, several different N-body meth-
ods [65–76] are compared with linear response [56, 77], the Cosmic-Enu emulator, and
FlowsForTheMasses-II; the low-shot-noise swift simulation of Ref. [78], based upon the
δf method of Refs. [79, 80], is used as a reference. We can now see more clearly that GLQ
reduces the FlowsForTheMasses-II error to < 10% up to k = 0.5 h/Mpc and < 20% up
to k = 1 h/Mpc; its errors are now comparable to the scatter among the different N-body
methods themselves. Thus GLQ has reduced the error of FlowsForTheMasses-II relative
to FlowsForTheMasses and Cosmic-Enu by more than a factor of two. This represents a
significant improvement over the uniform-density-binned codes for k ≳ 0.2 h/Mpc and over
the linear response method for k ≳ 0.05 h/Mpc.

The highest-resolution massive neutrino N-body simulation conducted thus far is the
TianNu simulation of Refs. [38, 81, 82], which tracked 2.6 trillion neutrino particles in a cubic
box of edge length 1200 Mpc/h. It approximated the normal mass ordering by simulating a
single 50 meV neutrino, with the remaining two assumed to be massless. Figure 9 compares
FlowsForTheMasses-II, with NGLQ = 20 GLQ bins and Nτ = 20 momentum bins, to
the TianNu power spectrum, finding an accuracy of 21% at k = 1 h/Mpc. We have thus
confirmed the accuracy of our GLQ-based FlowsForTheMasses-II perturbation theory to
≈ 20% for k ≤ 1 h/Mpc for neutrino masses up to 50 meV.
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Figure 9. The z = 0 dimensionless neutrino power spectrum from the TianNu simulation of Ref. [81],
compared with FlowsForTheMasses-II (thick line) and linear response (thin line). The cosmological
model contains one massive neutrino at 50 meV and two massless states.

We have considered building a new emulator using GLQ momentum bins. However, the
high-Mν numerical instabilities noted above for Mν = 600 meV required the adjustment of
three separate truncation parameters to resolve, and masses Mν ≈ 930 meV at the upper end
of the emulation range may require more. Individually adjusting this many parameters and
demonstrating the insensitivity of the resulting power spectra to their precise values, for every
single high-Mν model in the training set, would be prohibitively computationally expensive.
Alternatively, we may regard Cosmic-Enu as well-suited toMν ≳ 300 meV, where the benefits
of GLQ are diminishing and where the degenerate mass ordering becomes accurate to ≈ 2%,
as we shall see in Sec. 4.3. Then we may use GLQ to construct two separate Mν ≤ 300 meV
emulators for the normal and inverted mass orderings. We leave this for future work.

4.2 Normal ordering and recovery of individual-species power spectra

Next, we apply the effective HDM method to the normal hierarchy, with the ultimate goal
of verifying the individual-species power spectra implied by Eq. (3.11). We compare our
results to the gevolution N-body simulation of Ref. [69], which uses an approximation
to the normal mass ordering. Since multiple neutrino species substantially increase the
computational costs of simulations, Ref. [69] simulated a doubly-degenerate 60 meV neutrino
and a singly-degenerate 80 meV neutrino, for a total mass Mν = 200 meV. That is, they
neglected the smaller mass splitting, ∆m2

21, and approximated the larger one, ∆m2
31, as

0.0028 eV2. Their simulation tracked 40963 CDM+baryon particles and 1.7× 1011 neutrino
particles in a (2 Gpc/h)3 box with a force resolution of 0.5 Mpc/h.

Figure 10 compares FlowsForTheMasses-II with NGLQ = 50 and Nτ = 41 to Ref. [69]
up to k = 0.4 h/Mpc, after which the N-body power spectra become dominated by shot
noise. The other cosmological parameters of this νΛCDM model are Ωm,0h

2 = 0.142412,
Ωb,0h

2 = 0.022032, As = 2.215× 10−9, ns = 0.9619, and h = 0.67556. Also shown in the left

– 22 –



10
-3

10
-2

 0.01  0.1

d
im

en
si

o
n
le

ss
 p

o
w

er
 ∆

2 ν
(k

)

wave number k

FFTM-II
Cosmic-Enu

Adamek

10
-3

10
-2

 0.01  0.1

mν
 = 80 meV

mν
 = 60 meV

d
im

en
si

o
n
le

ss
 p

o
w

er
 ∆

2 ν
(k

)

wave number k

FFTM-II
Adamek

Figure 10. Comparison of the FlowsForTheMasses-II neutrino power spectrum at z = 0, using
GLQ momentum binning, to the N-body neutrino simulation results of Ref. [69], assuming Mν =
200 meV and an approximate normal mass ordering. Left: Total neutrino power spectrum. For
comparison, we plot also the emulated Cosmic-Enu power spectrum of Ref. [42] for the same Mν but
assuming a degenerate ordering. Right: Separate power spectra of the 80 meV and 60 meV species.

panel is the emulated power spectrum of Cosmic-Enu, which assumes a degenerate neutrino
mass ordering. Relative to Cosmic-Enu, FlowsForTheMasses-II represents a nearly fourfold
reduction in RMS fractional error over the range 0.1 h/Mpc < k < 0.15 h/Mpc, from 6.2%
to 1.6%, and over a threefold reduction over 0.35 h/Mpc < k < 0.4 h/Mpc, from 24% to 7%.

Moreover, FlowsForTheMasses-II accurately recovers the power spectra of individ-
ual neutrino species, as seen in the right panel of Fig. 10. Its RMS fractional errors are
comparable to those of the total neutrino power spectrum, though the heavier neutrino
species has slightly smaller errors at low k and larger ones at high k. For example, in the
0.1 h/Mpc < k < 0.15 h/Mpc range, the FlowsForTheMasses-II error is 0.9% for the
80 meV species and 2.2% for the 60 meV species, while in the 0.35 h/Mpc < k < 0.4 h/Mpc
range, these errors grow to 8.2% and 5.7%, respectively. This rise in the error of the heavier
neutrino suggests a small-scale non-linear effect not captured by perturbation theory. Also
evident from the smallest scales in the same plot is the fact that the 80 meV neutrino power
spectrum is about three times that of the 60 meV neutrino, consistent with the ∆2

ν ∝ m4
ν

scaling of Refs. [48, 49].

4.3 Errors in the degenerate-ordering approximation

Bounds on Mν commonly make the approximation of a degenerate mass ordering, which
reduces the computational cost of their power spectrum computations. We next investigate
the error in the total neutrino power spectrum arising from this approximation. This error
necessarily vanishes in both the clustering limit, when all neutrino masses cluster the same,
and the high-Mν limit, in which fractional differences between the neutrino masses vanish.
Thus we focus on Mν ≤ 300 meV and 0.01 h/Mpc ≤ k ≤ 1 h/Mpc. Since the free-streaming-
limit power spectrum for a single neutrino of mass mν scales as m4

ν in the linear case [48],
and as an even higher power of mν with non-linear corrections [42], we expect the degenerate
mass ordering to underestimate the neutrino power in all cases. As a numerical example, we
consider νΛCDM cosmologies with the parameters of Eq. (3.17) fixed.
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Figure 11. Errors in the degenerate-ordering approximation in the neutrino power spectrum.
Left: Total fractional error in the DO power spectrum ∆2

ν [DO] as an approximation to ∆2
ν [NO] (solid)

and ∆2
ν [IO] (dashed). Right: Fractional non-linear contribution to the error in the DO approximation.

In all cases, we have used NGLQ = Nτ = 20 and Nµ = 10.

Figure 11 shows how the DO approximation fares in the prediction of the neutrino power
spectrum, when it is used at several k to estimate the NO and IO power spectra over their
respective mass ranges Mν ≥ 59 meV and Mν ≥ 101 meV. As expected, the relative excess
of the actual ∆2

ν over ∆2
ν [DO] rises with decreasing Mν and increasing k, with the degenerate

ordering underestimating the power spectrum at k = 1 h/Mpc and Mν = 59 meV by a
factor of more than thirty. Figure 11 (Right) further shows that non-linear corrections alone,
computed here using Time-RG for the CB fluid and FlowsForTheMasses-II for the neutrinos,
represent more than 10% of this increase for k ≥ 0.5 h/Mpc. As constraints improve, we must
be increasingly cautious about applying the degenerate-ordering approximation to studies of
small-scale neutrino effects.

4.4 Extension to axionic models

We demonstrated in Sec. 3.1 that the EHDM formalism is not limited to neutrinos, but applies
to any set of HDM species. Here, we test its accuracy for models containing either axions or
axion-like bosons, along with massive neutrinos. We assume a cosmological constant as the
dark energy, and we fix the following cosmological parameters:

Ωm,0h
2 = 0.1424; Ωb,0h

2 = 0.02242; As = 2.1× 10−9; ns = 0.966; h = 0.6766. (4.1)

We assume minimal-mass NO neutrinos, Mν = 59 meV, along with another particle with

mass 228 meV, temperature T
(s)
HDM,0 = 1.86 K, and one of the following distribution functions:

(a) axionic, as computed in Ref. [33] for QCD axion production rates based upon pion-pion
scattering data, and provided to us by the authors;

(b) bosonic, that is, the Bose-Einstein distribution function FBE(q) = (2π)−3(eq − 1)−1.
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Figure 12. Effective distribution functions for two HDM models containing Mν = 59 meV NO
neutrinos, in addition to (a) an axion whose distribution function was computed in Ref. [33], or (b) a
generic thermal boson following a Bose-Einstein distribution.

The mass 228 meV is chosen so that in the axionic case, the thermal axion population’s
contribution to Neff of ∆Neff = 0.19 remains slightly below observational bounds. The
bosonic case exceeds these bounds and is included for illustrative purposes. Figure 12 shows
the distribution functions of these two models.

As a high-accuracy reference calculation, we use a set of hybrid N-body simulations
based upon the code of Ref. [83], extended to EHDM models and using GLQ flows, as
implemented in our companion paper, Ref. [57]. We conducted one hybrid simulation for
each of the axionic and bosonic models above, and two more for models that include only
standard neutrinos as the HDM, with NO masses totally Mν = 161 meV and and 315 meV,
respectively. All four simulation runs and their corresponding FlowsForTheMasses-II runs
use cosmological constant models with parameters given in Eq. (4.1), as well as NGLQ =
Nτ = 15 and Nµ = 10.

Reference [83] showed for standard neutrino models that FlowsForTheMasses is accu-
rate for flow velocities vα/c ≥ 0.0017 − 0.002, that is, about 500 km/sec−600 km/sec. The
four models considered here together have a total of nine flows with vα/c ≤ 0.002: 0.00032
and 0.0017 for the axionic model; 0.0002 and 0.0011 for the bosonic model; 0.00029 and
0.0015 for the lighter neutrino model; and 0.00015, 0.00079, and 0.0019 for the heavier neu-
trino model. Figure 13 shows the fractional error in FlowsForTheMasses-II for each of
these flows. Evidently, low-k error tends to decrease with rising flow velocity. At larger wave
numbers, 0.1 h/Mpc< k < 0.4 h/Mpc, flows with v/c ≤ 0.001 have similar errors, while
errors in the higher-velocity flows decrease with increasing v. Further, the two fastest flows
shown, identified by filled and open triangles in the figure, have errors consistent with ≲ 10%
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Figure 13. Errors the in FlowsForTheMasses-II power spectra of the individual EHDM flows
for a range of flow velocities relative to hybrid N-body simulation. The simulation results have been
binned, with each data point representing the average over 20 points per bin and the error bars the
standard deviation. The full set of data points are collated from four HDM models described in
Sec. 4.4, with other cosmological parameters fixed to Eq. (4.1). For visual clarity, we have applied a
horizontal offset of up to a few percent to the data points.

for k ≤ 0.2 h/Mpc and ≲ 20% up to k ≈ 0.35 h/Mpc. One of these two comes from the
axion+neutrino model and the other one from a neutrino-only model. Thus we see that the
guideline of Ref. [83], that perturbation theory is adequate for flows with v/c larger than
about 0.0017− 0.002, holds even for very different HDM species.

Figure 14 uses NGLQ = 15 flows to compare FlowsForTheMasses-II and hybrid N-body
power spectra for the axionic and bosonic models above. In each case, the hybrid simulation
converts into particles every flow with a velocity v/c ≤ 0.002, i.e., the slowest two flows in each
of these models, while the remaining flows are tracked using multi-fluid linear perturbation
theory. FlowsForTheMasses-II agrees closely with N-body power spectra in all cases up to
k ≲ 0.4 h/Mpc, and for the 9 meV neutrinos to k ≈ 1 h/Mpc. We have thus demonstrated
that 15 flows are sufficient for predicting the clustering of the total EHDM as well as the
component HDM species, even for species with very different distribution functions and an
axion-to-neutrino mass ratio of 25.

5 Results II: Evading cosmological neutrino bounds

5.1 Non-standard neutrinos and clustering suppression

Cosmological upper bounds on Mν are considerably stronger than those from laboratory
experiments, such as Mν < 2400 meV from KATRIN [84], but also more dependent upon our
assumptions that the neutrinos have only Standard Model interactions and an approximately
Fermi-Dirac distribution function. Moreover, the most stringent cosmological constraints rely
upon the assumption of ΛCDM cosmology. Recently, Refs. [22, 23] and others have proposed
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Figure 14. Power spectra at z = 0 for individual HDM species, determined from the GLQ flows as
per Eq. (3.11), for two HDM models. Each model assumes a cosmological constant and the parameters
of Eq. (4.1), with NO neutrino masses totally Mν = 59 meV plus a non-standard HDM: (a) axion+ν
model, where the axion distribution was computed in Ref. [33], and (b) boson+ν model, where the
boson follows the relativistic Bose-Einstein distribution.

models that allow massive neutrinos to evade cosmological bounds but whose mass remains
measurable in ongoing and near-future laboratory β-decay end-point experiments including
KATRIN. Following Ref. [23], we divide these models into two classes: “skewed-ν” models,
in which neutrinos’ distribution function is skewed away from the relativistic Fermi-Dirac
distribution by a momentum-dependent factor so as to increase their mean momentum; and
“cool-ν” models, which lower the neutrinos’ temperature, hence their number density, in the
early universe.

Reference [85] argues that cosmology chiefly constrains two properties of the relic neu-
trino background, its energy densities in the early and late universe, parameterized respec-
tively as Neff and Ων,0. Thus, the goal of these alternative neutrino models is to preserve
these two parameters while increasing Mν into the range 600 meV ≲ Mν ≲ 2400 meV be-
tween the current laboratory bounds and the design sensitivity of ongoing experiments such
as KATRIN. The argument that late-time cosmology only constrains Ων,0 follows from the
standard result that neutrinos making up a matter fraction fν = Ων,0/Ωm,0 cause an ∼ 8fν
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fractional suppression of the matter power spectrum on scales much smaller than their free-
streaming scale. This is equivalent to a fractional suppression of δm by 4fν and of δcb by
3fν . We begin this section by deriving this result in order to show its breadth as well as its
limitations.

Applying Eq. (2.5) to the CDM+baryon fluid (which has zero velocity) implies −ak2Φ =
H[aHδ′cb]

′. Working in the Einstein-de Sitter model and considering k sufficiently large that
neutrino clustering can be neglected from Eq. (2.6), we find δcb ∝ a1−3fν/5 for small fν , as
compared with δcb ∝ a in the massless-neutrino case. However, these are only valid while
neutrinos are non-relativistic, a ≳ anr = p̄ν,0/mν , where the mean momentum p̄ν,0 ≈ 3.15Tν,0

for the Fermi-Dirac distribution; before this time, neutrino masses have a negligible impact
upon δcb. Thus the late-time suppression factor of δcb is ≈ (anr/a)

3fν/5. This corresponds to a
fractional suppression 1−(anr/a)

3fν/5 ≈ 3fν for a = 1 and Ων,0h
2 ≈ 0.003, hence a suppression

of 8fν for the matter power spectrum. The fractional suppression is weakly dependent upon
Ων,0h

2 and the scale factor; increasing Ων,0h
2 to 0.01 at a = 1 leads to a suppression of 3.3fν

in δcb and hence 8.6fν in the matter power spectrum, while Ων,0h
2 = 0.003 and a = 0.5 gives

a suppression of 2.6fν and 7.2fν in δcb and the matter power spectrum, respectively.
They key point here is that, because anr depends on the ratio pν,0/mν , increasing the

neutrino momenta and masses by the same amount preserves this suppression due to neu-
trino free-streaming. Thus skewed-ν models should have approximately the same small-scale
power suppression as the corresponding standard-ν models characterized by Tν,0 = 1.9525 K
and Fermi-Dirac distribution functions. However, cool-ν models, which seek to lower the
neutrinos’ temperature in order to increase their masses, will lead to different small-scale
matter power spectra, requiring a modification to the arguments of Ref. [85].

We consider in the following the skewed-ν and cool-ν models in turn. Our bench-
mark observable is the CMB lensing potential power spectrum Cϕϕ

L , which can probe matter
clustering in the quasi-linear regime (corresponding to multipoles 1000 ≲ L ≲ 2000) while
remaining relatively free of systematic biases; see Ref. [86] for a review of CMB lensing and
Ref. [87] regarding biases from baryonic effects. As a criterion for discerning between the two

models, we compare the differences between their Cϕϕ
L to the sensitivity forecast for a sample

CMB Stage-4 survey [88]. In order to predict Cϕϕ
L , we combine the hyphi code of Ref. [89]

with the FlowsForTheMasses-II neutrino treatment of Sec. 3.

5.2 Skewed neutrino models

Skewed-ν models were considered in, e.g., Refs. [22, 90]. Evidently from our discussion
in Sec. 3.1, the clustering of any collection of HDM species is determined by its velocity
distribution. Thus, increasing both their masses and their momenta so as to preserve the
velocity distribution will have no impact upon the HDM clustering. In other words, neutrinos
could exceed cosmological bounds if their distribution function were skewed away from the
relativistic Fermi-Dirac distribution and towards higher momenta. The drawback of skewed-ν
models is that no obvious mechanism for such a skew is known.

We parameterize the skewed neutrino distribution function as Fsk(q) = Nσσ(q)FFD(q).
By demanding that the skewed-ν model reproduces the correct Neff , that is, the skewed-ν
and standard-ν models must have the same energy densities at early (pre-Big Bang Nucle-
osynthesis) times:

Nσ

∫ ∞

0

dq q3σ(q)

eq + 1
=

∫ ∞

0

dq q3

eq + 1
, (5.1)
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we find a normalization factor

Nσ =
I
(FD)
3

I
(sk)
3

, (5.2)

where

I(FD)
n =

∫ ∞

0

dq qn

eq + 1
, and I(sk)n =

∫ ∞

0

dq qnσ(q)

eq + 1
. (5.3)

Here, I
(FD)
n is the standard Fermi-Dirac integral. Next, we equate the models’ late-time

densities ρ̄ν,0 ∝ Ων,0 in the non-relativistic approximation,

M (skew)
ν Nσ

∫ ∞

0
dq

q2σ(q)

eq + 1
= Mν

∫ ∞

0
dq

q2

eq + 1
, (5.4)

which leads to
Mν

M
(skew)
ν

=
I
(sk)
2

I
(FD)
2

I
(FD)
3

I
(sk)
3

. (5.5)

On the other hand, the mean momentum is readily seen to be a−1Tν,0I
(FD)
3 /I

(FD)
2 ≈ 3.15Tν,0/a

for standard neutrinos and a−1Tν,0I
(sk)
3 /I

(sk)
2 for skewed neutrinos. Then, by comparison

with Eq. (5.5), we see immediately that the ratios of mean momentum to neutrino mass are
the same in both models. Thus, skewed-ν models must also cause a small-scale fractional
suppression of ∼ 8fν in the late-time matter power spectrum.

As a phenomenological example, we consider a neutrino distribution function Fsk(q) =
Nnsk

qnskFFD(q), where Nnsk
is the normalization constant, and a larger nsk > 0 implies a

larger mean momentum. We assume that the normalization is fixed in the early universe so
as to preserve Neff = 3.044. This means that increasing nsk reduces the neutrinos’ number

density, such that fixing Ων,0 would require a higherMν . Alternatively, we could fixM
(skew)
ν =

600 meV while increasing nsk: doing so would allow the skewed-ν model to mimic a standard
neutrino model with smaller Mν ; indeed, we find that a skewed model with nsk = 13 (nsk =
28) has the same Ων,0 as standard neutrinos with Mν = 118 meV (61 meV). Although this
example does not exactly preserve the velocity distribution function, we will see that it is
indistinguishably close to the standard neutrino case for near-future cosmological surveys.

Figure 15 shows our results with fixed M
(skew)
ν = 600 meV. Each skewed-ν model is

compared with its standard-ν counterpart, with matching Neff and Ων,0 . The fractional
difference between the CMB lensing potential power spectra in each pair fits comfortably
within the binned error bands forecast for the proposed CMB Stage-4 survey in the CMB-S4
Science Book [88]. Thus, as expected, raising the neutrino masses and momenta in tan-
dem does not appreciably affect neutrinos’ clustering properties. If a theoretically-suitable,
experimentally-falsifiable mechanism could be found for introducing such a distortion to the
neutrinos’ distribution function, then skewed neutrino models would be viable ways to evade
cosmological neutrino mass bounds.

5.3 Cool-neutrino models

Contrary to skewed-ν models, cool-ν models increase the neutrinos’ masses while decreasing
their mean momenta, both of which have the effect of reducing the neutrinos’ velocities,
thereby amplifying both their small-scale power suppression and their non-linear clustering
while shifting their free-streaming wave numbers kFS to larger values. We consider here the
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Figure 15. Fractional difference in the CMB lensing potential power spectra between skewed-ν

models with distribution functions ∝ pnskFFD(p) and M
(skew)
ν = 600 meV, and standard-ν models

described by a relativistic Fermi-Dirac distribution FFD(p). The skewed-ν distribution functions have
been normalized to ensure Neff = 3.044. For each nsk, the corresponding standard-ν mass Mν has
been chosen such that it gives an energy density Ων,0 matching its skewed-ν counterpart. That is,
Ων,0 decreases with rising nsk. The shaded error bands correspond to the forecasted CMB Stage-4
sensitivities taken from Ref. [88].

cool-ν model of Ref. [23], where neutrinos thermalize with Nχ massless sterile particles χ via a
massive mediator at a time after weak decoupling. The resulting neutrinos have a relativistic
Fermi-Dirac distribution function. However, equipartition amongst the thermalized species
leads to a neutrino temperature that is lower by a factor of (1 + 2Nχ/3)

−1/3 compared with
Standard Model neutrinos; the remainder of Neff is made up by the massless particles. These
cooler neutrinos have a correspondingly reduced number density, meaning that their masses
must be larger than those of standard neutrinos for the same Ων,0 value.

For example, a factor-of-two cooling in the neutrinos, corresponding to Nχ ≈ 11, implies
an eightfold reduction in their number density, allowing for a corresponding eightfold increase

in the sum of their masses, M
(cool)
ν . Since the neutrino free-streaming wave number kFS ∝

m/T , both the reduced temperature and the increased mass raise kFS, pushing the neutrino
suppression to smaller scales. In this particular example of Nχ ≈ 11, kFS increases by a
factor of sixteen.

We estimated in Sec. 5.1 that the late-time fractional suppression in δcb by massive
neutrinos is ≈ (anr/a)

3fν/5. Preserving fν while reducing Tν,0 and increasingmν will therefore
reduce anr, increasing the suppression. Thus a cool-ν model with the same Neff and Ων,0

as a standard-temperature model will nevertheless have a smaller free-streaming scale and a
greater suppression of the linear δcb and hence the linear matter power spectrum. Continuing

with our Nχ ≈ 11 example of a halving of Tν,0 and an eightfold increase in M
(cool)
ν relative to

standard-temperature models, we find for Ων,0h
2 ≈ 0.003 and a = 1 that δcb and the matter

power spectrum are suppressed at small scales by ≈ 4.5fν and ≈ 11fν , respectively.
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M
(cool)
ν = 600 meV (purple), 1500 meV (green), and 2400 meV (blue). The maximum Nχ shown is

consistent with the equal-Ων,0 mass sum Mν being at least 60 meV.

Since no single M
(cool)
ν value in a cool-ν model can simultaneously match the late-

time density parameter Ων,0 and the small-scale matter power spectrum of a standard-ν
model, we next ask which of these two choices of late-time phenomenology is the better

approximation to cosmological constraints. We compare cool-ν models with fixed M
(cool)
ν

against two different standard-ν analogs: one with an equal Ων,0, and another with an equal
small-scale suppression. All models have the same Neff by design. In the equal-Ων,0 case,

assuming Nχ massless sterile particles, the standard-ν model has Mν = M
(cool)
ν /(1+2Nχ/3).

In the equal-suppression case, since our suppression formula above is approximate, we
match the z = 0 linear matter power suppression computed using CLASS at k = 10 h/Mpc to
a fractional precision < 10−5 by adjusting Mν . We assume νΛCDM models with parameters

Ωm,0h
2 = 0.14; Ωb,0h

2 = 0.022; As = 2.2× 10−9; ns = 0.96; h = 0.67. (5.6)

We further assume NO masses in the standard-ν case. Since we are interested in M
(cool)
ν ≥

600 meV, we make the DO mass approximation for cool-ν models. Figure 16 shows equal-

density and equal-suppression masses as functions of Nχ for 600 meV≤ M
(cool)
ν ≤ 2400 meV.

Figure 17 compares the CMB lensing potential power spectra of equal-density and

equal-suppression standard-ν models, to the corresponding cool-ν model of a fixed M
(cool)
ν =

600 meV and various choices of Nχ ≤ 13. Increasing Nχ above 13 will imply equal-density Mν

below the lower bound from neutrino oscillation experiments, so we exclude these from con-
sideration. For Nχ = 6 (Nχ = 13), the equal-density standard-ν model has Mν = 120 meV
(Mν = 62 meV), while the corresponding equal-suppression masses are ≈ 21% (≈ 31%)
larger. Evidently, equal-density standard-ν models will be distinguishable from the corre-
sponding cool-ν models to a high significance using CMB Stage-4 data, even for the smallest
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Figure 17. Fractional differences in the CMB lensing potential power spectrum Cϕϕ
L between

standard-ν and cool-ν models with the cosmological parameters of Eq. (5.6). We fix M
(cool)
ν =

600 meV, while varying the number Nχ of sterile species. Solid and dashed lines represent, respec-
tively, standard-ν models matched to the same Ων,0 and the same small-scale suppression as the
corresponding cool-ν model. The shaded error bands denote the forecasted CMB Stage-4 sensitivities
taken from Ref. [88].

masses M
(cool)
ν = 600 meV accessible to ongoing terrestrial experiments. Thus, from a phe-

nomenological viewpoint, the statement that late-time cosmological observable depends only
on the HDM density Ων,0 is not correct, as demonstrated here by the cool-ν models.

On the other hand, as shown in Fig. 17, equal-suppression standard-ν and cool-ν models
exhibit much the same CMB lensing potential power spectrum over a large range of multipoles
L. In the case of Nχ ≥ 10, the equal-suppression standard-ν model lies within the error bars
over the entire L range considered. Thus the HDM property actually constrained by the late-
time cosmological data is closer to the small-scale matter power spectrum suppression than
the background HDM density. While this argument leaves intact the most important point
made by Ref. [23], namely, the ability of cool-ν models to evade neutrino mass constraints
from observational cosmology, it also suggests new approaches by which cool-ν models may
be excluded in the future. The key point is that the precise Mν characterizing an equal-
suppression model depends upon the observable as well as the scale factor. Specifically:

1. The linear suppression factor is weakly dependent upon the scale factor, as noted in
Sec. 5.1, with a threefold change in the scale factor leading to a ≈ 10% change in the
linear suppression fraction.

2. Cool-ν models, by virtue of having larger masses and lower temperatures than equal-
suppression standard-ν models, have larger non-linear HDM clustering, itself depending
rapidly upon the scale factor.

3. The cool-ν and equal-suppression standard-ν models have different fν , so the ratios of
small-scale linear matter-to-cb suppression factors limk→∞ Pm(k)/Pcb(k) = (1 − fν)

2
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Figure 18. Fractional corrections in cosmolgoical observables from neutrino non-linearity in cool-ν

models. Left: Corrections to the CMB lensing potential power spectrum Cϕϕ
L for M

(cool)
ν = 600 meV

(top), 1500 meV (middle), and 2400 meV (bottom) for various choices of Nχ. Right: Corrections

to the z = 0 matter power spectrum Pm(k) for the same set of M
(cool)
ν and Nχ. The corresponding

masses Mν in standard-ν models, matching either the late-time density Ων,0 or small-scale suppression
of the cool-ν models, are shown in Fig. 16.

are also different.

CMB lensing and tomographic shear surveys probe the matter power spectrum at different
redshifts, while galaxy clustering surveys trace the cb power spectrum. Thus a combination
of all three may be able to eliminate or severely constrain cool-ν models designed to evade
cosmological bounds. Furthermore, a large-volume survey may be able to constrain the
difference between the free-streaming scales of cool-ν and standard-ν models. We leave
forecasts of such joint constraints to future work.

Lastly, we elaborate upon item 2 in the list above, the non-linear contribution to HDM
clustering. Figure 18 quantifies the fractional contribution of FlowsForTheMasses-II non-
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power spectrum. We consider cool-ν models with M
(cool)
ν of 600 meV, 1500 meV, and

2400 meV, spanning the range of interest between the current terrestrial constraints of KA-
TRIN [84] and its ultimate design sensitivity. Adopting a conservative cosmological upper

bound on Mν of about 380 meV [1],5 we see that in order for M
(cool)
ν = 2400 meV to stay

within observational constraints, a Nχ of at least 10 would be required. In this case, the bot-

tom panels of Fig. 18 show that the non-linear HDM correction to Cϕϕ
L is 0.16% at L = 1000

and 0.24% at L = 2000, while the small-scale z = 0 matter power correction is 0.52%. While
even the Cϕϕ

L correction is a sizable fraction of the error bars and cannot be neglected, the
rapid late-time increase of this correction could prove useful constraining it.

6 Conclusions

We have developed and derived a procedure for representing an arbitrary collection of HDM
species, of any masses, temperatures, and distribution functions, from the relativistic to the
non-relativistic regime, using a single EHDM species with an appropriately-chosen distribu-
tion function. As this method follows directly from the full collisionless Boltzmann equation,
it makes no assumption about the nature of the inhomogeneities in any distribution function
and is equally applicable to linear and non-linear perturbation theory, as well as to N-body
simulations. In this work, we have implemented this EHDM method in both linear (MuFLR)
and non-linear (FlowsForTheMasses-II) multi-flow perturbation theories, which discretize
the EHDM distribution into ∼ 10 uniform-momentum flows. Furthermore, since terrestrial
experiments are typically sensitive to only a single HDM species such as the electron neutrino,
we have shown how an appropriate linear combination of these flows allows us to recover the
power spectrum of each component HDM species that makes up the EHDM.

As cosmology enters the HDM era, perturbation theory is emerging as an indispensable
tool, both for testing approximations within the standard neutrino picture and for exploring
models well beyond it. Within the standard picture, we have shown that a more efficient
choice of flow momenta improves the small-scale accuracy of FlowsForTheMasses-II at low
Mν by more than a factor of two relative to its predecessor, and we have quantified the differ-
ences among the normal, inverted, and degenerate neutrino mass orderings for a range of Mν .
Beyond standard neutrinos, we have considered mixed-HDM models that incorporate either
a thermal QCD axion or a generic thermal boson in addition to a minimally-massive neutrino
sector. We have also studied two attempts at evading cosmological neutrino bounds, either
by skewing the neutrinos’ distribution function or by reducing their temperature, and we
have shown that the latter of these modifies the linear and non-linear clustering of neutrinos
in a manner that could allow it to be distinguished from standard-temperature neutrinos
using upcoming data from CMB Stage-4 experiments. In doing so, we have demonstrated
FlowsForTheMasses-II to be an invaluable tool for studying light neutrinos as well as rapidly
exploring the non-standard HDM parameter space.
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