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At variant with respect to the first formulation of the nested soft-collinear subtraction, Ref. [1]
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1. Introduction and next-to-leading order calculation

Reliable comparisons between theoretical predictions and experimental data require that the
former include corrections up to (at least) next-to-next-to-leading order (NNLO) in perturbative
QCD. One issue that plagues theoretical calculations beyond leading order (LO) is the rise of
infrared (IR) singularities that stem from integrating over loop momenta of virtual partons, and over
the phase space of real radiation. The cancellation of these singularities is ensured by well-known
theorems. However, the problem of extracting IR singularities while preserving the differential
nature of the calculation remains a challenge at NNLO and beyond. While a formula valid for
arbitrary production processes at lepton colliders has recently become available [3], such a formula
is still elusive for hadronic colliders, although recent work in this direction has been presented
in Ref. [4, 5]. Here we report on the study performed in Ref. [1], which provides the first steps
towards such a general formulation in the context of the nested soft-collinear subtraction scheme [2].
This scheme has already been successfully applied to compute NNLO QCD and mixed QCD-EW
corrections to a variety of processes [6–13], suggesting that it can accommodate multi-particle final
states. In the following we will discuss one of the key aspects of the procedure presented in Ref. [1],
namely how one can express NNLO counterterms as iterations of universal functions arising at
NLO. We will focus on the quark-anti-quark annihilation into an arbitrary number 𝑁 of gluons, and
a generic colorless set of particles 𝑋 , i.e. 1𝑎 + 2𝑏 → 𝑋 + 𝑁 𝑔, where 𝑎, 𝑏 ∈ {𝑞, 𝑞}.

We begin by expressing the NLO cross section d𝜎̂NLO
𝑎𝑏

in terms of the universal operators that
will appear also in the NNLO calculation. The cross section d𝜎̂NLO

𝑎𝑏
receives contribution from a

real, a virtual and a PDF collinear renormalisation contribution1

d𝜎̂NLO
𝑎𝑏 = d𝜎̂V

𝑎𝑏 + d𝜎̂R
𝑎𝑏 + d𝜎̂pdf

𝑎𝑏
. (1)

The IR singularities in the first term are described by a variation on Catani’s operator [14]

𝐼1(𝜖) =
1
2

𝑁𝑝∑︁
(𝑖 𝑗 )

Vsing
𝑖

(𝜖)
𝑻2
𝑖

(𝑻𝑖 ·𝑻 𝑗) 𝑒𝑖 𝜋𝜆𝑖 𝑗 𝜖 𝑒𝜖 𝐿𝑖 𝑗 , Vsing
𝑖

(𝜖) =
𝑻2
𝑖

𝜖2 + 𝛾𝑖
𝜖
, (2)

where 𝑻𝑖 are color-charge operators, 𝛾𝑖 are the quark and gluon anomalous dimensions, 𝐿𝑖 𝑗 =

log(𝜇2/𝑠𝑖 𝑗), with 𝑠𝑖 𝑗 = 2𝑝𝑖 · 𝑝 𝑗 , and the parameters 𝜆𝑖 𝑗 are 1 if 𝑖 and 𝑗 are both incoming or
outgoing partons and zero otherwise. We then write

2𝑠 d𝜎̂𝑉
𝑎𝑏 = [𝛼𝑠]

〈
𝐼V(𝜖) · 𝐹LM

〉
+
〈
𝐹fin

LV
〉
, 𝐼V(𝜖) = 𝐼1(𝜖) + 𝐼

†
1(𝜖) , (3)

where [𝛼𝑠] = 𝛼𝑠 (𝜇)𝑒𝜖 𝛾E/(2𝜋 Γ(1 − 𝜖)), and 𝐹LM is the LO matrix element squared (including
all the relevant symmetry factors) describing the scattering 𝑞𝑞 → 𝑋 + 𝑁𝑔. In Eq. (3) the angular
brackets indicate that 𝐹LM is integrated over the fiducial final-state phase space. Finally, 𝐹fin

LV is the
finite remainder of the one-loop amplitude interfered with the tree-level one.

The second term in Eq. (1) is affected by implicit IR singularities, related to the configurations
where one parton becomes soft and/or collinear to another parton. These divergences become
manifest upon integrating over the unresolved phase space, and partially cancel against those

1Throughout this paper we work with UV-renormalized matrix elements, and in 𝑑 = 4 − 2𝜖 dimensions.
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encoded in 𝐼V. In order to highlight this interplay, we regulate the real radiation singularities
according to the FKS procedure [15]. We first extract the soft singularity and integrate over the
corresponding unresolved phase space. We then introduce a partitioning of the angular phase space
using functions 𝜔m𝑖 , after which we extract the collinear singularities and integrate over their phase
space. We organise the integrated subtraction terms into universal operators that are as close as
possible to 𝐼V, and have a specific structure in color space. In particular, we write2

2𝑠 d𝜎̂R
𝑎𝑏 = [𝛼𝑠]

〈[
𝐼S(𝜖) + 𝐼C(𝜖)

]
· 𝐹LM

〉
+ [𝛼𝑠]

𝜖

[ 〈
Pgen
𝑎𝑎 ⊗ 𝐹LM

〉
+
〈
𝐹LM ⊗ Pgen

𝑏𝑏

〉 ]
+

𝑁𝑝∑︁
𝑖=1

〈
(1 − 𝑆m) (1 − 𝐶𝑖m) 𝜔m𝑖Δ(m)𝐹LM(m)

〉
.

(4)

In Eq. (4), the term on the last line is fully regulated and manifestly finite. The sum in this line
runs over all the resolved partons of the process.3 We have defined the operators 𝑆𝑖𝐴 = lim𝐸𝑖→0 𝐴

and 𝐶𝑖 𝑗𝐴 = lim𝜂𝑖 𝑗→0 𝐴, with 𝜂𝑖 𝑗 = (1 − cos 𝜃𝑖 𝑗)/2, where 𝜃𝑖 𝑗 is the angle between the three-
momenta of partons 𝑖 and 𝑗 . Furthermore, Δ(m) is a damping factor that identifies m as the only
potential unresolved parton, and 𝐹LM(m) is proportional to squared matrix element for the process
𝑝𝑝 → 𝑋+𝑁+m. The operator 𝐼S in the first term in Eq. (4) encodes all the singularities of soft origin.
It contains explicit singularities proportional to the color-correlated structures 𝑻𝑖 · 𝑻 𝑗 . However,
this dependence only arises at O(𝜖−1), while poles of O(𝜖−2) can be shown to be proportional
to the sum of the Casimir factors 𝑻2

𝑖 . The second term in Eq. (4) encodes all the singularities of
collinear origin that are proportional to Born-like kinematics. The 𝐼C operator starts contributing
at O(𝜖−1) and is free of color correlations. It depends on the energies and anomalous dimensions
of the external partons. Next, the contribution in square brackets in Eq. (4) completes the divergent
collinear content of d𝜎̂R

𝑎𝑏
, with the symbol ⊗ identifying the convolution of the splitting functions

Pgen and the squared matrix element. This term is free of color correlations and features boosted
kinematics. We note that the splitting function Pgen is equal (up to a sign) to the LO Altarelli-Parisi
splitting function at O(𝜖0). By summing d𝜎̂R

𝑎𝑏
and d𝜎̂𝑉

𝑎𝑏
, the following combination arises〈

𝐼T(𝜖) · 𝐹LM
〉
=
〈[
𝐼V(𝜖) + 𝐼S(𝜖) + 𝐼C(𝜖)

]
· 𝐹LM

〉
= O(𝜖0) . (5)

The remaining singularities given by the hard-collinear component in squared brackets in Eq. (4)
cancel against the PDFs collinear renormalisation contribution. The final expression of the NLO
partonic cross section for the process 𝑞𝑞 → 𝑋 + 𝑁𝑔 reads

2𝑠 d𝜎̂NLO
𝑎𝑏 = [𝛼𝑠]

〈
𝐼
(0)
T · 𝐹LM

〉
+ ⟨𝐹fin

LV⟩

+ [𝛼𝑠]
[ 〈

PNLO
𝑎𝑎 ⊗ 𝐹LM

〉
+
〈
𝐹LM ⊗ PNLO

𝑏𝑏

〉 ]
+
〈
ONLO Δ(m)𝐹LM(m)

〉
.

(6)

Here 𝐼 (0)T is the O(𝜖0) coefficient in the expansion of 𝐼T(𝜖), ONLO =
∑𝑁𝑝

𝑖=1 (1 − 𝑆m) (1 − 𝐶𝑖m) 𝜔m𝑖

is the subtraction operator for the fully-regulated real-emission contribution, and the finite NLO
splitting function PNLO is given in Eq. (I.3) in Ref. [1].

In the next section we will consider the NNLO contribution and will demonstrate that iterations
of these operators appear from virtual contributions and integrated subtraction terms. This fact will
play an important role in proving the cancellation of poles at NNLO.

2More details on the definitions and properties of the operators 𝐼S and 𝐼C can be found in Appendix A in Ref. [1].
3In the case of 𝑞𝑞 → 𝑋 + 𝑁 jets we have 𝑁𝑝 = 𝑁 + 2.
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2. NNLO calculation and color-correlated components

In this section we discuss the NNLO QCD correction to the 𝑞𝑞 → 𝑋 + 𝑁𝑔 process. The
corresponding cross section, d𝜎̂NNLO

𝑎𝑏
, receives contributions from double-virtual, double-real,

real-virtual and PDFs collinear renormalization contributions. We then write

d𝜎̂NNLO
𝑎𝑏 = d𝜎̂VV

𝑎𝑏 + d𝜎̂RV
𝑎𝑏 + d𝜎̂RR

𝑎𝑏 + d𝜎̂pdf
𝑎𝑏
. (7)

As done at NLO, we will be guided by the virtual contributions to identify corresponding IR
structures in the real emission terms. We begin by analysing the double-virtual component d𝜎̂VV

𝑎𝑏

in Eq. (7). Following Refs [14, 16, 17], we write

d𝜎̂VV
𝑎𝑏 = [𝛼𝑠] 2

〈[
1
2
𝐼2
V(𝜖) −

Γ(1 − 𝜖)
𝑒𝜖 𝛾E

(
𝛽0
𝜖
𝐼V(𝜖) −

(
𝛽0
𝜖

+ 𝐾
)
𝐼V(2𝜖)

)]
· 𝐹LM

〉
+ [𝛼𝑠]2

〈[
−1

2

[
𝐼1(𝜖), 𝐼

†
1(𝜖)

]
+ H2,tc + H†

2,tc + H2,cd + H†
2,cd

]
· 𝐹LM

〉
+ [𝛼𝑠]

〈
𝐼V(𝜖) · 𝐹fin

LV
〉
+
〈
𝐹fin

LV2

〉
+
〈
𝐹fin

VV
〉
.

(8)

In Eq. (8), 𝐾 is a constant, and 𝐹fin
LV2 , 𝐹fin

VV are the finite remainders of the NNLO matrix element
squared. The two quantities H (†)

2,tc and H (†)
2,cd are triple color-correlated and color-diagonal contribu-

tions respectively, and were explicitly computed in Refs. [16, 17]. In the expression of d𝜎̂VV
𝑎𝑏

four
different color structures appear:

i. color-uncorrelated terms, arising for instance from H2,cd + H†
2,cd ∼ 1;

ii. color-correlated terms, arising from 𝐼V ∼ 𝑻𝑖 · 𝑻 𝑗 ;

iii. quartic color-correlated terms, arising from 𝐼 2
V ∼ (𝑻𝑖 · 𝑻 𝑗) (𝑻𝑘 · 𝑻𝑙);

iv. triple color-correlated terms, arising from [𝐼1, 𝐼
†
1] and H2,tc + H†

2,tc ∼ 𝑓𝑎𝑏𝑐𝑇
𝑎
𝑘
𝑇𝑏
𝑖
𝑇𝑐
𝑗
.

Each of the structures listed above has to cancel independently. In these proceedings we sum-
marise the cancellation mechanism for the double color-correlated and the triple color-correlated
contributions.

We first focus on terms proportional to (𝑻𝑖 · 𝑻 𝑗) (𝑻𝑘 · 𝑻𝑙). They arise from the first term in
Eq. (8). Other terms that lead to similar color structures stem from the factorised contribution
to the double-soft limit of the double-real matrix element squared. This contribution is indeed
proportional to the product of two independent NLO-like soft currents, which, upon integration
over the relevant phase space, returns 𝐼 2

S . Moreover, the soft limit of the real-virtual correction
yields the product of a soft current and a color-correlated, one-loop matrix element interfered with
the LO one. This results in the product of Catani’s operators and 𝐼S, and suggests that NNLO
double color-correlated contributions can be rearranged in terms of the operator 𝐼T found at NLO
(see Eq. (5)). Such rearrangement would automatically guarantee that double color-correlated poles
vanish. Indeed, as mentioned, 𝐼T is of O(𝜖0). Since the definition of 𝐼T involves also the collinear
operator 𝐼C, it is crucial to identify it (and its combinations with 𝐼V and 𝐼S) among the subtraction

4
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terms stemming from the double-real and the real-virtual limits. We indeed find the following terms

d𝜎̂VV
𝑎𝑏 ⊃ 𝑌VV =

1
2
〈
𝐼 2
V · 𝐹LM

〉
, d𝜎̂RR

𝑎𝑏 ⊃ 𝑌 (ss)
RR =

1
2
〈
𝐼 2
S · 𝐹LM

〉
, (9)

d𝜎̂RR
𝑎𝑏 ⊃ 𝑌 (shc)

RR =
〈
𝐼S 𝐼C · 𝐹LM

〉
, d𝜎̂RR

𝑎𝑏 ⊃ 𝑌 (cc)
RR =

1
2
〈
𝐼 2
C · 𝐹LM

〉
, (10)

d𝜎̂RV
𝑎𝑏 ⊃ 𝑌 (s)

RV =
1
2
〈[
𝐼V 𝐼S + 𝐼S 𝐼V

]
· 𝐹LM

〉
, d𝜎̂RV

𝑎𝑏 ⊃ 𝑌 (shc)
RV =

〈
𝐼V 𝐼C · 𝐹LM

〉
. (11)

Once combined, these objects return

𝑌 =
1
2
〈[
𝐼V + 𝐼S + 𝐼C

]2 · 𝐹LM
〉
≡ 1

2
〈
𝐼 2
T · 𝐹LM

〉
. (12)

Eq. (12) is precisely the square of the structure found at NLO (see Eq. (5)) and collects all the
double color-correlated contributions into the operator 𝐼 2

T , which is finite in 𝜖 by construction.
In order to extract the𝑌VV,RV,RR functions as in Eqs (9)-(11), we have systematically expressed

the double-virtual contribution and the soft limit of the real-virtual correction through the 𝐼V

operator, instead of 𝐼1 and 𝐼†1. In doing so, we obtain various commutators of the operators 𝐼1, 𝐼†1
and 𝐼S. These "remnants" give rise to different color structures, namely to triple color-correlated
contributions proportional to ⟨M0 | 𝑓𝑎𝑏𝑐𝑇𝑎

𝑘
𝑇𝑏
𝑖
𝑇𝑐
𝑗
|M0⟩. Such terms have to cancel against other

sources of triple-color correlations, such as the operator H2,tc + H†
2,tc in the second line of Eq. (8).

Interestingly, explicit triple-color correlations also arise from the non-factorised component of the
soft limit of the real-virtual correction. The integration of this term over the unresolved phase space
is highly non-trivial (see Appendix H of Ref. [1] for details). We label the resulting integrated
counterterm as 𝐼RV

tri . Combining all the relevant terms, we find

Σtri
𝑁 = [𝛼𝑠]2

〈(
𝐼RV
tri + 𝐼 (cc)

tri

)
· 𝐹LM

〉
, (13)

where 𝐼 (cc)
tri is defined as

𝐼
(cc)
tri = − [𝐼+, 𝐼−] + [2𝐼+ + 𝐼S, 𝐼−] + H2,tc + H†

2,tc , 𝐼±(𝜖) = 1/2
(
𝐼1(𝜖) ± 𝐼

†
1(𝜖)

)
. (14)

To proceed, we need to compute the commutators of the various 𝐼-operators that appear in
Eq. (14). We point out that the only non-vanishing contributions come from color-correlated terms,
therefore only the irreducible terms proportional to 𝑻𝑖 · 𝑻 𝑗 can play a role. Furthermore, we also
exploit a suitable representation of the triple color-correlated operator H2,tc, which can be found in
Ref. [17]. Once all the technical details have been sorted out (see Ref. [1]), we obtain4

𝐼
(cc)
tri (𝜖) = 𝜋

2

𝑁𝑝∑︁
(𝑖 𝑗𝑘 )

𝑓𝑎𝑏𝑐 𝑇
𝑎
𝑘 𝑇

𝑏
𝑖 𝑇

𝑐
𝑗

[2𝐿𝑘 𝑗 𝜆𝑖 𝑗

𝜖2 −
4𝜙 𝑗𝑘𝜆𝑖 𝑗

𝜖
+
(
𝛿−𝑖 𝑗 + 𝛿−𝑗𝑖

) (
𝛿+𝑘 𝑗 + 𝛿

+
𝑗𝑘 − 2𝜙 𝑗𝑘

) ]
, (15)

where 𝐹 (𝑘𝑖 𝑗 ) = 𝑓𝑎𝑏𝑐 𝑇
𝑎
𝑘
𝑇𝑏
𝑖
𝑇𝑐
𝑗

and5

𝛿+𝑖 𝑗 =
1
2
𝐿2
𝑖 𝑗 +

𝛾𝑖

𝑻2
𝑖

𝐿𝑖 𝑗 −
1
2
𝜋2𝜆2

𝑖 𝑗 , 𝛿−𝑖 𝑗 =
𝛾𝑖

𝑻2
𝑖

𝜆𝑖 𝑗 + 𝐿𝑖 𝑗 𝜆𝑖 𝑗 ,

𝜙𝑖 𝑗 = − 2 log
(
2𝐸max
𝜇

)
log(𝜂𝑖 𝑗) −

1
2

log2(𝜂𝑖 𝑗) − Li2(1 − 𝜂𝑖 𝑗) .
(16)

4In the following formula we omit terms of O(𝜖).
5𝐸max is an upper bound on the soft gluon energy, 𝐸m ≤ 𝐸max. It is an arbitrary quantity that should be larger than

the largest energy that a particle in a particular process can have. For additional information, see Ref. [2].
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First, we notice that for a process with only outgoing (or only incoming) partons, we have 𝜆𝑖 𝑗 = 1
for all 𝑖, 𝑗 and hence the triple color-correlated poles in Eq. (15) vanish, due to the contraction of the
antisymmetric tensor 𝐹 (𝑘𝑖 𝑗 ) with the symmetric functions 𝐿𝑘 𝑗 and 𝜙 𝑗𝑘 . Similarly, the 𝜖-poles in
𝐼RV
tri also vanish if all resolved partons are in the final state. If both incoming and outgoing partons

are present, it is convenient to write 𝜆𝑖 𝑗 in the following way

𝜆𝑖 𝑗 = 1 − 𝛿𝑖1 − 𝛿𝑖2 − 𝛿 𝑗1 − 𝛿 𝑗2 + 2𝛿𝑖1 𝛿 𝑗2 + 2𝛿𝑖2 𝛿 𝑗1 , (17)

where 1 and 2 label the initial-state partons. Using this representation we obtain

𝐼
(cc)
tri =

𝑁𝑝∑︁
𝑘≠1,2

𝐹 (𝑘12)
[
− 2𝜋
𝜖2 log

(
𝜂2𝑘
𝜂1𝑘

)
− 2𝜋
𝜖

(
2 log

(
4𝐸2

max
𝜇2

)
log

(
𝜂1𝑘
𝜂2𝑘

)
+ log2 𝜂1𝑘 − log2 𝜂2𝑘 + 2Li(1 − 𝜂1𝑘) − 2Li(1 − 𝜂2𝑘)

)]
+ O(𝜖0) .

(18)

Comparing this result with the expression for 𝐼RV
tri in Eq. (H.15) of Ref. [1], we find that Eq. (13)

is finite, and therefore all the triple color-correlated objects contributing to d𝜎̂NNLO
𝑎𝑏

are of O(𝜖0),
independently on the number of final state gluons.

We stress that the issue of triple-color correlation is due to the non-abelian nature of QCD: the
NNLO correction cannot be reduced to a double copy of the NLO case, as it would be in QED. For
the same reason, Eq. (8) also contains color-correlated terms proportional to 𝑻𝑖 ·𝑻 𝑗 , as do d𝜎̂RV

𝑎𝑏
and

d𝜎̂RR
𝑎𝑏

. However, one can show that the single color-correlated pole can be written as a combination
of the operators 𝐼V and 𝐼S only, and it vanishes regardless of the number 𝑁 of final-state gluons.

Finally, Eq. (8) contains also color-uncorrelated terms that are diagonal in color space, and that
can be written as combinations of Casimir operators of external partons. They have to be combined
with the hard-collinear contributions contained within d𝜎̂RV

𝑎𝑏
, d𝜎̂RR

𝑎𝑏
and d𝜎̂pdf

𝑎𝑏
. The computation of

these objects is conceptually simple but tedious (see Sec. 5 of Ref. [1]). What is worth underlining,
however, is that even for these color-uncorrelated contributions it is possible to show the analytic
cancellation of the poles for the production of an arbitrary number of gluons in 𝑞𝑞 annihilation.

3. Conclusions

In this proceeding we have reported on recent developments [1] in the application of the nested
soft-collinear subtraction scheme [2] to generic hadron collider process at NNLO in QCD. The
key idea consists in identifying recurring universal structures that are iterations of those that arise
at NLO, or simple variants of them. Such structures usually combine into finite quantities, that
resemble NLO-like cross sections. We organised the calculation of NNLO partonic cross section
in such a way that the iterative nature of these finite contributions is fully exposed. This lead to a
drastic reduction of the computational complexity. Although we considered a 𝑞𝑞 initial state in this
paper, the guiding principles of the calculation can be adapted to accommodate other channels. The
main remaining challenge at this point is the combinatorics of quark and gluon collinear limits.
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