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Charge-parity (CP) asymmetries in charm decays are extremely suppressed in the Standard
Model and may well be dominated by new-physics contributions. The LHCb collabora-
tion reported the results of direct CP asymmetry measurements in D0 → K+K− and
D0 → π+π− decays with unprecedented accuracy: aCP(K

+K−) = (7.7 ± 5.7) × 10−4 and
aCP(π

+π−) = (23.2 ± 6.1) × 10−4, with the latter quantity inferred from the precise measurement
of ∆aCP = aCP(K

+K−) − aCP(π
+π−) = (−15.7 ± 2.9) × 10−4. When interpreted within the

Standard Model, these values indicate a breakdown of the approximate U -spin symmetry of QCD.
If, however, this symmetry holds and the data stem from new physics, other CP asymmetries
should be enhanced as well. We derive CP asymmetry sum rules based on SU(3) flavor symmetry
for D meson decays into a pair of pseudoscalar mesons as well as a pair of a pseudoscalar and
a vector meson for two generic scenarios, with ∆U = 0 and |∆U | = 1 interactions, respectively.
The correlations implied by the sum rules can be used to check the consistency between different
measurements and to discriminate between these scenarios with future data. For instance, we find

aCP(π
+K∗0) + aCP(K

+K
∗0
) = 0 for ∆U = 0 new physics and the opposite relative sign for the

|∆U | = 1 case. One sum rule, connecting four decay modes, holds in both scenarios. We further
extend our sum rules to certain differences of CP asymmetries from which the D production
asymmetries drop out.
———————————————————————————————————————————
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I. INTRODUCTION

In 2019 the LHCb collaboration reported the discovery
of charm CP violation (CPV) in the measurement of the
difference of two CP asymmetries stating [1]

∆a2019CP = aCP(K
+K−)− aCP(π

+π−)

= (−15.7± 2.9)× 10−4, (1)

where aCP(f) is the time-integrated direct CP asymme-
try in D0 → f . Strictly speaking, the measurement in
Eq. (1) contains a small contribution from (the yet undis-
covered) mixing-induced CP violation, because the aver-
age decay times of the D0 → K+K− and D0 → π+π−

data samples are different. In this paper we assign the
measured values completely to direct CP asymmetry;
subtracting the maximal experimentally allowed contri-
bution from mixing-induced CP violation changes the
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central value of the direct CP asymmetry difference in
Eq. (1) by as little as +0.3× 10−4 [1].
In 2022 LHCb presented the corresponding measure-

ment of the individual CP asymmetry aCP(K
+K−) and

combined it with Eq. (1) and previous measurements to
find [2]:

aCP(K
+K−) = (7.7± 5.7)× 10−4, (2)

aCP(π
+π−) = (23.2± 6.1)× 10−4, (3)

with a correlation of ρ = 0.88.
It is difficult to calculate Standard-Model (SM) pre-

dictions for the penguin amplitudes feeding Eqs. (2) and
(3). However, the strong parametric suppression stem-
ming from tiny off-diagonal elements of the Cabbibo-
Kobayashi-Maskawa (CKM) matrix [3, 4] makes these
CP asymmetries highly sensitive probes of new physics.
Virtual effects of multi-TeV mass heavy particles can
easily dominate over the SM contribution, so that even
SM predictions with O(100%) uncertainty can constrain
beyond-SM (BSM) models in a meaningful way. A SM
prediction based on QCD sum rules is [5, 6]

|∆aSMCP | = (2.4± 1.2)× 10−4, (4)

which is smaller than the measured value in Eq. (1) by
a factor of more than six. While QCD sum rules are a
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sound, field-theoretic method with a plethora of success-
ful predictions in B physics, little is known about their
applicability to charm physics. The discrepancy between
Eqs. (1) and (4) (as well as already the earlier, less sig-
nificant measurement ∆aCP = (−82 ± 21 ± 11) × 10−4

[7]) has stimulated many theory papers addressing either
BSM physics [6, 8–21] or invoking a SM explanation in
terms of an enhanced SM penguin amplitude. The lat-
ter papers have postulated a QCD enhancement ad-hoc
[22, 23] or by invoking unflavored resonances which are
almost mass degenerate with the D0 [24, 25].
The approximate SU(3) flavor symmetry of QCD

(SU(3)F) can be used to derive relations between vari-
ous CP asymmetries and we expect to predict other non-
vanishing direct CP asymmetries from the non-zero CP
asymmetry in Eq. (3). To this end we employ the sub-
group of SU(3)F corresponding to SU(2) rotations of the
U -spin doublet (s, d)T . The U -spin symmetry breaking
parameter is (ms−md)/ΛQCD, so that one expects U -spin
relations to hold up to corrections of order 30%. SU(3)F
analyses of branching ratios (BR) and CP asymmetries
can be found in Refs. [26–36]. However, within the SM
one finds the sum rule

aCP(π
+π−) = −aCP(K

+K−), (5)

valid in the limit of exact U -spin symmetry. As seen
the sum rule predicts opposite signs of aCP(π

+π−) and
aCP(K

+K−), and deviates from the measurement by
about 2.7σ [2].

Thus the experimental results in Eqs. (2) and (3) imply
that

(i) U -spin breaks down in charm CP asymmetries

(ii) or the dominant contribution to at least one of the
two CP asymmetries in Eqs. (2) and (3) stems from
new physics (NP) [21, 37]

(iii) or future measurements will find different values for
aCP(K

+K−) and/or ∆aCP; this possibility neces-
sarily implies a shift of aCP(K

+K−) by more than
2σ with a change of the sign. (We do not consider
the possibility that ∆aCP will change by far more
than 5σ to comply with aCP(K

+K−) > 0).

Although the short-distance partonic level quark
transitions can be evaluated perturbatively, the
hadronic D meson decays and its CPV param-
eters involve hadronic matrix elements such as
⟨K+K−|(uγµPLs)(sγ

µPLc)|D0⟩, which are not eas-
ily evaluated.

In this paper, we rely on the approximate SU(3)F sym-
metry of the QCD Lagrangian to correlate the amplitudes
of different decay modes with the goal of discriminating
between the three explanations listed above. For exam-
ple, if (ii) is the correct explanation while U-spin holds,
the pattern of Eqs. (2) and (3) will have imprints on other
decay modes. Furthermore, the comparisons of CP asym-
metries in D(s) decays to two pseudoscalar mesons with
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FIG. 1. The experimental result and theory predictions on
aCP(K

+K−) vs aCP(π
+π−) plane. See the text at the end of

Sec. II for details.

those in decays to a pseudoscalar/vector meson pair will
give insight into the Dirac structure of the underlying
BSM couplings. We will derive SU(3)F sum rules for both
classes of decays. Previously sum rules for amplitudes
and decay rates of charmed meson decays were derived
in Ref. [30].#1

The outline of this paper is as follows. In Sec. II, we
explain the setup and in Sec. III the CP asymmetry sum
rules are derived. In Sec. IV, we extend our sum rules to
differences of CP asymmetries modeled after Eq. (1) in
order to eliminate experimental production asymmetries.
We conclude in Sec.V.

II. FRAMEWORK

Within the SM the decays of interest are induced by
the singly Cabibbo suppressed (SCS) charm decays c →
uqq̄ with q = d, s at tree-level and q = u, d, s in the
loop-induced penguin contribution. The relevant |∆C| =
1 effective Hamiltonian is given at the interaction scale

#1 See also Ref. [38] and references therein. The earlier work of
Ref. [32] discusses CP violation in charmless B decays based on
SU(3)F.
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(µ = mc) as

Heff
SM =

4GF√
2

∑
q=s,d

λq

(
C1(q

αγµPLc
α)(uβγµPLq

β)

+ C2(q
αγµPLc

β)(uβγµPLq
α)

)
≡λsh

s
SM + λdh

d
SM, (6)

where λq = VuqV
∗
cq and α, β are color indices.

Defining Aπ = ⟨π+π−|hd
SM − hs

SM|D0⟩, AK =
⟨K+K−|hs

SM − hd
SM|D0⟩, Pπ = ⟨π+π−|hs

SM|D0⟩ and
PK = ⟨K+K−|hd

SM|D0⟩, the decay amplitudes are ex-
pressed as

A(D0 → π+π−) =⟨π+π−|Heff
SM|D0⟩

=λdAπ − λbPπ, (7)

A(D0 → K+K−) =λsAK − λbPK , (8)

where the CKM unitarity relation λd + λs + λb = 0 is
used. The b quark is integrated out leading to penguin
operators with tiny coefficients in Heff

SM which come with
λb and are omitted in Eq. (6). These small terms con-
tribute equally to hs

SM and hd
SM.

From Eqs. (7) and (8) one notes that the meson pair
is produced in a U = 1 state in the limit λb = 0. It is
straightforward to calculate the direct CP asymmetry

aCP ≡
|Ai→f |2 − |Ai→f |2

|Ai→f |2 + |Ai→f |2
, (9)

and we obtain

aCP(π
+π−) ≃ 2 Im

λb

λd
Im

(
Pπ

Aπ

)
, (10)

aCP(K
+K−) ≃ 2 Im

λb

λs
Im

(
PK

AK

)
, (11)

where we neglected O(λ2
b) terms. Given that λs = −λd+

O(λb) holds thanks to CKM unitarity, U -spin symmetry
ensures Aπ = AK and Pπ = PK , reproducing the famous
CP asymmetry sum rule of Eq. (5).

In reality SU(3)F is broken and the breaking effect is
found to be ≃ 30% in the dominant decay amplitude
∝ λd,s in measurements of BRs [30]. In this paper,
we employ SU(3)F at the leading order and neglect U -
spin symmetry violation since the observed violation in
Eqs. (2) and (3) is huge. In the SM the penguin con-
tributions Pπ and PK are ∆U = 0 amplitudes. ∆U = 0
NP contributes to aCP(π

+π−) and aCP(K
+K−) with op-

posite sign as the SM one, so that a NP explanation of
Eqs. (2) and (3) requires a |∆U | = 1 contribution. If
such a contribution is observed in future measurements
of other CP asymmetries, this will corroborate the NP
interpretation. To this end, we derive CP sum rules for
decays in which non-zero CP asymmetries are not yet
observed.

Generic NP four-quark ∆S = 0 interactions can be
described by amending the effective SM Hamiltonian in
Eq. (6) with

∆Heff
NP =

GF√
2
(uΓc)

(
au uΓu + ad dΓd + as sΓs

)
≡ auO′

u + adO′
d + asO′

s , (12)

where Γ represents an arbitrary Dirac structure. While
several such terms with different Dirac structures could
be present, our symmetry-based analyses will not be
changed compared to the case in Eq. (12) with a single
Dirac structure. The same remark applies to the two
possible color structures; color indices are not shown in
Eq. (12).
Returning to D0 → π+π− and K+K−, we set au =

0 until the end of this section, because au contributes
only through penguin or annihilation diagrams to these
decays which are likely to be smaller than tree-level NP
effects involving ad or as. The contributing amplitudes
in the presence of NP effects, Heff

NP = Heff
SM +∆Heff

NP are
expressed as,

ANP(D0 → π+π−) =λdAπ + ad Qπ
d + asQπ

s , (13)

ANP(D0 → K+K−) =λsAK + ad QK
d + asQK

s , (14)

where QM
q = ⟨MM |O′

q|D0⟩ is defined. For instance, if
we introduce NP which only couples to d quarks, this
corresponds to ad ̸= 0 and as = 0. We emphasize that as
long as the involved hadronic matrix elements cannot be
determined accurately, the ∆U = 0 NP contribution ∝
ad+as cannot be disentangled from the SM contribution.
Similarly to the SM case we obtain

aCP(π
+π−) ≃ −2 Im

ad

λd
Im

Qπ
d

A
− 2 Im

as

λd
Im

Qπ
s

A
, (15)

aCP(K
+K−) ≃ −2 Im

ad

λs
Im

QK
d

A
− 2 Im

as

λs
Im

QK
s

A
, (16)

working to leading order in λb and ad,s and using the
U -spin symmetry which holds approximately, A ≡ Aπ =
AK , in the SM part. The maximal U -spin breaking in
∆aCP corresponds to Im (ad + as) = 0. In this scenario
aCP(π

+π−) = aCP(K
+K−) holds, however, this relation

also does not fit the recent data.
In Fig. 1 we show the experimental status and the-

ory predictions in the aCP(K
+K−) vs aCP(π

+π−) plane.
The 2019 LHCb result for ∆aCP is shown in orange with
1σ uncertainty. We show the latest LHCb result of 1, 2,
and 3σ in blue solid, dashed, and dotted ellipses. The
U -spin limit, aCP(K

+K−) = −aCP(π
+π−) as well as

the limit of maximal U -spin violation, aCP(K
+K−) =

+aCP(π
+π−) are shown in light green and red, respec-

tively. To account for U -spin violating effects based
on the ratio of BR(D0 → K+K−) and BR(D0 →
π+π−) [30], we allow 30% deviation from the U -spin
limit corresponding to the green band. The magenta
lines correspond to the reference points, aCP(π

+π−) =
±3 aCP(K

+K−). These reference points are motivated
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by the case ad ̸= 0 with as = 0 and the observation that
QK

d is color-suppressed w.r.t. Qπ
d . The phase difference

between QK
d /A and Qπ

d/A can be anything and the two
signs in aCP(π

+π−) = ±3 aCP(K
+K−) are the limiting

cases if the color suppression is at its nominal value of
1/Nc = 1/3.

Assuming Im
(

Qπ
d

A

)
= 1, the distance between any

two points next to each other on the lines corresponds
to ∆Im (ad) = 0.05 × 10−3. It is evident that |∆U | =
1 i.e. maximal U -spin violation cannot explain the data
either while the central value of the recent LHCb data
can be reproduced with aCP(π

+π−) = +3 aCP(K
+K−).

III. CP ASYMMETRY SUM RULES

In this section, we derive sum rules connecting new
CP asymmetries, valid for ∆U = 0 and |∆U | = 1 inter-
actions, respectively. The derivation is similar to that of
the amplitude sum rule performed in Ref. [30], however, it
is hard to find CP asymmetry sum rules in general, since
CP asymmetries involve interference between two ampli-
tudes, and thus the number of independent relations is
smaller. For demonstration, we start with a generic de-
cay amplitude of

⟨M1M2|H|D⟩ = λA(M1M2) + aP (M1M2). (17)

This leads to a CP asymmetry of

aCP(M1M2) ≃

+2
Im (a)

λ

Im
(
A(M1M2) P (M1M2)∗

)
|A(M1M2)|2

, (18)

where terms of order a2 and higher are neglected, and
the relative complex phase is put in a while λ is chosen
real. It is helpful to decompose the amplitude via the
Wigner-Eckart theorem, which allows us to rewrite the
amplitude in terms of Clebsch-Gordan (CG) coefficients
[39, 40] and reduced matrix elements, to construct the de-
sired CP asymmetry sum rules. The relevant coefficients
are summarized in Tab. I and Tabs. II, III for D → PP
and D → PV , where P and V stands for a pseudoscalar
meson and vector meson, respectively.

Schematically, we decompose the amplitudes A(M1M2)

and P (M1M2) as,

A(M1M2) =

n∑
i=1

ci(M1M2)xi, (19)

P (M1M2)∗ =

m∑
j=1

c′j(M1M2)yj , (20)

where xi, yj are in general independent reduced matrix
elements and ci(M1M2), c′j(M1M2) correspond to the
CG coefficients where the relevant entries are summa-

rized in AppendixA. The product is expressed as

δCP(M1M2) ≡ A(M1M2)P (M1M2)∗

=

n∑
i=1

m∑
j=1

ci(M1M2)c
′
j(M1M2)xiyj

= (c1c
′
1, c1c

′
2, .., cnc

′
m) ·


x1y1
...

xnym


≡ c(M1M2)

T · x . (21)

In this convention, CP asymmetries are expressed as

aCP(M1M2) =

χ(M1M2) Im
(
δCP(M1M2)

)
Im (a), (22)

where χ(M1M2) = +2/(λ|A(M1M2)|2) is defined. We can
express |A(M1M2)|2 in terms of the decay rate Γ, which is
experimentally found from the measured BR:

λ2|A(M1M2)|2 = Γ(D → M1M2)

= BR(D → M1M2)/τD, (23)

where the different lifetimes τD for D = D0, D+, D+
s

must be taken into account. Eq. (23) holds, because
|P (M1M2)| is too small to have an effect on BR(D →
M1M2). The phase space factor is absorbed into the def-
inition of A(M1M2); the phase space factors of different
two-body D decays are equal in the SU(3)F symmetry
limit and indeed do not differ much from each other. We
have

χ(M1M2) =
2λτD

BR(D → M1M2)
, (24)

and hence

Im
(
δCP(M1M2)

)
λ Im (a) =

aCP(M1M2)
BR(D → M1M2)

2 τD
. (25)

We will quote sum rules in terms of the δCP(M1M2)’s;
to relate these to the measured CP asymmetries, BRs,
and lifetimes one must use Eq. (25). Since the sum rules
are linear in the δCP(M1M2)’s, the overall normalisation
does not matter. For this reason, also the theoretical pa-
rameter λ Im (a) drops out from the sum rules and cannot
be determined.
Next, we consider a vector of all CP asymmetries

aTCP = (aCP,1, aCP,2...aCP,n) . (26)

Then constructing sum rules is equivalent to finding a
vector v⃗ orthogonal to aCP, which satisfies

vT · aCP = 0. (27)
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If a sum rule involves only two modes, we can directly
construct the aCP sum rule from the δCP sum rule, see,
Appendix B for detail.

The general procedure discussed above can also be per-
formed incorporating higher orders of SU(3)F breaking.
The cost is a larger number of involved reduced matrix
elements. We note that since the matrix c grows with
the number of reduced matrix elements squared, it will
be more difficult to find sum rules for CP asymmetries
incorporating SU(3)F breaking effect.

To incorporate the generic interaction we consider the
following general amplitude of the pseudoscalar decays,

⟨M1M2|H|D⟩ =

λSMA(M1M2) + a0P
(M1M2)
0 + a1P

(M1M2)
1 , (28)

where P
(M1M2)
0 and P

(M1M2)
1 correspond to the ∆U = 0

and |∆U | = 1 contributions, respectively. The SM
|∆U | = 1 amplitude with the CKM factor λSM = λd,s

is A(M1M2). Both SM penguin and NP ∆U = 0 contri-

bution are contained in P
(M1M2)
0 , while P

(M1M2)
1 stems

solely from NP. Keeping terms up to linear order in a0
and a1, the contributions to the CP asymmetry can be
separated into two parts as

aCP = a∆U=0
CP + a∆U=1

CP

≃ 2 Im
a0

λSM

Im(AP ∗
0 )

|A|2
+ 2 Im

a1
λSM

Im(AP ∗
1 )

|A|2
.

(29)

It is difficult to find vectors v satisfying Eq. (27) if both
a0 and a1 are non-zero, because the CG coefficients c′j in
Eq. (20) are different for ∆U = 0 and |∆U | = 1 matrix
elements in general.

In the following two sub-sections (Secs. III A and III B)
we present CP asymmetry sum rules for D → PP and
D → PV , respectively, considering the cases a1 = 0 and
a0 = 0. Specifically, we consider two scenarios, charac-
terised by U-spin U and isospin I:

I. ∆U = ∆I = 0: We assume ∆Heff
NP in Eq. (12) to be

an SU(3) singlet, a0 ∝ au = ad = as and a1 = 0.
This NP scenario mimics the SM penguin contri-
bution, but with a0 unrelated to λb.

II. |∆U | = 1 with a0 = au = 0 and a1 ∝ as = −ad:
This NP scenario is motivated by a heavy new
charged particle, such as a charged Higgs boson,
though such a particle will also involve ∆U = 0
interactions (and effects on DCS decays) as well.
Also, a neutral particle with FCNC ūc coupling
could produce this situation, if the coupling to up
quarks is suppressed.

A. D → PP

1. ∆U = 0 New Physics

First, we present CP asymmetry sum rules which hold
for ∆U = 0 interactions (a0 ̸= 0, a1 = 0). The following
two sum rules are well known and are found by a naive
interchange of d and s quarks.

a∆U=0
CP (K−K+) + a∆U=0

CP (π−π+) = 0, (30)

a∆U=0
CP (K0π+) + a∆U=0

CP (K
0
K+) = 0. (31)

To clarify our notation, remember that SCS decays do
not change the strangeness S, so that in this section all
aCP(M

0
1M

+
2 )’s in which the final state M0

1M
+
2 has S = 1

(like those in Eq. (31)) stem from D+
s → M1M

+
2 .

The first sum rule Eq. (30) is the same as Eq. (5) and
found to be violated by the latest measurements. The
experimental data leads to

aCP(K
−K+) + aCP(π

−π+) = (30.9± 11.4)× 10−4 ,
(32)

which deviates from the ∆U = 0 sum rule by more than
2σ, as seen in Fig. 1. This is already an interesting hint
that there may be more contributions beyond the ∆U =
0 penguin interaction. The last four sum rules do not
contain two modes,

a∆U=0
CP (π0π+) = 0, (33)

δ∆U=0
CP (η8η8) + δ∆U=0

CP (π0π0) + 2 δ∆U=0
CP (η8π

0) = 0,
(34)

δ∆U=0
CP (η8K

+) + δ∆U=0
CP (η8π

+) + δ∆U=0
CP (π0K+) = 0,

(35)

3 δ∆U=0
CP (η8K

+)− 3 δ∆U=0
CP (π0K+) + δ∆U=0

CP (K0π+) = 0.
(36)

Eq. (33) is, of course, a well-known null test of the SM,
which is not violated if the NP contribution is pure
∆I = 0 as in the considered SU(3) singlet NP scenario.
η8 is the octet η meson. The physical η meson is domi-
nantly η8 plus a smaller admixture of the singlet state η0.
The associated mixing angle vanishes in the limit of the
exact SU(3)F symmetry; since we neglect SU(3)F break-
ing, the sum rules quoted in this paper can be used with
the replacement η8 → η.
We emphasize that any linear combination of the above

sum rules holds as well. With Eq. (25) one finds the sum
rules for the CP asymmetries from the ones quoted for the
δCP’s, with the overall factor λSM Im (a0) dropping out.
If in future measurements these sum rules are violated
significantly beyond the nominal ∼ 30% U-spin breaking,
this will be evidence of |∆U | = 1 NP.

2. |∆U | = 1 New Physics

Next, we consider CP asymmetry sum rules for a0 = 0
and a1 ̸= 0. There are two |∆U | = 1 contributions,
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one from the SM amplitude λSM A(M1M2) and one from

the NP amplitude a1 P
(M1M2)
1 carrying a different CP

phase. Here we can again use the described procedure in
AppendixB to find the two-mode sum rules. This time
there are four sum rules containing only two modes,

a∆U=1
CP (K−K+)− a∆U=1

CP (π−π+) = 0, (37)

a∆U=1
CP (K0π+)− a∆U=1

CP (K
0
K+) = 0, (38)

a∆U=1
CP (η8η8)− a∆U=1

CP (π0π0) = 0, (39)

a∆U=1
CP (η8η8)− a∆U=1

CP (η8π
0) = 0. (40)

The last two sum rules contain four modes and are given
by

δ∆U=1
CP (η8K

+)− δ∆U=1
CP (π0π+)− δ∆U=1

CP (η8π
+)

+ δ∆U=1
CP (π0K+) = 0, (41)

6 δ∆U=1
CP (π0π+)− 3 δ∆U=1

CP (η8K
+) + 3 δ∆U=1

CP (π0K+)

− δ∆U=1
CP (K0π+) = 0. (42)

The sum rule in Eq. (37) cannot explain the LHCb mea-
surement of,

∆aCP = aCP(K
−K+)− aCP(π

−π+)

= (−15.7± 2.9)× 10−4 , (43)

because |∆U | = 1 contributions drop out from ∆aCP,
their sole effect is to shift aCP(K

−K+) and aCP(π
−π+)

into the region compatible with the U-spin symmetric
matrix elements.

Interestingly, the sum rule in Eq. (42) holds in both of
our two scenarios; for the ∆U = 0 case it is constructed as
6×Eq. (33)−Eq. (36). While current experimental data
do not allow us to verify this sum rule due to large ex-
perimental uncertainties, it will give useful insight into
the quality of SU(3) symmetry of the hadronic matrix
elements in the future: In case that data will comply
well with Eq. (42), one will gain confidence in the SU(3)
method and use the other sum rules to discriminate be-
tween the scenarios. Note that a future establishment of
aCP(π

0π+) ̸= 0 will establish isospin-breaking NP and
thereby falsify the SM and our scenario I; in our sce-
nario II then at least one other CP asymmetry entering
Eq. (42) will be sizable because of the factor 6 in front of
δ∆U=1
CP (π0π+).
Above we separately derived the CP asymmetry sum

rules for |∆U | = 1 and ∆U = 0 interactions assuming
specific ad,s,u combinations for each. As it is seen in
Fig. 1, neither single |∆U | = 1 nor ∆U = 0 interactions
can fully address the current data. Current data prefer
the ratio as : ad = 1 : −3 which leads to

(as + ad) : (as − ad) = −1 : 2. (44)

Generally, one can combine the CP-asymmetry sum rules
in this proportion and confront these weighted sum rules
with data. However, one should keep in mind that au
enters our scenarios differently: Modifying scenario I by

choosing au = 0 to comply with scenario II will still
be a ∆U = 0 scenario, but now with isospin break-
ing, invalidating Eq. (33). Then two possibilities must
be considered: If aCP(π

0π+) ̸= 0 is measured, this will
directly establish NP with au ̸= ad. Yet if aCP(π

0π+) is
measured compatible with zero, this means that either
Im au ≈ Im ad or that the strong phase between the SM
tree amplitude and the NP amplitude ∝ au−ad is small,
see Eq. (16). In the latter case the effect of au − ad ̸= 0
drops out from the ∆U = 0 sum rules and the above-
mentioned weighted sum rules are meaningful.

B. D → PV

Next, we consider the CP sum rule forD → PV decays
valid for the ∆U = 0 interactions of our scenario I. Con-
sidering the penguin operators for SU(3), the following
sum rules hold,

a∆U=0
CP (K0K

∗0
) + a∆U=0

CP (K
0
K∗0) = 0, (45)

a∆U=0
CP (K−K∗+) + a∆U=0

CP (π−ρ+) = 0, (46)

a∆U=0
CP (K+K∗−) + a∆U=0

CP (π+ρ−) = 0, (47)

a∆U=0
CP (K0ρ+) + a∆U=0

CP (K
0
K∗+) = 0, (48)

a∆U=0
CP (π+K∗0) + a∆U=0

CP (K+K
∗0
) = 0, (49)

δ∆U=0
CP (η8ω8) + δ∆U=0

CP (η8ρ
0) + δ∆U=0

CP (π0ω8)

+ δ∆U=0
CP (π0ρ0) = 0, (50)

δ∆U=0
CP (π0K∗+) + δ∆U=0

CP (η8K
∗+) + δ∆U=0

CP (π0ρ+)

+ δ∆U=0
CP (η8ρ

+) = 0, (51)

δ∆U=0
CP (K+ρ0) + δ∆U=0

CP (K+ω8) + δ∆U=0
CP (π+ρ0)

+ δ∆U=0
CP (π+ω8) = 0, (52)

6δ∆U=0
CP (η8ρ

0)− 6δ∆U=0
CP (π0ω8)− 5δ∆U=0

CP (η8ρ
+)

− 3δ∆U=0
CP (π0ρ+)− δ∆U=0

CP (K
0
K∗+) + δ∆U=0

CP (K+K
∗0
)

+ 3δ∆U=0
CP (π+ω8) + δ∆U=0

CP (π+ρ0)− 2δ∆U=0
CP (η8K

∗+)

− 2δ∆U=0
CP (K+ρ0) = 0. (53)

The first five sum rules only involve two modes, while the
remaining three rules involve four decay modes. The last
one involves 10 decay modes.

On the other hand, once we assume that NP enters via
|∆U | = 1 operators, the sum rules for CP-asymmetries
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can be written as

a∆U=1
CP (π0ρ0)− a∆U=1

CP (η8ω8) = 0, (54)

a∆U=1
CP (K

0
K∗0)− a∆U=1

CP (K0K
∗0
) = 0, (55)

a∆U=1
CP (π−ρ+)− a∆U=1

CP (K−K∗+) = 0, (56)

a∆U=1
CP (π+ρ−)− a∆U=1

CP (K+K∗−) = 0, (57)

a∆U=1
CP (K0ρ+)− a∆U=1

CP (K
0
K∗+) = 0, (58)

a∆U=1
CP (π+K∗0)− a∆U=1

CP (K+K
∗0
) = 0, (59)

δ∆U=1
CP (π0K∗+) + δ∆U=1

CP (η8K
∗+)− δ∆U=1

CP (π0ρ+)

− δ∆U=1
CP (η8ρ

+) = 0, (60)

δ∆U=1
CP (K+ρ0) + δ∆U=1

CP (K+ω8)− δ∆U=1
CP (π+ρ0)

− δ∆U=1
CP (π+ω8) = 0. (61)

The other sum rules can be obtained by multiplying the
individual δCP with the corresponding χ, see Eq. (24). In
the case of the D → PV decays no sum rule holds for
∆U = 0 and 1 simultaneously.

IV. EXTENDED SUM RULE

Since except for aCP(π
−π+) all CP asymmetries [41]

are currently measured consistent with zero (see, table
IV of Appendix C), it is difficult to test sum rules at
the present stage. However, in the future Belle II and
LHCb will reduce uncertainties by a factor of ∼ 5 − 10
compared to the current measurements [2, 41–43] and
could find more hints of CP violation.

To facilitate these discoveries we will next define differ-
ences ∆aCP of CP asymmetries in such a way that exper-
imental production and detection asymmetries drop out.
In the past such considerations led to the measurement of
∆aCP in Eq. (1). Our new ∆aCP combine each SCS CP
asymmetry with another one in a Cabbibo favored (CF)
and doubly Cabbibo suppressed (DCS) decays. Sizable
NP contributions to CF decays are not possible and only
contrived models can generate a CP asymmetry in DCS
decays [44] (see also Ref. [45]). Therefore the ∆aCP’s
obey the same sum rules as the corresponding SCS CP
asymmetry. out of SCS decay and CF or DCS decay,
which can be measured well due to the cancellation of ex-
perimental uncertainties such as tagging and hence will
provide another important cross check. We find

∆aCP,1(D
+
s ) = aCP(K

0π+)− aCP,CF(K
0
K+), (62)

∆aCP,2(D
+
s ) = aCP(K

0π+)− aCP,DCS(K
0K+), (63)

∆aCP,3(D
+) = aCP(K

0
K+)− aCP,CF(K

0
π+), (64)

∆aCP,4(D
+) = aCP(K

0
K+)− aCP,DCS(K

0π+), (65)

for D → PP . In reality, one does not observe a K0 or
K̄0, but a pair of two pions with the invariant mass of a
kaon, i.e. a final state which approximately corresponds
to a KS . One must therefore subtract the effect of kaon

CP violation from the data [46]. This feature also leads
to an interference in the CF and DCS decays, for exam-
ple, the CP asymmetries for D+

s → KSK
+ are non-zero.

The resulting CP asymmetries are proportional to the
imaginary part of the ratio V ∗

cdVus/V
∗
csVud in the SM and

furthermore unlikely to be large even in the presence of
NP [44] and thus negligible compared to the SCS CP
asymmetries of interest.

As a result, these sum rules turn out to be very pow-
erful because within the SM and SCS NP scenarios, the
CP asymmetries for CF and DCS decays are highly sup-
pressed. Thus these differences essentially coincide with
the CP asymmetries in the SCS decays of D+

s → K0π+

and D+ → K
0
K+. As said, the differences ∆aCP in

Eqs. (62)−(65) are only taken for experimental reasons
to eliminate the production asymmetries of D+, D+

s ,
which can fake CP asymmetries. Thus we expect that
the ∆aCP,j’s in Eqs. (62)−(65) can be measured more
precisely than the single CP asymmetries. But DCS de-
cays might pose additional challenges since the ampli-
tudes are further CKM suppressed and hence these de-
cays are more difficult to access experimentally, so that
∆aCP,1 and ∆aCP,3 with CF-decays might be easier to
measure.

Similarly we can construct further ∆aCP observables
for D → PV decays as

∆aCP,5(D
+
s ) = aCP(K

∗0π+)− aCP,DCS(K
0K∗+), (66)

∆aCP,6(D
+
s ) = aCP(K

∗0π+)− aCP,DCS(K
∗0K+), (67)

∆aCP,7(D
+
s ) = aCP(K

0ρ+)− aCP,DCS(K
0K∗+), (68)

∆aCP,8(D
+
s ) = aCP(K

0ρ+)− aCP,DCS(K
∗0K+), (69)

∆aCP,9(D
+) = aCP(K

∗0
K+)− aCP,CF(K

∗0
π+), (70)

∆aCP,10(D
+) = aCP(K

∗0
K+)− aCP,DCS(K

0ρ+), (71)

∆aCP,11(D
+) = aCP(K

0
K∗+)− aCP,CF(K

∗0
π+), (72)

∆aCP,12(D
+) = aCP(K

0
K∗+)− aCP,DCS(K

0ρ+), (73)

∆aCP,13(D
+) = aCP(K

∗0
K+)−aCP,DCS(K

∗0π+), (74)

∆aCP,14(D
+) = aCP(K

∗0
K+)− aCP,CF(K

0
ρ+), (75)

∆aCP,15(D
+) = aCP(K

0
K∗+)−aCP,DCS(K

∗0π+), (76)

∆aCP,16(D
+) = aCP(K

0
K∗+)− aCP,CF(K

0
ρ+). (77)

The comments made for D → PP decays also apply
to ∆aCP,5−16, potential CP asymmetries in the CF and
DCS decays can be neglected. Note that in ∆aCP,6 and
∆aCP,9 also the K∗0 → K+π− detection asymmetry can-
cels.

Precise measurements of these ∆aCP,j’s will serve to
test the sum rules in Eq. (38), (58) and (59) for scenario
II with |∆U | = 1 NP and a0 = 0. As a result, in to-
tal, there are only three independent values of ∆aCP,
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e.g.∆aCP,1, ∆aCP,5 and ∆aCP,7. One finds

∆aCP,1 = ∆aCP,2 = ∆aCP,3 = ∆aCP,4 (78)

∆aCP,5 = ∆aCP,6 = ∆aCP,9 = ∆aCP,10

= ∆aCP,13 = ∆aCP,14, (79)

∆aCP,7 = ∆aCP,8 = ∆aCP,11 = ∆aCP,12

= ∆aCP,15 = ∆aCP,16. (80)

for vanishing CP asymmetries in CF and DCS decays.
These relations can be useful to test the experimental
consistency and the flavor structure of NP.

V. CONCLUSION

In this paper we revisited CP violation in hadronic
two-body D meson decays, motivated by the LHCb mea-
surements of aCP(D

0 → K+K−) and aCP(D
0 → π+π−).

The data can only be accommodated within the Stan-
dard Model if the approximate SU(3)F symmetry of QCD
fails for the penguin matrix elements entering these CP
asymmetries and furthermore a yet unknown mecha-
nism enhances the size of the penguin matrix elements
in D0 → π+π−. We have studied the hypothesis that
the measured asymmetries are instead dominated by new
physics (NP) assuming that SU(3)F works. To test this
hypothesis we invoked two scenarios characterized by the

U-spin quantum number of the NP interaction. We have
derived U-spin sum rules between different CP asymme-
tries which can discriminate between our ∆U = 0 and
|∆U | = 1 scenarios, for both D → PP and D → PV de-
cays. The second scenario is qualitatively different from
the SM case; we find six |∆U | = 1 sum rules for D → PP
and eight ones for D → PV decays. This large number
of experimentally testable relations will help to discrimi-
nate between NP effects and a SM explanation invoking
the breakdown of U-spin symmetry. One of our CP sum
rules holds for both the ∆U = 0 and |∆U | = 1 scenar-
ios. This sum rule could be useful to assess the quality
of U-spin symmetry irrespective of the presence of NP.
We have also proposed to form differences ∆aCP between
the CP asymmetries in the SCS of interest and those in
CF and DCS decays to eliminate experimental produc-
tion and detection asymmetries. To test our SU(3)F sum
rules more precise data and new measurements are im-
portant [42, 43].
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Appendix A: O(1) Wigner-Eckart invariants of SCS decays

The effective Hamiltonian transforms as the product

3̄⊗ 3⊗ 3̄ = (1⊕ 8)⊗ 3̄ = 3̄1 ⊕ 3̄2 ⊕ 6⊕ 1̄5, (A1)

which can be reduced into a direct sum of irreducible representations [30]. For instance, the ∆U = 0 contribution
proportional to (s̄s− d̄d)(ūc) contains no operators of 3̄. These thus lead to penguin contributions in (s̄s+ d̄d)(ūc).
Thanks to the Wigner-Eckart theorem, we can systematically express the symmetry properties of the final and initial
states as well as the Hamilton operator, and reduce the number of free parameters in the hadronic matrix elements.
For SU(3) it has a similar structure as for SU(2) and it follows

⟨P1P2|H|D⟩ =
∑
w

Cw(D,P1, P2)Xw , (A2)

where the CG coefficients Cw are also called Wigner-Eckart invariants and Xw are the reduced matrix elements.
We label the Wigner-Eckart invariants as w = [Ri ], see Ref. [30] for details, where R is the generating operator in
H and i labels the ith reduced element. Indices of meson representation are dropped while they are clear from the
corresponding decays. The D → PP and D → PV Wigner-Eckart invariants of the SCS decay are summarized in
Tab. I as well as Tabs. II and III which are taken from Ref. [30].

Appendix B: Two mode sum rules

Thanks to the Wigner-Eckart theorem we can relate the different decay modes based on the group theoretical
decomposition and contraction. Here we explain the relation between the amplitude sum rule and aCP sum rule in the
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PP mode (
[
3
1

]
,
[
3
2

]
) ([ 61 ],

[
15
1

]
,
[
15
2

]
) ∆U = 0 sum rule ∆U = 1 sum rule

D0 → K−K+ λb
4
(0, 1) +λ

2
(1, 2, 1) Eq. (30) Eq. (37)

D0 → π−π+ λb
4
(0, 1) −λ

2
(1, 2, 1) Eq. (30) Eq. (37)

D0 → π0π0 λb
4
(0, 1) λ

2
(1, 2,−1) Eq. (34) Eq. (39)

D0 → η8η8 −λb
12
(2,−3) λ

2
(1, 2,−1) Eq. (34) Eqs. (39, 40)

D0 → η8π
0 λb

4
√
3
(1, 0) λ

2
√

3
(1, 2,−1) Eq. (34) Eq. (40)

D+ → π0π+ (0, 0) λ√
2
(0, 0, 1) Eq. (33) Eqs. (41, 42)

D+ → η8π
+ λb

2
√
6
(1, 0) λ√

6
(1,−2,−2) Eq. (35) Eq. (41)

D+ → K
0
K+ λb

4
(1, 0) λ

2
(1,−2, 1) Eq. (31) Eq. (38)

D+
s → π0K+ λb

4
√
2
(1, 0) − λ

2
√

2
(1,−2,−1) Eqs. (35, 36) Eqs. (41, 42)

D+
s → K0π+ λb

4
(1, 0) −λ

2
(1,−2, 1) Eqs. (31, 36) Eqs. (38, 42)

D+
s → η8K

+ − λb

4
√

6
(1, 0) λ

2
√

6
(1,−2,−5) Eqs. (35, 36) Eqs. (41, 42)

TABLE I. The SCS decay Wigner-Eckart invariants and occurrence of the sum rules for D(s) → PP .

PV mode (
[
3
1

]
,
[
3
2

]
,
[
3
3

]
) ([ 61 ], [

6
2 ], [

6
3 ],

[
15
1

]
,
[
15
2

]
,
[
15
3

]
,
[
15
4

]
) ∆U = 0 sum rule ∆U = 1 sum rule

D0 → η8ω8 −λb
48
(4,−6,−1) λ

4
(0, 1,−1, 2, 1, 1,−1) Eq. (50) Eq. (54)

D0 → η8ρ
0 λb

16
√
3
(2, 0, 1) − λ

4
√

3
(2, 1, 3,−2,−5,−1,−1) Eqs. (50, 53) —–

D0 → K0K
∗0 −λb

8
(1,−1, 0) λ

2
(1, 0, 0, 0, 1,−1, 0) Eq. (45) Eq. (55)

D0 → π0ω8
λb

16
√
3
(2, 0, 1) λ

4
√
3
(2, 3, 1, 2,−3, 1,−3) Eqs. (50, 53) —–

D0 → π0ρ0 λb
16
(0, 2, 1) −λ

4
(0, 1,−1, 2, 1, 1,−1) Eq. (50) Eq. (54)

D0 → K
0
K∗0 −λb

8
(1,−1, 0) −λ

2
(1, 0, 0, 0, 1,−1, 0) Eq. (45) Eq. (55)

D0 → K−K∗+ λb
8
(0, 1, 0) λ

2
(0, 1, 0, 1, 1, 1, 1) Eq. (46) Eq. (56)

D0 → π−ρ+ λb
8
(0, 1, 0) −λ

2
(0, 1, 0, 1, 1, 1, 1) Eq. (46) Eq. (56)

D0 → K+K∗− λb
8
(0, 1, 1) −λ

2
(0, 0, 1,−1, 0, 0, 0) Eq. (47) Eq. (57)

D0 → π+ρ− λb
8
(0, 1, 1) λ

2
(0, 0, 1,−1, 0, 0, 0) Eq. (47) Eq. (57)

TABLE II. The SCS decay Wigner-Eckart invariants and occurrence of the sum rules for D0 → PV .

case where only two decay modes are involved. For the relations involving three or more modes, there is in general
no simple formula. We start from the relations

P
(P1P2)
0 = cP P

(Q1Q2)
0 , A(P1P2) = cA A(Q1Q2) , (B1)

where cA and cP are real coefficients which can be read from the tables in Appendix A. We can simply replace the
amplitudes P0, A1 in Eq. (29) and find the two-modes sum rule

a∆U=0
CP (P1P2) =

cP
cA

a∆U=0
CP (Q1Q2) . (B2)

This can of course also be done for the |∆U | = 1 case but it is always necessary that both P and A obey sum rules
as in Eq. (B1). For instance sum rules in Eqs. (30, 31) follow from cP = 1 and cA = −1 as seen from table I.

Appendix C: Current experimental status and future sensitivity

Tab. IV shows the current status and future sensitivity of the CP asymmetries measurements [41–43]. For the future
sensitivity an integrated luminosity of 50 ab−1 and 300 fb−1 is assumed for Belle II and LHCb, respectively.

[1] LHCb Collaboration, Observation of CP Violation in Charm Decays, Phys. Rev. Lett. 122 (2019) 211803

https://dx.doi.org/10.1103/PhysRevLett.122.211803
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PV mode (
[
3
1

]
,
[
3
2

]
,
[
3
3

]
) ([ 61 ], [

6
2 ], [

6
3 ],

[
15
1

]
,
[
15
2

]
,
[
15
3

]
,
[
15
4

]
) ∆U = 0 sum rule ∆U = 1 sum rule

D+ → η8ρ
+ λb

8
√

6
(2, 0, 1) − λ

2
√

6
(2, 1, 3, 2,−1, 1, 1) Eqs. (51, 53) Eq. (60)

D+ → π0ρ+ λb

8
√

2
(0, 0, 1) λ

2
√

2
(0, 1, 1, 0, 1,−1, 1) Eqs. (51, 53) Eq. (60)

D+ → K
0
K∗+ λb

8
(1, 0, 0) λ

2
(1, 1, 0,−1, 0, 0, 1) Eqs. (48, 53) Eq. (58)

D+ → K+K
∗0 λb

8
(1, 0, 1) −λ

2
(1, 0, 1, 1, 1, 1, 0) Eqs. (49, 53) Eq. (59)

D+ → π+ω8
λb

8
√

6
(2, 0, 1) λ

2
√

6
(2, 3, 1,−2,−3,−1,−3) Eqs. (52, 53) Eq. (61)

D+ → π+ρ0 − λb

8
√
2
(0, 0, 1) − λ

2
√

2
(0, 1, 1, 0, 1,−1,−1) Eqs. (52, 53) Eq. (61)

D+
s → η8K

∗+ − λb

8
√

6
(1, 0,−1) − λ

2
√

6
(1, 2, 3, 1, 1,−1, 2) Eqs. (51, 53) Eq. (60)

D+
s → K0ρ+ λb

8
(1, 0, 0) −λ

2
(1, 1, 0,−1, 0, 0, 1) Eq. (48) Eq. (58)

D+
s → π0K∗+ λb

8
√

2
(1, 0, 1) λ

2
√

2
(1, 0, 1, 1,−1, 1, 0) Eq. (51) Eq. (60)

D+
s → K+ω8 − λb

8
√
6
(1, 0, 2) λ

2
√
6
(1, 3, 2,−1, 0,−2,−3) Eq. (52) Eq. (61)

D+
s → K+ρ0 λb

8
√

2
(1, 0, 0) − λ

2
√
2
(1, 1, 0,−1,−2, 0,−1) Eqs. (52, 53) Eq. (61)

D+
s → π+K∗0 λb

8
(1, 0, 1) λ

2
(1, 0, 1, 1, 1, 1, 0) Eq. (49) Eq. (59)

TABLE III. The SCS decay Wigner-Eckart invariants and occurrence of the sum rules for D+
(s) → PV .

Decay Mode PDG aCP [%] Belle Belle II (50 ab−1) LHCb LHCb (300 fb−1) ∆U = 0 ∆U = 1

D0 → K+K− −0.07± 0.11 −0.32± 0.23 ±0.03 0.077± 0.057 ±0.007 Eq. (30) Eq. (37)

D0 → π+π− 0.13± 0.14 0.55± 0.37 ±0.05 0.232± 0.061 ±0.007 Eq. (30) Eq. (37)

D0 → π0π0 0.0± 0.6 −0.03± 0.65 ±0.09 — — Eq. (34) Eq. (39)

D+ → π0π+ 0.4± 1.3 2.31± 1.26 ±0.17 −1.3± 1.1 — Eq. (33) Eqs. (41, 42)

D+ → ηπ+ 0.3± 0.8 1.74± 1.15 ±0.14 −0.2± 0.9 — Eq. (35) Eq. (41)

D+ → η′π+ −0.6± 0.7 −0.12± 1.13 ±0.14 −0.61± 0.9 — Eq. (35) Eq. (41)

D+ → K0
sK

+ −0.01± 0.07 −0.25± 0.31 ±0.04 −0.004± 0.076 — Eq. (31) Eq. (38)

D+
s → K0

sπ
+ 0.20± 0.18 5.45± 2.52 ±0.29 0.16± 0.18 — Eqs. (31, 35) Eqs. (38, 42)

D+
s → K+η 1.8± 1.9 2.1± 2.1 — 0.9± 3.9 — Eqs. (35, 36) Eqs. (41, 42)

D+
s → K+η′ 6.0± 18.9 — — — — Eqs. (35, 36) Eqs. (41, 42)

TABLE IV. Current experimental status and future sensitivity taken from Refs. [2, 41–43].

[arXiv:1903.08726].
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