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Abstract

This report summarises recent advances made in the calculation of the
NNLO QCD corrections to the width difference ∆Γs in the Bs−Bs system.
The inclusion of the effects due to current-current operators leads to an
updated prediction of ∆Γs = (0.076± 0.017) ps−1, which narrows the gap
between theory and experiment.

1 Introduction

The mixing of Bs and Bs mesons is fully described by the off-diagonal elements of
the self-energy matrix Σ and a calculation of the corresponding matrix elements
leads to theoretical predictions for the mass difference ∆Ms and the width dif-
ference ∆Γs of the mass eigenstates. The self-energy is related to the scattering
matrix elements through

−i(2π)4δ(4)(pi − pj)Σij =
1

2MB

⟨Bi|S|Bj⟩. (1.1)

Within the Wigner-Weisskopf approximation, we can write down the Schrödinger
equation for the two-state system as [1–3]

i
d

dt

(
|B(t)⟩
|B̄(t)⟩

)
= Σ

(
|B(t)⟩
|B̄(t)⟩

)
, (1.2)
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where the Hermitian mass and decay width matrices M and Γ can be defined
through Σ = M − i

2
Γ. Diagonalising the matrix Σ leads to the eigenstates, BH

and BL. The width difference between these states is given by

∆Γ = −2|Γ12| cos(ϕ12) +O
(

|Γ12|2

|M12|2

)
= |Σ12 − Σ∗

21| cos(ϕ12) +O
(

|Γ12|2

|M12|2

)
,

(1.3)

where the CP-violating phase ϕ12 is the phase difference between the phases of
M12 and Γ12.

2 Calculation overview

The latest update from on the theoretical calculation of ∆Γ from Refs. [4–6] fo-
cused on reducing the perturbative uncertainties in the leading O((ΛQCD/mb)

0)
terms. This is achieved through a matching calculation of a |∆B| = 2 matrix
element calculated within effective |∆B| = 1 and |∆B| = 2 theories, where the
high-energy and low-energy effects factorise into the matching coefficients and
the operator matrix elements respectively. To obtain only the leading terms in
ΛQCD/mb, the Heavy Quark Expansion (HQE) is used for the transition operator
on the |∆B| = 2 side, which allows us to expand the operators in ΛQCD/mb [7–16].
The matching calculation is done methodically by first calculating the imaginary
part of the Bs → Bs mixing amplitude in the two effective field theories, renor-
malising the results and then matching the coefficients of the |∆B| = 2 operators
to the result from the |∆B| = 1 calculation.

For the calculation on the |∆B| = 1 side, we use the Chetyrkin-Misiak-Münz
(CMM) basis, which is particularly useful for automated calculations in our ap-
plication as it circumvents all of the complications related to γ5 in dimensional
regularisation in our case. The Hamiltonian in the CMM basis [17] is given by

H|∆B|=1 =
4GF√

2

2∑
j=1

Cj

(
VcbV

∗
csP

cc
j + VcbV

∗
usP

cu
j + VubV

∗
csP

uc
j + VubV

∗
usP

uu
j

)
−4GF√

2
VtbV

∗
ts

(
6∑

j=3

CjPj + C8P8

)
+
∑

CEj
Ej + h.c.,

(2.1)

where GF is the Fermi constant and Vij are the CKM matrix elements. The
operators P1,2 are the current-current operators which couple to two up-type
quarks as specified by the superscript. The penguin operators are P3−6 and
the operator P8 is the chromomagnetic operator; all operators are defined in
Ref. [17]. The Wilson coefficients Ci have been calculated to three-loop order
in previous works [18–20]. Another issue related to dimensional regularisation
with d = 4 − 2ϵ dimensions is the appearance of so-called evanescent operators,
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which are of order ϵ and vanish if four-dimensional Dirac identities are applied.
However, the evanescent operators mix with physical operators and need to be
taken into consideration when renormalising bare amplitudes. Furthermore, if
dimensional regularisation is used for infrared divergences, the coefficients CEj

enter the calculation, see Sec. 3.
To calculate the width difference ∆Γ, the absorptive part of the scattering

matrix element needs to be evaluated, which decomposes into a sum of terms with
different CKM factors. This prompts us to decompose the |∆B| = 2 matching
coefficients in an analogous fashion. From these considerations we can write the
off-diagonal matrix element of the decay width in the |∆B| = 1 theory as

Γ12 =
1

MB

∑
α,β

λαλβ Im(Mαβ), (2.2)

where λα ≡ V ∗
αsVαb, and in the |∆B| = 2 theory as

Γ12 = − G2
Fm

2
b

24π2MB

∑
α,β

λαλβ

[
Hαβ⟨B|Q|B̄⟩+ H̃αβ

S ⟨B|Q̃S|B̄⟩
]
+O

(
ΛQCD

mb

)
, (2.3)

where MB is the mass of the B meson. In the context of the HQE, the matching
coefficients Hαβ and H̃αβ

S are calculated as expansions in z ≡ m2
c/m

2
b . The

physical operators of the |∆B| = 2 transition operator are given by

Q =
(
b̄iγ

µ (1− γ5) si
) (

b̄jγµ (1− γ5) sj
)
, (2.4)

Q̃S =
(
b̄i (1 + γ5) sj

) (
b̄j (1 + γ5) si

)
. (2.5)

As alluded to previously, the low-energy and high-energy physics factorise with
the matching coefficients Hαβ and H̃αβ

S containing the perturbative high-energy
physics that is the main goal of the theoretical calculation described here. The
low-energy behaviour captured in the operator matrix elements of the physical
operators needs to be extracted from either QCD sum rules [21–28] or lattice
QCD calculations [29, 30] and is used as an input in the prediction of ∆Γ.

3 Dimensional regularisation and evanescent op-

erators

In dimensional regularisation we regularise ultraviolet (UV) poles by choosing
the dimension to be d = 4 − 2ϵ where ϵ is a small parameter that is set to zero
in the renormalised amplitudes. Evanescent operators are operators which are
of order ϵ and vanish in four dimensions due to four-dimensional identities of
the Dirac algebra, e.g. Chisholm identities as well as Fierz identities. However,
their Wilson coefficients mix with the physical operators and consequently they
become important in the renormalisation procedure.
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An additional complication arises when infrared (IR) poles are also regularised
with ϵ = ϵUV = ϵIR, which means that IR poles and finite terms from evanescent
operators remain after renormalisation and only cancel in the matching between
the |∆B| = 1 and |∆B| = 2 sides. Moreover, lower orders in αs need to be cal-
culated to higher orders in ϵ to extract all required matching coefficients because
the matching equation contains IR poles. To obtain NNLO matching coefficients,
we need to match up to O(ϵ1) for NLO and up to O(ϵ2) for LO.

The |∆B| = 2 basis contains a peculiar operator which arises from a linear
combination of physical operators and whose evanescent piece needs to be men-
tioned. In addition to the vector and pseudoscalar operators Q and Q̃S defined
above, we have the corresponding operators with different colour structures,

Q̃ =
(
b̄iγ

µ (1− γ5) sj
) (

b̄jγµ (1− γ5) si
)
, (3.1)

QS =
(
b̄i (1 + γ5) si

) (
b̄j (1 + γ5) sj

)
. (3.2)

The operators Q and Q̃ are equal in four dimensions due to a Fierz identity; thus
their difference is evanescent, i.e. of order ϵ. However, there is another linear
relation between the physical operators, which leads to

R0 =
1

2
Q+QS + Q̃S, (3.3)

an operator whose matrix element ⟨R0⟩(0) is ΛQCD/mb suppressed in our process
[31]. However, this operator also has an evanescent part which is unsuppressed.
Hence, the operator needs to be properly renormalised and in particular its ϵ-
finite renormalisation constants, which are needed to remove any dependence of
the physical amplitude on the evanescent parts, have to be implemented.

4 Technical details on the calculation

The kinematics of the calculation are such that the external quarks are on-shell
with p2b = m2

b for the bottom quark while ps = 0 is chosen for the massless
strange quark. Internal up and down quarks are also taken as massless while the
charm quark is given a mass mc. Diagrams for the calculation are generated using
QGRAF [32]. For the insertion of Feynman rules and identification of topologies,
tapir [33] and exp [34, 35] are employed and the integrals are reduced with the
integration by parts technique using FIRE [36] or Kira [37, 38]. Since only the
imaginary part of the integrals is relevant to the calculation of ∆Γ, only those
master integrals which have a physical cut will contribute, i.e. all masters where
all cuts go through a bottom quark line can be discarded. The resulting master
integrals can finally be evaluated using HyperInt [39].

The update on the theoretical calculation in Refs. [4–6] makes use of the fact
that the numerical results converge quickly in an expansion in z ≡ m2

c/m
2
b and

the NNLO QCD corrections are evaluated to O(z) by expanding naively in mc.
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Contribution Previous results Refs. [4–6]

P1,2 × P3−6 2 loops, z-exact, nf -part only [40,41] 2 loops, O(z), full
P1,2 × P8 2 loops, z-exact, nf -part only [40,41] 2 loops, O(z), full
P3−6 × P3−6 1 loop, z-exact, full [31] 2 loops, O(z), full
P3−6 × P8 1 loop, z-exact, nf -part only [40,41] 2 loops, O(z), full
P8 × P8 1 loop, z-exact, nf -part only [40,41] 2 loops, O(z), full
P1,2 × P1,2 3 loops, O(

√
z), nf -part only [40,41] 3 loops, O(z), full

Table 1: Updated contributions to the theoretical value of ∆Γ. “Full” contributions refers to
the fact that both the fermionic and non-fermionic pieces have been calculated.

This is only valid for the diagrams which do not contain a closed charm loop,
but those contributions have already been calculated in previous works [40, 41].
Combining these results, the contributions to ∆Γ have been updated with the
operators and loop orders as shown in Tab. 1.

5 Results

With the results in Refs. [4–6], ∆Γ has now been updated to include the NNLO
QCD corrections stemming from diagrams with two insertions of the current-
current operators on the |∆B| = 1 side. Contributions from penguin operators
and the chromomagnetic operator are also updated to higher accuracy than in
previous calculations. One detail that has a large impact on the numerical result
and in particular the renormalisation scale dependence is the choice of the mass
scheme. Due to the renormalon ambiguity in the on-shell mass definition [42], a
better convergence behaviour is achieved through converting the on-shell, i.e. pole
mass ratio z = (mpole

c /mpole
b )2 in the matching coefficients to the corresponding

ratio in the MS scheme, z ≡ (mc/mb)
2. In addition to this, there is also another

factor of m2
b in Eq. (2.3) multiplying ∆Γ. In a first step one usually employs a

pole mass, but subsequently trades it for an MS or the potential-subtracted (PS)
mass [43], which have better infrared properties. All three choices have been
considered to estimate the renormalisation scale dependence of the NNLO result.

To further improve the numerical accuracy of the result, it is helpful to con-
sider the ratio ∆Γ/∆M . In this ratio the dependence on |Vcb| drops out and most
of the dependence on the bag parameters is also removed. Since ∆M is already
known to NNLO in QCD [44], ∆Γ/∆M can also be calculated to NNLO. The
results for the phenomenologically interesting ratio in the different mass schemes
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of the overall m2
b factor are given by

∆Γs

∆Ms

∣∣∣∣
pole

=
(
3.79 +0.53

−0.58scale
+0.09
−0.19scale,1/mb

± 0.11BB̃S
± 0.781/mb

± 0.05input

)
× 10−3,

(5.1)

∆Γs

∆Ms

∣∣∣∣
MS

=
(
4.33 +0.23

−0.44scale
+0.09
−0.19scale,1/mb

± 0.12BB̃S
± 0.781/mb

± 0.05input

)
× 10−3,

(5.2)

∆Γs

∆Ms

∣∣∣∣
PS

=
(
4.20 +0.36

−0.39scale
+0.09
−0.19scale,1/mb

± 0.12BB̃S
± 0.781/mb

± 0.05input

)
× 10−3,

(5.3)

where the subscripts on the uncertainties indicate their origin [5]. The scale de-
pendence refers to the remaining dependence on the renormalisation scale for
the leading and sub-leading terms in ΛQCD/mb respectively. The biggest contri-
bution labelled with 1/mb stems from the uncertainty on the hadronic matrix
elements of ΛQCD/mb operators. The uncertainties of the bag parameters B and
B̃S also give a significant contribution and all other uncertainties of numerical
input parameters are included in the input uncertainty.

The renormalisation scale dependence from which the scale errors of the lead-
ing term in ΛQCD/mb are determined is shown in Fig. 1. It is reassuring to observe
that the renormalisation scale dependence is indeed improved by the inclusion of
the NNLO corrections stemming from current-current operators. Moreover, it is
clear from the plot that the pole scheme leads to inaccurate results due to its
large deviation from the other two schemes. This feature is commonly observed
and conventionally ascribed to the renormalon problem of the pole mass [45,46].

Using the experimental value for ∆Ms [47],

∆M exp
s = (17.7656± 0.0057) ps−1, (5.4)

the theoretical prediction for ∆Γs is updated to be

∆Γth
s = (0.076± 0.017) ps−1. (5.5)

Note that only the MS and PS results were used to obtain this final number.
Comparing this result to the experimental value [48],

∆Γexp
s (0.084± 0.005) ps−1, (5.6)

we conclude that the theoretical uncertainty is about three times as large as the
experimental one.

6 Conclusion

The first step towards a NNLO calculation of the QCD corrections to ∆Γs has
now been completed. The theoretical predictions agree well with the experimental
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Figure 1: The renormalisation scale dependence of ∆Γ/∆M in the B-B system as calculated
in Ref. [5]. Note that the renormalisation scale of the matching calculation, µ1, is varied
simultaneously with the renormalisation scales of the MS bottom and charm masses, µb and
µc respectively. Since the focus is on the leading terms in ΛQCD/mb, only the renormalisation
scale of those terms is varied while the scale of the 1/mb terms is kept fixed.

measurements within the respective uncertainties. Calculations to further reduce
the theoretical uncertainties are already underway and are aiming to improve the
accuracy by including higher-order terms in z as well as the penguin operator
contributions at NNLO.
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[38] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction
with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021)
108024 [2008.06494].

[39] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with
applications to Feynman integrals, Comput. Phys. Commun. 188 (2015)
148 [1403.3385].

[40] H.M. Asatrian, A. Hovhannisyan, U. Nierste and A. Yeghiazaryan, Towards
next-to-next-to-leading-log accuracy for the width difference in the Bs − B̄s

system: fermionic contributions to order (mc/mb)
0 and (mc/mb)

1, JHEP
10 (2017) 191 [1709.02160].

[41] H.M. Asatrian, H.H. Asatryan, A. Hovhannisyan, U. Nierste, S. Tumasyan
and A. Yeghiazaryan, Penguin contribution to the width difference and CP
asymmetry in Bq-B̄q mixing at order α2

sNf , Phys. Rev. D 102 (2020)
033007 [2006.13227].

10

https://doi.org/10.1103/PhysRevD.100.094508
https://arxiv.org/abs/1907.01025
https://doi.org/10.1103/PhysRevD.54.4419
https://arxiv.org/abs/hep-ph/9605259
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1016/j.cpc.2022.108544
https://arxiv.org/abs/2201.05618
https://doi.org/10.1016/S0370-2693(98)00220-2
https://doi.org/10.1016/S0370-2693(98)00220-2
https://arxiv.org/abs/hep-ph/9712228
https://arxiv.org/abs/hep-ph/9905298
https://doi.org/10.1016/j.cpc.2019.106877
https://arxiv.org/abs/1901.07808
https://doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1705.05610
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.1016/j.cpc.2021.108024
https://arxiv.org/abs/2008.06494
https://doi.org/10.1016/j.cpc.2014.10.019
https://doi.org/10.1016/j.cpc.2014.10.019
https://arxiv.org/abs/1403.3385
https://doi.org/10.1007/JHEP10(2017)191
https://doi.org/10.1007/JHEP10(2017)191
https://arxiv.org/abs/1709.02160
https://doi.org/10.1103/PhysRevD.102.033007
https://doi.org/10.1103/PhysRevD.102.033007
https://arxiv.org/abs/2006.13227


P3H-24-016, TTP24-005

[42] M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443].

[43] M. Beneke, A Quark mass definition adequate for threshold problems, Phys.
Lett. B 434 (1998) 115 [hep-ph/9804241].

[44] A.J. Buras, M. Jamin and P.H. Weisz, Leading and Next-to-leading QCD
Corrections to ϵ Parameter and B0 − B̄0 Mixing in the Presence of a Heavy
Top Quark, Nucl. Phys. B 347 (1990) 491.

[45] M. Beneke and V.M. Braun, Heavy quark effective theory beyond
perturbation theory: Renormalons, the pole mass and the residual mass
term, Nucl. Phys. B 426 (1994) 301 [hep-ph/9402364].

[46] I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, The Pole
mass of the heavy quark. Perturbation theory and beyond, Phys. Rev. D 50
(1994) 2234 [hep-ph/9402360].

[47] LHCb collaboration, Precise determination of the B0
s –B

0

s oscillation
frequency, Nature Phys. 18 (2022) 1 [2104.04421].

[48] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton
properties as of 2021, Phys. Rev. D 107 (2023) 052008 [2206.07501].

11

https://doi.org/10.1016/S0370-1573(98)00130-6
https://arxiv.org/abs/hep-ph/9807443
https://doi.org/10.1016/S0370-2693(98)00741-2
https://doi.org/10.1016/S0370-2693(98)00741-2
https://arxiv.org/abs/hep-ph/9804241
https://doi.org/10.1016/0550-3213(90)90373-L
https://doi.org/10.1016/0550-3213(94)90314-X
https://arxiv.org/abs/hep-ph/9402364
https://doi.org/10.1103/PhysRevD.50.2234
https://doi.org/10.1103/PhysRevD.50.2234
https://arxiv.org/abs/hep-ph/9402360
https://doi.org/10.1038/s41567-021-01394-x
https://arxiv.org/abs/2104.04421
https://doi.org/10.1103/PhysRevD.107.052008
https://arxiv.org/abs/2206.07501

	1 Introduction
	2 Calculation overview
	3 Dimensional regularisation and evanescent operators
	4 Technical details on the calculation
	5 Results
	6 Conclusion

