
P3H-23-089, TTP23-056, SI-HEP-2023-27

FeynCalc 10: Do multiloop integrals dream of computer codes?

Vladyslav Shtabovenkoa,b,∗, Rolf Mertigc,∗∗, Frederik Orellanad,

aTheoretische Physik 1, Center for Particle Physics Siegen, Universität Siegen,
Walter-Flex-Str. 3, 57068 Siegen, Germany

bInstitut für Theoretische Teilchenphysik (TTP), Karlsruhe Institute of Technology (KIT),
Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany

cGluonVision GmbH, Bötzowstr. 10, 10407 Berlin, Germany
dTechnical University of Denmark, Anker Engelundsvej 1,

2800 Kgs. Lyngby, Denmark

Abstract

In this work we report on a new version of FEYNCALC, a MATHEMATICA package
widely used in the particle physics community for manipulating quantum field theoreti-
cal expressions and calculating Feynman diagrams. Highlights of the new version include
greatly improved capabilities for doing multiloop calculations, including topology iden-
tification and minimization, optimized tensor reduction, rewriting of scalar products in
terms of inverse denominators, detection of equivalent or scaleless loop integrals, deriva-
tion of Symanzik polynomials, Feynman parametric as well as graph representation for
master integrals and initial support for handling differential equations and iterated in-
tegrals. In addition to that, the new release also features completely rewritten routines
for color algebra simplifications, inclusion of symmetry relations between arguments of
Passarino–Veltman functions, tools for determining matching coefficients and quantify-
ing the agreement between numerical results, improved export to LATEX and first steps
towards a better support of calculations involving light-cone vectors.

Keywords: High energy physics, Feynman diagrams, loop integrals, dimensional
regularization, renormalization, Dirac algebra, Passarino–Veltman, Cheng-Wu, Feynman
integrals, Symanzik polynomials, light-cone, multiloop, FeynCalc

1. Introduction

Modern high energy physics heavily relies on Feynman’s diagrammatic approach to
the calculation of perturbative corrections in particle reactions. The vast majority of pre-
dictions required to match the expected experimental precision of the High luminosity
LHC [1] as well as the proposed future colliders are still obtained by calculating multi-
tudes of complicated Feynman diagrams, and it does not seem likely, that this situation is
going to change in the near future.

The number of diagrams involved can easily go into thousands or even millions, which
makes the usage of automation indispensable. The importance of efficient algorithms
for such calculations has already been recognized decades ago (cf. e. g. refs. [2, 3]) and
the unceasing development of new calculational techniques is one of the main reasons
why calculations unthinkable now might nonetheless become feasible in the next years. A
good overview over modern methods used in higher-order perturbative calculations can
be found e. g. in refs. [4, 5].

∗E-mail address: shtabovenko@physik.uni-siegen.de
∗∗E-mail address: rolfm@gluonvision.com

E-mail address: fror@dtu.dk

Preprint submitted to Computer Physics Communications December 22, 2023

ar
X

iv
:2

31
2.

14
08

9v
1

 [
he

p-
ph

]
 2

1
D

ec
 2

02
3

While efficient codes for automatic numerical calculations at tree-level and one-loop
accuracy are available to the wide public since years , the treatment of multiloop diagrams
remains challenging and requires considerable expertise. In particular, the task of stream-
lining all the necessary calculational steps such, that they can be performed in a fully
automatic fashion, is still very much work in progress. A recent review of the field can
be found e. g. in ref. [6]. Some remarkable achievements towards multiloop automation
are the release of CARAVEL [7], a framework for multiloop computations using numerical
unitarity, as well as the recent version of PYSECDEC [8] capable of evaluating multiloop
amplitudes numerically. Apart from that, there are also ongoing efforts to “upgrade” ex-
isting one-loop codes at least to two-loop accuracy (cf. e. g. [9–13]).

Irrespective of whether one wants to calculate a cross section, a matching coefficient or
a renormalization constant, the vast majority of multiloop calculations usually require the
completion of some fundamental steps that can be summarized as follows: (i) generation
of Feynman diagrams for the given process, (ii) algebraic simplification of the correspond-
ing amplitudes (including suitable expansions in small parameters), (iii) reduction of the
occurring loop integrals to a smaller set of master integrals, using Integration-By-Parts
(IBP) [14, 15] techniques, (iv) evaluation of the master integrals. Fortunately, the first three
steps in the above list can be completed in a highly automatized fashion by combining
publicly available software with suitable self-written code. In most cases the problems
one has to deal with happen to be of technical (e. g. bugs in the code, performance bottle-
necks, lack of computing power) rather than conceptual nature. Analytic calculations of
master integrals usually require more experience and creativity, unless the desired results
are already available in the literature and can be directly plugged into the final result.

A lot of frameworks addressing steps (i)-(iii) happen to be some private codes devel-
oped by single researchers or whole research groups specializing on loop calculations.
Sometimes they can be obtained upon request (albeit without much support or proper
documentation) but most tools are still available only to collaborators. With the new gen-
eration of researchers embracing open source ideas and making their codes public (cf. e. g.
refs. [16–19]) this situation started to change. The corresponding tools aim at connecting
different steps behind a multiloop calculation to each other within a single framework and
normally need to address the tasks of generating Feynman diagrams, inserting Feynman
rules, identifying the occurring loop integral topologies, minimizing their number and
supplying some templates for the subsequent amplitude evaluation in FORM [20, 21].

One aim of the present work is to make analytic multiloop calculations accessible to a
broader range of particle theorists. The method is to extend the well-established one-loop
functionality of FEYNCALC [22–25] with the modern state-of-the art algorithms. The new
version of the package presented here thus includes a large set of optimized routines for
dealing with multiloop calculations.

This paper is the first in a series of three publications describing our take on creating
a new framework for semi-automatic multiloop calculations. While this work revolves
solely around FEYNCALC, the two subsequent papers will introduce a new version of
FEYNHELPERS [26] - an add-on for connecting FEYNCALC to other software tools related
to quantum field theory (QFT) and finally a FORM-based framework for symbolic eval-
uation of Feynman diagrams that makes use of FEYNCALC and MATHEMATICA during
certain calculational steps.

The remainder of the present paper is organized as follows: In Section 2 we briefly
introduce FEYNCALC and compare it to similar codes, while instructions on installing the
package from GITHUB can be found in Section 3. New symbols and functions related to
the multiloop capabilities of the package are presented in Section 4. Section 5 discusses
some special routines that can be handy when calculating master integrals. Last but not
least, new features and improvements that are not directly related to multiloop calcula-

2

tions can be found in Section 6. A description of example calculations utilizing new mul-
tiloop capabilities are offered in Section 7. Finally, in Section 8 we summarize our results
and provide an outlook on the future of the package.

Contrary to previous FEYNCALC papers, the amount of MATHEMATICA code pre-
sented will be kept to a bare minimum. The reason is that FEYNCALC 10 features a compre-
hensive manual, covering every symbol introduced in the package (including examples)
and containing a tutorial for learning the basics of the package. In addition to that, exam-
ples related to the functionality described in this paper can be found in the accompanying
MATHEMATICA notebook.

2. Context and state of the art

Originally, FEYNCALC was designed to handle loop integrals using Passarino-Veltman
[27] reduction, which effectively limited its applicability to one-loop calculations only.
Subsequent iterations of the code [28] allowed for working with certain types of multi-
loop integrals (e. g. using the TARCER [29] add-on) but until version 10 it was neither
very efficient nor suitable for general purpose multiloop calculations.

The number of actively developed tools for semi-automatic calculations with an em-
phasis on tree- and one-loop level similar to FEYNCALC has been steadily decreasing over
the last years. Both HEPMATH [30] and PACKAGE-X [31, 32] have unfortunately been
abandoned, while there seems to be hardly new codes covering a wide range of applica-
tions as well as receiving regular updates and bug fixes. In this context it is also worth
mentioning PHYSICS1, a package shipped with MAPLE computer algebra system, whose
particle physics related capabilities have been significantly extended in the last few years.
Also, FORMTRACER [33] can be handy in some circumstances, although this tool is mostly
limited to algebraic simplifications.

What we regard as a crucial feature of semi-automatic codes is the ability to access in-
termediate expressions at any stage of the calculation and to organize calculations in a flex-
ible way by sequentially applying high-level functions to the original input. Depending on
the quantities one wants to derive, this approach might be more efficient than using pro-
grams offering a higher level of automation and less flexibility. Of course, fully automated
tools for tree-level and one-loop calculations such as MADGRAPH [34], GOSAM [35, 36],
HERWIG [37, 38], HELAC-NLO [39], POWHEG-BOX [40–42], SHERPA [43, 44], WHIZARD

[45, 46], CALCHEP [47], COMPHEP [48], GRACE [49, 50] etc. are very useful when per-
forming the tasks they were originally designed for, e. g. calculating cross-sections and
decay rates.

Since version 10 FEYNCALC can be in principle used to perform real multiloop calcu-
lations or at least to derive multiloop amplitudes written as linear combinations of loop
integrals belonging to a certain set of integral topologies. Of course, due to the perfor-
mance limitations of MATHEMATICA as compared to FORM the number of multiloop di-
agrams one can completely evaluate with FEYNCALC and their complexity are rather lim-
ited. Thus, in this context, FEYNCALC should be seen as providing supplementary tools
for structuring and reducing multiloop calculations and a supplementary way to check
specific calculations of other multiloop frameworks.

ALIBRARY2 is one of the few tools that uses MATHEMATICA for gluing different parts of
the computational setup together and implementing some convenience functions. Never-
theless, this code uses QGRAF [51] for generating Feynman diagrams (Feynman rules for
QCD are already included) and FORM for evaluating them. The topology identification

1https://www.maplesoft.com/products/maple/features/physicsresearch.aspx
2https://magv.github.io/alibrary/

3

https://www.maplesoft.com/products/maple/features/physicsresearch.aspx
https://magv.github.io/alibrary/

part is outsourced to a dedicated tool called FEYNSON [17] - developed by the author of
ALIBRARY. The package also includes interfaces to GRAPHVIZ [52], LITERED [53, 54],
FIRE [55–57], KIRA [58–62], PYSECDEC [63–65] and other related programs. FORM
source files or configuration files for FIRE and KIRA generated by ALIBRARY can be used
independently - which is an approach similar to that of FEYNCALC. Tensor reduction and
Dirac algebra simplifications are not included, since the code tacitly assumes the usage of
projectors. However, those parts can be still added to the generated FORM code by hand
at a later stage.

The original idea behind the PYTHON package TAPIR [16] was to create a modern re-
placement for Q2E [66, 67], a C++ code for inserting Feynman rules into QGRAF output.
Together with EXP and CALC, Q2E is a part of the so-called Karlsruhe tool chain3 that has
been used in many cutting-edge multiloop calculations. In the course of its development,
TAPIR obtained numerous features that go far beyond the capabilities of Q2E. In particular,
it can be also used for identifying and minimizing integral topologies, visualizing Feyn-
man diagrams, performing partial fraction decomposition and generating amplitudes in
FORM format. Furthermore, it understands Feynman rules in the Universal FeynRules
Output (UFO) [68, 69] format. The FORM code for evaluating the amplitudes is, however,
not part of TAPIR. Just as in the case of ALIBRARY, TAPIR has no built-in capabilities to
perform tensor reduction of loop integrals or to simplify chains of Dirac matrices that do
not involve Dirac traces.

The program FEAMGEN.JL [19] is written in the JULIA language, has built-in support
for UFO models and uses YAML run cards describing the process that needs to be calcu-
lated. Automatically generated FORM code take care of Dirac and color algebra, while a
built-in routine of FEAMGEN.JL minimizes the number of loop integral topologies. How-
ever, the evaluated amplitude still requires tensor reduction or a suitable projector, while
the obtained topologies are not readily converted into configuration files for IBP-reduction
tools such as FIRE or KIRA. On the other hand, since the output of FEAMGEN.JL is of-
fered in form of JDL2 or plain text files, those additional steps can be also done by the
user.

In the case of HEPLIB [18, 70], the authors chose to employ C++ and in particular
the GINAC [71] library as the means of connecting different calculational steps with each
other. As such, this tool is usable both in C++ and PYTHON. Apart from the fact that
HEPLIB uses QGRAF and FORM for the common tasks of generating and evaluating
amplitudes, it also features tensor reduction, partial fraction decomposition and automatic
creation of configuration files for FIRE and KIRA as well as a custom implementation of
sector decomposition [72–75] for numerical evaluation of master integrals.

It goes without saying that since all the above-mentioned codes employ FORM, they
easily outperform MATHEMATICA (and hence FEYNCALC) when it comes to the evalua-
tion of Feynman diagrams. FEYNCALC can identify the occurring topologies and mini-
mize their number as well as directly simplify Dirac and color algebra and carry out ten-
sor reduction of loop integrals. Feynman diagram generation is done using FEYNARTS,
although an experimental interface to QGRAF is available in the development version of
the yet unreleased FEYNHELPERS add-on. The same goes for automatic generation of run
cards needed to perform an IBP-reduction of the master integrals: This feature is not part
FEYNCALC but will be offered in near future via FEYNHELPERS.

3The tools Q2E, EXP and CALC are not public, but can be obtained upon request, cf. http://sfb-tr9.ttp.
kit.edu/software/html/q2eexp.html

4

http://sfb-tr9.ttp.kit.edu/software/html/q2eexp.html
http://sfb-tr9.ttp.kit.edu/software/html/q2eexp.html

3. Installation

The fastest and most convenient way to install FEYNCALC is to use the automatic in-
staller by evaluating

In[1]:= Import@"https://raw.githubusercontent.com/FeynCalc/feyncalc/master/install.m"

on a freshly started MATHEMATICA kernel. All versions of MATHEMATICA from 10.0 up-
wards are supported. The code above will install the stable version of the package. The
development version - with potential bugs but also the newest features, can be obtained by
setting the option InstallFeynCalcDevelopmentVersion of InstallFeynCalc to True. In the
case of internet connection problems one can also install the package manually. For further
instructions we refer to the section “Installation” of the package manual. The source code
of FEYNCALC can be obtained from https://github.com/FeynCalc/feyncalc.

4. Topologies and loop integrals

At one loop, almost every calculation involving only integrals with quadratic propa-
gators can be handled using the so-called Passarino–Veltman (PaVe) technique. By consid-
ering the most generic basis of tensor structures for the given rank made of metric tensors
and external momenta, each occurring tensor integral can be reduced to a linear combina-
tion of scalar functions. These quantities are known as PaVe coefficient or scalar functions
and can be straightforwardly evaluated analytically or numerically. Rewriting the ampli-
tude in terms of these functions usually concludes the loop-related part of the calculation.
PaVe-Reduction is implemented in numerous codes including FEYNCALC - where the rel-
evant routines are called TID and PaVeReduce. The conceptual simplicity behind the PaVe
technology and the availability of reliable numerical codes (cf. e. g. refs. [76–82]) make it
the default choice for the majority of practitioners. Unfortunately, the complexity of mul-
tiscale multiloop integrals does not allow one to apply these methods beyond one-loop
with the same ease and efficiency. Instead, it is customary to treat each integral family on
its own, by first reducing all relevant integrals to a smaller set of master integrals and then
calculating those using suitable analytic or numerical techniques.

To that aim it is necessary to have code(s) that can (i) introduce integral families from
analyzing the propagators present in the amplitude, (ii) minimize the number of integral
families by finding possible mappings between them, (iii) ensure that the set of propa-
gators in each family forms a basis and, if necessary, (iv) perform tensor reduction or (v)
partial fraction decomposition. Upon completing these steps, one should obtain a list of
integral topologies present in the amplitude and the corresponding loop integrals belong-
ing to these topologies. This information can be then passed to an IBP-reduction program
such as FIRE, KIRA, LITERED, REDUZE [83, 84], AZURITE [85] etc. that will minimize
the number of integrals that need to be evaluated. In the following we would like to focus
on explaining how these five steps can be performed with the aid of FEYNCALC.

4.1. Three main building blocks
The three main building blocks of FEYNCALC’s new multiloop capabilities are the sym-

bols FCTopology and GLI as well as the routine FCFeynmanPrepare. In this context FCTopology
represents an integral family that consists of propagators forming a basis. The syntax reads

In[1]:= FCTopology[id, {propagators}, {loopmomenta}, {external momenta}, {kinematics},
{extra}]

where the first argument denotes the name of the topology, the second argument enumer-
ates the propagators, while the third and fourth lists contain names of loop and external
momenta. Kinematic constraints (e. g. specific values of scalar products made of external
momenta) can be specified in the fifth argument, while the last argument may be used to

5

https://github.com/FeynCalc/feyncalc

incorporate some addition information (e. g. that this topology is a subtopology of a larger
topology). Having defined an integral family, we can also introduce integrals belonging
to it. To that aim FEYNCALC uses GLIs (a shortcut for “Generic Loop Integral”) defined as

In[1]:= GLI[id, {powers}]

where the first argument denotes the family name and the second contains powers of the
involved propagators. Similar notation is used in many other software packages related
to multiloop calculations, such as FIRE, LITERED, KIRA or PYSECDEC.

The function FCFeynmanPrepare is used to derive the Symanzik polynomials U and F
for the given topology or set of master integrals. It can be invoked, not only on FCTopology

or GLI objects, but also on integrals using explicit propagator representation via FeynAmp-

Denominator. The underlying algorithm is based on the code UF.M [86] that is used in
FIRE and FIESTA [87, 88]. The U and F polynomials encode numerous properties of the
related topologies or master integrals (cf. ref. [89] for an extensive review) and can be used
to derive one-to-one mappings between those objects.

FCFeynmanPrepare is not limited to the derivation of Symanzik polynomials. It can
also calculate other useful quantities such as the matrix M with U = det M or J and Qµ

as in F = det M(QM−1Q − J). Moreover, the routine is capable of dealing with both
Minkowskian and Euclidean integrals. To avoid any confusion, let us stress that with “Eu-
clidean” we explicitly mean integrals defined in the flat space with the Euclidean metric
signature gµν

E = diag(1, 1, 1, 1). To that aim one needs to set the option "Euclidean" to True.

4.2. Basic operations
The “old” loop-related FEYNCALC functions such as TID, FDS or PaVeReduce are de-

signed to work with loop integrals in the propagator representation. Therefore, upon
introducing the new GLI-representation it became necessary to add a large set of new rou-
tines that accept input containing GLI- and FCTopology-symbols. However, in some cases
the existing routines were just modified to be able to deal with the new objects.

One of the simplest manipulations applicable to a GLI is the conversion into the prop-
agator representation. This can be done using FCLoopFromGLI. This function requires two
arguments, which are a GLI integral and the corresponding topology in the form of an
FCTopology. Both arguments can be also lists, which is useful when processing multiple
integrals in one go.

Since a topology has a rather involved syntax, it can be validated using FCLoopValid-

TopologyQ. This helps to avoid user errors when entering topologies by hand or converting
them from the output of other tools. A list of all kinematic invariants present in a topology
(or a list thereof) can be obtained with the aid of FCLoopGetKinematicInvariants.

A priori, the set of propagators contained in an FCTopology does not necessarily have
to form a basis. However, since many loop-related manipulations make sense only when
working with a proper propagator basis, FEYNCALC provides tools to verify this prop-
erty. These are FCLoopBasisOverdeterminedQ and FCLoopBasisIncompleteQ, which can tell
whether the given set of propagators is overdetermined or incomplete. In the latter case
the basis can be automatically completed with suitable propagators using FCLoopBasis-

FindCompletion.
Integrals containing too many propagators must be subjected to partial fraction de-

composition. Although FEYNCALC’s ApartFF can now handle GLIs, in the context of loop
calculations done with FORM, one would usually like to get explicit replacement rules that
rewrite a product of overdetermined denominators into a linear combination of terms with
fewer denominators. To cover that case we introduced a new routine called FCLoopCreate-

PartialFractioningRules that will generate such rules and return a list of new topologies
appearing on the right-hand side of the replacement rule.

6

Sometimes one might be interested in selecting particular topologies from a large list
under the condition that those appear in the given loop integrals. To this aim we can
use FCLoopSelectTopology, which is also employed by numerous high-level FEYNCALC

functions.
Differentiation of loop integrals with respect to vectors (similar to what can be achieved

with FourDivergence) or scalars is implemented in FCLoopGLIDifferentiate. This can be
used e. g. when deriving symbolic IBP relations, systems of differential equations or per-
forming asymptotic expansions. In the latter case one normally would like to attach a
particular scaling parameter (say λ) to specific masses or momenta in the topology and
expand the loop integrals in λ to the given order. The former can be accomplished via
FCLoopAddScalingParameter while for the latter one would use FCLoopGLIExpand.

An important point to keep in mind when working with loop integrals is the iη-
prescription in the propagators. By default, FEYNCALC uses the standard convention,
where a Minkowskian propagator is understood to be

[p2 −m2 + iη]−1 (1)

However, an alternative prescription used e. g. in FIESTA is to pull out an overall minus
sign, which leads to

[−p2 + m2 − iη]−1 (2)

Notice that this propagator is still Minkowskian, just written in different way as compared
to Eq. (1). For the sake of completeness, we list the relevant conventions for FEYNCALC,
FIESTA and PYSECDEC in Table 1. Notice that when using SFAD and GFAD shortcuts to
enter loop integral propagators, FEYNCALC will explicitly display iη, unless the global
variable $FCShowIEta has been set to $False.

Symbolic expression Meaning in FIESTA Meaning in FEYNCALC / PYSECDEC

[(p + q)2]−1 [(p + q)2 − iη]−1 [(p + q)2 + iη]−1

[−(p + q)2]−1 [−(p + q)2 − iη]−1 [−(p + q)2 + iη]−1

[(p + q)2 −m2]−1 [(p + q)2 −m2 − iη]−1 [(p + q)2 −m2 + iη]−1

[−(p + q)2 + m2]−1 [−(p + q)2 + m2 − iη]−1 [−(p + q)2 + m2 + iη]−1

Table 1: Differences between different computer codes in the assumed iη-prescription for propagators. Ex-
pressions in green correspond to input yielding a correct imaginary part, while red terms will create inconsis-
tencies.

FEYNCALC can convert topologies to the convention of Eq.(2) via the function FCLoop-

SwitchEtaSigns. FCLoopGetEtaSigns is used internally to ensure the consistency of the iη-
prescription among propagators present in integrals and topologies.

4.3. Topology identification
Given a multiloop amplitude expressed as a linear combination of scalar loop integrals,

one usually wants to reduce these integrals to a basis of master integrals. This procedure,
usually referred to as the IBP-reduction, is not a mere convenience, but a strict necessity.
While the number of unreduced loop integrals can easily go into hundreds of thousands
or even millions, the number of master integrals often lies between O(100) and O(1000)
for two- and three-loop calculations that are feasible with modern techniques. In practice,
the reduction often turns out to be one of the main bottlenecks in analytic calculations and
it is imperative to organize it in the most efficient way. For example, reducing each loop
integral separately would be a waste of computational resources that should be avoided.

7

A better approach is to organize integrals into families and then do the reduction for
each family. An integral family or a topology is defined as a set of linear independent
propagators plus additional kinematic constraints such as values of masses or external
momenta squared. It goes without saying that the number of families should better be as
small as possible, otherwise one would be wasting computer time and resources. A caveat,
however, lies in the fact that dimensionally regularized loop integrals are invariant under
shifts of loop momenta. Hence, two integrals that look very different might still belong to
the same family. Also, two topologies that seem to be quite distinct could represent the
same quantity modulo momentum shifts.

Such ambiguities can be avoided using a procedure called topology identification or
minimization, where the set of all loop integral topologies present in the amplitude is
mapped to a smaller set of topologies independent of each other. Most algorithms for
solving this task either consider graph representations of Feynman diagrams and ampli-
tudes or analyze the propagators present in the amplitude. In the former case the initial
problem of finding mappings between different topologies is converted into the require-
ment to find subgraph isomorphisms. When working with symbolic propagators one
is mainly interested in finding a representation that removes the invariance under mo-
mentum shifts and generates unique expressions that can be directly compared with each
other. Of course, a brute-force enumeration of all possible momentum shifts is also pos-
sible, although mostly prohibitively expensive performance-wise. A purely graph-based
algorithm is implemented e. g. in the C++ programs Q2E/EXP, while the MATHEMATICA

package TOPOID [90] looks only at propagators of the loop integrals. Hybrid approaches
are realized e. g. in REDUZE, FEYNSON, TAPIR or PYSECDEC.

FEYNCALC follows a purely propagator-based approached by using the so-called Pak
algorithm [91] - a special prescription for comparing topologies or integrals with each
other invented by Alexey Pak. Our implementation heavily relies on the ideas and tricks
that can be found in the doctoral thesis of Jens Hoff [92] and their realization in Hoff’s
program TOPOID4.

The starting point for Pak’s algorithm is the naive observation that in the Feynman
parametric representation of loop integrals (or topologies) the loop momenta are inte-
grated out. Hence, the shift invariance seems to be gone. Unfortunately, there still remains
a residual ambiguity, which is related to the relabeling of Feynman parameters xi ↔ xj.
Pak’s insight was to introduce a canonical way to label xi for the given combination of
U and F polynomials. Then, given two canonically ordered characteristic polynomials
P1 ≡ U1 ×F1 and P2 ≡ U2 ×F2, it is guaranteed that for identical integrals or topologies
we will find P1 = P2. This property is the corner stone for FEYNCALC’s functionality of
finding one-to-one mappings between topologies or master integrals.

When implementing this technique we introduced a number of auxiliary functions
that return the necessary building blocks for applying Pak’s algorithm. For example,
FCLoopToPakForm can be used to generate the canonically ordered characteristic polyno-
mial P from the given propagator representation, while FCLoopPakOrder can apply Pak
ordering to any polynomial.

A nice property of P is that it can be used to detect scaleless integrals that vanish in
dimensional regularization. The description of the underlying algorithm can be found in
Section 2.3 of ref. [90]. In FEYNCALC the scalefulness property can be checked using the
functions FCLoopPakScalelessQ (for characteristic polynomials) and FCLoopScalelessQ (for
loop integrals).

The workflow envisioned in FEYNCALC begins with applying FCLoopFindTopologies

to the given amplitude. The function will return a list of the form {amp, topos}, with amp

4https://github.com/thejensemann/TopoID

8

https://github.com/thejensemann/TopoID

being the amplitude rewritten in a form suitable for further processing and topos consti-
tuting a list of all distinct sets of propagator denominators. In amp these sets are grouped
into GLIs, while topos is made of FCTopology objects. In the next step one should get rid of
tensor integrals, unless this has already been done by applying suitable projectors.

To this aim one can use the function FCLoopTensorReduce - which still uses Tdec as
back-end, but is optimized for the representation of the amplitude generated by FCLoop-

IdentifyTopologies. Alternatively, one could also apply FCMultiLoopTID to the amplitude
before running FCLoopIdentifyTopologies, but for performance reasons we do not recom-
mend this. It is also worth mentioning that the old code used in Tdec for recognizing
symmetries between tensor reduction coefficients has been replaced with the algorithm
described in ref. [91]. On selected examples the new symmetrizer can lead to systems of
linear equations being much smaller as compared to FEYNCALC 9.3.1. Still, for higher
rank tensor integrals MATHEMATICA’s capabilities might be insufficient to solve the linear
system in a reasonable amount of time. This issue can be worked around using the new
version of FEYNHELPERS, which allows Tdec to use FERMAT [93] as a solver back-end.

The one-to-one mappings between topologies can be revealed by applying FCLoop-

FindTopologyMappings to the topos list. Every mapping rule between two topologies con-
tains of a list of momentum shifts that convert the propagators of the first topology into
those of the second topology and should be also applied to all numerators multiplying
the first topology. It is also possible to map the given topologies onto a specific set of
selected topologies (e. g. to facilitate comparisons to other calculations) using the option
PreferredTopologies.

Due to the nature of Pak’s algorithm FCLoopFindTopologyMappings can only find rela-
tions between topologies that contain exactly the same number of propagators. Since not
all topologies appearing in the amplitude normally have the full set of propagators re-
quired to form a basis, this often leaves some room for mapping smaller topologies into
larger ones. Here with “larger topologies” we mean both incomplete topologies with a
larger number of propagators as well as the so-called supertopologies that have a com-
plete propagator basis. In FEYNCALC one can deal with this situation by first identifying
all nonvanishing subtopologies of the given topology via FCLoopFindSubtopologies. Then,
one can try to find mappings between those subtopologies and the actual smaller topolo-
gies appearing in the amplitude. The subtopologies contain a special marker that relates
them to the parent topology, so that FCLoopFindTopologyMappings knows how to generate
correct mappings pointing to the original topology.

Once the final set of topologies has been sufficiently minimized, one can apply the gen-
erated mapping rules to the full amplitude with the aid of FCLoopApplyTopologyMappings.
In fact, this routine will also rewrite all scalar products in terms of invert propagators and
combine them with the existing propagator denominators, so that the resulting amplitude
will appear as a linear combination of different GLIs. In the background this high-level
function uses the auxiliary routines FCLoopCreateRulesToGLI and FCLoopCreateRuleGLITo-

GLI. The output of FCLoopApplyTopologyMappings is, in principle, suitable for the subse-
quent IBP reduction. The process of converting the occurring loop integrals and the list of
final topologies into run cards for tools such as FIRE and KIRA can be easily automatized.
The relevant code is already part of FEYNHELPERS that will be presented elsewhere.

5. Master integrals

Unless one is trying to perform a cutting-edge calculation or lacks access to sufficient
computational resources, the IBP reduction usually goes through without much additional
effort. Even when some fine-tuning is needed, this usually amounts to playing with the
configuration files of the respective programs, resubmitting jobs running on a cluster or

9

possibly asking the developers for an advice. Once all reduction tasks have been com-
pleted, one is normally left with a list of master integrals from different integral topologies.

Depending on the tool that was used to perform the reduction, it may be necessary to
check whether all of these integrals are indeed distinct. Given that identical masters can
have rather different propagator representations, this task should be better performed in
an algorithmic fashion. FEYNCALC can make use of the built-in Pak’s method to reveal all
one-to-one mappings between the master integrals. The corresponding function is called
FCLoopFindIntegralMappings and has been modeled after the routine FindRules in FIRE.
Using the option PreferredIntegrals one can choose a list of preferred master integrals
to be mapped onto. This also works for factorizing integrals, which can be entered as
products of GLIs.

Graphical representations of master integrals serve as an important tool to better un-
derstand the obtained results and relate them to the calculations that has already been
done in the literature. The most common visualization method is to relate the propagators
and the flow of loop momenta inside the integral to graphs made of directed edges. These
edges can be styled to account for the types of propagators and their masses. For example,
massless propagators are usually plotted as dashed or dotted lines, while massive propa-
gators are shown as solid lines of different colors. If the propagator appears squared, this
can be hinted using a dot or a cross.

While switching from a graph to a propagator representation for the given integral (or
topology) is a trivial step, the converse is not true. The construction of graphs for arbitrary
integrals can be tricky and requires both care and effort. Some publicly available tools such
as AZURITE, PLANARITYTEST [94] or LITERED allow for automatizing this task to some
extent. In FEYNCALC, the corresponding function is called FCLoopIntegralToGraph. In the
case of a successful reconstruction, it returns a directed MATHEMATICA graph as well as
the line momenta running through the edges and some additional information. Although
the graph can be directly shown using the built-in MATHEMATICA function GraphPlot, one
should better use FEYNCALC’s FCLoopGraphPlot which takes options for styling the edges
and making the output look more similar to what is usually seen in the literature. How-
ever, it should be noted that due to multiple problems that older MATHEMATICA versions
have with the visualizations of graphs, FCLoopGraphPlot requires at least MATHEMATICA

11.0, while best results can be expected with the version 12.2 or newer. We would also
like to stress that the graph obtained with FCLoopIntegralToGraph can also (upon some
minimal adjustments) be plotted using other suitable software such as GRAPHVIZ.

One of the advantages of having master integrals shown as graphs is that one can
readily assess possible cuts via visual examination. In this context we understand “cut-
ting” as the process of sending the cut propagators on-shell so that pictorially the graph
splits into two graphs. However, analyzing dozens or even hundreds of graphs by eye can
still be tedious and prone to human errors. To streamline this process FEYNCALC offers
FCGraphCuttableQ, which can decide whether the given graph can be cut without touching
the specified lines. This is relevant e. g. for heavy particles in the loops that kinematically
cannot go on-shell. This way one can readily determine whether the given master inte-
grals can develop an imaginary part or not. A more generic routine is offered under the
name FCGraphFindPath. Its task is to determine, whether the given graph can be traversed
by starting and finishing at one of the external edges. The internal edges can be assigned
weights 1 or −1, with the latter meaning that this edge cannot be passed.

Having dealt with the problem of obtaining a set of unique master integrals and vi-
sualizing them, it is fair to ask whether FEYNCALC can also be useful for evaluating the
master integrals. As far as numerical evaluation is concerned, the FEYNHELPERS interface
(to be presented in a future publication) makes it easy to generate ready-to-use FIESTA or
PYSECDEC scripts for evaluating the given GLIs. Analytic results are of course much more

10

difficult to obtain. Calculating loop integrals in this fashion often involves trying or even
combining different techniques available on the market (cf. e. g. refs. [4, 5]) in the hope that
an integral, that is intractable using method A may turn out to be easy when attacked with
method B. While FEYNCALC obviously cannot deliver analytic solutions upon pressing a
button, it nevertheless offers a set of handy routines that facilitate common steps required
for some calculational methods.

As far as the derivation of the Symanzik polynomials U and F is concerned, the previ-
ously mentioned function FCFeynmanPrepare can readily generate those expressions. If one
is interested in evaluating the master integral via a direct analytic integration of its Feyn-
man parametric representation, the more useful routine would be FCFeynmanParametrize.
Notice that this function supports both quadratic and eikonal propagators and can also
deal with Euclidean or tensor integrals. Cartesian integrals living in D− 1 dimensions are
equally supported.

In general, it is very difficult to carry out all Feynman parametric integrations while
keeping the full dependence on the dimensional regulator ε. For simpler integrals this
can be often achieved by first joining specific subsets of propagators before combining
the rest in the final integrand. This trick may often result in a greater freedom when ex-
ploiting the Cheng-Wu theorem [95] and trying to find a working sequence of integra-
tions. To this aim FEYNCALC offers FCFeynmanParameterJoin, which makes the unification
of different propagators simple and straightforward. Its output can be then passed to
FCFeynmanParametrize, thus obtaining the final integrand depending on the introduced
sets of Feynman parameters xi, yi, zi etc.

The applicability of the Cheng-Wu theorem can be readily checked via FCFeynmanPro-

jectiveQ. If, for some reason, the integral turns out not to be projective, it can be rendered
projective using FCFeynmanProjectivize by automatically performing a projective trans-
formation.

If one insists on integrating Feynman parameters order by order in ε, one should keep
in mind that naively expanding the integrand in the dimensional regulator may introduce
divergences in the Feynman parameters, which is clearly undesirable. One possible so-
lution to this problem involves the so-called analytic regularization that was developed
in refs. [96–98] and implemented in the MAPLE package HYPERINT [96]. In a nutshell,
when expanding an integrand that has been treated using this technique, all ε poles be-
come explicit so that the integrations in xi remain finite. Unlike sector decomposition,
analytic regularization is guaranteed not to spoil the linear reducibility property of the
integrand. In FEYNCALC analytic regularization is implemented using the functions FC-

FeynmanFindDivergences and FCFeynmanRegularizeDivergence, that were inspired by HY-
PERINT’s findDivergence and dimregPartial.

Nowadays, the method of differential equations [99–104] belongs to the most popular
and efficient techniques for calculating large numbers of master integrals analytically or
numerically. The discovery of the canonical form [105, 106] and a rapid advance in the
software for automatically finding such forms was very beneficial for the field of mul-
tiloop calculations. When using tools such as FUCHSIA [107], CANONICA [108, 109],
LIBRA [110, 111], EPSILON [112], INITIAL [113, 114] etc. one is often confronted with
the necessity to perform a change of variables e. g. for rationalizing square roots appear-
ing at intermediate stages5. To automatize this step FEYNCALC offers a function called
FCDiffEqChangeVariables. At the moment only differential equations of one variable are
supported. Given the old variable x, the new variable y(x) as well as the inverse relation
x(y), this routine eliminates x in favor of y in the given matrix. This can be A from the

5The transformations intended to remove such square roots can be automatically obtained using RATIO-
NALIZEROOTS [115]

11

pre-canonical form of the differential equation F′ = AF, but also B from the canonical
form G′ = εBG or just the transformation matrix T with F = T G. Notice that in the case
of T one should disable the inclusion of the prefactor 1/ f ′(y) to avoid incorrect results.
This is done by setting the option Prefactor to False.

Having obtained a canonical form using one of the existing tools, one usually starts
constructing the solution to the system order by order in ε. Here one can make use of
FCDiffEqSolve that can quickly generate such expressions written in terms of FCIterated-
Integral objects. The latter can be regarded as a placeholder for expressions of the type∫ b

a
dx f (x), (3)

where f (x) can be an iterated integral itself. This way nested integrals can be represented
in FEYNCALC by wrapping new FCIteratedIntegral heads around the existing ones.

To facilitate the evaluation of such integrals, the rational functions involved are trans-
formed into a special representation called FCPartialFractionForm. The main idea is to
write expressions of the form

n +
f1

[x− r1]p1
+

f2

[x− r2]p2
+ . . . (4)

as FCPartialFractionForm[n,{{f1,x-r1,p1},{f2,x-r2,p2},...},x]. From here one can eas-
ily rewrite FCIteratedIntegral objects in terms of Harmonic or Goncharov polylogarithms
[116–118]. This is done using FCIteratedIntegralEvaluate with the result containing FC-

GPL symbols. The conversion of rational functions to this representation is handled by
ToFCPartialFractionForm.

Notice that for the time being, FCGPLs are mere placeholders. More GPL-related rou-
tines are expected to be added in future versions of FEYNCALC. Nevertheless, it is not
the intention to compete with packages dedicated to the manipulations of multiple poly-
logarithms and users should resort to special codes such as HPL [119, 120], POLYLOG-
TOOLS [121], MPL [122] etc. for such tasks.

6. Features and improvements unrelated to multiloop calculations

6.1. Improved color algebra simplifications
In the past, FEYNCALC was often unable to simplify various SU(N) color algebraic

expressions using SUNSimplify and SUNTrace. Sometimes chaining multiple instances of
the two routines with different options would do the trick, but such workarounds were
different to find and far from being obvious to users.

To improve on this situation, in FEYNCALC 10 the function SUNSimplify was rewritten
from scratch. The new version implements a much larger number of color algebraic re-
lations, while the new code is easier to maintain and extend. Notice that the evaluation
of the color trace is now handled in a manner similar to what is done in DiracSimplify.
By default, an SUNTrace object remains unevaluated, unless the option SUNTraceEvaluate

is set to True. However, the more convenient way to evaluate such expressions is to use
SUNSimplify. The default value of the SUNTraceEvaluate option in SUNSimplify is set to
Automatic. This means that if a trace can be simplified without naively rewriting every-
thing in terms of structure constants, the function will do so. Setting this option to False

will leave all traces untouched, while True means that the user explicitly wants to eliminate
the traces in favor of SUNF and SUND symbols.

12

6.2. Passarino-Veltman functions
As a package, that was originally developed with one-loop calculations in mind, FEYN-

CALC is of course equipped with symbols representing Passarino-Veltman functions and
a set of routines for working with them. One particular shortcoming related to this func-
tionality that became obvious in the past few years, was FEYNCALC’s ignorance of many
symmetry relations between PaVe functions. This way some results looked longer and
more complicated than they actually should have been and certain cancellations did not
take place.

In FEYNCALC 10 we tried to add all symmetries up to rank 10 for B-functions, rank 9
for C-functions, rank 8 for D-functions, rank 7 for E-functions and rank 6 for F-functions.
The corresponding files are located inside the directory Tables/PaVeSymmetries and can
be (if needed) extended to even higher ranks. Whenever the user enters PaVe functions,
PaVeOrder will automatically reorder their arguments in a canonical way, unless the option
PaVeAutoOrdre has been explicitly set to False.

Also, the deprecated OneLoop routine offered a functionality that was tricky to repro-
duce using other functions: The ability to simplify IR-finite expressions involving PaVe

functions by analyzing their UV-poles and expanding the D-dependent prefactors accord-
ingly so that the expression becomes O(ε0). To improve on this, we added PaVeLimitTo4

which does exactly that. Notice that the absence of IR-poles is assumed but not explicitly
checked, meaning that it is the user’s duty to ensure this condition’s validity.

6.3. Lagrangians and operators
In the course of our ongoing work to improve the usefulness of FEYNCALC for non-

relativistic calculations, we extended the functionality of the package for manipulating
Lagrangians to support Cartesian nabla operators. Supplementing the already existing
symbols LeftPartialD (∼ ←−D µ), RightPartialD (∼ −→D µ), LeftRightPartialD (∼ ←→D µ) and
LeftRightPartialD2 (∼ ←→D 2) we now also have LeftNablaD (∼ ←−∇ i), RightNablaD (∼ −→∇ µ),
LeftRightNablaD (∼ ←→∇ µ) and LeftRightNablaD2 (∼ ←→∇ 2).

Notice that although one still cannot use FeynRule to derive Feynman rules for non-
relativistic operators, other useful routines such as ExpandPartialD and ExplicitPartialD

can now deal with nabla operators or gauge covariant derivatives with Cartesian indices
(i. e. Di from Dµ = (D0, Di)).

Another useful addition to this part of FEYNCALC’s capabilities is ShiftPartialD, which
allows the user to reshuffle derivatives in specific operators by applying integration by
parts on the Lagrangian level. In this case the surface terms are always assumed to vanish.

Last but not least, in order to further facilitate the process of writing custom functions
working with FEYNCALC symbols (e. g. for deriving Feynman rules in the spirit of Ap-
pendix C from [123]), version 10 also features FCTripleProduct as a shortcut for vector
products (⃗a× b⃗) · c⃗ as well as two routines for extracting all free or dummy indices in the
given expression. They are called FCGetFreeIndices and FCGetDummyIndices respectively.

6.4. Dirac algebra
It is now possible to apply Gordon identities to suitable spinor chains by means of

GordonSimplify. The function works both in 4 and D dimensions, while the option Select

allows to choose whether one want to trade the right-handed projector PR for the left-
handed PL one or vice versa.

Furthermore, the calculation of Dirac traces in the Larin [124] scheme now proceeds
according to the so-called Moch-Vermaseren-Vogt [125] formula, which greatly improves
the computational efficiency as compared to the previous implementation.

13

The code for the evaluation of some special spinor chains such as v̄(p)γ5v(p), ū(p)u(p)
or v̄(p)v(p) was moved from DiracSimplify to a dedicated routine called SpinorChain-

Evaluate. Setting the same-named option of DiracSimplify to False will prevent FEYN-
CALC from replacing such objects with their explicit values - which can be useful for cer-
tain types of calculations.

6.5. Convenience functions for research activities
Some of the functions introduced in FEYNCALC 10 are not directly related to the eval-

uation of amplitudes or loop integrals but rather belong to the category of the so-called
convenience routines. One of them is called FCMatchSolve and has been developed to au-
tomatize the determination of renormalization constants, matching coefficients and other
parameters. To this aim, for a given expression (e. g. the difference of two amplitudes or
the sum of some diagrams and the corresponding counterterms), one first needs to collect
all unique structures (e. g. Dirac chains, color factors, ε, αs etc.). Then, one can pass this
expression to FCMatchSolve together with the list of symbols that should be regarded as
fixed variables. In this case the function regards all other variables as free parameters and
tries to choose them such, that the input expression vanishes. In practice, this approach
turns out to be more efficient and robust than using Collect and Solve.

Another common task in particle phenomenology is the numerical evaluation of the
final analytic expressions for cross sections, decay rates, matching coefficients and other
experimentally accessible parameters. Comparing such quantities to the literature or to
the results of peers can be nontrivial for several reasons: Firstly, contrary to symbolic
expressions, the comparison will not be exact, but rather up to a given number of n sig-
nificant digits. Second, when finding disagreement between two large expressions involv-
ing numbers of different origin, one would often want to identify terms that agree with
less significant digits than required, rather than merely state the lack of numerical agree-
ment. Using FCCompareNumbers one can streamline the task of comparing two numerical
or semi-numerical expressions, while retaining full control over the number of significant
digits required. Again, even though a similar result could be achieved using custom codes,
FCCompareNumbers is an attempt at saving time by automating trivial operations and avoid-
ing the most common pitfalls of manual evaluation.

Putting the often long and complicated analytic expressions obtained in a multiloop
calculation into a proper form suitable for a publication, can be regarded as an art of its
own. When using MATHEMATICA for organizing the expressions and converting them
into LATEX, one is often faced with the problem that sums of terms are not ordered in the
way one would want them to. This is because MATHEMATICA’s Times and Plus func-
tions sort terms using an internal canonical ordering that does not necessarily agree with
one’s aesthetic preferences. To remedy this, FEYNCALC now comes with a function called
FCToTeXReorder that first converts Times- and Plus-type expressions into nested lists of the
form {a,b,...,Plus} and {a,b,...,Times} respectively. Terms inside those lists can then
be grouped and ordered according to the user’s preferences, using custom factoring and
sorting functions. The intermediate result of such manipulations can be readily previewed
with FCToTeXPreviewOrder. Once the expressions have been brought into a suitable form,
one can directly apply the built-in TeXForm command to the output of FCToTeXPreviewOrder
and then copy the generated LATEX code into the source file of the publication.

6.6. Tensors with light-cone components
In many QFT calculations (especially those involving highly energetic particles) it is

natural to decompose Lorentz tensors into components along two light-like reference vec-
tors n and n̄ satisfying

n2 = n̄2 = 0, n · n̄ = 2. (5)

14

For example, a four-vector can be then written as

pµ = nµ(p · n̄) + n̄µ(p · n) + pµ
⊥ ≡ pµ

+ + pµ
− + pµ

⊥ (6)

with
pµ
⊥ ≡ pµ − pµ

+ − pµ
⊥. (7)

To facilitate such calculations using FEYNCALC, version 10 of the package introduces spe-
cial symbols for defining light-like reference vectors as well as additional quantities spec-
ifying the plus, minus and perpendicular components of Lorentz tensors. First of all, one
has to tell FEYNCALC, which symbols represent n and n̄ by assigning the corresponding
values to $FCDefaultLightConeVectorN and $FCDefaultLightConeVectorNB. In addition to
that, one should also implement the constraints from Eq. (5) e. g. as in

In[1]:= FCClearScalarProducts[]
ScalarProduct[n,n] = 0; ScalarProduct[nb,nb] = 0;

After these preliminary steps one can start using new shortcuts for the lightcone com-
ponents such as FVPL[p,µ] for pµ

+ or SPLR[p,q], (p · q)⊥ etc. In the case of plus and minus
components, FEYNCALC would insert explicit expressions constructed from the full ten-
sor contracted with n and n̄ vectors. Perpendicular components are represented using the
symbol LightConePerpendicularComponent, which takes a LorentzIndex or Momentum as first
argument and requires Momentum[n] and Momentum[nb] for the remaining two arguments.

FEYNCALC can work with expressions involving light-cone components of vectors,
metric tensors and scalar products in 4 or D dimensions. Dirac matrices can be also de-
fined on the light-cone - with both DiracSimplify and DiracTrace able to simplify the cor-
responding expressions.

6.7. Up-to-date documentation using continuous integration
With this release we also address shortcomings of the FEYNCALC documentation: The

lack of a proper manual in the form of a PDF file, new functions introduced but not docu-
mented, the absence of a novice-friendly tutorial. Technical issues forced us to rethink the
whole concept behind the documentation of the package. We decided to stop maintain-
ing the documentation sources in form of MATHEMATICA notebooks in favor of switching
to text-based .m and markdown files. Using a modified version of J. Podkalicki’s MATH-
EMATICA to Markdown converter M2MD 6 together with the PANDOC [126] document
converter, we created a workflow, where .m and and .md (markdown) files containing the
whole documentation can be semi-automatically converted to HTML (for the online doc-
umentation) or LATEX (for the PDF manual). The LATEX-form of the manual is kept in a
separate repository7 and every change in the source files triggers an update of the public
PDF file that can be readily downloaded 8 by anyone. This way, it is easy to keep both the
online and PDF versions of the manual up to date without the need to update or modify
their content manually. Furthermore, we also took care to automatically synchronize the
descriptions of FEYNCALC symbols and functions in the documentation to the texts shown
when looking up their usage information (e. g. as in ?FV or ?TID). We hope and believe that
these changes will significantly improve the user experience of FEYNCALC and make the
program more accessible to new users.

6https://github.com/kubaPod/M2MD
7https://github.com/FeynCalc/feyncalc-manual
8https://github.com/FeynCalc/feyncalc-manual/releases/tag/dev-manual

15

https://github.com/kubaPod/M2MD
https://github.com/FeynCalc/feyncalc-manual
https://github.com/FeynCalc/feyncalc-manual/releases/tag/dev-manual

7. Examples

In this section we would like to draw reader’s attention to several examples included
with the package that make use of the new multiloop-related routines. Unlike old FEYN-
CALC codes, where one-loop amplitudes were always expressed in terms of Passarino-
Veltman functions, the calculations presented below are carried out in a different way,
where the resulting amplitudes are written in terms of GLIs belonging to previously iden-
tified integral families in the FCTopology notation.

7.1. Electron self-energy in massless QED at 2 loops
We start by generating the 3 required 2-loop diagrams in QED using FEYNARTS. Upon

setting the electron mass to zero, we apply DiracSimplify to the amplitudes and then con-
tinue to the topology identification stage. Using FCLoopFindTopologies we find two dis-
tinct sets of propagators that can be fitted into two trial topogies. However, upon identify-
ing all nonvanishing subtopologies by means of FCLoopFindSubtopologies, we can apply
FCLoopFindTopologyMappings and map everything into one single topology.

The next step is to carry out the tensor reduction (FCLoopTensorReduce) and then ap-
ply mappings between trial topologies to the diagrams. This can be conveniently han-
dled by FCLoopApplyTopologyMappings. In addition to the above steps this routine will also
rewrite the scalar products involving loop momenta in terms of inverse denominators (in
the GLI-notation) and bring the amplitudes into a form where they are expressed as linear
combinations of various GLI integrals.

We omit the technicalities related to the IBP reduction (which can be also automatized
using FEYNHELPERS) and use an already available reduction table to reduce everything
to 3 master integrals. Two of them are, however, identical - which can be revealed via
FCLoopFindIntegralMappings. Thus, we obtain the final result for the 2-loop electron self-
energy in massless QED expressed in terms of 2 master integrals. Comparing this to the
result given in Eq. 5.51 of ref. [127] we find full agreement, as expected.

7.2. Photon self-energy in massless QED at 2 loops
This example is almost identical to the previous one apart from the obivous fact that

we need to generate another set of diagrams. The calculation is carried out with full gauge
dependence, even though ξ cancels in the final result. The obtained result given in terms
of 2 master integrals can be compared in Eq. 5.18 of ref. [127].

7.3. Gluon self-energy in massless QCD at 2 loops
The gluon self-energy calculation shares many similarities with the previous examples

but also requires some adjustments. First of all, due to the complexity of this calculation
(18 diagrams) we use Feynman gauge. Then, we employ Lorentz and color projectors to
extract the scalar self-energy function Π(p2) directly. Apart from these technicalities, the
main steps of the calculation closely follow those of the two previous examples. Here we
choose to insert explicit expressions for the 2 master integrals and compare the so-obtained
results at O(ε0) with the sum of Eqs. 6.10-6.11 in [128], finding complete agreement.

8. Summary

FEYNCALC 10 is a big step towards the goal of bringing multiloop calculations closer to
the broad audience of interested phenomenologists. The presented release of the package
integrates numerous new functions designed to facilitate and streamline manipulations
of loop integrals and topologies. Even though the underlying algorithms are well-known
to the practitioners and have already been implemented in many publicly available soft-
ware packages, having them all conveniently accessible via high-level functions within

16

one framework significantly lowers the bar for using those techniques in daily research.
Owing to FEYNCALC’s focus on flexibility, modularity and ease-of-use, users can casually
employ these new functions whenever it is convenient for them, without the need to aban-
don their existing codes. The only condition is to convert the integral families appearing
in the calculation into the FCTopology-notation, which normally can be done using just a
few simple replacement rules.

Despite of all this progress, we would again like to stress that doing multiloop calcu-
lations with FEYNCALC alone is not the goal we are aiming for. Our vision is to have a
FORM-based calculational framework, where only certain steps (e. g. topology minimiza-
tion) should be performed using FEYNCALC. To this end it was necessary to equip FEYN-
CALC with the functions and symbols described in the present work. The next steps are to
release an improved interface (a new version of FEYNHELPERS) connecting FEYNCALC to
other popular tools used in multiloop calculations and to make the related FORM-based
setup publicly available. These tasks are currently being worked on and we hope to com-
plete them in the near future.

Acknowledgments

One of the authors (VS) would like to acknowledge Guido Bell, Simone Biondini,
William Torres Bobadilla, David Broadhurst, Konstantin Chetyrkin, Joshua Davies, Flo-
rian Herren, Marvin Gerlach, Dennis Horstmann, Tobias Huber, Vitaly Magerya, Mar-
tin Lang, Fabian Lange, Ulrich Nierste, Erik Panzer, Kai Schönwald, Alexander Smirnov,
Vladimir Smirnov and Matthias Steinhauser for useful discussions on different aspects of
automatic perturbative calculations. The research of VS was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762 —
TRR 257 “Particle Physics Phenomenology after the Higgs Discovery”. This paper has
been assigned preprint numbers TTP23-056, P3H-23-089 and SI-HEP-2023-27.

References

[1] G. Apollinari, O. Brüning, T. Nakamoto, L. Rossi, High Luminosity Large Hadron
Collider HL-LHC, CERN Yellow Rep. (5) (2015) 1–19. arXiv:1705.08830, doi:10.
5170/CERN-2015-005.1.

[2] M. Veltman, Algebraic techniques, Comput. Phys. Commun. 3 (1972) 75–78. doi:

10.1016/0010-4655(72)90115-4.

[3] F. V. Tkachov, Algebraic algorithms for multiloop calculations. The First 15 years.
What’s next?, Nucl. Instrum. Meth. A 389 (1997) 309–313. arXiv:hep-ph/9609429,
doi:10.1016/S0168-9002(97)00110-1.

[4] V. A. Smirnov, Feynman integral calculus, Springer, Berlin, Heidelberg, 2006.

[5] S. Weinzierl, Feynman Integrals, 2022. arXiv:2201.03593, doi:10.1007/978-3-030-
99558-4.

[6] J. M. Campbell, et al., Event Generators for High-Energy Physics Experiments, in:
Snowmass 2021, 2022. arXiv:2203.11110.

[7] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S.
Ruf, V. Sotnikov, Caravel: A C++ framework for the computation of multi-loop
amplitudes with numerical unitarity, Comput. Phys. Commun. 267 (2021) 108069.
arXiv:2009.11957, doi:10.1016/j.cpc.2021.108069.

17

http://arxiv.org/abs/1705.08830
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.5170/CERN-2015-005.1
https://doi.org/10.1016/0010-4655(72)90115-4
https://doi.org/10.1016/0010-4655(72)90115-4
http://arxiv.org/abs/hep-ph/9609429
https://doi.org/10.1016/S0168-9002(97)00110-1
http://arxiv.org/abs/2201.03593
https://doi.org/10.1007/978-3-030-99558-4
https://doi.org/10.1007/978-3-030-99558-4
http://arxiv.org/abs/2203.11110
http://arxiv.org/abs/2009.11957
https://doi.org/10.1016/j.cpc.2021.108069

[8] G. Heinrich, S. P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical
scattering amplitudes with pySecDec, Comput. Phys. Commun. 295 (2024) 108956.
arXiv:2305.19768, doi:10.1016/j.cpc.2023.108956.

[9] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, Numer-
ical multi-loop calculations: tools and applications, J. Phys. Conf. Ser. 762 (1) (2016)
012073. arXiv:1604.00267, doi:10.1088/1742-6596/762/1/012073.

[10] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, U. Schu-
bert, T. Zirke, Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading
Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (1) (2016)
012001, [Erratum: Phys.Rev.Lett. 117, 079901 (2016)]. arXiv:1604.06447, doi:10.

1103/PhysRevLett.117.079901.

[11] S. Pozzorini, N. Schär, M. F. Zoller, Two-loop tensor integral coefficients in Open-
Loops, JHEP 05 (2022) 161. arXiv:2201.11615, doi:10.1007/JHEP05(2022)161.

[12] M. F. Zoller, S. Pozzorini, N. Schaer, Towards two-loop automation in OpenLoops,
PoS LL2022 (2022) 073. arXiv:2207.07468, doi:10.22323/1.416.0073.

[13] G. Bevilacqua, D. Canko, C. Papadopoulos, Two-Loop Amplitude Reduction with
HELAC, in: 16th International Symposium on Radiative Corrections: Applications
of Quantum Field Theory to Phenomenology, 2023. arXiv:2309.14886.

[14] K. G. Chetyrkin, F. V. Tkachov, Integration by parts: The algorithm to calculate β-
functions in 4 loops, Nucl. Phys. B 192 (1981) 159–204. doi:10.1016/0550-3213(81)

90199-1.

[15] F. V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group
functions, Phys. Lett. B 100 (1981) 65–68. doi:10.1016/0370-2693(81)90288-4.

[16] M. Gerlach, F. Herren, M. Lang, tapir: A tool for topologies, amplitudes, partial frac-
tion decomposition and input for reductions, Comput. Phys. Commun. 282 (2023)
108544. arXiv:2201.05618, doi:10.1016/j.cpc.2022.108544.

[17] V. Magerya, Semi- and Fully-Inclusive Phase-Space Integrals at Four Loops, Ph.D.
thesis, Hamburg U. (8 2022).

[18] F. Feng, Y.-F. Xie, Q.-C. Zhou, S.-R. Tang, HepLib: A C++ library for high energy
physics, Comput. Phys. Commun. 265 (2021) 107982. arXiv:2103.08507, doi:10.

1016/j.cpc.2021.107982.

[19] Q.-f. Wu, Z. Li, FeAmGen.jl: A Julia Program for Feynman Amplitude Generation
(10 2023). arXiv:2310.07634.

[20] J. A. M. Vermaseren, New features of FORM (10 2000). arXiv:math-ph/0010025.

[21] J. Kuipers, T. Ueda, J. A. M. Vermaseren, J. Vollinga, FORM version 4.0, Comput.
Phys. Commun. 184 (2013) 1453–1467. arXiv:1203.6543, doi:10.1016/j.cpc.2012.
12.028.

[22] R. Mertig, M. Bohm, A. Denner, FEYN CALC: Computer algebraic calculation of
Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345–359. doi:10.1016/

0010-4655(91)90130-D.

[23] V. Shtabovenko, R. Mertig, F. Orellana, New Developments in FeynCalc 9.0, Com-
put. Phys. Commun. 207 (2016) 432–444. arXiv:1601.01167, doi:10.1016/j.cpc.

2016.06.008.

18

http://arxiv.org/abs/2305.19768
https://doi.org/10.1016/j.cpc.2023.108956
http://arxiv.org/abs/1604.00267
https://doi.org/10.1088/1742-6596/762/1/012073
http://arxiv.org/abs/1604.06447
https://doi.org/10.1103/PhysRevLett.117.079901
https://doi.org/10.1103/PhysRevLett.117.079901
http://arxiv.org/abs/2201.11615
https://doi.org/10.1007/JHEP05(2022)161
http://arxiv.org/abs/2207.07468
https://doi.org/10.22323/1.416.0073
http://arxiv.org/abs/2309.14886
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0370-2693(81)90288-4
http://arxiv.org/abs/2201.05618
https://doi.org/10.1016/j.cpc.2022.108544
http://arxiv.org/abs/2103.08507
https://doi.org/10.1016/j.cpc.2021.107982
https://doi.org/10.1016/j.cpc.2021.107982
http://arxiv.org/abs/2310.07634
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/1203.6543
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/j.cpc.2012.12.028
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
http://arxiv.org/abs/1601.01167
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008

[24] V. Shtabovenko, R. Mertig, F. Orellana, FeynCalc 9.3: New features and improve-
ments, Comput. Phys. Commun. 256 (2020) 107478. arXiv:2001.04407, doi:10.1016/
j.cpc.2020.107478.

[25] V. Shtabovenko, FeynCalc goes multiloop, J. Phys. Conf. Ser. 2438 (1) (2023) 012140.
arXiv:2112.14132, doi:10.1088/1742-6596/2438/1/012140.

[26] V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Com-
put. Phys. Commun. 218 (2017) 48–65. arXiv:1611.06793, doi:10.1016/j.cpc.2017.
04.014.

[27] G. Passarino, M. J. G. Veltman, One Loop Corrections for e+ e- Annihilation Into
mu+ mu- in the Weinberg Model, Nucl. Phys. B 160 (1979) 151–207. doi:10.1016/

0550-3213(79)90234-7.

[28] R. Mertig, W. L. van Neerven, The Calculation of the two loop spin splitting func-
tions P(ij)(1)(x), Z. Phys. C 70 (1996) 637–654. arXiv:hep-ph/9506451, doi:10.1007/
s002880050138.

[29] R. Mertig, R. Scharf, TARCER: A Mathematica program for the reduction of two
loop propagator integrals, Comput. Phys. Commun. 111 (1998) 265–273. arXiv:hep-
ph/9801383, doi:10.1016/S0010-4655(98)00042-3.

[30] M. Wiebusch, HEPMath 1.4: A mathematica package for semi-automatic com-
putations in high energy physics, Comput. Phys. Commun. 195 (2015) 172–190.
arXiv:1412.6102, doi:10.1016/j.cpc.2015.04.022.

[31] H. H. Patel, Package-X: A Mathematica package for the analytic calculation of one-
loop integrals, Comput. Phys. Commun. 197 (2015) 276–290. arXiv:1503.01469, doi:
10.1016/j.cpc.2015.08.017.

[32] H. H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of
one-loop integrals, Comput. Phys. Commun. 218 (2017) 66–70. arXiv:1612.00009,
doi:10.1016/j.cpc.2017.04.015.

[33] A. K. Cyrol, M. Mitter, N. Strodthoff, FormTracer - A Mathematica Tracing Package
Using FORM, Comput. Phys. Commun. 219 (2017) 346–352. arXiv:1610.09331, doi:
10.1016/j.cpc.2017.05.024.

[34] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to parton shower
simulations, JHEP 07 (2014) 079. arXiv:1405.0301, doi:10.1007/JHEP07(2014)079.

[35] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter,
F. Tramontano, Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72
(2012) 1889. arXiv:1111.2034, doi:10.1140/epjc/s10052-012-1889-1.

[36] G. Cullen, et al., GOSAM-2.0: a tool for automated one-loop calculations within the
Standard Model and beyond, Eur. Phys. J. C 74 (8) (2014) 3001. arXiv:1404.7096,
doi:10.1140/epjc/s10052-014-3001-5.

[37] M. Bahr, et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639–707.
arXiv:0803.0883, doi:10.1140/epjc/s10052-008-0798-9.

[38] J. Bellm, et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (4) (2016)
196. arXiv:1512.01178, doi:10.1140/epjc/s10052-016-4018-8.

19

http://arxiv.org/abs/2001.04407
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
http://arxiv.org/abs/2112.14132
https://doi.org/10.1088/1742-6596/2438/1/012140
http://arxiv.org/abs/1611.06793
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.1016/j.cpc.2017.04.014
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7
http://arxiv.org/abs/hep-ph/9506451
https://doi.org/10.1007/s002880050138
https://doi.org/10.1007/s002880050138
http://arxiv.org/abs/hep-ph/9801383
http://arxiv.org/abs/hep-ph/9801383
https://doi.org/10.1016/S0010-4655(98)00042-3
http://arxiv.org/abs/1412.6102
https://doi.org/10.1016/j.cpc.2015.04.022
http://arxiv.org/abs/1503.01469
https://doi.org/10.1016/j.cpc.2015.08.017
https://doi.org/10.1016/j.cpc.2015.08.017
http://arxiv.org/abs/1612.00009
https://doi.org/10.1016/j.cpc.2017.04.015
http://arxiv.org/abs/1610.09331
https://doi.org/10.1016/j.cpc.2017.05.024
https://doi.org/10.1016/j.cpc.2017.05.024
http://arxiv.org/abs/1405.0301
https://doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1111.2034
https://doi.org/10.1140/epjc/s10052-012-1889-1
http://arxiv.org/abs/1404.7096
https://doi.org/10.1140/epjc/s10052-014-3001-5
http://arxiv.org/abs/0803.0883
https://doi.org/10.1140/epjc/s10052-008-0798-9
http://arxiv.org/abs/1512.01178
https://doi.org/10.1140/epjc/s10052-016-4018-8

[39] G. Bevilacqua, M. Czakon, M. V. Garzelli, A. van Hameren, A. Kardos, C. G.
Papadopoulos, R. Pittau, M. Worek, HELAC-NLO, Comput. Phys. Commun. 184
(2013) 986–997. arXiv:1110.1499, doi:10.1016/j.cpc.2012.10.033.

[40] P. Nason, A New method for combining NLO QCD with shower Monte Carlo al-
gorithms, JHEP 11 (2004) 040. arXiv:hep-ph/0409146, doi:10.1088/1126-6708/2004/
11/040.

[41] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton
Shower simulations: the POWHEG method, JHEP 11 (2007) 070. arXiv:0709.2092,
doi:10.1088/1126-6708/2007/11/070.

[42] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO
calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010)
043. arXiv:1002.2581, doi:10.1007/JHEP06(2010)043.

[43] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter,
Event generation with SHERPA 1.1, JHEP 02 (2009) 007. arXiv:0811.4622, doi:10.
1088/1126-6708/2009/02/007.

[44] E. Bothmann, et al., Event Generation with Sherpa 2.2, SciPost Phys. 7 (3) (2019) 034.
arXiv:1905.09127, doi:10.21468/SciPostPhys.7.3.034.

[45] M. Moretti, T. Ohl, J. Reuter, O’Mega: An Optimizing matrix element generator
(2001) 1981–2009arXiv:hep-ph/0102195.

[46] W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC
and ILC, Eur. Phys. J. C 71 (2011) 1742. arXiv:0708.4233, doi:10.1140/epjc/s10052-
011-1742-y.

[47] A. Belyaev, N. D. Christensen, A. Pukhov, CalcHEP 3.4 for collider physics within
and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769.
arXiv:1207.6082, doi:10.1016/j.cpc.2013.01.014.

[48] E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral,
V. Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4: Automatic computations from
Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250–259. arXiv:hep-ph/

0403113, doi:10.1016/j.nima.2004.07.096.

[49] F. Yuasa, et al., Automatic computation of cross-sections in HEP: Status of GRACE
system, Prog. Theor. Phys. Suppl. 138 (2000) 18–23. arXiv:hep-ph/0007053, doi:10.
1143/PTPS.138.18.

[50] J. Fujimoto, et al., GRACE/SUSY automatic generation of tree amplitudes in the
minimal supersymmetric standard model, Comput. Phys. Commun. 153 (2003) 106–
134. arXiv:hep-ph/0208036, doi:10.1016/S0010-4655(03)00159-0.

[51] P. Nogueira, Automatic Feynman Graph Generation, J. Comput. Phys. 105 (1993)
279–289. doi:10.1006/jcph.1993.1074.

[52] https://www.graphviz.org/.

[53] R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction (12 2012).
arXiv:1212.2685.

[54] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J.
Phys. Conf. Ser. 523 (2014) 012059. arXiv:1310.1145, doi:10.1088/1742-6596/523/
1/012059.

20

http://arxiv.org/abs/1110.1499
https://doi.org/10.1016/j.cpc.2012.10.033
http://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/0709.2092
https://doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/1002.2581
https://doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/0811.4622
https://doi.org/10.1088/1126-6708/2009/02/007
https://doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/1905.09127
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/hep-ph/0102195
http://arxiv.org/abs/0708.4233
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
http://arxiv.org/abs/1207.6082
https://doi.org/10.1016/j.cpc.2013.01.014
http://arxiv.org/abs/hep-ph/0403113
http://arxiv.org/abs/hep-ph/0403113
https://doi.org/10.1016/j.nima.2004.07.096
http://arxiv.org/abs/hep-ph/0007053
https://doi.org/10.1143/PTPS.138.18
https://doi.org/10.1143/PTPS.138.18
http://arxiv.org/abs/hep-ph/0208036
https://doi.org/10.1016/S0010-4655(03)00159-0
https://doi.org/10.1006/jcph.1993.1074
https://www.graphviz.org/
http://arxiv.org/abs/1212.2685
http://arxiv.org/abs/1310.1145
https://doi.org/10.1088/1742-6596/523/1/012059
https://doi.org/10.1088/1742-6596/523/1/012059

[55] A. V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Com-
put. Phys. Commun. 189 (2015) 182–191. arXiv:1408.2372, doi:10.1016/j.cpc.2014.
11.024.

[56] A. V. Smirnov, F. S. Chuharev, FIRE6: Feynman Integral REduction with Modular
Arithmetic, Comput. Phys. Commun. 247Â (2020) 106877. arXiv:1901.07808, doi:
10.1016/j.cpc.2019.106877.

[57] A. V. Smirnov, M. Zeng, FIRE 6.5: Feynman Integral Reduction with New Simplifi-
cation Library (11 2023). arXiv:2311.02370.

[58] P. Maierhöfer, J. Usovitsch, P. Uwer, Kira—A Feynman integral reduction program,
Comput. Phys. Commun. 230 (2018) 99–112. arXiv:1705.05610, doi:10.1016/j.cpc.
2018.04.012.

[59] P. Maierhöfer, J. Usovitsch, Kira 1.2 Release Notes (12 2018). arXiv:1812.01491.

[60] P. Maierhöfer, J. Usovitsch, Recent developments in Kira, CERN Yellow Reports:
Monographs 3 (2020) 201–204. doi:10.23731/CYRM-2020-003.201.

[61] J. Klappert, F. Lange, P. Maierhöfer, J. Usovitsch, Integral reduction with Kira 2.0 and
finite field methods, Comput. Phys. Commun. 266 (2021) 108024. arXiv:2008.06494,
doi:10.1016/j.cpc.2021.108024.

[62] F. Lange, P. Maierhöfer, J. Usovitsch, Developments since Kira 2.0, SciPost Phys.
Proc. 7 (2022) 017. arXiv:2111.01045, doi:10.21468/SciPostPhysProc.7.017.

[63] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, py-
SecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput.
Phys. Commun. 222 (2018) 313–326. arXiv:1703.09692, doi:10.1016/j.cpc.2017.09.
015.

[64] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, A GPU compatible
quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240
(2019) 120–137. arXiv:1811.11720, doi:10.1016/j.cpc.2019.02.015.

[65] G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V. Magerya, A. Pöldaru,
J. Schlenk, E. Villa, Expansion by regions with pySecDec, Comput. Phys. Commun.
273 (2022) 108267. arXiv:2108.10807, doi:10.1016/j.cpc.2021.108267.

[66] R. Harlander, T. Seidensticker, M. Steinhauser, Complete corrections of Order alpha
alpha-s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998)
125–132. arXiv:hep-ph/9712228, doi:10.1016/S0370-2693(98)00220-2.

[67] T. Seidensticker, Automatic application of successive asymptotic expansions of
Feynman diagrams, in: 6th International Workshop on New Computing Tech-
niques in Physics Research: Software Engineering, Artificial Intelligence Neural
Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation, 1999. arXiv:

hep-ph/9905298.

[68] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO - The
Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201–1214. arXiv:
1108.2040, doi:10.1016/j.cpc.2012.01.022.

[69] L. Darmé, et al., UFO 2.0: the ‘Universal Feynman Output’ format, Eur. Phys. J. C
83 (7) (2023) 631. arXiv:2304.09883, doi:10.1140/epjc/s10052-023-11780-9.

21

http://arxiv.org/abs/1408.2372
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
http://arxiv.org/abs/1901.07808
https://doi.org/10.1016/j.cpc.2019.106877
https://doi.org/10.1016/j.cpc.2019.106877
http://arxiv.org/abs/2311.02370
http://arxiv.org/abs/1705.05610
https://doi.org/10.1016/j.cpc.2018.04.012
https://doi.org/10.1016/j.cpc.2018.04.012
http://arxiv.org/abs/1812.01491
https://doi.org/10.23731/CYRM-2020-003.201
http://arxiv.org/abs/2008.06494
https://doi.org/10.1016/j.cpc.2021.108024
http://arxiv.org/abs/2111.01045
https://doi.org/10.21468/SciPostPhysProc.7.017
http://arxiv.org/abs/1703.09692
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.1016/j.cpc.2017.09.015
http://arxiv.org/abs/1811.11720
https://doi.org/10.1016/j.cpc.2019.02.015
http://arxiv.org/abs/2108.10807
https://doi.org/10.1016/j.cpc.2021.108267
http://arxiv.org/abs/hep-ph/9712228
https://doi.org/10.1016/S0370-2693(98)00220-2
http://arxiv.org/abs/hep-ph/9905298
http://arxiv.org/abs/hep-ph/9905298
http://arxiv.org/abs/1108.2040
http://arxiv.org/abs/1108.2040
https://doi.org/10.1016/j.cpc.2012.01.022
http://arxiv.org/abs/2304.09883
https://doi.org/10.1140/epjc/s10052-023-11780-9

[70] F. Feng, S.-R. Tang, Y.-D. Gao, HepLib: A C++ library for high energy physics (ver-
sion 1.1), Comput. Phys. Commun. 285 (2023) 108631. doi:10.1016/j.cpc.2022.

108631.

[71] C. W. Bauer, A. Frink, R. Kreckel, Introduction to the GiNaC framework for symbolic
computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1–
12. arXiv:cs/0004015, doi:10.1006/jsco.2001.0494.

[72] K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization, Commun.
Math. Phys. 2 (1966) 301–326. doi:10.1007/BF01773358.

[73] E. R. Speer, Mass Singularities of Generic Feynman Amplitudes, Ann. Inst. H.
Poincare Phys. Theor. 26 (1977) 87–105.

[74] T. Binoth, G. Heinrich, An automatized algorithm to compute infrared divergent
multiloop integrals, Nucl. Phys. B 585 (2000) 741–759. arXiv:hep-ph/0004013, doi:
10.1016/S0550-3213(00)00429-6.

[75] G. Heinrich, Sector Decomposition, Int. J. Mod. Phys. A 23 (2008) 1457–1486. arXiv:
0803.4177, doi:10.1142/S0217751X08040263.

[76] T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-dimensions
and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165. arXiv:hep-ph/

9807565, doi:10.1016/S0010-4655(98)00173-8.

[77] A. Denner, S. Dittmaier, L. Hofer, Collier: a fortran-based Complex One-Loop LI-
brary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220–238.
arXiv:1604.06792, doi:10.1016/j.cpc.2016.10.013.

[78] A. Denner, S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl.
Phys. B 658 (2003) 175–202. arXiv:hep-ph/0212259, doi:10.1016/S0550-3213(03)

00184-6.

[79] A. Denner, S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl.
Phys. B 734 (2006) 62–115. arXiv:hep-ph/0509141, doi:10.1016/j.nuclphysb.2005.
11.007.

[80] A. Denner, S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011)
199–242. arXiv:1005.2076, doi:10.1016/j.nuclphysb.2010.11.002.

[81] R. K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002.
arXiv:0712.1851, doi:10.1088/1126-6708/2008/02/002.

[82] A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Com-
put. Phys. Commun. 182 (2011) 2427–2438. arXiv:1007.4716, doi:10.1016/j.cpc.
2011.06.011.

[83] C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun.
181 (2010) 1293–1300. arXiv:0912.2546, doi:10.1016/j.cpc.2010.03.012.

[84] A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction
(1 2012). arXiv:1201.4330.

[85] A. Georgoudis, K. J. Larsen, Y. Zhang, Azurite: An algebraic geometry based pack-
age for finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203–215.
arXiv:1612.04252, doi:10.1016/j.cpc.2017.08.013.

22

https://doi.org/10.1016/j.cpc.2022.108631
https://doi.org/10.1016/j.cpc.2022.108631
http://arxiv.org/abs/cs/0004015
https://doi.org/10.1006/jsco.2001.0494
https://doi.org/10.1007/BF01773358
http://arxiv.org/abs/hep-ph/0004013
https://doi.org/10.1016/S0550-3213(00)00429-6
https://doi.org/10.1016/S0550-3213(00)00429-6
http://arxiv.org/abs/0803.4177
http://arxiv.org/abs/0803.4177
https://doi.org/10.1142/S0217751X08040263
http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/hep-ph/9807565
https://doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/1604.06792
https://doi.org/10.1016/j.cpc.2016.10.013
http://arxiv.org/abs/hep-ph/0212259
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/S0550-3213(03)00184-6
http://arxiv.org/abs/hep-ph/0509141
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2005.11.007
http://arxiv.org/abs/1005.2076
https://doi.org/10.1016/j.nuclphysb.2010.11.002
http://arxiv.org/abs/0712.1851
https://doi.org/10.1088/1126-6708/2008/02/002
http://arxiv.org/abs/1007.4716
https://doi.org/10.1016/j.cpc.2011.06.011
https://doi.org/10.1016/j.cpc.2011.06.011
http://arxiv.org/abs/0912.2546
https://doi.org/10.1016/j.cpc.2010.03.012
http://arxiv.org/abs/1201.4330
http://arxiv.org/abs/1612.04252
https://doi.org/10.1016/j.cpc.2017.08.013

[86] V. A. Smirnov, Analytic tools for Feynman integrals, Vol. 250, Springer Berlin, Hei-
delberg, 2012. doi:10.1007/978-3-642-34886-0.

[87] A. V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU sup-
port, Comput. Phys. Commun. 204 (2016) 189–199. arXiv:1511.03614, doi:10.1016/
j.cpc.2016.03.013.

[88] A. V. Smirnov, N. D. Shapurov, L. I. Vysotsky, FIESTA5: Numerical high-
performance Feynman integral evaluation, Comput. Phys. Commun. 277 (2022)
108386. arXiv:2110.11660, doi:10.1016/j.cpc.2022.108386.

[89] C. Bogner, S. Weinzierl, Feynman graph polynomials, Int. J. Mod. Phys. A 25 (2010)
2585–2618. arXiv:1002.3458, doi:10.1142/S0217751X10049438.

[90] J. Hoff, The Mathematica package TopoID and its application to the Higgs boson
production cross section, J. Phys. Conf. Ser. 762 (1) (2016) 012061. arXiv:1607.04465,
doi:10.1088/1742-6596/762/1/012061.

[91] A. Pak, The Toolbox of modern multi-loop calculations: novel analytic and semi-
analytic techniques, J. Phys. Conf. Ser. 368 (2012) 012049. arXiv:1111.0868, doi:

10.1088/1742-6596/368/1/012049.

[92] J. S. Hoff, Methods for multiloop calculations and Higgs boson production at the
LHC, Ph.D. thesis, KIT, Karlsruhe (2015). doi:10.5445/IR/1000047447.

[93] R. Lewis, FERMAT, https://home.bway.net/lewis.

[94] K. Bielas, I. Dubovyk, J. Gluza, T. Riemann, Some Remarks on Non-planar Feynman
Diagrams, Acta Phys. Polon. B 44 (11) (2013) 2249–2255. arXiv:1312.5603, doi:10.
5506/APhysPolB.44.2249.

[95] H. Cheng, T. T. Wu, EXPANDING PROTONS: SCATTERING AT HIGH-ENERGIES,
1987.

[96] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with appli-
cations to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148–166. arXiv:

1403.3385, doi:10.1016/j.cpc.2014.10.019.

[97] E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many
scales, JHEP 03 (2014) 071. arXiv:1401.4361, doi:10.1007/JHEP03(2014)071.

[98] E. Panzer, Feynman integrals and hyperlogarithms, Ph.D. thesis, Humboldt U.
(2015). arXiv:1506.07243, doi:10.18452/17157.

[99] A. V. Kotikov, Differential equation method: The Calculation of N point Feynman di-
agrams, Phys. Lett. B 267 (1991) 123–127, [Erratum: Phys.Lett.B 295, 409–409 (1992)].
doi:10.1016/0370-2693(91)90536-Y.

[100] A. V. Kotikov, Differential equations method: New technique for massive Feynman
diagrams calculation, Phys. Lett. B 254 (1991) 158–164. doi:10.1016/0370-2693(91)

90413-K.

[101] A. V. Kotikov, Differential equations method: The Calculation of vertex type Feyn-
man diagrams, Phys. Lett. B 259 (1991) 314–322. doi:10.1016/0370-2693(91)90834-D.

[102] Z. Bern, L. J. Dixon, D. A. Kosower, Dimensionally regulated pentagon inte-
grals, Nucl. Phys. B 412 (1994) 751–816. arXiv:hep-ph/9306240, doi:10.1016/0550-
3213(94)90398-0.

23

https://doi.org/10.1007/978-3-642-34886-0
http://arxiv.org/abs/1511.03614
https://doi.org/10.1016/j.cpc.2016.03.013
https://doi.org/10.1016/j.cpc.2016.03.013
http://arxiv.org/abs/2110.11660
https://doi.org/10.1016/j.cpc.2022.108386
http://arxiv.org/abs/1002.3458
https://doi.org/10.1142/S0217751X10049438
http://arxiv.org/abs/1607.04465
https://doi.org/10.1088/1742-6596/762/1/012061
http://arxiv.org/abs/1111.0868
https://doi.org/10.1088/1742-6596/368/1/012049
https://doi.org/10.1088/1742-6596/368/1/012049
https://doi.org/10.5445/IR/1000047447
https://home.bway.net/lewis
http://arxiv.org/abs/1312.5603
https://doi.org/10.5506/APhysPolB.44.2249
https://doi.org/10.5506/APhysPolB.44.2249
http://arxiv.org/abs/1403.3385
http://arxiv.org/abs/1403.3385
https://doi.org/10.1016/j.cpc.2014.10.019
http://arxiv.org/abs/1401.4361
https://doi.org/10.1007/JHEP03(2014)071
http://arxiv.org/abs/1506.07243
https://doi.org/10.18452/17157
https://doi.org/10.1016/0370-2693(91)90536-Y
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90834-D
http://arxiv.org/abs/hep-ph/9306240
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1016/0550-3213(94)90398-0

[103] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A
110 (1997) 1435–1452. arXiv:hep-th/9711188, doi:10.1007/BF03185566.

[104] T. Gehrmann, E. Remiddi, Differential equations for two loop four point func-
tions, Nucl. Phys. B 580 (2000) 485–518. arXiv:hep-ph/9912329, doi:10.1016/S0550-
3213(00)00223-6.

[105] J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys.
Rev. Lett. 110 (2013) 251601. arXiv:1304.1806, doi:10.1103/PhysRevLett.110.251601.

[106] J. M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48
(2015) 153001. arXiv:1412.2296, doi:10.1088/1751-8113/48/15/153001.

[107] O. Gituliar, V. Magerya, Fuchsia: a tool for reducing differential equations for Feyn-
man master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329–338.
arXiv:1701.04269, doi:10.1016/j.cpc.2017.05.004.

[108] C. Meyer, Transforming differential equations of multi-loop Feynman integrals into
canonical form, JHEP 04 (2017) 006. arXiv:1611.01087, doi:10.1007/JHEP04(2017)
006.

[109] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical
basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295–312. arXiv:1705.
06252, doi:10.1016/j.cpc.2017.09.014.

[110] R. N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04
(2015) 108. arXiv:1411.0911, doi:10.1007/JHEP04(2015)108.

[111] R. N. Lee, Libra: A package for transformation of differential systems for multiloop
integrals, Comput. Phys. Commun. 267 (2021) 108058. arXiv:2012.00279, doi:10.
1016/j.cpc.2021.108058.

[112] M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Comput.
Phys. Commun. 219 (2017) 361–376. arXiv:1701.00725, doi:10.1016/j.cpc.2017.05.
026.

[113] C. Dlapa, J. Henn, K. Yan, Deriving canonical differential equations for Feynman
integrals from a single uniform weight integral, JHEP 05 (2020) 025. arXiv:2002.

02340, doi:10.1007/JHEP05(2020)025.

[114] C. Dlapa, J. M. Henn, F. J. Wagner, An algorithmic approach to finding canonical
differential equations for elliptic Feynman integrals, JHEP 08 (2023) 120. arXiv:

2211.16357, doi:10.1007/JHEP08(2023)120.

[115] M. Besier, P. Wasser, S. Weinzierl, RationalizeRoots: Software Package for the Ra-
tionalization of Square Roots, Comput. Phys. Commun. 253 (2020) 107197. arXiv:

1910.13251, doi:10.1016/j.cpc.2020.107197.

[116] E. Remiddi, J. A. M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15
(2000) 725–754. arXiv:hep-ph/9905237, doi:10.1142/S0217751X00000367.

[117] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes,
Math. Res. Lett. 5 (1998) 497–516. arXiv:1105.2076, doi:10.4310/MRL.1998.v5.n4.a7.

[118] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives (3 2001). arXiv:

math/0103059.

24

http://arxiv.org/abs/hep-th/9711188
https://doi.org/10.1007/BF03185566
http://arxiv.org/abs/hep-ph/9912329
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
http://arxiv.org/abs/1304.1806
https://doi.org/10.1103/PhysRevLett.110.251601
http://arxiv.org/abs/1412.2296
https://doi.org/10.1088/1751-8113/48/15/153001
http://arxiv.org/abs/1701.04269
https://doi.org/10.1016/j.cpc.2017.05.004
http://arxiv.org/abs/1611.01087
https://doi.org/10.1007/JHEP04(2017)006
https://doi.org/10.1007/JHEP04(2017)006
http://arxiv.org/abs/1705.06252
http://arxiv.org/abs/1705.06252
https://doi.org/10.1016/j.cpc.2017.09.014
http://arxiv.org/abs/1411.0911
https://doi.org/10.1007/JHEP04(2015)108
http://arxiv.org/abs/2012.00279
https://doi.org/10.1016/j.cpc.2021.108058
https://doi.org/10.1016/j.cpc.2021.108058
http://arxiv.org/abs/1701.00725
https://doi.org/10.1016/j.cpc.2017.05.026
https://doi.org/10.1016/j.cpc.2017.05.026
http://arxiv.org/abs/2002.02340
http://arxiv.org/abs/2002.02340
https://doi.org/10.1007/JHEP05(2020)025
http://arxiv.org/abs/2211.16357
http://arxiv.org/abs/2211.16357
https://doi.org/10.1007/JHEP08(2023)120
http://arxiv.org/abs/1910.13251
http://arxiv.org/abs/1910.13251
https://doi.org/10.1016/j.cpc.2020.107197
http://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1142/S0217751X00000367
http://arxiv.org/abs/1105.2076
https://doi.org/10.4310/MRL.1998.v5.n4.a7
http://arxiv.org/abs/math/0103059
http://arxiv.org/abs/math/0103059

[119] D. Maitre, HPL, a mathematica implementation of the harmonic polylogarithms,
Comput. Phys. Commun. 174 (2006) 222–240. arXiv:hep-ph/0507152, doi:10.1016/
j.cpc.2005.10.008.

[120] D. Maitre, Extension of HPL to complex arguments, Comput. Phys. Commun. 183
(2012) 846. arXiv:hep-ph/0703052, doi:10.1016/j.cpc.2011.11.015.

[121] C. Duhr, F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08 (2019) 135.
arXiv:1904.07279, doi:10.1007/JHEP08(2019)135.

[122] C. Bogner, MPL—A program for computations with iterated integrals on moduli
spaces of curves of genus zero, Comput. Phys. Commun. 203 (2016) 339–353. arXiv:
1510.04562, doi:10.1016/j.cpc.2016.02.033.

[123] N. Brambilla, H. S. Chung, V. Shtabovenko, A. Vairo, FeynOnium: Using FeynCalc
for automatic calculations in Nonrelativistic Effective Field Theories, JHEP 11 (2020)
130. arXiv:2006.15451, doi:10.1007/JHEP11(2020)130.

[124] S. A. Larin, The Renormalization of the axial anomaly in dimensional regularization,
Phys. Lett. B 303 (1993) 113–118. arXiv:hep-ph/9302240, doi:10.1016/0370-2693(93)
90053-K.

[125] S. Moch, J. A. M. Vermaseren, A. Vogt, On γ5 in higher-order QCD calculations and
the NNLO evolution of the polarized valence distribution, Phys. Lett. B 748 (2015)
432–438. arXiv:1506.04517, doi:10.1016/j.physletb.2015.07.027.

[126] https://pandoc.org/.

[127] A. Grozin, Lectures on QED and QCD, in: 3rd Dubna International Advanced
School of Theoretical Physics, 2005. arXiv:hep-ph/0508242.

[128] A. I. Davydychev, P. Osland, O. V. Tarasov, Two loop three gluon vertex in zero
momentum limit, Phys. Rev. D 58 (1998) 036007. arXiv:hep-ph/9801380, doi:10.

1103/PhysRevD.58.036007.

25

http://arxiv.org/abs/hep-ph/0507152
https://doi.org/10.1016/j.cpc.2005.10.008
https://doi.org/10.1016/j.cpc.2005.10.008
http://arxiv.org/abs/hep-ph/0703052
https://doi.org/10.1016/j.cpc.2011.11.015
http://arxiv.org/abs/1904.07279
https://doi.org/10.1007/JHEP08(2019)135
http://arxiv.org/abs/1510.04562
http://arxiv.org/abs/1510.04562
https://doi.org/10.1016/j.cpc.2016.02.033
http://arxiv.org/abs/2006.15451
https://doi.org/10.1007/JHEP11(2020)130
http://arxiv.org/abs/hep-ph/9302240
https://doi.org/10.1016/0370-2693(93)90053-K
https://doi.org/10.1016/0370-2693(93)90053-K
http://arxiv.org/abs/1506.04517
https://doi.org/10.1016/j.physletb.2015.07.027
https://pandoc.org/
http://arxiv.org/abs/hep-ph/0508242
http://arxiv.org/abs/hep-ph/9801380
https://doi.org/10.1103/PhysRevD.58.036007
https://doi.org/10.1103/PhysRevD.58.036007

	Introduction
	Context and state of the art
	Installation
	Topologies and loop integrals
	Three main building blocks
	Basic operations
	Topology identification

	Master integrals
	Features and improvements unrelated to multiloop calculations
	Improved color algebra simplifications
	Passarino-Veltman functions
	Lagrangians and operators
	Dirac algebra
	Convenience functions for research activities
	Tensors with light-cone components
	Up-to-date documentation using continuous integration

	Examples
	Electron self-energy in massless QED at 2 loops
	Photon self-energy in massless QED at 2 loops
	Gluon self-energy in massless QCD at 2 loops

	Summary

