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We calculate the four-top quark operator contributions to Higgs production via gluon fusion in
the Standard Model Effective Field Theory. The four-top operators enter for the first time via
two-loop diagrams. Due to their chiral structure they contain γ5, so special care needs to be taken
when using dimensional regularisation for the loop integrals. We use two different schemes for the
continuation of γ5 to D space-time dimensions in our calculations and present a mapping for the
parameters in the two schemes. This generically leads to an interplay of different operators, such
as four-top operators, chromomagnetic operators or Yukawa-type operators at the loop level. We
validate our results by examples of matching onto UV models.

I. INTRODUCTION

With the increasing precision in the measurement of
the Higgs boson couplings, the Higgs sector has become
a probe of physics beyond the Standard Model (SM).
In the absence of a clear signal of new physics, poten-
tial deviations from the SM can be described as model-
independently as possible by means of an effective field
theory (EFT). Under the assumption that the Higgs field
transforms as an SU(2)L doublet as in the SM, heavy new
physics can be described by the SM effective field theory
(SMEFT) [1, 2]. In this theory, new physics effects are
described by higher-dimensional operators suppressed by
some large mass scale Λ.

In this paper we consider a subset of the possible
dimension-six operators, namely the four-top quark oper-
ators, and comment on their connection to other SMEFT
operators. Four-top operators are generically difficult
to probe experimentally, as direct probes require the
production of four top quarks. Limited by the large
phase space required, four-top quark production remains
a rather rare process, with a SM cross section of only
about 12 fb including next-to-leading (NLO) QCD and
NLO electroweak (EW) corrections for

√
s = 13 TeV [3–

5]. Current limits on four-top operators are hence typi-
cally rather weak, in particular mostly stemming from
O(1/Λ4) contributions in the matrix element squared
[6, 7]. For this very reason, potentially better bounds on
the four-top operators can be obtained indirectly, hence
by considering loop effects on other observables.

Furthermore, Ref. [8] showed that in the presence of
four-top operators possible limits on the trilinear Higgs
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self-coupling derived from electroweak corrections to sin-
gle Higgs production [9–15] can become more restrictive.
First efforts to constrain the trilinear Higgs self-coupling
via single Higgs production have already been started by
the experimental collaborations [16, 17].

We are going to reconsider the gg → h computa-
tion from Ref. [8], which included effects from four-
top operators within the SMEFT, using two different
schemes for the continuation of γ5 to D = 4 − 2ǫ space-
time dimensions. While the leading poles of loop in-
tegrals are scheme-independent, cancellations of these
poles with scheme-dependent O (ǫ) terms, resulting from
the Dirac algebra in dimensional regularisation, will lead
to scheme-dependent finite parts. It should be stressed
that, in this context, the finite terms can be of the
same order as the logarithmically enhanced ones (as
shown in [8]), thus they are phenomenologically rele-
vant. Since four-top operators contribute to gg → h via
two-loop diagrams, the finite terms are expected to be
scheme-dependent. Moreover, we find a divergence which
depends on the scheme, signaling a scheme-dependent
anomalous dimension. We describe in detail how such
divergence can be traced back to a finite term (that is
expected to be scheme-dependent) in one of the one-loop
subamplitudes entering the computation. We also review
the results in naive dimensional regularisation [18] with
respect to the ones obtained in Ref. [8] and we discuss
various subtleties that arise in the comparison with the
Breitenlohner-Maison-’t Hooft-Veltman scheme [19, 20]
for the treatment of γ5.

Furthermore, we point out that building the SMEFT
expansion on the counting of the canonical dimension
alone can lead to inconsistencies, as has been explained
in Ref. [21]. In a counting scheme that in addition takes
into acccount whether an operator is potentially loop-
generated, the four-top operators and the chromomag-
netic operator enter the Higgs-gluon coupling at the same
order [22–29] and therefore should not be considered in
isolation.

Our paper is structured as follows: in Sec. II we in-
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troduce the operators considered in our analysis and we
fix our notation. In Sec. III we discuss different schemes
for the D-dimensional continuation of γ5. Section IV is
devoted to the computation of one-loop subamplitudes
required to obtain the result for the gg → h amplitude
including the operators given in Sec. II. The two differ-
ent schemes are then used for the computation of the
gg → h rate presented in Sec. V. We also discuss how
the scheme-dependence of the parameters of the theory
compensates for the scheme-dependence of the matrix
elements, providing a scheme-independent physical re-
sult. In Sec. VI we validate our approach by means of a
matching with two simple models. In Sec. VII we briefly
show that a non trivial interplay exists not only in the
case of four-top operators, as detailed in this work, but
also when other operators containing chiral vertices are
involved. In App. A we show the result we obtain for
Γ
(
h→ b̄b

)
as a side-product of our analysis, comment-

ing also in this case about the scheme-independence of
the result. In App. B we discuss the relation between
the counterterms and the anomalous dimension matrix,
highlighting some subleties that arise when dimensional
regularisation is used. In App. C we report the scheme-
independent part of the gg → h amplitude and in App. D
we give the Feynman rules needed for our computation.

II. SETUP

If the new physics scale Λ is assumed to be much larger
than the electroweak scale, new physics can be described
in terms of an EFT. In this paper we use the SMEFT,
where all SM fields transform under the SM symmetries,
including the scalar field φ which contains the Higgs bo-
son. At dimension-five level there is only the lepton-
number violating “Weinberg” operator responsible for
Majorana mass generation of neutrinos [30], so the dom-
inant new physics effects relevant in collider physics are
described by dimension-six operators:

LD=6 = LSM +
1

Λ2

∑

i

CiOi , (1)

where Oi denotes every possible non-redundant combina-
tion of SM fields with mass dimension six that preserves
the symmetries of the SM. A complete basis of dimension-
six operators was presented for the first time in Ref. [2],
the so-called Warsaw basis, that we will adopt in the
following. In the Warsaw basis redundant operators are
eliminated making use of field redefinitions, integration-
by-part identities and Fierz identities.

We are mostly interested in the effect of the four-top
operators on Higgs production via gluon fusion (as well
as the Higgs decay to gluons). The operators that lead

to four-top interactions are given by

L4t =
C(1)QQ

Λ2

(
Q̄LγµQL

) (
Q̄Lγ

µQL
)

+
C(3)QQ

Λ2

(
Q̄Lτ

IγµQL
) (
Q̄Lτ

IγµQL
)

+
C(1)Qt

Λ2

(
Q̄LγµQL

)
(t̄Rγ

µtR)

+
C(8)Qt

Λ2

(
Q̄LT

AγµQL
) (
t̄RT

AγµtR
)

+
Ctt
Λ2

(t̄RγµtR) (t̄Rγ
µtR) .

(2)

The field QL stands here for the SU(2)L doublet of the
third quark generation, tR for the right-handed top quark
field. The SU(3)c generators are denoted as TA while
τI are the Pauli matrices. We assume all the Wilson
coefficients to be real, since we are not interested in CP-
violating effects.

The operators in Eq. (2) contribute to the gg → h
amplitude via two-loop diagrams. At one-loop and tree-
level, respectively, the following operators contribute to
the (CP-even) Higgs-gluon coupling

L2t =

[Ctφ
Λ2

(Q̄Lφ̃tR)φ†φ+
CtG
Λ2

Q̄Lσ
µνTAtRφ̃G

A
µν + H.c.

]

,

Ls =
CφG
Λ2

φ†φGµνG
µν ,

(3)

where Gµν is the gluon field strength tensor, φ̃ = iτ2φ∗

and σµν = i/2[γµ, γν ].
To summarise our EFT setup, our Lagrangian reads:

LD=6 = LSM + L4t + L2t + Ls. (4)

We follow Ref. [31] for what concerns the conventions in
LSM,

LSM =− 1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

+
∑

ψ

ψ̄i /Dψ + (Dµφ)†(Dµφ)

− λ
(

φ†φ− 1

2
v2
)2

− Yuφ̃†ūRQL + H.c..

(5)

When spontaneous symmetry breaking occurs (φ =

(1/
√

2)(0, (v + h))T in the unitary gauge) one has:

LD=6 ⊃ −mtt̄t− ght̄tht̄t, (6)

where the top mass and the ht̄t coupling are modified
according to

mt =
v√
2

(

Yt −
v2

2

Ctφ
Λ2

)

,

ght̄t =
1√
2

(

Yt −
3v2

2

Ctφ
Λ2

)

=
mt

v
− v2√

2

Ctφ
Λ2

.

(7)
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This establishes a connection between mt, ght̄t (broken
phase) and Yt, Ctφ/Λ2 (unbroken phase).

III. CONTINUATION SCHEMES FOR γ5 TO D

DIMENSIONS

Due to the presence of four-fermion operators with dif-
ferent chiralities, γ5 matrices will be present in our loop
computations. As well known, the treatment of γ5 in di-
mensional regularisation is highly non-trivial, as γ5 is an
intrinsically four-dimensional object [32]. In this paper,
we will consider two different schemes for the γ5 matrix in
dimensional regularisation with D = 4−2ǫ: naive dimen-
sional regularisation (NDR) [18] and the Breitenlohner-
Maison-t’Hooft-Veltman scheme (BMHV) [19, 20].

A. Naive Dimensional Regularisation

The NDR scheme assumes that the usual anti-
commutation relations valid in four dimensions hold also
in D dimensions

{γµ, γν} = 2gµν , {γµ, γ5} = 0 , γ25 = 1 . (8)

This is inconsistent with the cyclicity of the trace. As-
suming that the usual four-dimensional relation

Tr[γµγνγργσγ5] = −4iǫµνρσ (9)

holds, leads to

Tr[γµ1γµ2 ..γµ2nγ5] = Tr[γµ2 ..γµ2nγ5γµ1 ] +O(ǫ), (10)

for n ≥ 3. The cyclicity is hence no longer preserved
and the computation of a Feynman diagram depends on
the starting point of reading in a fermion trace. As was
shown in Refs. [33, 34], the NDR scheme in presence of
Dirac traces with an odd number of γ5 matrices and at
least six γ-matrices only leads to consistent results if the
reading point is fixed univocally for all Feynman dia-
grams.1

B. Breitenlohner-Maison-’t Hooft-Veltman Scheme

The BMHV scheme divides the algebra in a four-
dimensional part and a (D−4)-dimensional one by defin-
ing

γ(D)
µ = γ(4)µ + γ(D−4)

µ , (11)

{γ(4)µ , γ5} = 0, [γ(D−4)
µ , γ5] = 0. (12)

1 It was shown recently in Ref. [35] that in a computation of the
singlet axial-current operator at O(α3

s) between two gluons and
the vacuum a revised version of the scheme of Refs. [33, 34] be-
comes necessary.

For the vertices involving chiral projectors we use the
following rule, valid in the BMHV scheme:

γ(4)µ (1∓ γ5)→ 1

2
(1± γ5)γ(D)

µ (1∓ γ5), (13)

which is the most symmetric choice and preserves
chirality of the external fields in D dimensions (see
e.g. Refs. [36–38]).

IV. SCHEME-DEPENDENT FINITE MIXING

AT ONE-LOOP ORDER

In this section we comment on the interplay be-
tween the four-top operators and other operators entering
Eq. (4). This interplay will be important in the discus-
sion of single Higgs production in the next section.

In particular, we want to highlight two points. The
first one is that there is a finite mixing between the four-
top and other operators, coming already from one-loop
diagrams, as shown below. This fact implies that it would
be inconsistent to study the contribution coming from
four-top operators in isolation. The second point is that
the above mixing, being finite, depends on the γ5 scheme
employed. When combining the one-loop subamplitudes
in two-loop diagrams, in principle this could lead to di-
vergent terms that are scheme-dependent. However, pro-
vided that both schemes are used consistently, the physi-
cal result for the complete two-loop amplitude is expected
to be scheme-independent.

Direct evaluation of the contribution of the four-top
operators to the g → t̄t amplitude gives a contribution
proportional to an insertion of the chromomagnetic op-
erator. Pictorially, this can be represented as follows

g

t

t

=
C(1)Qt − 1

6C
(8)
Qt

CtG
KtG × g

t

t

,

(14)
where the red and blue square dots denote an insertion
of four-top and chromomagnetic operators, respectively.
The value of KtG in Eq. (14) depends on the γ5 scheme.
We find

KtG =

{√
2mtgs
16π2v (NDR)

0 (BMHV).
(15)

We note that Eq. (14) holds only when the gluon is on
shell. In this case, only one of the two possible contrac-
tions of the fermion lines, namely the one in Fig. 1b,
gives a non-vanishing contribution. We stress that the
difference between the two schemes in Eq. (15) does not
arise from a trace in Dirac space and therefore cannot be
related to trace ambiguities [33].

When we consider other one-loop amplitudes with
four-top operator insertions, which will enter as subam-
plitudes in the gg → h computation, we find again that
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g

t

t

(a)

g

t

t

(b)

Figure 1: The two possible contractions within
four-fermion operators where all the fermions are equal:

(a) closed fermion line yielding a trace; (b) open
fermion line without any traces.

the finite contributions are scheme-dependent, whereas
the divergent parts are equal in the two schemes. In par-
ticular, the diagrammatic relation concerning the four-
top contribution to the Higgs-top coupling is

h

t

t

∣
∣
∣
∣
∣
FIN

=
1

Λ2

(

C(1)Qt +
4

3
C(8)Qt

)

× (Bht̄t +Kht̄t)× h

t

t

,

(16)
where we find

Kht̄t =

{
(m2

h−6m2
t )

16π2 (NDR)

0 (BMHV),
(17)

and where Bht̄t is scheme-independent and can be ex-
pressed as

Bht̄t =
m2
t

4π2τ
×
(

− 2β3 log

(
β − 1

β + 1

)

+ (3τ − 2) log

(
µ̃2

m2
t

)

+ 5τ − 4

)

,

(18)

with

β =
√

1− τ , τ =
4m2

t

m2
h

(19)

and with µ̃2 = 4πµ2e−γE . We note that Bht̄t and the
analogous B terms in this paper are scheme-independent
once a convention to identify Kht̄t is defined. For ex-
ample, in this section we choose the B terms such that
the K-terms vanish in BMHV. However, this definition
is totally arbitrary and does not affect the final results.
What is relevant for our purpose is the difference between
K-terms in different schemes, which is insensitive to the
convention chosen.

Regarding the corrections to the top quark propagator
we find that only the mass term gets corrected. Diagram-
matically, we have

t t

t ∣
∣
∣
∣
∣
FIN

=
1

Λ2

(

C(1)Qt +
4

3
C(8)Qt

)

× (Bmt
+Kmt

)× t t ,

(20)

Kmt
=

{

−m2
t

8π2 (NDR)

0 (BMHV).
(21)

Also in this case, Bmt
is scheme-independent

Bmt
= m2

t ×
log
(
µ̃2

m2
t

)

+ 1

4π2
. (22)

The results in Eqs. (14, 16, 20) deserve some discus-
sions. Equation (14) shows that the chromomagnetic
and four-top operators are closely linked and contribute
at the same order in the EFT expansion, even though
the latter operators come with an explicit loop diagram.
This can be understood from the fact that, under the
assumption that the UV-complete theory is renormalis-
able and that the SM fields are weakly coupled to the
unknown fields, there are operators which cannot be gen-
erated at tree-level. This means that their Wilson coeffi-
cients are expected to contain a loop suppression factor
1/(4π)2 [21, 22]. The power counting can be formalised
conveniently via the chiral dimension dχ, supplementing
the canonical dimension counting in 1/Λ. As a result, the
tree-level diagram associated with the (loop-generated)
operator OφG enters the gg → h amplitude at the same
power as the (tree-generated) operator Otφ inserted into
a SM-like loop diagram, which is 1/(4π)2 1/Λ2. Simi-
larly, OtG inserted into a one-loop diagram for gg → h
(see Fig. 3) and the two-loop diagram stemming from
the insertion of the four-top operators into the gg → h
matrix element (Fig. 2c) are of the same power, which is
1/(4π)4 1/Λ2. In the former case a loop-generated opera-
tor is inserted into a one-loop diagram, while in the latter
case a tree-generated operator is contained in an explicit
two-loop diagram. Therefore, in Eq. (3), CtG contains a
loop suppression factor 1/(4π)2 relative to Ctφ, the same

holds for CφG. Equation (16) shows that ght̄t and the
four-top operators are also linked, however this relation
comes with a relative suppression factor 1/Λ2× 1/(4π)2.

V. CALCULATION OF THE HIGGS-GLUON

COUPLING

In this section, we compute the four-top operator con-
tribution at two-loop order to the Higgs-gluon coupling
in the two different γ5 schemes introduced in Sec. III. In
the previous section we have shown that this contribu-
tion cannot be separated from that of the operators of
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L2t in Eq. (3). In the case of gg → h, we express the
renormalised amplitude as follows

MEFT =
1

Λ2
{C4tM4t + CtGMtG + CφGMφG

+CtφMtφ +MC.T.},
(23)

where the inclusion of OφG is required in order to cancel
the divergent part coming from MtG. The total matrix
element is given by

MTOT =MSM +MEFT. (24)

The contribution from Otφ manifests itself as a modifi-
cation of ght̄t and mt (see Eq. (7)) entering MSM, so its
effect is understood to be included in MSM.

The four-top contribution to MEFT can be split ac-
cording to the different topologies of the associated Feyn-
man diagrams. In Fig. 2 we show a sample of the 12 di-
agrams that need to be computed. The first topology is
related to a correction to the Higgs-top-quark coupling
(2a), the second one to a correction to the top quark
propagator (2b) and the third one to a correction to
the gluon-top vertex (2c). We generated the diagrams
with qgraf-3.6.5 [39] and performed the algebra with
FeynCalc [40–42]. Following the above classification, we
express the four-top contribution as

C4tM4t = Aght̄t+mt

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2

+Agt̄t
(

C(1)Qt −
1

6
C(8)Qt

)
1

Λ2
.

(25)

The two different combinations of the Wilson coefficients
in Eq. (25) arise from the colour algebra. We find that
the result of Agt̄t can be expressed in terms of the contri-
bution to the amplitude due to an insertion of the chro-
momagnetic operator

Agt̄t =

[
1

2
KtGMtG|DIV +KtGMtG|FIN

]

, (26)

where KtG is the same as in Eq. (15). The divergent and
finite parts of MtG are given, respectively, by (A1, A2

being the colour indices of the gluons)

MtG|DIV = −gsmt
1

ǫ

√
2

2π2
Lµ1µ2ǫµ1(p1)ǫµ2(p2)δA1A2 ,

(27)

MtG|FIN = −gsmt

√
2

4π2
Lµ1µ2ǫµ1(p1)ǫµ2(p2)δA1A2

×
(

1

4
τ log2

(
β − 1

β + 1

)

+ β log

(
β − 1

β + 1

)

+ 2 log

(
µ̃2

m2
t

)

+ 1

)

,

(28)

with

Lµ1µ2 = (m2
h/2 g

µ1µ2 − pµ2

1 pµ1

2 ). (29)

We point out that the fact that KtG factorises in Eq. (26)
does not depend on the scheme. The value of KtG de-
pends on the scheme, and in particular KtG = 0 in
BMHV. Remarkably, this implies that the structure of
the divergences is different between the two schemes.
This happens because of the combination of a scheme-
independent pole of a loop integral with the scheme-
dependent finite terms in Eq. (14). On the other hand,
we find that the divergent terms in Aght̄t+mt

are scheme-
independent.

A. Renormalisation

We use the minimal subtraction (MS) renormalisa-
tion prescription for all the parameters in the theory.
Schematically, the counterterms needed to renormalise
the amplitude are given by

MC.T. =

g

g
h +

g

g
h +

g

g

h .

(30)
For the top quark mass we have

mMS
t = m

(0)
t + δmt, (31)

with

δmt =
m3
t

4π2Λ2 ǫ

(

C(1)Qt +
4

3
C(8)Qt

)

. (32)

We note that typically in the computation of gg → h the
top quark mass is renormalised in the on-shell scheme. In
order to simplify our point (as we find the same MS coun-
terterm in NDR and BMHV) we restrict the discussion
here to a pure MS renormalisation.

In addition, the Wilson coefficient Ctφ, which mixes
with the four-top operators via renormalisation group
equation (RGE) running, needs to be renormalised. The
coefficient of the operator is renormalised according to

CMS
tφ = C(0)tφ + δCtφ with δCtφ = − 1

2ǫ

1

16π2
γtφ,jCj ,

(33)
where γ denotes the one-loop anomalous dimension of
the SMEFT. The entries relevant for our discussion can
be obtained from Refs. [43, 44]. The equation correlating
δCtφ and the anomalous dimension matrix in Eq. (33) is
discussed in detail in App. B. The only four-top Wilson

coefficients contributing to γtφ,jCj are C(1,8)Qt . The oper-
ator Otφ modifies the Higgs couplings to top quarks as
discussed previously, see Eq. (7).

In analogy to mt, we have:

gMS
ht̄t = g

(0)
ht̄t + δght̄t, (34)

with

δght̄t = ght̄t

(
6m2

t −m2
h

)

8π2Λ2 ǫ

(

C(1)Qt +
4

3
C(8)Qt

)

. (35)
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g

g

h

(a) Contribution to the Higgs-top
quark coupling.

g

g

h

(b) Contribution to the top quark
propagator.

g

g

h

(c) Contribution to the gluon-top
quark vertex.

Figure 2: Contributions from insertions of four-top quark operators (red square dot) to gg → h at two-loop level.

g

g

h

(a) Triangle topology.

g

g

h

(b) Bubble topology.

Figure 3: Contribution to the Higgs-top quark coupling
with a single insertion of the chromomagnetic operator

(blue square dot).

From now on we will drop the superscript MS, leaving
understood that all the parameters are renormalised in
the MS scheme. We recall that the divergent parts of the
diagrams in Figs. 2a and 2b are equal in the NDR and
BMHV schemes, and they are fully removed by one-loop
diagrams with an insertion of the one-loop counterterms
in Eqs. (32), (35).

The insertion of the chromomagnetic operator (see
Fig. 3) gives a divergent contribution to the Higgs-gluon
coupling at one loop [44–46]. We find this contribution
to be scheme-independent. To remove all the divergences
we need to choose (see Eq. (26))

δφG =
ght̄tgs

Λ2ǫ 4
√

2π2

(

CtG +
KtG

2

(

C(1)Qt −
1

6
C(8)Qt

))

. (36)

This entails an important consequence: the anoma-
lous dimension is scheme-dependent, as it contains the

scheme-dependent KtG. From dC(0)φG/dµ = 0, we obtain

16π2µ
dCφG
dµ

= −4
√

2ght̄tgs

(

CtG +KtG

(

C(1)Qt −
1

6
C(8)Qt

))

.

(37)
Notice that there is a relative factor of 2 between the con-
tributions from C(1,8)Qt in Eq. (36) and Eq. (37). This is a
consequence of the contribution proportional to CtG be-

ing O (ght̄tgs) and the contribution proportional to C(1,8)Qt

being O
(
g2ht̄tg

2
s

)
.2 This (merely algebraic) fact will have

important consequences, as we will show in the following.
The details can be found in App. B. We stress that the

2 Using ght̄t = mt/v +O
(

1/Λ2
)

.

form of the RGE in Eq. (37) shows that the contribu-

tions of CtG, C(1,8)Qt enter at different loop orders (being

KtG = O
(
1/(4π)2

)
). However, when the loop counting

from Ref. [21] is considered, they enter at the same order,
as explained in Sec. IV.

The differences in NDR and BMHV originating from
the finite mixing of the four-fermion operators with chiral
structure (L̄L)(R̄R) into the chromomagnetic operator
are well known, in particular in the context of flavour
physics. This effect can induce a scheme-dependent
anomalous dimension matrix at leading order [47–51].
Using the strategy proposed in [36, 47, 49], we can per-
form a finite renormalisation of the chromomagnetic op-
erator and write

CtG → CtG +KtG

(

C(1)Qt −
1

6
C(8)Qt

)

. (38)

This choice ensures a scheme-independent anomalous di-
mension matrix.

B. Renormalised amplitude

In the previous section we discussed how to obtain the
same anomalous dimension matrix in both schemes. This
is achieved via the inclusion of the effects of a scheme-
dependent finite mixing in the Wilson coefficients. These
effects are related to one-loop subdiagrams as in Eq. (14).
One may wonder if redefinitions similar to Eq. (38) are
enough to obtain the same result for the finite part of
the amplitude in both schemes. In other words, we want
to check if the scheme-dependence of the two-loop ampli-
tude can be accounted for simply by computing one-loop
subdiagrams. The only scheme-dependent terms in the
amplitudes are the ones stemming from a two-loop inser-
tion of the four-top operators and they are parametrised
by KtG, Kght̄t

and Kmt
.

We express the renormalised contribution from the
diagrams in Figs. 2a, 2b as

ARen
ght̄t+mt

=MS.I.
ght̄t+mt

+Kght̄t
MSM +Kmt

∂MSM

∂mt
×mt,

(39)

where MSM,MS.I.
ght̄t+mt

are scheme-independent and
they can be found in App. C. Putting together
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Eqs. (25),(26) and (39) we have the following expression
for the renormalised matrix element

MRen
TOT =

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
MS.I.

ght̄t+mt

+

[

CtG +

(

C(1)Qt −
1

6
C(8)Qt

)

KtG

]
1

Λ2
MtG|FIN

+

[

1 +

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
Kht̄t

]

MSM

+

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
Kmt

∂MSM

∂mt
×mt

+ CφGMφG
1

Λ2
.

(40)
We note that MRen

TOT represents a physical on-shell scat-
tering amplitude, which must be scheme-independent.3

Therefore, the scheme-dependence of the K-terms has to
be compensated by a scheme-dependence of the parame-
ters. To make this more evident, we define the following
set of parameters identified by a tilde

C̃tG = CtG +

(

C(1)Qt −
1

6
C(8)Qt

)

KtG, (41)

g̃ht̄t = ght̄t

[

1 +

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
Kht̄t

]

, (42)

m̃t = mt

[

1 +

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
Km

]

. (43)

Noting that, under a redefinition of the top mass mt →
mt + ∆mt, one has MSM → MSM + ∆mt∂MSM/∂mt,
we can write the total matrix element in a more compact
form (at O

(
1/Λ2

)
):

MRen
TOT =

(

C(1)Qt +
4

3
C(8)Qt

)
1

Λ2
MS.I.

ght̄t+mt

+
C̃tG
Λ2
MtG|FIN +MSM(g̃ht̄t, m̃t) +

CφG
Λ2
MφG.

(44)
In the previous expression, MSM(g̃ht̄t, m̃t) is given
by Eq. (C2) where ght̄t, mt are replaced by g̃ht̄t, m̃t.
From the amplitudes MS.I.

ght̄t+mt
,MtG,MSM,MφG be-

ing scheme-independent, it follows that the combinations
in Eqs. (41-43) must be scheme-independent.

It should be stressed that Eq. (41) is the same relation
we obtained in the previous section, namely Eq. (38):
the same finite shift makes both the anomalous dimen-
sion matrix and the renormalised amplitude scheme-
independent. We also remark that, at the order we are
working, ght̄t and mt can be used interchangeably with
g̃ht̄t and m̃t in MtG,φG,MS.I.

ght̄t+mt
because their contri-

bution to MTOT is already suppressed by O
(
1/Λ2

)
.

3 This can be best understood from a top-down perspective.

C. Summary of the computation

We can now summarize the differences between the two
schemes. From Eqs. (41-43) it is evident that there exists
a difference between the parameters in the two schemes
which is proportional to KNDR

X −KBMHV
X . This quantity

does not depend on the prescription used to identify the
K-terms.

In BMHV all the K-terms are vanishing, so the previ-
ous redefinitions are trivial. The scheme-independence
condition X̃NDR

i = X̃BMHV
i allows us to write at

O
(
1/Λ2

)
4

CNDR
tG = CBMHV

tG −
(

C(1)Qt −
1

6
C(8)Qt

) √
2ght̄tgs
16π2

, (45)

gNDR
ht̄t = gBMHV

ht̄t − ght̄t
(

C(1)Qt +
4

3
C(8)Qt

)
(m2

h − 6m2
t )

16π2Λ2
,

(46)

mNDR
t = mBMHV

t +

(

C(1)Qt +
4

3
C(8)Qt

)
m3
t

8π2Λ2
. (47)

The map described by Eqs. (45-47), establishes a con-
nection between the two schemes. When such relations
are considered, the two schemes give the same anomalous
dimension matrix and the same renormalised amplitude.

VI. MATCHING WITH UV-MODELS

As discussed in the previous section, the differences in
the finite terms of the amplitude when using the NDR
and the BMHV scheme can be absorbed by different def-
initions of the parameters CtG, ght̄t, and mt. In this sec-
tion we perform the matching with concrete UV comple-
tions of the SM, in order to validate our EFT approach
from a top-down point of view. The matching is per-
formed in the unbroken phase (following the notation
used in Ref. [52]), in which ght̄t and mt can be traded
more conveniently in favour of Ctφ and Yt. In the re-
mainder of the section we will use a thicker fermion line
to denote the iso-doublet QL and a thinner fermion line
to denote the iso-singlet tR in the Feynman diagrams.

A. New scalar: Φ ∼ (8, 2) 1
2

We consider, in addition to the SM, a new heavy scalar
with a mass MΦ ≫ v and quantum numbers Φ ∼ (8, 2) 1

2
.

4 If we had included the loop factor 1/(4π)2 explicitly in the CtG-
term in the Lagrangian Eq. (3), it would be manifest that the
chromomagnetic and the four-top operators contribute at the
same order in the chiral counting, because in this case the factor
1/(4π)2 in (45) would be absent.
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Figure 4: One-loop diagrams contributing to the
matching with the chromomagnetic operator.

The Lagrangian in this case can be written as

LΦ = (DµΦ)†DµΦ−M2
ΦΦ†Φ

− YΦ
(
ΦA,†εQ̄TLT

AtR + H.c.
)
,

(48)

where ε is the Levi-Civita pseudotensor in the isospin
space and T refers to the transposition in isospin space
only. The tree-level matching yields

L =
Y 2
Φ

M2
Φ

(Q̄LT
AtR)(t̄RT

AQL). (49)

This operator does not appear in the Warsaw basis since
it is considered redundant in D = 4 dimensions. In the
following it will be referred to as R(8)

Qt . Using the Fierz
identities, one can recast this result in terms of operators
in the Warsaw basis [52]:

C(1)Qt

Λ2
= −2

9

Y 2
Φ

M2
Φ

,
C(8)Qt

Λ2
=

1

6

Y 2
Φ

M2
Φ

. (50)

Now we compute the matching at one-loop level to the
chromomagnetic operator. The relevant diagrams are
given in Fig. 4, while diagrams with t-channel exchange
within the loop are forbidden due to the conservation of
hypercharge.

Evaluating the diagrams in Fig. 4 gives zero in both
NDR and BMHV, in contrast with our previous observa-
tions. However, the Fierz identity we used for the match-
ing of the four-fermion operators is broken by O (ǫ) terms
when dimensional regularisation is used (D = 4− 2ǫ), as
noted in Ref. [53]. Following this reference, we define the
evanescent operator as

E = R(8)
Qt −

(

−2

9
O(1)
Qt +

1

6
O(8)
Qt

)

(51)

and we compute its insertion (in both schemes). We find
that in NDR the evanescent operator contributes to the
matching to the chromomagnetic operator:

C(8),RQt R
(8)
Qt =

C(1)
Qt
/Λ2

︷ ︸︸ ︷

−2

9

Y 2
Φ

M2
Φ

O(1)
Qt +

C(8)
Qt
/Λ2

︷ ︸︸ ︷

1

6

Y 2
Φ

M2
Φ

O(8)
Qt

+
1

16π2

Y 2
Φ

M2
Φ

gsYt
4

︸ ︷︷ ︸

CtG/Λ2

OtG + H.c. .

(52)

This result reproduces the term proportional to the chro-
momagnetic operator presented in [53].5 In BMHV we
obtain

C(8),RQt R
(8)
Qt =

C(1)
Qt
/Λ2

︷ ︸︸ ︷

−2

9

Y 2
Φ

M2
Φ

O(1)
Qt +

C(8)
Qt
/Λ2

︷ ︸︸ ︷

1

6

Y 2
Φ

M2
Φ

O(8)
Qt .

(53)

We conclude that the difference between the NDR scheme
and BMHV scheme (using Eq. (50) and

√
2mt = Ytv +

O
(
1/Λ2

)
) is exactly the one described by Eq. (45).

Furthermore, we need to compute the matching to the
top Yukawa coupling as well as to Ctφ. Doing so we
find in both schemes zero, by colour. This is in trivial
agreement with Eqs. (46), (47) since, within this model,

C(1)Qt + 4
3C

(8)
Qt = 0. In order to test Eqs. (46), (47) we hence

need to consider a different model, namely replacing the
colour octet Φ with a colour singlet ϕ.

B. New scalar: ϕ ∼ (1, 2) 1
2

We consider, in addition to the SM, a new heavy scalar
with a mass Mϕ ≫ v and quantum numbers ϕ ∼ (1, 2) 1

2
.

The Lagrangian in this case can be written as

Lϕ = (Dµϕ)†Dµϕ−M2
ϕϕ

†ϕ

− Yϕ
(
ϕ†εQ̄TLtR + H.c.

)
.

(54)

The tree-level matching yields

L =
Y 2
ϕ

M2
ϕ

(Q̄LtR)(t̄RQL). (55)

As in the previous case, this operator does not appear in
the Warsaw basis being redundant in D = 4 dimensions.

In the following it will be referred to as R(1)
Qt . We find

C(1)Qt

Λ2
= −1

6

Y 2
ϕ

M2
ϕ

,
C(8)Qt

Λ2
= −

Y 2
ϕ

M2
ϕ

. (56)

Due to colour structure, there are no contributions to the
chromomagnetic operator. The tree-level matching im-

plies C(1)Qt − 1
6C

(8)
Qt = 0, in agreement with Eq. (45) since

CNDR
tG = CBMHV

tG = 0 within this model.
Following the procedure outlined in the previous sec-

tion, we compute the diagrams in Fig. 5 to compute the

5 This reference uses a different convention for the covariant deriva-
tive with respect to the one used in Ref. [54], which we follow in
the Feynman rules. This leads to a relative minus sign in terms
with an odd power of gs. In addition, the different normalisa-
tion of the quartic Higgs self-coupling in Ref. [53] requires the
replacements λ/2 → λ, µ2 → λv2 to convert their result into our
conventions.
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Figure 5: One-loop diagrams contributing to the
matching to the Yukawa coupling (left) and to Ctφ

(right).

contributions to Yt and Ctφ in both schemes. The match-

ing condition for Yt (Ctφ) is obtained subtracting from

the diagram in Fig. 5a (5b) the one-loop amplitude for
Q̄LtR → φ† (Q̄LtR → φ†φφ†) with an insertion of four-
top operators. In other words, we are interested in com-
puting the insertion of the evanescent operator:

E = R(1)
Qt −

(

−1

6
O(1)
Qt −O

(8)
Qt

)

. (57)

In NDR we find:

C(1),RQt R
(1)
Qt =

C(1)
Qt
/Λ2

︷ ︸︸ ︷

−1

6

Y 2
ϕ

M2
ϕ

O(1)
Qt

C(8)
Qt
/Λ2

︷ ︸︸ ︷

−
Y 2
ϕ

M2
ϕ

O(8)
Qt

+
1

16π2

Y 2
ϕ

M2
ϕ

(
3Y 3

t − 3λ
)

︸ ︷︷ ︸

Ctφ/Λ2

Otφ + H.c.

− 1

16π2

Y 2
ϕ

M2
ϕ

3

2
λv2

︸ ︷︷ ︸

∆Yt

(

Q̄Lφ̃tR

)

+ H.c.,

(58)

confirming once again the results obtained in [53]. In
this notation, ∆Yt represents the contribution to the top
Yukawa coupling from the matching, while Yt represents
the coefficient of the four-dimensional Yukawa operator
(

Q̄Lφ̃tR

)

.

In BMHV we find:

C(1),RQt R
(1)
Qt =

C(1)
Qt
/Λ2

︷ ︸︸ ︷

−1

6

Y 2
ϕ

M2
ϕ

O(1)
Qt

C(8)
Qt
/Λ2

︷ ︸︸ ︷

−
Y 2
ϕ

M2
ϕ

O(8)
Qt . (59)

Using the well known relations Eq. (7) we can compute
mt, ghtt̄ and confirm Eqs. (46), (47).

VII. INTERPLAY BETWEEN MORE

OPERATORS IN THE SMEFT

The primary focus of this paper is the demonstration
of γ5 scheme differences in the treatment of four-top
operators, since they provide a convenient playground

for investigation due to the factorization of loop inte-
grals. However, considering a complete operator basis in
SMEFT, there are other classes of operators that share
similar features regarding the treatment of γ5. Analogous
to Sec. IV (but more schematically) we demonstrate in
the following that there is also a scheme-dependent fi-
nite mixing at one-loop order for operators in the class
of ψ2φ2D of Ref. [2].

For the purpose of this discussion, we consider the two
operators

L2t2φ =
C(1)φQ

Λ2
Q̄LγµQL

(

φ†i
←→
D µφ

)

+
Cφt
Λ2

t̄RγµtR

(

φ†i
←→
D µφ

)

,

(60)

where we introduced the short-hand notation

i
←→
D µ = iDµ − i←−Dµ . (61)

Similar to the four-top operators in Eq. (2), the opera-
tors in Eq. (60) are composed of current-current inter-
actions including chiral vector currents. These current-
current operators can be generated by integrating out a
new heavy vector particle at tree-level that couples to
the SM currents. A concrete and comparably easy re-
alization is given e.g. by the Third Family Hypercharge
Model [55, 56]. We restrict the direct evaluation of one-
loop contributions of the operators in Eq. (60) to the
gaugeless limit of the SM6 and only investigate the con-
tribution to the chromomagnetic form factor, since this is
sufficient to point out the necessity of a more exhaustive
study in future work.

An explicit evaluation of the one-loop correction to
g → t̄t in the broken phase leads to

g

t

t

G0 + g

t

t

G0

∣
∣
∣
∣
∣
FIN

=
C(1)φQ − Cφt
CtG

K2t2φ
tG × g

t

t

+ . . .

(62)

where the gluon and top quarks are taken on-shell7 and
the Gordon identity for on-shell fermions is applied to
arrive at this result. The (. . . ) in Eq. (62) represent

6 In the gaugeless limit, the SM gauge bosons are completely de-
coupled from the rest of the theory, taking the limit g1 → 0
and g2 → 0. The Goldstone fields of the SM Higgs doublet are
therefore massless physical degrees of freedom. The explicit an-
alytic results in this section are equivalent to the pure Goldstone
contribution in Landau gauge.

7 Even if this choice is not kinematically allowed, it simplifies the
extraction of the chromomagnetic contribution.
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Figure 6: Contribution to the chromomagnetic operator
with a single insertion of Otφ (yellow square dot) in the

unbroken phase.

contributions to vector and axial form factors that are
completely removed using on-shell renormalisation of the
external top fields. For the scheme-dependent value of

K2t2φ
tG we find

K2t2φ
tG =

gsmt

16
√

2vπ2
×
{

1 (NDR)
2
3 (BMHV) .

(63)

A mapping of CtG from one scheme to the other in the
presence of the operators of Eq. (60) is therefore achieved
considering the difference

∆K2t2φ
tG = K2t2φ,NDR

tG −K2t2φ,BMHV
tG =

gsmt

48
√

2vπ2
, (64)

similarly as in Eq. (45).
The same difference is obtained in the unbroken phase,

evaluating diagrams of the form of Fig. 6 for both oper-
ators. This provides a solid cross check of the scheme-
dependent nature which even holds when the SM gauge
bosons are part of the theory, since they cannot con-
tribute to the chromomagnetic operator at one-loop or-
der.

The result of Eq. (62) (and the analogous calculation
in the unbroken phase) illustrates well that we observe
a scheme-dependent finite mixing at one-loop between
the operators of Eq. (60) and other operators, just like
in the case of four-top operators. Similarly to Sec. VI
a map of finite scheme-dependent shifts in the Wilson
coefficients could be verified by an explicit on-shell one-
loop matching with an adequate toy model.

Regarding the contribution of those operators to the
Higgs-gluon coupling, we refrain from performing the
complete calculation as in Sec. V in our current work.
Even in the simplified scenario of the gaugeless limit,
the contributions of the operators would lead to genuine
two-loop Feynman integrals, which is beyond the scope
of what we would like to demonstrate here. With the ob-
served scheme dependence at one-loop, we already expect
a γ5 scheme dependence for the single pole in gg → h and
for the RGE of CφG. As in the case of four-top operators,
it should be resolved considering the map of finite shifts
in the Wilson coefficients derived at one-loop. However,
it is not guaranteed that the renormalised amplitude of
the gg → h would have a scheme-independent form once
such shifts are considered. On the contrary, it may be

necessary to identify finite scheme-dependent shifts ap-
pearing at the two-loop level.

VIII. CONCLUSIONS

We have computed the contribution of four-top opera-
tors to the Higgs-gluon coupling at two-loop level in the
SMEFT. We have discussed in detail, for the first time for
this process, the differences between the two schemes for
the continuation of γ5 to D space-time dimensions con-
sidered in this paper, namely NDR and BMHV. This pro-
cess is an interesting show-case for the topic of scheme-
dependence, because it shows some key features of two-
loop computations without adding too many difficulties
with respect to a one-loop computation.

Although the results at two-loop level in the two γ5
schemes have a different form, this difference can be ac-
counted for by allowing that the parameters have differ-
ent values in the two schemes. Given this, we determined
in Eqs. (45-47) a mapping between the parameters in the
two schemes that makes both the anomalous dimension
matrix and the finite result scheme-independent. This
extends the approach presented in Ref. [48], where the
scheme-independence of the anomalous dimension matrix
only is discussed.

We validated the relations between the parameters in
the different schemes using some UV models, as detailed
in Sec. VI. These simplified UV models support the ex-
pectation that the physical result does not depend on the
scheme used for γ5, if such scheme is used consistently.
However, we remark that this holds for a top-down ap-
proach, in which the EFT (in this case, the SMEFT) is
used as an intermediate step.

In the context of the SMEFT with a new physics scale
Λ ∼ 1 TeV, the finite terms in the matrix element can be
of the same size as the logarithmically enhanced contri-
butions, and thus can be phenomenologically relevant [8].
For this reason, deriving a connection between the two
schemes is very desirable in the perspective of a global
fit, where the observables may be computed in different
schemes. To this aim, Eqs. (45-47) represent a first effort
in the direction of a comprehensive map between the two
schemes. We remark that the continuation scheme for γ5
is only one of the calculational choices that could affect
the intepretation of SMEFT fits from a bottom-up point
of view (see e.g. Refs. [57–59]).

Lastly, we have observed that the interplay of four-
top and other SMEFT operators cannot be fully under-
stood in terms of the canonical SMEFT power count-
ing, as in some cases operators that are expected to con-
tribute to different orders based on this counting cannot
be treated independently. When the canonical power
counting is supplemented by a loop counting like the
one discussed in Ref. [21], the observed interplay is more
naturally accounted for, under the generic assumption
of weakly-coupled and renormalisable UV theories. Fur-
thermore, when the loop counting is considered, the shifts
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we have presented can be of the same order of magnitude
as the Wilson coefficients themselves (see Eq. (45)). As
a consequence, experimental constraints on the determi-
nation of Wilson coefficients of loop-generated operators
(like CtG in this paper) could be interpreted as suffering
from large uncertainties, if scheme-dependent contribu-
tions from tree-level-generated chiral operators entering
at higher explicit loop orders are omitted (in our case,
four-top and ψ2φ2D operators). This points to the ne-
cessity of selecting operators contributing to a physical
process such that loop counting and canonical-dimension
counting are combined, even though it implies assump-
tions on the UV completion. In any case, a detailed doc-
umentation of continuation and renormalisation scheme
choices used in EFT calculations and fits of Wilson coef-
ficients is highly recommended.
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Appendix A: The h → bb̄ rate

We would like to shortly discuss the computation of the
four-quark operators to the h→ bb̄ rate both in the NDR
and BMHV scheme, which we obtain as a side product
of our analysis. The operators relevant for our discussion

are

Lb =
C(1)Qb

Λ2

(
Q̄LγµQL

) (
b̄Rγ

µbR
)

+
C(8)Qb

Λ2

(
Q̄LT

AγµQL
) (
b̄RT

AγµbR
)

+

[

C(1)QtQb

Λ2

(
Q̄LtR

)
iτ2
(
Q̄TLbR

)
+ H.c.

]

+

[

C(8)QtQb

Λ2

(
Q̄LT

AtR
)
iτ2
(
Q̄TLT

AbR
)

+ H.c.

]

+

[Cbφ
Λ2

(φ†φ)Q̄LφbR + H.c.

]

.

(A1)

We consider also scalar operators O(1,8)
QbQt which are ne-

glected in the gg → h computation since they are sup-
pressed by a factor of mb/mt. Including the above oper-
ators at NLO, the Higgs decay to bottom quarks is given
by [61]8

ΓNDR
h→bb̄

ΓSM
h→bb̄

= 1− mt

mb

m2
h

32π2Λ2

(

7C(1)QtQb +
4

3
C(8)QtQb

)

×
(

2β3 log

(
β − 1

β + 1

)

− 5β2

+
(
1− 3β2

)
log

(
µ̃2

m2
t

)

+ 1

)

− m2
h

16π2Λ2

(

C(1)Qb +
4

3
C(8)Qb

)(

4β3
b log

(
βb − 1

βb + 1

)

+ 7β2
b +

(

6β2
b − 2

)

log

(
µ̃2

m2
b

)

− 1

)

+O
(

1

Λ4

)

,

(A2)
and β defined in Eq. (19) and βb is obtained from β by
replacing mt with mb. The correct branch of the loga-
rithm can be obtained by m2

h → m2
h + i0. In the BMHV

scheme instead the result of the scalar operators does not
change with respect to the NDR scheme, but we obtain

a different result for the operators C(1)Qb and C(8)Qb . We find

ΓNDR
h→bb̄

− ΓBMHV
h→bb̄

ΓSM
h→bb̄

=
C(1)Qb + 4

3C
(8)
Qb

8π2 Λ2
(m2

h− 6m2
b) +O

(
1

Λ4

)

.

(A3)

At tree-level one has ΓX,TL

h→bb̄
∝ (gX

hb̄b
)2, being

X=NDR,BMHV, where ghb̄b contains corrections from
the operator Obφ, as can be seen from Eq. (7) (replac-
ing t with b). Keeping into account the different value of
such coupling in the two regularisation schemes, namely

8 In this reference, the on-shell renormalisation scheme is em-
ployed. For this reason, we perform the check with the bare
amplitude, Eqs. (4.13), (4.14).
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Eq. (46), we can write

ΓNDR,TL

h→bb̄
− ΓBMHV,TL

h→bb̄

ΓSM
h→bb̄

=
C(1)Qb + 4

3C
(8)
Qb

8π2 Λ2
(6m2

b −m2
h)

+O
(

1

Λ4

)

. (A4)

If one consistently accounts for the orders in the loop
expansion and the 1/Λ2 expansion, one is then able to
obtain a scheme-independent result for this process.

Appendix B: Renormalisation Group Equations and

counterterms

The anomalous dimension matrix of a theory is strictly
connected to the structure of the divergences of the the-
ory itself. In this appendix we analyse in detail this rela-
tion, deriving a general formula which can be used to de-
termine the one-loop counterterms associated to SMEFT
operators by simply reading the corresponding entry of
the renormalisation group equation, given for example in
[43, 44, 62] (or viceversa).

We present here a general argument where a generic
SMEFT operator O2 renormalises a different operator
O1. We fix, coherently with the rest of the paper,

CMS
1 (µ) = C(0)1 + δC1(µ), (B1)

δC1(µ) =
A

ǫ
Y(µ)NYλ(µ)Nλg(µ)NgC2(µ). (B2)

In the previous expression, µ is the renormalisation scale
(on which the MS parameters depend) and Y, λ, g denote,
respectively, a Yukawa coupling, the Higgs quartic cou-
pling and a gauge coupling and A is a number that does
not depend on the renormalisation scale (nor implicitly
or explicitly).

When dimensional regularisation is used, it is custom-
ary to rescale the parameters in such a way they maintain
their physical dimension: X → µκXǫX . A typical exam-
ple is given by gauge couplings, for which κg = 1 is chosen
to keep them dimensionless (g → µǫg). This operation
should be done also for the coefficients of the SMEFT
operators, whose mass dimension in D space-time di-
mensions is different from −2.9 Remarkably, SMEFT
operators may have a different dimension depending on
their field content, even if in the limit D → 4 they all
have dimension six. Since the product CiOi must have
dimension D one has, in principle, 8 different rescaling
factors κi, one for each of the operator classes defined in
[2]. As we will see at the end of this section, keeping this

9 Within the notation used in this paper, the coefficients are writ-
ten as C

i
/Λ2, being C

i
a dimensionless quantity.

aspect into account is crucial in order to find the correct
relation between counterterms and anomalous dimension
entries.

The renormalisation group equation for C1 can be ob-
tained from (dropping the superscript MS for a better
readability)

0 = µ
dC(0)1 (µ)

dµ
= µ

d

dµ

(

µκ1ǫ(C1(µ)− δC1(µ))

)

. (B3)

Since in the end we will take D → 4, we need the first
term of the expansion in the β-function for each of the
parameters contained in the counterterm, namely

µ
dX(µ)

dµ
≡ βX = −κXǫ+O (1) . (B4)

Performing the algebra in Eq. (B3) and using Eq. (B4)
we obtain

µ
dC1(µ)

dµ
=A× (κ1 − κ2 −NY −Ng − 2Nλ)

× Y(µ)NYλ(µ)Nλg(µ)NgC2(µ).

(B5)

If we normalise the anomalous dimension matrix as

µ
dC1(µ)

dµ
=

1

16π2
γ12(µ)C2(µ), (B6)

we can write (comparing this expression with Eq. (B2))

δC1(µ) =
1

16π2ǫ
γ12(µ)C2(µ)

1

κ1 − κ2 −NY −Ng − 2Nλ
.

(B7)
A practical example of this formula is Eq. (33). Four-

top operators O(1,8)
Qt renormalise Otφ at O (Ytλ) [43] and

at O
(
Y 3
t

)
[44]. This means (NY , Ng, Nλ) = (1, 0, 1)

((3, 0, 0)) for the former (latter) case.
In D = 4− 2ǫ space-time dimensions one has

dim[C(1,8)Qt ] = 2ǫ, dim[Ctφ] = 3ǫ, (B8)

which implies κQt = 2, κtφ = 3.
Plugging these numbers in Eq. (B7) gives Eq. (33) (for
both terms of O (Ytλ) , O

(
Y 3
t

)
).

Appendix C: Additional results

We present in this appendix Aght̄t+mt
introduced in

Eq. (39)
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Aght̄t+mt
= −ght̄tg

2
smt

64π4m4
h

ǫµ1(p1)ǫµ2(p2)δA1A2

×
[

− 4

(

log

(
µ̃2

m2
t

)

+ 2

)

m4
h

− 4β m2
h log

(
β − 1

β + 1

)

×
(

2

(

log

(
µ̃2

m2
t

)

− 1

)

m2
t +m2

h

)

+ 16

(

2 log

(
µ̃2

m2
t

)

+ 3

)

m2
hm

2
t

+ log2

(
β − 1

β + 1

)((

log

(
µ̃2

m2
t

)

+ 2

)

m4
h

− 4

(

3 log

(
µ̃2

m2
t

)

+ 5

)

m2
hm

2
t

+ 16

(

3 log

(
µ̃2

m2
t

)

+ 4

)

m4
t

)

+ β log3
(
β − 1

β + 1

)
(
m2
h − 4m2

t

)2

]

.

(C1)

Lµ1µ2 has been defined in Eq. (29), β in Eq. (19), A1, A2

are the colour indices of the gluons. We also report here
the result for the SM amplitude for gg → h at one-loop

level:

MSM =
ght̄tg

2
s

32π2mt
τLµ1µ2ǫµ1(p1)ǫµ2(p2)δA1A2

×
(

β2 log2
(
β − 1

β + 1

)

− 4

)

.

(C2)

Appendix D: Feynman rules

We follow [54] for what concerns the Feynman rules.
For the sake of completeness, we report here the Feynman
rules we used in Sec. IV:

g

t

t

p

= −CtG
Λ2

√
2vTAσµνpν , (D1)

h

t

t

= −ight̄t., (D2)

t t = −imt. (D3)

We stress that in Eq. (D3) there is not a direct propor-
tionality to the propagator structure /p − 1mt, but only
to 1mt. For this reason, we added a cross in the fermion
line.
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