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Abstract

The gradient-flow formalism proves to be a useful tool in lattice calculations of
quantum chromodynamics. For example, it can be used as a scheme to renormalize
composite operators by inverting the short-flow-time expansion of the corresponding
flowed operators. In this paper, we consider the short-flow-time expansion of five quark
bilinear operators, the scalar, pseudoscalar, vector, axialvector, and tensor currents,
and compute the matching coefficients through next-to-next-to-leading order QCD.
Among other applications, our results constitute one ingredient for calculating bag
parameters of mesons within the gradient-flow formalism on the lattice.
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1 Introduction

The gradient-flow formalism (GFF) [1-3] extends the fields of QCD in terms of the flow
time ¢ and is meanwhile an established tool in lattice gauge theory calculations. Its main
application up to now has been in the scale setting procedure, required to determine
the lattice spacing in physical units[3,4], as a scheme for defining the strong coupling
constant [3,5-10], or simply as a smearing mechanism [1,3]. However, it has been shown
that the GFF has a much larger potential. One of the key elements for this is the short-
flow-time expansion (SFTX), where composite operators of flowed fields are expressed in
terms of a regular operator product expansion (OPE). By inversion of a complete basis of
operators, this lets one express an effective Lagrangian in regular QCD in terms of flowed
operators and corresponding flowed Wilson coefficients [11-14]. Matrix elements of the
former do not require renormalization [11,15,16] and are thus ideally suited to be computed
on the lattice. The flowed Wilson coefficients, on the other hand, can be obtained from the
regular MS results via suitable conversion factors, which can be calculated perturbatively.
Obviously, the perturbative order of these conversion factors has to match the one of the
regular MS Wilson coefficients. This is why, in many cases, next-to-leading order (NLO)
results are not sufficient, but higher orders are required.

The feasibility of the above approach was demonstrated via a flowed formulation of the
energy-momentum tensor in QCD [12,13,17] which was subsequently used to extract ther-
modynamical observables from the lattice [18-27]. In this case, the coefficients of the
regular operators are rational numbers. It was shown that the next-to-next-to-leading
order (NNLO) corrections to the matching matrix, which determines the conversion to
flowed operators, lead to a significant improvement in the extrapolation to the physical
limit at ¢ = 0[23].

As is well known from regular perturbation theory, every additional order leads to an
enormous increase in complexity. Fortunately, however, many of the tools and techniques
from regular perturbation theory can be adapted to higher orders in the GFF. An outline of
this strategy has been described in Ref. [28], where a number of three-loop quantities were
evaluated at finite flow time. Using this approach allowed to extend the NLO results for the
effective weak |AF| = 2 Hamiltonian [29] or the magnetic dipole moment operator [30] to
the NNLO in Ref. [31] and Ref. [32], respectively. Similarly, the matching matrix between
flowed and regular operators and Wilson coefficients was obtained to the same order for
the hadronic vacuum polarization [33].

One of the main benefits of the GFF is the exponential suppression of high-momentum
modes. As already mentioned above, this implies that composite operators of flowed fields
do not require renormalization. Matrix elements of operators which only involve flowed
gluons are even finite after renormalization of the regular QCD parameters (strong cou-
pling and masses). Flowed quark fields, on the other hand, still require multiplicative
renormalization, typically denoted by Z,, see Section 2.1. In order to match perturbative
and lattice results, one needs to define a suitable renormalization scheme, most conve-
niently via a Green’s function which involves two flowed quark fields. One option is the
so-called ringed scheme, originally proposed in Ref. [13], which fixes Z, via the tree-level
vacuum expectation value of the quark kinetic operator. The conversion factor between



the MS and the ringed scheme is known through NNLO [28].

However, other options for the scheme of Z, may be more convenient. For example, one
may fix it via the SFTX of some quark bilinear operator, usually called current. A prelim-
inary lattice study of this strategy was recently presented in Ref. [34], where the flowed
four-quark operator was normalized to the flowed axialvector current. Which current is
most suitable may depend on the specific calculation or observable under consideration.
It will therefore be useful to have all the associated results at disposal.

Moreover, the simplicity of the quark currents could also be used for systematic studies
of the SFTX. First, one can compare perturbative and nonperturbative determinations
of the matching coefficients with each other. Some preliminary studies in this direction
have already been carried out in Ref. [35] for the CP-violating quark chromoelectric dipole
moment operator and for the currents in Ref.[36]. Secondly, one can compare results
for the renormalized currents obtained through the SFTX with results obtained in more
conventional non-perturbative schemes. This may allow one to test non-perturbatively
the accuracy of the SFTX and assess the systematics associated with the t — 0 limit. A
first study of higher-power terms has been done in the context of the energy-momentum
tensor in Ref. [26]. Besides these indirect applications, the SFTX of the currents directly
contribute to a number of observables in the GFF such as the chiral condensate [19] or
semileptonic contributions to the neutron electric dipole moment [37].

Through NLO, the SFTX of the currents has been calculated already several years ago [38,
39].! In order to be consistent with the uncertainties expected from the associated lattice
calculations, one can expect that higher orders of the matching coefficients will be relevant.
In this paper, we will therefore derive the corresponding NNLO results.

The remainder of this paper is structured as follows: In Section 2, we discuss the theoretical
basis of our calculation, starting with the GFF in Section 2.1, the definition of the regular
and flowed currents in Section 2.2, and the methods to obtain the SFTX in Section 2.3.
Our results for the matching coeflicients are presented in Section 3. The latter also allow
us to evaluate the so-called flowed anomalous dimensions, describing the logarithmic flow-
time evolution of the currents. This is presented in Section 4. Section 5 contains our
conclusions.

2 Theoretical framework

2.1 The QCD gradient flow

In this paper, we work in D-dimensional Euclidean space-time with D = 4 — 2¢. The GFF
continues the gluon and quark fields A, and ¢ of regular? QCD to fields By, (t) and x(t)

While the scalar, pseudoscalar, vector, and axialvector currents are renormalized and discussed in more
detail, for the tensor current only the bare result is provided in Ref. [39)].

2We use the terms “flowed” and “regular” QCD to distinguish quantities defined at ¢t > 0 from those
defined at ¢ = 0. The dependence on the D-dimensional space-time variable x is suppressed. u,v,p,...
denote D-dimensional Lorentz indices, while color and spinor indices are suppressed.



through the initial conditions

But=0)= Ay, x(t=0)=1, (2.1)
and the flow equations [1, 3, 15]
B, =D,Gy, + kD0, B, ,
dx = Ax — kgsOuBuX, (2.2)
0% = XA + 5 9 X0 By

where the “flow time” ¢ is a parameter of mass dimension [t] = —2, gp is the bare strong
coupling, and x is a gauge parameter which drops out of physical observables. In our
calculations, we set k = 1.

The flowed field-strength tensor is defined as

Guv = 0uBy — 0B, + g [Bua B,], (2.3)
the flowed covariant derivative in the adjoint representation is given by
Dy = O+ g8[Bus -1, (2.4)
and
A=DIDF, A ="DEDE, (2.5)

with the flowed covariant derivative in the fundamental representation,
F F_ %y
DY —0,+gsBy, DE=19,—gsB,. (2.6)

The flow equations can be solved perturbatively, leading to generalized QCD Feynman rules
which involve exponential factors for the quark and gluon propagators, plus additional
“flow-lines” representing the evolution of the fields in the flow time. The latter couple to
the quarks and gluons via “flowed vertices”. The general formalism has been worked out
in Refs. [11,15], and more details can be found in Ref. [28].

Since the flow time acts as regulator for ultraviolet divergences, the GFF improves the
renormalization properties. After renormalization of the fundamental parameters of QCD,
the flowed gluon field B, (t) is finite and does not require field renormalization 3,11, 16].
The flowed quark fields x(¢), on the other hand, require multiplicative field renormaliza-
tion [15]. Throughout this paper, we will adopt the ringed scheme [13], where

X=2x, Zy=¢ 2. (2.7)

Both the MS expression ZW as well as the finite conversion factor to the ringed scheme,
(y, are available through NNLO [13,15,17,28]. Explicit expressions are collected in Ap-
pendix A.

Parameter and field renormalization are sufficient to render physical matrix elements of
composite operators finite [11,15,16]. Thus, composite flowed operators do not mix un-
der renormalization, which enormously facilitates the lattice evaluation of their matrix
elements compared to those of regular operators, in particular if the latter mix with oper-
ators of different mass dimension. Connection of the flowed matrix elements to physics at
t = 0 can be made through a perturbative calculation, as will be explained in more detail
in Section 2.3.



2.2 Quark currents

In this paper, we consider ny = n) + ny, quark flavors, where n; is the number of massless
quarks, while the remaining ny quarks have identical mass m. The bare non-diagonal and
diagonal currents are defined as

j;;q = &prdjq ) ]E = &pri/}p ) (2-8)

respectively, where p and ¢ are flavor indices® with p # ¢. We furthermore define the bare
and renormalized singlet and non-singlet currents as

.ans a B a B s .B

JB _thq]qu“thpjp’ ]B—ij»
P#£q P P

ja7ns _ Zns.jgvﬂs’ js = Zsj% — 4Zn_13Z1Lm?éﬂ )

(2.9)

where h® is a traceless flavor generator, and mg is the bare quark mass which is related
to the MS renormalized mass m through

mp = Zmm, (2.10)
with Z,, = Zi\,/[? given in Egs. (A.6) and (A.12). Z5 Z" and Z;y are renormaliza-

tion constants which will be specified below. They depend on the Dirac structure I' €
{Dg, T4, T, T, T'p} of the current, where

I's=1, Iy =~*, Y=o ==},

[N

(2.11)
Il = s, I'p =15,

i.e. we consider the parity-even scalar, vector, and tensor currents, and the parity-odd
axialvector and pseudoscalar currents. The renormalization constant Zj allows for the
possibility of the currents to mix with the unit operator.

2.3 Short-flow-time expansion

Returning to the non-diagonal and diagonal notation, we define the flowed currents as

5pq(t) = ZOX Xp(t)FXq(t) ) jp(t) = ZOX Xp(t)FXp(t) ’ (2.12)

which means that we adopt the ringed scheme for the flowed quark renormalization
throughout this paper, unless stated otherwise. The flowed singlet and non-singlet currents
are defined by replacing the diagonal and non-diagonal currents by their flowed versions.

The SFTX [11] for the singlet and non-singlet current can be written as

FI() =GR (1) GBS+ O(t) = ¢ (1) 5™ + O(1),

PO = mamn {60+ P01+ GORTOO o

= |1¢D(0) + <00 1+ (0 5+ 000).

3Throughout the paper, sums over these flavor indices will be explicitly indicated by the 3~ symbol.



where we have taken into account that we only have n; massive quarks of equal mass m.
The terms of order ¢ will be neglected in this paper.

The dependence of the matching coefficients ((¢) on the flow time ¢ is logarithmic. They
are most conveniently computed by defining projectors onto the regular-QCD (i.e. not
flowed) diagonal and non-diagonal currents. In our case, we choose

0 1 03

PWO] =t 0]0|0 . PYO] = =—(0|0]0 2.14
01 = t5,- 0100 01= 315 000 (214)
and
qu[O] = N_lTr(FMpq(Q1a QQ)) ) (215)
q1=q2=m=0
where M, is a two-quark Green’s function defined as
[ Ain@)1O1 a2) = apla) Moalar, a2, (2.16)
the trace is over spinor and color indices, and
N =Tr(IT) . (2.17)

The nullification of the masses and external momenta in Egs. (2.14) and (2.15) is under-
stood to be taken before any loop integral is evaluated. This means that only tree-level
diagrams contribute when the projectors are applied to the r.h.s. of Eq. (2.13), because
all higher-order diagrams are scaleless and thus vanish in dimensional regularization.

The matching coefficients are then obtained as

8= Poglipgd  and =+, (2.18)
where }
CBA = Ppp[jq] , (2'19)
with p # ¢, and
Py =POG], ) =PI, (2.20)

for a massive quark flavor p. The renormalized matching coefficients follow from this by
inserting Eq. (2.9) into Eq. (2.13):

= B0+ (2
Ny
ns _ ns\—1 ns

= C"(t) + neCA(8),

= )= (27 |G - (20— 27|



(a) (b) () (d)

Figure 1: Sample diagrams contributing to ¢() and ¢3). Spiral lines are gluons,
straight lines denote quarks; lines with accompanying arrows are the correspond-
ing flow lines (they are always connected to flowed vertices, denoted by small
circles). The two fermion lines in diagram (c) can be of different flavor. The
vertex with the cross denotes the current. All Feynman diagrams in this paper
have been drawn with FeynGame [40].

C](Bl) and C](;’) are just given by the first two terms in an expansion in m3t of the currents’
vacuum expectation values. Due to Lorentz and parity invariance, they are non-zero only
for the scalar current, corresponding to the so-called quark condensate. Since the one-loop
contribution is of order ¢, it is required to three-loop order in order to obtain the SFTX
up to NNLO QCD. Sample three-loop diagrams are shown in Fig. 1.

In contrast, the projections for the other matching coefficients in Eq. (2.20) require only
two-loop calculations. In the diagrams that contribute to (5%, the current is connected to
the external states by a single quark line, cf. Fig. 2, as opposed to Cﬁ, where the current
and the external states belong to different quark lines, cf. Fig. 3.

We will refer to the latter class as triangle diagrams in what follows. The triangle diagrams
for the scalar, pseudoscalar, and tensor currents vanish after taking the fermion trace.
For the vector current, they only start to contribute from three-loop order due to Furry’s
theorem. At the perturbative order considered here, we can therefore drop the superscripts
“ns” and “s” in these cases and simply write

() = ) = (1) for X#A, (2.22)

and analogously for the bare matching coefficients. For the axial current, on the other
hand, we will find (5§ # 0 at the two-loop level.

We evaluate all diagrams in D = 4 — 2¢ space-time dimensions. The occurrence of =5 in
Eq. (2.11) causes the well-known complications which we take care of by following the
strategy outlined in Refs. [41-43]. This means to replace

A 1 . 1
TR = T = 5" a1y, Te = T = e 0757, (2.23)
both in the currents of Eq. (2.12) as well as in the projectors of Eq. (2.15). The resulting
products of two (intrinsically four-dimensional) ¢ tensors are replaced by

6
Eaﬁfyéé‘a/lgl,},/é/ = 9[3' gg, g:},y/ g(SJ y Euaﬁ’yé‘ualﬁl,y/ = g[z, gg, g:/)/l s (224)
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Figure 2: Examples for contributions to the non-singlet matching coefficients.
The notation is the same as in Fig. 1.
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Figure 3: Examples for contributions to the singlet matching coefficients.
The notation is the same as in Fig. 1.

where the square brackets denote the anti-symmetric combination, e.g.
g% g gl = g%gl — 9o - (2.25)

This also affects the normalization factors of Eq. (2.17) via*

2§CD(D (D -2),

TH(ERT) = -
o (2.26)
TI‘(FPPP) = —gD(D )(D - 2)(D - 3) .

This strategy violates the Ward identities, but they can be restored by an additional finite

renormalization discussed below.

4Recall that the trace also includes color.



For the actual calculation, we adopt the framework developed in Ref. [28], which is based
on ggraf [44,45] for the generation of the diagrams, q2e/exp [46,47] for inserting the Feyn-
man rules and identifying the momentum topologies, in-house FORM [48-50] routines for
performing various computer algebraic operations including Dirac and color algebra [51],
and Kira®FireFly [52-55] for the reduction to master integrals employing integration-
by-parts-like relations [28,56,57] and the Laporta algorithm [58]. Up to two-loop level, we
find the same master integrals as in Ref. [17]. They can be evaluated analytically in terms
of the transcendentals®
2
G2 = Lip(1) = %
Liy(1/4) = 0.267652. .. ,

= 1.64493. .. = Liz(1) = 1.20205...
64493 ) C?) 13( ) 0205 ) (227)

where Li,(2) = .70, 2% /k™ is the polylogarithm of order n.

The three-loop vacuum expectation value contributing to ¢V and ¢® of Eq. (2.21) leads
to 304 diagrams which are reduced to 216 master integrals already contributing to Ref. [33].
They have been evaluated numerically following the strategy described in Ref. [59].

3 Results

Parity-even currents. For the currents which do not involve 75, we adopt the MS
scheme, i.e., we define the renormalization constants of Eq. (2.8) as

Ix=2Z¥5, X e{s,V,T}. (3.1)

Because of Lorentz and parity invariance, only the scalar current can mix with the identity
operator. Thus, we have

47

Zys =27 = < ) Zo and  Zyx =0, X e {V,P,A, T}, (3.2)
where Zj is the renormalization constant of the vacuum energy which can be found in
Eq. (A.14), and p is the renormalization scale in the MS scheme, and yg = —I"(1) =
0.577216. .. is the Euler-Mascheroni constant, with Euler’s gamma function I'(z). The
Ward-Takahashi identities ensure that Z{\//[S =1 and Zévls = Zm, with Z,, the quark mass
renormalization constant introduced above. For the tensor current, the renormalization
constant is given in Egs. (A.5) and (A.16).

We express our results in terms of the color factors

2

-1 1
Cr = Ty —¢ ; Ca = 2Tgne, Tr = 5, (3.3)
Ne 2
where in QCD, the number of colors is n. = 3. Furthermore, we introduce
12
Ly =m2p%* +y5 =1n ~5 (3.4)
i

SWe caution the reader not to confuse the multiple use of the symbol ¢ in this paper.



where we have implicitly defined the ¢-dependent energy scale py, and

_ 9 _ 4% 3.5
s 472 T’ (3:5)

with g the MS renormalized strong coupling, see Eq. (A.1). We then find the following
matching coefficients for the parity-even currents:

3 3
8W2{1+ascF( +In2— 11n3+ZLMt>

+ ag |:1 228 CF + 2.587 CACr — 0.9873 CrIgrng

+ L, (0.7456 CF + 1.807 CACr — 0.4981 CpTrny)

+L2,(0.2813 Cf + 0.3438 CACy — 0.1250 CFTRnf)] } +0(ad), (3.6)

Cés)(t): I 2{1+L t +asCr Z+411127—1n3 3Lis (1/4)

11 3 3 5
+Lut<4—ln2—41n3> 4L,ut]

+a? (5.455 CE +0.1028 CACr — (1.078 1 + 6.411my,) Cr TR

+ L,t[3.095 CE 4 0.3964 CACp — (0.1512m + 3.151 1y, ) Cp T ]
+ L2, [1.862 C% + 0.6510 CACr — 0.07763 CpTrny]

L3,[0.6563 C% + 0.1146 CACp — 0.04167 C’FTRnf]> } + 0(a?), (3.7)

1 3 3
Cs(t) = 1+aSCF<— 5 —In2—Sm3- ZLM)

1 1 1 3 1 21
2) 1 (2 oL L. 90 124, 21 :
+as{16cx +CF<2+2C2 211124—4111 2+ 3 ln3+3L12(1/4)>

197

+OnCr( -~ g - 17;42 2

n CFTRW(% 4 1@) + Ly {CF< In2+ 9103 + 392)

1
ln2+71n22—|—gln3+§Lig(1/4)>

16

1 11 47 1 1 3
C’C’(——12——13——> CrT, (712 “In3 7)
TOACE T e T g0 T g TORIRI(gIna Tt pind g

9 11 1
+ L2 <320§ —350aC0r + 8C'FTRnf> } + 0(a?), (3.8)

1
Cv(t) =1 +aSCF<§ 2 Zln?,)

1 41 5 3 1 3 3
WD 40— — - = In2+ -1’2 — - In3+ -Liy (1/4
+OLS{166>< + F< o3 g2 tgh2t2- o3t 12(/))

10



763 13 27 21
_ T8 5 By bin2ey 2Ty =L 14)
+OrCr(— 2~ 26— D24 T2+ 34 T Ly (1/4)
+ OF T (35+ C)+L cc( In2 13+11)
n ——n — —1n
FIRns| 5o 2 ut |CACF 16 96
1 3

+C’FTRnf(31n2+4ln3—24)]}—{—(9(&5), (3.9)

3 |
Cr(t) = 1—|—aSCF(—ln2— Zln3+ZLut)

1 7T 1 4 1 3
2 (2) Lz = 120 2 :
+ aZ {16 +CF< 15 4C2+31n2+41n 2 4ln3+L12(1/4)>

1159 1. 17 1 5
+CACF(—@ G- 24 2+31n3+4L12(1/4))
a7 , 3 19
+CFTRnf<216 + C2> + Ly [C’F<—ln2 El n3— 32)
257 1 13
—f—CACF(—fan—fl 3+288)+CFTRnf< 2+ ;1n 3_72)}
vz ( Loz Meosor - Lopmn) b+ 0w (3.10)

(2)

¢y is associated with the ringed scheme and would not appear if the fermions were renor-
malized in the MS scheme. Its explicit form is given in Eqs. (A.24) and (A.25). The results
for Cél)(t) and (s are already known from Refs. [15, 28,30, 32].° For the sake of brevity,
we only quote the three-loop results with four significant digits here. In the ancillary file
accompanying this paper, we provide the results with higher numerical accuracy, as well as
analytic expressions for the logarithmic terms and the coefficient of CpTrns of (él)(t) (see
Appendix B). Also, while all results in this paper are in the ringed scheme, the ancillary
files also contain the matching coefficients in the MS scheme of the flowed fermions.

Parity-odd currents. For the parity-odd currents, one has to introduce a non-minimal
renormalization in order to restore the associated Ward identities in regular QCD for
the non-singlet cases, and the correct anomaly in the singlet axialvector case, which are
broken by adopting Eq. (2.23) combined with minimal subtraction. Therefore, we define
the renormalization constants of Eq. (2.8) in these cases as

Zx(as) = Z¥5(as) Zs.x(as), X € {A,P}, (3.11)

where the MS part is given in Egs. (A.5) and (A.16). The Z5 x are finite renormalization
constants given in Eq. (A.18). For the non-singlet cases, taking them into account is
actually equivalent to working with a naively anti-commuting 5 combined with minimal
subtraction, which means that

Cp(t) =Gs(t),  CR(1) = Cv(t). (3.12)

5In Ref. [28], (1>( t) was called the quark condensate (S(t)), while in Ref.[32], ¢s was called s5 and
quoted only numerically for QCD with ny = 1. (s was also calculated in the context of Ref. [17], but not
published.
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We explicitly verified these relations by using Eq. (2.23) and the corresponding renormal-
ization constants of Eq. (3.11). This provides a strong validity check of our calculational
setup.

For the renormalized triangle contribution of Eq. (2.21), on the other hand, we find
3 1 9 9
A — 2 4= =z _Z

CA(t)—aSCFTR< 8+8C2+21n2 411(13

15 3
+ - Liz (1/4) + ZL,L,f) +O(ad).

(3.13)

Additional checks. In order to further corroborate the correctness of our results, we
performed all calculations in general R¢ gauge and confirmed that the dependence on the
gauge parameter drops out in the final result. The only exception to this is ¢(3), for which
the calculation in R gauge exceeds our computing resources. Through NLO, the matching
coefficients (x(t) were already computed in Refs. [38,39], and we find full agreement after
fixing the erroneous finite renormalization” for (p(¢) and (s(t). For (r(t), only the bare
NLO result is provided in Ref. [39], and it agrees with our bare result.

Numerical results for (5;. In order to see the improvement of the impact of the NNLO
terms, we display in Fig. 4 the result for (v as a function of the unphysical renormalization
scale p at leading order (LO), NLO, and NNLO. The flow-time ¢ has been fixed at u; =
3GeV and p; = 10GeV, corresponding to t ~ 0.003GeV~2 and t = 0.03GeV~2, cf.
Eq. (3.4). For the plot at 1y = 10 GeV, we set ng = 5 and use ol =" (10 GeV) = 0.1880 as
input. For the plot at u; = 3 GeV, we set ny = 3 and use aganB)(B GeV) = 0.2485 as input.
We then evaluate as(u) through one-, two-, and three-loop running for u;/3 < p < 3p; and
insert it into the LO-, NLO-, and NNLO-approximation of (v (t) (with the corresponding
value for ng) in order to obtain the three curves in the plots.

Since this quantity is RG invariant, we expect the p dependence to decrease from NLO
to NNLO, and this is indeed what we observe. Taking the variation of p around p; by
a factor of two as an estimate of the perturbative uncertainty, we find that it decreases
from 4.4% to 1.4% at uy = 3 GeV, and from 1.8% to 0.4% at 10 GeV. This is indicated by
the red and blue bands in the plot. Another important observation is that these bands
overlap, indicating that p; as defined in Eq. (3.4) is indeed a reasonable choice for the
central renormalization scale. Since the other matching coefficients are not RG invariant,
we refrain from showing the analogous plots for them.

4 Flowed anomalous dimension

As suggested in Ref. [33] for a general set of flowed operators O = (O, ...,O)), one may
define flowed anomalous dimensions which allow to resum their logarithmic ¢-dependence.

"The “(—4)” in the O(g?) coefficient of Eq.(2.7) in Ref. [39] should read “(—8)”. This also affects a
number of the subsequent equations in Ref. [39]. We would like to thank H. Suzuki for clarifying commu-
nications on this issue.
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Figure 4: The matching coefficient Cy(¢) at two different values of t = e =78 /(27)
as a function of u/py.

Let us briefly recapitulate the idea behind it. First consider the flow time ¢ and the
renormalization scale p as independent quantities. The regular operators O are then
independent of ¢, the flowed operators O are independent of y, and the elements of the
matching matrix ¢ are functions of as(x) and L,;. Therefore, neglecting terms that vanish
ast — 0,

d d -
o 4.1
0=t 0=t-¢10 (4.1)
and thus
11650, with 5= t§< ¢! (4.2)
dt _’Y 9 w ’7_ dt 9 .

where the flowed anomalous dimension matrix 7 is a function of as(x) and L, which is,
however, formally independent of u:
d
2 ~
—7=0. 4.3
el (4.3)
Note that the derivative acting on ¢ in Eq. (4.2) only affects the logarithmic terms L,;.
The latter can be derived at higher orders by noting that flowed operators (in the ringed
scheme) are p-independent, i.e.

d - d 0 0
2 2
0=p dM20 1 d,uQCO [(aLMt+asﬁ(as)aas>C}(’)+C’y(’), (4.4)
where + is the anomalous dimension matrix of the regular operators O, i.e. ;ﬂd%QO =~0.
Therefore,

~ 9 -1 -1
= — | aq - . 4.5
g (a 5 c) ¢ =6 (45)

The term in brackets starts at O(a2), and thus the one-loop term of the flowed anomalous
dimension is given by the (negative of the) regular anomalous dimension of the current.
Furthermore, knowledge of ¢ at order a” is sufficient to obtain 4 through order a?*!, given

that «y is known to a?*! and 3 to a?.
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It may be interesting to note that Eq. (4.5) can also be derived by tying the flow time
and the renormalization scale together from the start, i.e., setting u = ¢/+/t, with some
constant c. In this case, also the regular operators become ¢ dependent, while { depends
on ¢ only through as(c/+/t), and thus

d 5 d d 0
t—O0=—p>—0=— d t—C(t) = —asB—C(1), 4.
FO= 1 a0 =70 and 13(1) = —afg () (4:6)
which again leads to
d
t—0O = < 4.7
§0= |ebpec-a] o, (4.7
Applied to the current operators considered in this paper, Eq. (4.2) reads
d - -
t—i =744 4.8
/=77 (4.8)

and using Egs. (4.5), (3.8) to (3.10), (A.16), and (A.17), we find

3 47
§%+%@(~wh4w——m®

3
J5(t) = —=asCr + a?

3
+ CFTRnf<* +

1 1
- 3m24-4m3)]

129 305 , 11
3 1 @ _ .11
L n ) ( 1 2
*'“S{( Ca — 55 TRns 1280F CrCa 556 T 122 .
33 33 11
——42—f1m 22 1n3 — 22 2 7314)
n g o n3+ S 3 64 3+ ia (1/4)
65869 215 o, AT
19 1
T - “In2 471 2 471 21 4—4—1 471 2
+C’F Rnf(32 3C2+12n +6n +-In2In3 16 n3+16n3
3 205
—QU“UQ—f@)+&@%% Zﬁ—f@)
2071, 43
T ( ° 12—7122——4
+ CrCaTrne| o + 42 AT 163
mxua+ﬁg}+mﬁx (49)
) SR VY 1 1
77 55
3 1 @ 2o (1T 11
T ) ( 1 2
+”%{( Ca m:Rm HOFOA ~ g Tt
11 11 33 11
22 — — In2ln3— > In2 —Liz (1/4 )
Y 8 3= gg 73+ L2 (1/4)
8189 20 181 77
2 PP Yy - 2 -
+-cbczx( 301 19242 ln2-+ 1 2+ — h13+-321ﬂ2(1/4))
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3 5 1 1 1 3
C2T, (7 2= —In2+ =122+ =1n2In3 + —In3
+OFTrni| 75+ g2~ g2+ g2+ 523+ 7o

3 . , o/ 35 1
559 1. 31 1 31 7
T (— S 2 — —1n?2— = n3— L1 14)
+ CrCaTrns 288+3§2+12n 5o 16 n3 812(/) }
+0(ad), (4.10)
i 1 19 257 11 11
13 1 1
11 1 365
sy, 1 @ 4 8 (305 _
Tivne) (51— %)
+“S{<960A o (R )y + Cr\ 357 — G
9287 11 22 11
2 o o i o 2
+CFCA( 2304 24%2 T g 2T g 72
11 11 33 11 7
T Im2n3— — In3— 223+ —Liy (1/4) + - )
3 n2ln3 3 n3 64D3+6 12(/)4—4(3
10079 11, 425 11 159
C’CQ<—7—— o 224+ ~ 213
TORCA ~ Qo736 962 T T M2t g2t gy n
55 5
2Ty (1/4) — 2 )
2200y (1/4) - Gy
161 1. 23 1 1 11 3
2 2 2
T (— Sl 224 — 122+ - In2l | 2
+ TR g + 62~ gg M2+ g2+ gIn2In3 4 Jend 4 Joln®3
2 1 L o/ 215 1
— gl (/4 + 1C3) + CrTRng ( T 1206 TgCQ)
923 7 83 1 27
CrCAT, (7 L+ m2— —m?22— 2Lm3
+ OrCaTrne( 156 + 3502 + ggIn2 - gln 16
5 1
- 6Li2 (1/4) - 4C3)} +0(ay), (4.11)
Ap(t) = As(t), (4.12
~ns<t) _ ~V(t)a 413)

~S ~ NS 3 9
A () =R (t) + ZagCFTRnf + ag [ — EC%TRnf

11 3 5
2,.2(~- - _ e Y75
+ CpTEn] (6 —(2—3In2+ 53— TLip (1/4))
19 11 33 33 55
T (7 o+ Pm2 - P w3t 2L 14)
+ CpCATRNs 24+48<2+4 n 3 D3+16 ip (1/4) ]
+0(ad). (4.14)

Note that, in these formulas, as is still renormalized in the MS scheme, and we have
set pu = ug, see Eq. (3.4) (the expression for general p can be easily reconstructed using
Eq. (4.3); it is also given in the ancillary file accompanying this paper, see Appendix B).
In order to eliminate any reference to the MS scheme, one can simply convert ag in these
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expressions to the gradient-flow scheme according to [3]

as = as [1 — eras + a2(2e3 —e9) + O(ad) .. ], (4.15)
where
€y = €go , 612910+50Lut72 i (4.16)
ez = ez + (2Bo €10 + B1) Lyt + By L
with Sy, 51 from Eq. (A.4), and [3,28, 59]
1 11 2
epo =1, 610:<93+6ln2—iln3>CA—9TRnf,
, 43
e20 = 174865 CF — (1.97283....) CuTiens + ( G — 5 ) CeTiens (4.17)

1 5
The exact expression for the coefficient of CxTrn¢ can be found in Ref. [28].

Numerical values for the flowed anomalous dimensions are shown in Fig. 5. The input
parameters are the same as in Fig. 4. Also here, we observe the expected reduction of
the renormalization scale dependence when including higher orders, albeit sometimes less
pronounced than for ¢y (t). But also here the NLO and the NNLO uncertainty bands nicely
overlap.

5 Conclusions

In this paper, we have considered the SFTX of the scalar, pseudoscalar, vector, axialvec-
tor, and tensor currents and computed the corresponding matching coefficients through
NNLO in QCD. Possible applications of these results are the calculation of the chiral con-
densate on the lattice [19] or the semileptonic contributions to the neutron electric dipole
moment [37].

Our results could also serve as alternatives to the ringed renormalization scheme [13],
which requires the calculation of the vacuum expectation value of the quark kinetic oper-
ator. In certain cases, it may be more efficient to normalize quark matrix elements to one
of the currents instead. We believe that this strategy will especially find applications in
flavor physics, in particular in combination with the SFTX of the relevant four-quark op-
erators [29,31]. A first preliminary study, already employing the result for the axialvector
current obtained in the present paper, has been published in Ref. [34].

Finally, the simplicity of the quark currents could also be advantageous for systematic
studies of the SFTX, building up on the preliminary studies of Refs. [26,35,36] in different
contexts.
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A Renormalization constants

In this appendix, we collect the renormalization constants required to arrive at the finite
results presented in this paper. Most of these constants are known to higher loop orders,
but we will display only the orders which are relevant for our calculation.

The relation between the bare and MS-renormalized gauge coupling is given by the regular-
QCD expression

2.7E \ ¢/2
we
w= (") Zufantmiatio. (A1)
T
with p the renormalization scale, yg = 0.577215. .. the Euler-Mascheroni constant,
Bo 360 B
Zg(as) =1- asi + az 8763 — E + O(ag), (AQ)

as from Eq. (3.5), and the coefficients of the QCD beta function

Blas) = —€—as Y _ Bnal, (A.3)
n=0
given by
(i, 4 _ 131, 20

The QCD color factors are defined in Eq. (3.3), and n¢ is the number of quark flavors. The
remaining MS renormalization constants are cast into the generic form

SV Iy 1
7509 = 1= a2+ [ 5 O + o) - 2] +0(ad), (A5)

where the -, are the perturbative coefficients of the corresponding anomalous dimensions.
For the quark mass, the latter is defined as

n d MS
Ym(as) = —ag goas TYmn = _GSB(GS)diaS In an\;IS(aS) ) (A.6)
and thus d
b ) = es)min). (A7)


https://data.snf.ch/grants/grant/211209

For the current j, we define

) = 0 Y a0 = aB0s) o In 25 (a). (A8)

n>0 s

The renormalization group equation for the currents is thus given by
W g = [1(a) ™) ), (A.9)

where 7 arises from any finite renormalization as introduced for the parity-odd currents
when adopting Eq. (2.23). Specifically, if

o0
Z(as) = Z5(as) ZM5(as),  with  Z™(as) =14 alzno, (A.10)
n=1
then
¥ (as) = —a? Bo 210 — a3 | B1 210 — Bo 230 + 280 220} +0(ag) . (A.11)
In this paper, we need the MS quark mass renormalization constant Z,, = Z,I;/I? through

O(a?), given by

3 3 97 5
Ym0 = *C'F ) TYm1 =

=2 CpCr — —CrT
39 F+96AF 4FRnf>
129 129 11413
Ym2 = 64 — Ok = = CRCx + —~Cr (] (A.12)

556 140
+%Emh%+%@+ﬁﬂﬂm%—w—%§> 7@ﬁﬁy

as well as the renormalization constant of the vacuum energy Zy through O(a2). It is
related to the corresponding anomalous dimension g through

NecNh

0
Yo(as) = [4ym(as) — €] Zo(as) + B(QS)QS£ZO(GS) == (47)2 agyo,n » (A.13)
s n>0
which leads to
Zola) = 231 g, (2L - 2Im0) 2] 2 (500444 )
S (47)2e 2 € 51 3€2 m m.0
X , (A.14)
- &(5070,1 +470,1Ym,0 + 8¥m,1) + 3702 } +0(al).
The first three perturbative coefficients are given by [60,61]
Y00 =1, Y, = CF,
131 109 3 5 A.15
70,2 CF < 32 3(3) CrCy ( 32 + *C > — Cr1Rr (8nf—|- 3nh> . ( )
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The current renormalizations ij , ZIIQ/TS , and ZkTS are needed through O(a2). For these [42

43,62],
1 19 , 257

= —— = — T
YT,0 4CF7 YT,1 320 28SCACF + 720F RN,
3 3
_3 Ao S ORT;
TP.0 4C'F, P,1 32C'F 96CACF + 24CF RNt
» : (A.16)
Yao0 =0, VA1 = _ECACF + gCFTRnfa
o 3
Yao =0, YAl = VA1 — ZCFTRnf-

In order to derive the O(a3) terms of 7 in Section 4, we also need the terms at O(a?) [42,
43,63]:

B 365 6823 ) | 13639 )
W’?“(C3 :m4)c +<2&m ‘3)C¥CA+( G 6m2>CkCA

49 1 251 1
< + C3> CFTRnf+ 8CF RN f + < + C3> CrCpTRnt,

288 432
599 g, _ 3203 120 4 29 107,
=2 PEVONCE + 2O + 22 OACEmTR + — C2ngTh
P2 5304 768 ACE T o OF T g CACERIEIR F e ORIy
17
CFTRnf C3CAC'FTRnf + ZC?)CFTRnf,
1789

1 26
CFCA CI%TRnf — QCFTI:Q{TL% + —=

T
27CFCA R

N :—CC
YA2 48 F A~ 364

9 9 o 109
’72,2 = ’725,2 + ECFTRnf - ﬂCFTRnf - %CFCATRTLf .
Recall that the vector current does not require renormalization, and the scalar current

renormalizes with Zg = Z,,,. The finite renormalization constants for the axial and the
pseudoscalar current introduced in Eq. (3.11) are given by [42,43]

%ngzl—mME+a(nCﬂh+1§%ﬂmO+Om@,
ns 107
%M%pﬂ—%@+ﬁ<8quMC¢u+%@ﬂmO +0(ad), (A.18)
‘ .3
Z5 alas) = Z55 + 7@52 CrTrns + (’)(ag’) .
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Let us remark that quoting the results for Z3% and Z5 p is redundant, because they could
be derived from Eq. (A.11) and

n fi
Ys=p +E, v = AR+ (A.19)

The flowed-quark field renormalization constant introduced in Eq. (2.7) assumes the same
form as Eq. (A.5) with the anomalous dimensions given by [15,17]

3 223 3 5 11
Yx,0 = _ECF’ Yy,1 = < In2 — 96) CaCF + <32 ln2> CF + ﬂCFTRnf.
(A.20)
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Besides the MS scheme, the so-called ringed scheme is determined from the all-order
condition [13]

. < 2neng
Zy (xp(t) P Fx,(t = :
(X () P xp(t)) L E Ty (A.21)
It is related to the MS scheme by
Zy = Gt 2, (A.22)
with the finite renormalization constant [13,28]
3
C(top) =1 —as | Yy,0Lut + ZCF In3+ Crln2
Tx,0
+ ag{ ; (Vx.0 — Bo) Lit + [7X70 (Bo — ¥x,0)In3 (A.23)
4 0(2)
+ 370 (B0 = 10) In2 — VX,l} L+ 75 (T 0@),
where
dl?) = CACreya + CReyr + CrTRneCy R - (A.24)
The coefficients have been evaluated in Ref. [28]:3
Cy,A = —23.7947, ey F = 30.3914,
131 46 944 160 172 104
CX7R:—§ —CQ —ln2 —ln 2—T1n3—|—?1n21n3 (A.25)
178 178 5, 8 100°

3+ 5Lia(1/9) = —-Lia(1/3) + TL12(3/4) = —3.92255... .

Only digits are quoted in Eq. (A.25) which are not affected by the numerical uncertainty.

B Ancillary file

For the reader’s convenience, we provide the main results of this paper as an ancillary
file in Mathematica format. The results are encoded in the expressions listed in Table 1.
The matching coefficients ( are provided both in the ringed scheme of the fermions as well
as in the MS scheme. One may switch between the two schemes by setting the variable
Xzetachi to 0 (MS scheme) or 1 (ringed scheme). The flowed anomalous dimensions ¥
are provided only in the ringed scheme.

The results depend on the variables listed in Table 2. The matching coefficients in the
ringed scheme also contain the symbol C2, which corresponds to the coefficient 0&2), defined
in Egs. (A.24) and (A.25). The latter relations are provided in the form of a Mathematica
replacement rule named ReplaceC2.

8The factor —1/18 should read 1/18 in Eq. (B.3) of Ref. [28] (Eq. (130) in the arXiv version).
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Table 1: The expressions of the ancillary file that encode the main results of this paper.

expression meaning reference
zetaS1 Cél) Eq. (3.6)
zetaS3 Cés) Eq. (3.7)
zetaS (s Eq. (3.8)
zetaV Cv Eq. (3.9)
zetaT (r Eq. (3.10)
zetaAns & Eq. (3.12)
zetaP Cp Eq. (3.12)
zetaAtriangle (& Eq. (3.13)
tildegamma$S s Eq. (4.9)
tildegammaV v Eq. (4.10)
tildegammaT A Eq. (4.11)
tildegammaAns 7° Eq. (4.13)
tildegammaAs 7} Eq. (4.14)
tildegammaP Fp Eq. (4.12)

Table 2: Notation for the variables in the ancillary file.
symbol meaning reference

nc Ne Eq. (3.3)
tr Tr Eq. (3.3)
cf Cr Eq. (3.3)
ca Ca Eq. (3.3)
Lmut L Eq. (3.4)
as ag Eq. (3.5)
nf ng Section 2.2
nl n Section 2.2
nh nh Section 2.2
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