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Dark matter relic density in strongly interacting dark sectors with light vector mesons
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Stable dark matter particles may arise as pseudo-Goldstone bosons from the confinement of dark
quarks interacting via a non-Abelian gauge force. Their relic abundance is determined not by
annihilations into visible particles but by dark pion number-changing processes within the dark
sector, such as 3πD → 2πD. However, if the dark vector mesons ρD are light enough for 3πD → πDρD
annihilations to be kinematically allowed, this process dominates and significantly delays freeze-out.
As a result, the preferred dark matter mass scale increases and bounds from the Bullet Cluster can
be evaded.

Introduction.— An attractive alternative to the
paradigm of weakly interacting massive particles is the
idea that dark matter (DM) is part of a strongly inter-
acting dark sector [1]. At high energies, such a dark
sector can be described in terms of dark quarks inter-
acting via the dark gluons of a non-Abelian extension
of the Standard Model (SM) gauge group. At low en-
ergies, on the other hand, the dark sector confines, and
the dark quarks and gluons are bound in dark mesons
and dark baryons. In analogy to SM quantum chromo-
dynamics, the pseudoscalar mesons, called dark pions,
are expected to be the lightest dark sector state, because
they are the pseudo-Goldstone bosons of chiral symme-
try breaking. Indeed, if the dark quark masses are suffi-
ciently small, the dark pions can be significantly lighter
than the confinement scale. In contrast to the SM, how-
ever, the dark pions may be stable, due to either a U(1)
or a parity symmetry [2–4] (although the latter may be
broken through gravitational effects [5]), making them
attractive DM candidates [6–8].

Strongly interacting dark sectors are an attractive tar-
get for collider searches due to their striking signature: If
a pair of dark quarks is produced in a hard process, it will
generate a shower of dark hadrons, some of which may
decay into SM particles, while others evade detection [9–
18]. The results are one or more semi-visible [19, 20] or
emerging [21] jets. These signatures have been explored
in a bottom-up way by varying phenomenological param-
eters such as the masses of dark mesons and the fraction
of invisible particles [22–25], and corresponding searches
have been carried out by ATLAS [26] and CMS [27]. In
order to make a connection to the DM puzzle, however,
it becomes necessary to explore the cosmological history
of strongly interacting dark sectors, and to understand
whether the dark pions can be produced in the right
amount to explain observations of the Cosmic Microwave
Background [8].
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A central result in this context is the so-called SIMP
(for strongly interacting massive particle) mechanism [6,
28]: dark pions may participate in number-changing pro-
cesses, such as 3πD → 2πD via the Wess-Zumino-Witten
anomaly. At low temperatures, these processes lead to
the conversion of rest mass into kinetic energy and hence
a depletion of the dark sector. The freeze-out temper-
ature, when number-changing processes become ineffi-
cient, then determines the relic abundance of dark pi-
ons. Comparison to observations leads to a strict upper
bound of mπD

≲ 100MeV in order to avoid an overabun-
dance of DM [6, 29–31]. This bound is in tension with a
lower bound on the dark pion mass obtained from obser-
vations of the Bullet Cluster, which constrains the DM
self-interaction cross section [32–34].
In this letter we point out an important modification of

the SIMP mechanism: In addition to number-changing
processes involving only dark pions, there may also be
processes involving heavier dark sector states, in partic-
ular the vector mesons, called dark rho mesons [35–37].
Indeed, if the dark quarks have masses comparable to the
confinement scale, it is possible to have mρD

< 2mπD
.

This scenario is particularly interesting for collider ex-
periments, since the dark rho meson in this case cannot
decay into dark pions and must instead decay into SM
particles (e.g. via kinetic mixing with the SM photon).
The lifetime of the dark rho mesons can be quite long,
such that their decays lead to displaced vertices in the
detector [17, 38].
We show that, if the process 3πD → πDρD is kine-

matically allowed at low temperatures, it will typically
dominate the rate of number-changing processes. This
is due to a favourable velocity dependence (the process
proceeds via s-wave, whereas the process involving only
pions proceeds via d-wave) and a resonant enhancement
if the internal dark pions can be nearly on-shell. We cal-
culate the relevant cross sections, discuss how thermal
effects determine the width of the resonance, and solve
the resulting Boltzmann equation. Our central result is
that the presence of dark rho mesons relaxes the cosmo-
logical bound on the dark pion mass. It thus becomes
possible to realize the SIMP mechanism for heavier dark
pions and smaller couplings, thereby evading the Bullet
Cluster constraint.
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The remainder of this letter is structured as follows.
We first introduce the strongly interacting dark sector
model and discuss the spectrum of dark mesons expected
from non-perturbative calculations. We then present the
relevant Boltzmann equations and the required reaction
rates and finally calculate the dark pion relic density and
the Bullet Cluster constraint.

Model details.— We start from an SU(NcD ) gauge
group, with NfD mass-degenerate Dirac fermions qD in
its fundamental representation. The high-energy La-
grangian for such a theory is given by

LUV = −1

4
Ga

DµνG
µν,a
D + q̄D(iγµDµ −MqD )qD , (1)

where MqD is the mass of the dark quarks, Gµν
D denotes

the dark gluon field strength tensor and Dµ is the gauge
covariant derivative. While we leave NcD , NfD as free
parameters, it is important to note that chiral symmetry
breaking only takes place for NfD < 3NcD .
At low energies, chiral symmetry breaking leads to con-

finement. The dynamics of the resulting pseudo-Nambu-
Goldstone Bosons, called dark pions πD, are described
by a chiral Lagrangian. The kinetic term and the mass
term are contained in

LCh =
f2
πD

4 Tr
(
∂µU∂µU†)+[µ3

D

2 Tr
(
MqDU

†)+ h.c.
]
(2)

with the SU(NfD ) matrix U ≡ exp (2iπD/fπD
), the dark

pion decay constant fπD
, and the quark condensate µ3

D.
In addition, the terms in Eq. (2) give rise to interactions
between even numbers of dark pions. In the chirally bro-
ken phase the dark pions are the lightest mesons in the
spectrum, and they can be stabilised by a suitable dis-
crete or continuous symmetry.

In addition, there will also be heavier dark mesons
in the spectrum, in particular vector mesons analogous
to the SM ρ mesons. Interactions between dark pions
and dark vector mesons are introduced by promoting the
derivative acting on the dark pions in Eq. (2) to the co-
variant derivative

DµπD = ∂µπD + ig[πD, ρDµ] , (3)

with the πDπDρD coupling g ≈ mρD
/(
√
2fπD

) obtained
from the KSRF relation [39, 40]. Hence, the chiral La-
grangian of dark pions and dark vector mesons, expanded
up to terms with at most four dark pion fields, reads

LCh ⊃Tr (DµπDDµπD) +m2
πD

Tr
(
π2
D

)
+

m2
πD

3f2
πD

Tr
(
π4
D

)
− 2

3f2
πD

Tr
(
π2
DDµπDDµπD − πDDµπDπDDµπD

)
.

(4)

For NfD ≥ 3, the Wess-Zumino-Witten (WZW) term
induces an anomalous five-point interaction given by

LWZW =
2NcD

15π2f5
πD

ϵµνρσTr (πD∂µπD∂νπD∂ρπD∂σπD) .

(5)

The free parameters in the above chiral Lagrangian
(mπD

,mρD
, fπD

) need to be calculated using non-
perturbative methods. Along with NcD , NfD , a QCD-like
strongly interacting theory with mass-degenerate quarks
has two additional free parameters, one mass ratio and
one mass scale [18]. Once these inputs are fixed, the dark
meson spectrum can be computed using non-perturbative
methods, e.g. lattice simulations. In the UV the two free
parameters could be considered MqD ,MqD/ΛD, which
are traded in for e.g. mπD

,mπD
/fπD

in the chirally bro-
ken phase.
In the following, we are particularly interested in the

process 3πD → πDρD (see Fig. 1 for the corresponding
Feynman diagrams) and its effect on the relic density of
dark pions. For this process to be allowed in the non-
relativistic limit (i.e. for negligible kinetic energy of the
initial state particles), we require mρD

/mπD
< 2. Inci-

dentally, this condition also implies that dark rho mesons
cannot decay into pairs of dark pions. Nevertheless,
dark rho mesons do in general decay into SM particles
(for example through kinetic mixing with the SM pho-
ton [41, 42], see Refs. [7, 12, 17, 43, 44] for explicit con-
structions). These (inverse) decays can efficiently trans-
fer energy and entropy between the dark sector and the
SM and keep the two sectors in thermal equilibrium.
It will therefore be convenient to usemπD

and the mass
ratio mρD

/mπD
as free parameters for our analysis. Us-

ing the results from Ref. [45] and neglecting the effect of
varying NcD and NfD , we obtain an approximate relation
between fπD

, mπD
and mρD

:

ξ ≡ mπD

fπD

= 7.79
mπD

mρD

+ 0.57

(
mπD

mρD

)2

, (6)

which is valid for 1 < mρD
/mπD

≲ 20, where the lower
limit on mρD

/mπD
corresponds to ξ ∼ 8.

In principle, one could consider the entire range of
above fit. For large ξ, however, the validity of chiral
perturbation theory becomes increasingly dubious and
higher-order corrections become relevant [29]. In the
present work we therefore only consider dark rho meson
masses larger than 1.45mπD

(equivalently ξ ≲ 5.7), cor-
responding to the range where the GMOR relation [46]
is expected to be satisfied [47–50]. This bound im-
plies in particular that the forbidden annihilation pro-
cess πDπD → ρDρD studied in Ref. [8] is not relevant for
the calculation of the dark pion relic density. The case
mρD

> 2mπD
, on the other hand, has previously been

studied in Ref. [35]. In this case, the process 3πD → 2πD

may receive a strong resonant enhancement from on-shell
intermediate dark vector mesons.

Dark pion relic density.— Let us now turn to the cal-
culation of the dark pion relic density. The Boltzmann
equation describes the evolution of the density of a par-
ticle species as it falls out of equilibrium. Integrating the
Boltzmann equation yields the relic abundance of a sta-
ble particle given the contributing freeze-out processes.
If ρD is in equilibrium with the SM bath throughout and
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1FIG. 1. Representative Feynman diagrams for the processes that contribute to the 3πD → πDρD cross section. Additional
diagrams are obtained from the first diagram through permutations of the initial state.

3πD → πDρD annihilations dominate the depletion of
dark pions, we can use the principle of detailed balance
to write the Boltzmann equation as

ṅπD
+ 3H nπD

= ⟨σv2⟩3πD→πDρD
nπD

((neq
πD

)2 − n2
πD

) ,
(7)

where nπD
is the dark pion number density and H de-

notes the Hubble rate.
In the non-relativistic limit, the thermally averaged

cross section is given by

⟨σv2⟩3πD→πDρD
=

|M|23πD→πDρD

144πSαSβm3
πD

√
4− 5y + y2 , (8)

with Sα = 3! and Sβ = 1 denoting the number of permu-
tations of identical particles in the initial and final state,
respectively, and y = m2

ρD
/(4m2

πD
).

Representative diagrams for the process are shown in
Fig. 1. The sum of all diagrams yields the total squared
amplitude

|M|23πD→πDρD
=

κ g2 m2
ρD

m2
πD

(4− y)(1− y)

f4
πD

(
64m2

πD
(1− y)2 + 9Γ2

th

) , (9)

with

κ =
2(37N4

fD
− 30N2

fD
+ 18)

3NfD (N
2
fD

− 1)2
=

74

3NfD

+O(N−3
fD

) , (10)

and Γth being the thermal width of dark pions discussed
below.

As mρD
approaches 2mπD

from below, the internal
dark pion can go on shell and the cross section grows
rapidly. At first sight, this should lead to a divergence,
since the dark pion is stable and therefore does not have
a decay width. In a thermal plasma, however, dark pions
do not have an infinite lifetime, due to interactions with
other particles in the plasma. This leads to a thermal self-
energy, the imaginary part of which can be interpreted
as an effective decay width [51].

We present the derivation of the dark pion thermal
width Γth in appendix A. The main contribution is found
to arise from the scattering of two dark pions. FormρD

≈
2mπD

and low temperatures, i.e. x ≡ mπD
/T ≫ 1, we

find

Γth =
8π(N2

fD
− 1)

x2
e−xm3

πD
σc , (11)

with

σc ≈
1

64π

3N4
fD

− 2N2
fD

+ 6

N2
fD

(N2
fD

− 1)

m2
π

f4
π

=
3

64π

m2
π

f4
π

(1 +O(N−2
fD

)) (12)

denoting the two-pion scattering cross section in the limit
of vanishing initial velocities.
We emphasize that the thermal width becomes expo-

nentially suppressed at small temperatures, as a result
of the suppressed number density of dark pions that can
participate in scattering. In the temperature range rel-
evant for freeze-out (x ≈ 20) the contribution from the
dark pion width is therefore negligible unless mρD

is ex-
tremely close to 2mπD

.
It is instructive to compare our result to the conven-

tional freeze-out of SIMPs through the WZW anomaly.
The corresponding Boltzmann equation reads

ṅπD
+ 3H nπD

= ⟨σv2⟩3πD→2πD
n2
πD

(neq
πD

− nπD
) , (13)

where the thermally averaged cross section is given by

⟨σv2⟩3πD→2πD
=

5
√
5N2

cDκ3πD→2πD
ξ10

1536π5m5
πD

x2
, (14)

with

κ3πD→2πD
=

NfD (N
2
fD

− 4)

(N2
fD

− 1)2
=

1

NfD

+O(N−3
fD

) . (15)

The cross sections for the processes 3πD → πDρD and
3πD → 2πD can both be written as

⟨σv2⟩ ≡ αeff

m5
πD

. (16)

To understand which process dominates dark pion freeze-
out, it is useful to consider the ratio

R ≡ ⟨σv2⟩3πD→πDρD

⟨σv2⟩3πD→2πD

=
αeff
3πD→πDρD

αeff
3πD→2πD

≈ (100 – 400)× 1

N2
cD ξ4

x2

√
1− y

, (17)
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FIG. 2. Solutions of the Boltzmann equation for the (dimen-
sionless) dark pion number density as a function of inverse
temperature. For the red lines only the process 3πD → 2πD

is included, whereas the blue lines include 3πD → πDXD with
XD = πD, ρD. The value of YπD that corresponds to the ob-
served DM relic abundance is indicated by the dot-dashed
black line, while the equilibrium value of YπD is represented
by the dashed grey line.

where the range for the numerical factor has been ob-
tained by varying y in the range 0.6 < y < 1 and NfD

between 3 and 6, noting that the process 3πD → 2πD

does not exist for NfD = 2 [8]. We find that the ratio R is
much larger than unity for all values that we consider. As
expected, R grows rapidly for y → 1 and also grows with
increasing x. This is because the process 3πD → 2πD

proceeds via d-wave, whereas the process 3πD → πDρD
proceeds via s-wave. We conclude that the latter pro-
cess will completely dominate dark pion freeze-out for
mρD

< 2mπD
.

Results and discussion.— It is convenient to express
the Boltzmann equation in terms of the dimensionless
quantity YπD

= nπD
/s, where s = 2π2/45 g⋆T

3 is the
total entropy density. The Boltzmann equation (7) then
takes the form

dY

dx
=

s2

H̃x
⟨σv2⟩ Y (Y 2

eq − Y 2) , (18)

where following Ref. [52] we have introduced the modified

Hubble rate H̃ = ( 8π
3

90 g)1/2 T 2

MPl
[1 + 1

3
d(ln g⋆)
d(ln T) ]

−1, with g

(g⋆) denoting the energy (entropy) degrees of freedom
taken from Ref. [53]. We solve the Boltzmann equation
in log-space.

In Fig. 2 we show the solution of the Boltzmann equa-
tion for mπD

= 100MeV, NfD = NcD = 3 and different
values ofmρD

/mπD
. As expected, the dimensionless dark

pion number density YπD
follows the equilibrium value

Y eq
πD

= (N2
fD

− 1)m3
πD

(x/(2π))3/2 exp(−x) until it freezes
out at xf ≈ 20 and becomes constant. For the chosen pa-
rameters, the observed DM relic abundance ΩDh2 = 0.12

is approximately reproduced. For comparison, we also
show the evolution of YπD

obtained when only the pro-
cess 3πD → 2πD is considered [54]. For the same masses,
the predicted relic abundance is too large by approxi-
mately an order of magnitude.
We can understand this result analytically, by writing

Eq. (18) as

dY

dx
=

λ3→2

x5
Y (Y 2

eq − Y 2) , (19)

with

λ3→2 =
2
√
5

675
π5/2 g3/2 MPl m

4
πD

⟨σv2⟩ , (20)

where g = g∗ = 10.75 in the temperature range of interest
and we can drop the derivative in the expression for H̃.
Typically, Yeq ≪ Y during freeze-out and the corre-

sponding term in the Boltzmann equation can be ne-
glected. Treating λ3→2 as a constant during freeze-out by
setting λ3→2 ≡ λ3→2(x = xf ), Eq. (19) can be approx-
imately solved analytically, which yields the asymptotic
solution

Y∞ ≈
√
2

x2
f√

λ3→2

. (21)

Hence, the DM relic abundance scales with the DM
mass and effective coupling (as defined in Eq. (16)) as

ΩDh2 ∼ m
3/2
πD /

√
αeff . Therefore, when 3πD → πDρD

annihilations dominate over 3πD → 2πD, the preferred
dark pion mass scale increases as mπD

∼ R1/3 relative
to the usual expectation for SIMPs annihilating via the
WZW term. For typical values of ξ, mρD

/mπD
and NcD

this corresponds to a factor of 2–3, and even more for
mρD

→ 2mπD
, see Eq. (17).

We explicitly confirm this expectation in Fig. 3, where
we plot the combinations of mπD

and ξ (or equivalently
mρD

/mπD
as related to ξ by Eq. (6)) that yield ΩDh

2 =
0.12 via a numerical solution of the Boltzmann equation
for different choices of NfD and NcD . As before, we show
for comparison the result when considering 3πD → 2πD

only, which is robustly excluded by the Bullet Cluster
constraint on DM self-interactions, given by [33, 34]

σc

mπD

≲ 2 cm2/g , (22)

with σc as in Eq. (12). Including the dark rho mesons in
the final state, on the other hand, increases the dark pion
mass scale sufficiently to evade these constraints. Due to
the interplay between ξ and mρD

/mπD
in Eq. 9, we find

that the preferred value of mπD
is largely independent

of these parameters and can be approximately written as

mπD
≈ 150MeV/N

1/3
fD

.

In conclusion, we have shown that for strongly inter-
acting dark sectors with mρD

/mπD
< 2, the dominant

process that changes the number density of dark pions in
the early universe is 3πD → πDρD. We emphasize that
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FIG. 3. Combinations of mπD and ξ = mπD/fπD (or
mρD/mπD via Eq. (6)) that yield ΩDh2 = 0.12 in agree-
ment with observations. For the red lines only the pro-
cess 3πD → 2πD is included, whereas for the blue lines
3πD → ρDπD is also taken into consideration. Note that
the process 3πD → 2πD does not exist for NfD = 2. The grey
shaded region is excluded by the Bullet Cluster bound on the
DM self-interaction cross section (evaluated for NfD ≫ 1).

this process does not depend on any non-perturbative
parameters other than mπD

, fπD
and mρD

and – in con-
trast to the conventionally studied process 3πD → 2πD –
does not rely on the WZW anomaly, i.e. it also exists for
theories with only two light flavours. In contrast to the
recently proposed Co-SIMP mechanism [55, 56], the pro-
cess that we consider requires no interactions between
the dark sector and SM particles beyond those needed

for thermalisation (which only places a very weak lower
bound on the decay width of the dark rho mesons). As
a result, we obtain a theoretically clean and robust pre-
diction for the dark pion mass that reproduces the ob-
served DM relic abundance. We have specifically con-
sidered the range 1.45 ≤ mρD

/mπD
< 2 corresponding

to 4 ≲ mπD
/fπD

≲ 6, within the validity of chiral per-
turbation theory. We find typical values of mπD

around
100MeV reproduce the measured DM relic abundance,
with only mild dependence on the other parameters. Cru-
cially, these dark pion masses satisfy the Bullet Cluster
constraint on DM self-interactions – unlike the masses
favoured by freeze-out via 3πD → 2πD – and therefore
provide an important benchmark scenario for further ex-
ploration. We emphasize that the required mass spec-
trum implies that the dark rho mesons can only decay
into SM particles, leading to exciting signatures at labo-
ratory experiments.
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Appendix A: Thermal width of dark pions

At zero temperature, the dark pions are stable, and
hence their propagator is given by

D =
1

q2 −m2
πD

, (A1)

which diverges for q2 = m2
πD

. At finite temperature, this
expression is modified to

D =
1

q2 −m2
πD

−Π(q2)
, (A2)

where Π(q2) denotes the self-energy of the dark pion.
The real part of the self-energy amounts to a thermal
mass, which shifts the position of the pole of the propa-
gator. For temperatures small compared to the dark pion
mass (as relevant for freeze-out calculations), this effect
is negligible. The imaginary part of the self-energy, on
the other hand, provides a thermal width, which regu-
lates the divergence of the propagator at finite temper-
atures. We can then write the propagator in the usual
Breit-Wigner form

D =
1

q2 −m2
πD

+ iEπD
Γth

(A3)

with

Γth = − 1

EπD

ImΠ . (A4)

Note that the thermal width depends on the energy EπD

of the pion relative to the plasma (i.e. in the cosmic rest
frame).
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The thermal width can be interpreted as the rate at
which the phase space distribution approaches equilib-
rium [51]. In other words, Γth is given by the interaction
rate of the dark pion with the plasma. Schematically,

ImΠ = − 1

2(1 + fπD
(EπD

))

∑
X,Y

∫
dΠXdΠY |Mπ+X→Y |2

× (2π)4δ4 (pπ + pX − pY )
(A5)

where the sum is over all kinematically allowed processes
and dΠX,Y denote the phase space volume multiplied
with the appropriate distribution function, i.e.

dΠX,i =
d3pi

2Ei(2π)3
f(Ei) (A6)

for a particle in the initial state and

dΠY,i =
d3pi

2Ei(2π)3
(1± f(Ei)) (A7)

for a boson (positive sign) or fermion (negative sign) in
the final state.

Since the pion is the lightest particle of the theory,
there are no 1 → n processes with real particles in
the final state, and hence the leading diagrams con-
tributing to the thermal width are 2 → 2 processes,
i.e. πDπD → πDπD and πDρD → πDρD. The latter
is suppressed relative to the former by the ratio of phase-
space densities fρD

(Ei)/fπD
(Ei) and is therefore negligi-

ble. The thermal width is then given by [57]

Γth(E1) =

∫
d3p2
(2π)3

fπD
(E2)σ(πD1πD2 → πD3πD4)vrel ,

(A8)
where we assume that the pions are non-relativistic, such
that fπD

(E) ≪ 1 and hence 1+ fπD
(E) ≈ 1. In this case

we recover the standard phase space integral for a 2 → 2
cross section at zero temperature.

To obtain the thermal width, we need to calculate the
cross section of πDπD → πDπD scattering. The ma-
trix element obtains contributions from the four-pion-
contact interaction, and from virtual ρD exchange in s-,
t- and u-channel diagrams. The the latter contributions
are momentum-suppressed and hence subdominant in the
non-relativistic limit [58]. We can therefore approximate
the total cross section by the cross section for contact
interaction

σc =
1

2πs

1

f4
πD

(
3N4

fD
− 2N2

fD
+ 6

8N2
fD

(N2
fD

− 1)
m4

πD

+
N2

fD

N2
fD

− 1

(
m2

πD
p2 +

5

6
p4
))

, (A9)

with p denoting the momentum of each of the incoming
pions in the center-of-mass frame. In the non-relativistic

limit we have

σc ≈
1

64π

3N4
fD

− 2N2
fD

+ 6

N2
fD

(N2
fD

− 1)

m2
πD

f4
πD

. (A10)

For non-relativistic dark pions, the phase space distri-
bution is given by

fπD
(E) =

(
N2

fD − 1
)
e
−
(
x+

1
2xv

2
)
, (A11)

where x = mπD
/T . We therefore need to calculate the

integral

I =

∫
d3v2 σ(vrel)vrele

−xv2
2/2 . (A12)

To do so, we note that v2 = vrel + v1 and obtain

I =
π

x2
σc

[
4e−w2

1/2 +
2
√
2π(1 + w2

1)erf(w1/
√
2)

w1

]

≈ 8π

x2
σc , (A13)

where we have defined w1 = v1
√
x and the second line

holds for w1 ≪ 1.
When calculating the cross section for 3πD → πDρD,

we set the velocities of all initial state particles to zero.
The velocity v of the virtual pion is therefore fixed by
energy and momentum conservation:

v1 =
2
√
4− 5y + y2

3
, (A14)

where y = m2
ρD

/(4m2
πD

) [59].
Putting everything together, we then obtain Eq. (11).

It is worth noting that, due to the exponential suppres-
sion of pions in the plasma, the thermal width is ex-
tremely small and rapidly decreases with temperature.
Explicit calculations show that for any of the points in
parameter space that we consider, the thermal width con-
tributes less than a percent of the total cross section, and
around the time of freeze-out, at x = xf , the contribution
is negligible.

Appendix B: Matrix elements

Here we present the matrix elements corresponding to
the 3πD → πDρD annihilation diagrams shown in Fig. 1.
The matrix element for the contact-interaction contri-

bution is given by

iM =
2ig

3fπD

ϵ⋆µ(pe)(p
µ
dfabcde + pµafbcdae

+ pµb fcdabe + pµc fdabce) , (B1)

where pa, pb, pc, pd denote the dark pion momenta, pe is
the dark rho momentum, and all momenta are defined as
incoming. ϵ⋆µ(pe) denotes the polarization vector of the
dark rho. The group generators of SU(NfD ) enter via
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fabcde ≡Tabcde + Tacbde + Tbacde + Tbcade + Tcabde + Tcbade , (B2)

with

Tabcde ≡2Tr[T aT bT eT cT d]− 2Tr[T aT eT bT cT d]− Tr[T aT bT cT eT d] + Tr[T aT bT eT cT d]

− Tr[T aT bT dT cT e] + Tr[T aT bT dT eT c]] . (B3)

The matrix elements for the contributions with one 4πD vertex and one πDπDρD vertex connected by an internal
pion propagator are given by

iM =
−2ig

3f2
πD

((pa + pe)2 −m2
πD

+ i(Ea + Ee)Γth)
ϵ⋆µ(pe)

×
[
pµa(Tr[T

aT fT e]− Tr[T aT eT f ])− (pµa + pµe )(Tr[T
fT aT e]− Tr[T fT eT a])

]
×
[(
−4pb · pd − 4(pa + pe) · pc + 2pc · pd + 2pb · pc + 2(pa + pe) · pb + 2pd · (pa + pe)− 4m2

πD

)
Tr[T fT bT cT d]

+
(
−4pb · pc − 4(pa + pe) · pd + 2pd · pc + 2pb · pd + 2(pa + pe) · pb + 2pc · (pa + pe)− 4m2

πD

)
Tr[T fT bT dT c]

+
(
−4pc · pd − 4(pa + pe) · pb + 2pb · pd + 2pc · pb + 2(pa + pe) · pc + 2pd · (pa + pe)− 4m2

πD

)
Tr[T fT cT bT d]

+
(
−4pc · pb − 4(pa + pe) · pd + 2pd · pb + 2pc · pd + 2(pa + pe) · pc + 2pb · (pa + pe)− 4m2

πD

)
Tr[T fT cT dT b]

+
(
−4pd · pc − 4(pa + pe) · pb + 2pb · pc + 2pd · pb + 2(pa + pe) · pd + 2pc · (pa + pe)− 4m2

πD

)
Tr[T fT dT bT c]

+
(
−4pd · pb − 4(pa + pe) · pc + 2pc · pb + 2pd · pc + 2(pa + pe) · pd + 2pb · (pa + pe)− 4m2

πD

)
Tr[T fT dT cT b]

]
,

(B4)

and corresponding expressions with (a ↔ b), (a ↔ c), and (a ↔ d), with the thermal dark pion width Γth as given in
Eq. (11). To calculate squared matrix elements we use the FeynCalc [60–62] Mathematica package.
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