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Abstract: We describe how the nested soft-collinear subtraction scheme [1] can be used

to compute the next-to-next-to-leading order (NNLO) QCD corrections to the production

of an arbitrary number of gluonic jets in hadron collisions. We show that the infrared

subtraction terms can be combined into recurring structures that in many cases are simple

iterations of those terms known from next-to-leading order. The way that these recurring

structures are identified and computed is fairly general, and can be applied to any partonic

process. As an example, we explicitly demonstrate the cancellation of all singularities in

the fully-differential cross section for the qq̄ → X+Ng process at NNLO in QCD. The finite

remainder of the NNLO QCD contribution, which arises upon cancellation of all ϵ-poles,

is expressed via relatively simple formulas, which can be implemented in a numerical code

in a straightforward way. Our approach can be extended to describe arbitrary processes at

NNLO in QCD; the largest remaining challenge at this point is the combinatorics of quark

and gluon collinear limits.
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1 Introduction

The theoretical description of hard scattering processes at the LHC is based, almost entirely,

on perturbative QCD. Because of this, the development of theoretical methods that can be

used to provide predictions at progressively higher orders of perturbation theory has been

one of the most active and exciting topics in theoretical particle physics in the past decade

(see Refs [2–5] for the recent reviews).

An important part of the theoretical toolbox that allows the description of infrared-safe

observables at high orders of perturbative QCD is the treatment of infrared singularities.

It is well-known that these singularities cancel upon combining virtual corrections, unre-

solved real-radiation contributions, and the collinear renormalization of parton distribution

functions (PDFs). An important question is then how to organize this cancellation in a

process-independent way and how to arrive at finite remainders that are suitable for nu-

merical evaluations.

This problem was fully solved at next-to-leading order (NLO) in perturbative QCD

many years ago [6–11] (see also Ref. [12] for more recent work), but its extension to next-

to-next-to-leading order (NNLO) and beyond has proved to be difficult. In fact, there are

many NNLO subtraction and slicing schemes [1, 13–34] that have been used to perform

the many impressive computations at this perturbative order,1 but it is fair to say that the

complete generality achieved at NLO is still elusive at NNLO.

A peculiar illustration of this statement is the fact that the cancellation of 1/ϵn infrared

poles2 for a generic hadron collider process has not been demonstrated in any NNLO slicing

or subtraction scheme up to now, although important work in this direction, focusing

on gluonic states, has recently been presented in Ref. [59]. For e+e− collisions such a

cancellation for arbitrary final states has been shown only in the context of the so-called

local analytic sector subtraction scheme [31, 32].

The goal of this paper is to partially address this issue in the context of the nested

soft-collinear subtraction scheme [1]. This scheme has already been successfully applied to

compute the NNLO QCD corrections to a variety of processes such as color singlet pro-

duction [60] and decay [61], deep inelastic scattering [62], Higgs production in WBF [63],

1See Refs. [35–58] for a representative list of NNLO calculations by different collaborations.
2Throughout the paper we use dimensional regularization and work in d = 4− 2ϵ dimensions.
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non-factorizable corrections to t-channel single-top production [64] as well as mixed QCD-

electroweak corrections to the production of electroweak gauge bosons and dilepton pairs

[65–67]. This suggests that the nested soft-collinear subtraction scheme possesses the flex-

ibility and the simplicity that is needed for studies of multi-particle final states.

Moreover, the computations of double-unresolved soft and collinear contributions for

arbitrary kinematics are usually considered to be some of the most challenging calculations

required to develop a particular subtraction scheme. Interestingly, in the case of the nested

soft-collinear subtraction scheme, such computations were completed several years ago [68,

69], but this has not led to immediate applications of this scheme to high-multiplicity

QCD processes. Understanding the reasons for that is essential for further developing the

nested soft-collinear subtraction scheme and for making it applicable to the description of

arbitrary collider processes.

In this paper, we take a step in that direction by describing the application of this

scheme to the study of NNLO QCD corrections to the production of an arbitrary number

of gluons and a colorless final state X in qq̄ annihilation, i.e. the process 1a+2b → X+N g

with a, b ∈ {q, q̄}.3 However, we will keep the generic notation of a and b for the initial-

state partons, in order to make a future generalization easier. In particular, we stress that

the extension of this result to gg annihilation into X +N g is straightforward since many

of our arguments apply verbatim to this case as well, and the problem reduces to repeating

certain steps of the calculation using different splitting functions and replacing a few color

factors.

Moreover, although our results are currently restricted to gluonic final states, they

require the analysis of matrix elements containing the richest singularity structures that

can possibly arise, and we are confident that the new insights into the mechanisms of

infrared cancellations at NNLO in QCD that we obtain in this paper are useful for generic

final states. In fact, the outstanding challenge in generalizing the results from all-gluonic

to arbitrary final states is the combinatorics of various collinear limits. This aspect of the

problem does not show up prominently for all-gluonic final states because of the symmetry

of the relevant matrix elements under permutations of final-state gluons.

There is multiple evidence suggesting that infrared subtraction terms can be organized

into clear structures that iterate from NLO to NNLO and possibly, beyond. This is rather

obvious in case of leading collinear singularities where the highest collinear poles at each

perturbative order are described by convolutions of leading-order splitting functions. The

fact that a similar iterative description should hold for soft emissions as well follows from

Catani’s formula for ϵ-poles of one- and two-loop amplitudes [70]. However, the iterative

nature of the subtraction terms is not manifest in many NNLO subtraction schemes be-

cause, following the idea of FKS subtraction at NLO, one often splits real-emission phase

spaces into partitions and sectors to project matrix elements onto the minimal number of

singular kinematic configurations that one has to deal with at any point in the calculation.

In this paper we show how these iterative structures can be recognized and constructed

3A prototypical physical process is the gluonic contribution to qq̄ annihilation into an electroweak vector

boson and a large number of jets.

– 2 –



in the context of the nested soft-collinear subtraction scheme. We also demonstrate that

the existence of these iterative structures provides a strong guide for organizing NNLO

QCD computations and leads to the reduction of the computational complexity, allowing

us to deal with final states of arbitrary multiplicity.

The main result of this paper is a formula that allows the computation of NNLO QCD

corrections to a process where a qq̄ initial state annihilates into N final-state hard gluons

and an arbitrary number of colorless particles, through a fully local subtraction procedure.

This formula can be implemented in a computer code in a straightforward way; it requires

finite remainders of two- and one-loop scattering amplitudes for a particular process and

the corresponding Born amplitudes. Since the cancellation of all 1/ϵn singularities is proved

analytically, all required numerical integrations can be performed in four-dimensional space-

time.

The rest of the paper is organized as follows. After preliminary remarks in the next

section, we present the computation of NLO QCD corrections to the process 1a + 2b →
X + N g with a, b ∈ {q, q̄} in Section 3. The reader might also find it useful to refer

to Appendix C, where we elaborate on the cancellation of poles at NLO. This discussion

allows us to introduce the iterative structures that are crucial for the subsequent analyses

of the NNLO QCD corrections in Section 4. There we show how to rewrite the double-real

contribution as a sum of terms with well-defined partonic multiplicities, and how to express

these through operators corresponding to soft or collinear limits or virtual corrections. The

reader who is more interested in the mechanism of the pole cancellation at NNLO can skim

over this section and focus instead on Section 5. The final results for the finite remainders of

the NNLO QCD corrections are presented in Section 6. This section is quite self-contained

so that the reader who is only interested in these results can skip to this section right away.

We conclude in Section 7.

Finally, we note that the discussion of many technical details is relegated to multiple

appendices. In particular, we collect the definitions of the various constants, splitting

functions and fundamental operators used throughout the manuscript in Appendix A.

For the readers’ convenience, the many different notations that we use in the paper are

summarized in an alphabetic index that can be found at the end of the paper and used

to identify the place in the paper where a particular notation has been introduced for the

first time.

2 Preliminary considerations

Subtraction schemes should enable calculations of hard processes at lepton and hadron

colliders at higher orders in QCD perturbation theory. In this paper, we will consider

the process where N jets and a color-singlet system X are produced in hadron collisions,

pp→ X +N jets. The cross section of this process is given by the following formula

dσ =
∑
a,b

∫
dx1dx2 fa(x1, µF )fb(x2, µF ) dσ̂ab(x1, x2, µR, µF ;O) . (2.1)

– 3 –



Here dσ̂ab is the cross section in the ab partonic channel, fa,b are the parton distribution

functions (PDFs), µR and µF are the renormalization and factorization scales, respectively,

and O is an observable, which provides (among other things) an infrared-safe definition of

the N -jet final state.

The partonic cross section can be expanded in the strong coupling αs. We write

dσ̂ab = dσ̂LOab + dσ̂NLO
ab + dσ̂NNLO

ab +O(αq+3
s ) , (2.2)

where the LO term is proportional to αqs, and we have suppressed the arguments of all the

functions for brevity.

The computation of partonic cross sections and kinematic distributions requires inte-

grating matrix elements squared over phase spaces of relevant final states. For a generic

process, we find it convenient to treat matrix elements as vectors in color space [9]. A

matrix element where Np partons4 are assigned definite color indices is then written as a

projection on a particular color-space basis vector

Mc1,... ,cNp (p1, ... , pNp) = c⟨c1, ... , cNp |M(p1, ... , pNp)⟩c . (2.3)

The square of the amplitude summed over all possible color assignments is then

|M(p1, ... , pNp)|2 = c⟨M(p1, ... , pNp)|M(p1, ... , pNp)⟩c . (2.4)

Although it is sufficient to use the summed-over-colors amplitude squared to compute

leading-order cross sections, in higher orders of QCD perturbation theory color-correlated

matrix elements appear. For example, at NLO, one encounters ⟨M|T i ·T j |M⟩, where T i(j)

is the color charge operator of parton i(j) ∈ {1, .., Np}. To address this possibility, it is

convenient to introduce a tensor product of leading-order matrix elements |M0⟩ in color

space. We therefore define the function

F̃LM(1a, 2b; 3, ... Np;X) = |M0(1a, 2b; 3, ... , Np;X)⟩c ⊗ c⟨M0(1a, 2b; 3, ... , Np;X)|
× dLipsX O(p3, ... , pNp ; pX) ,

(2.5)

to describe the partonic process 1a + 2b → X + N jets at leading order. In Eq. (2.5),

Np = N + 2 is the number of initial- and final-state partons, the symbol ⊗ indicates a

tensor product in color space, and dLipsX is the Lorentz-invariant phase space for the

colorless system X, including the momentum-conserving delta function. Furthermore, we

always assume fi = g for i = 3, ..., Np, where fi is the flavor of parton i, and hence we do

not show a flavor index for the final state partons.

The matrix element squared is obtained by taking the trace in color space

Tr
[
F̃LM

]
c
= dLipsX |M0|2 O ≡ FLM , (2.6)

where the arguments of all functions have been suppressed. As we already mentioned, in

the course of NLO and NNLO calculations we will need to act on F̃LM with a function

4In the case of pp → X +N jets we have Np = N + 2.
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of operators in color space, and take the trace in color space after that. Denoting such a

function as A, we introduce the notation

A · FLM ≡ Tr
[
A F̃LM

]
c
= c⟨M0|A|M0⟩c dLipsXO . (2.7)

The LO partonic cross section can be obtained by integrating FLM(1a, 2b; 3, . . . , Np;X)

over the phase space of the final-state partons. We write

2s dσ̂LOab = N
∫ Np∏

i=3

[dpi] FLM(1a, 2b; 3, . . . , Np;X) =
〈
FLM

〉
, (2.8)

where s = 2p1 · p2 is the partonic center-of-mass energy squared. In Eq. (2.8) N is a

normalization factor that takes into account color and spin averages as well as symmetry

factors, and [dpi] is the phase-space element of a final-state parton i

[dpi] =
d3pi

(2π)32Ei
. (2.9)

3 Calculations at next-to-leading order

In this section we discuss the calculation of the partonic cross section of the process 1a +

2b → X+N g at next-to-leading order in perturbative QCD. Our main goal is to introduce

an infrared finite-operator IT, see Eq. (3.2), that describes the sum of virtual, soft and

certain collinear contributions and, as we explain later, is important for simplifying NNLO

QCD calculations.

Computation of NLO corrections requires the one-loop (virtual) contribution, the real-

emission contribution and the contribution of the collinear renormalization of parton dis-

tribution functions5

dσ̂NLO
ab = dσ̂Vab + dσ̂Rab + dσ̂pdfab . (3.1)

It is well-known that the virtual contribution contains explicit poles in ϵ that arise

from the integration over the loop momentum. For a generic process, these poles can

be written in a closed form using Catani’s function I1(ϵ) [70]. On the other hand, the

real-emission contributions do not contain explicit poles in ϵ until the integration over the

phase space of final-state partons is performed. Such an integration extends over singular

kinematic regions that correspond to soft and/or collinear emissions and generates the 1/ϵn

poles. Eventually, many of these poles will cancel with poles in the one-loop contribution;

therefore, we would like to parametrize them in a manner similar to Catani’s function

for the virtual corrections. Hence, we define soft and hard-collinear analogs of Catani’s

function, which we call IS(ϵ) and IC(ϵ), respectively, as well as a function IV(ϵ) which is

related to I1(ϵ). These functions will multiply terms with leading order kinematics, such

that the sum

IT(ϵ) = IV(ϵ) + IS(ϵ) + IC(ϵ) , (3.2)

5Throughout this paper we work with UV-renormalized matrix elements.
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is ϵ-finite.

To define all the I-operators in Eq. (3.2) and to explain how their combination arises,

we begin by considering the real-emission contribution to the NLO cross section. This

contribution refers to the process 1a + 2b → X + (N + 1) g. We write

2s dσ̂Rab =
〈
FLM(1a, 2b; 3, ... , Np + 1;X)

〉
= FLM(m) . (3.3)

Since the observable O in the definition of FLM requires at least N resolved partons, one

and only one parton among the N + 1 final-state ones in the above equation can become

unresolved, i.e. soft and/or collinear to another parton. To identify the unresolved parton,

we introduce damping factors ∆(i) such that they provide a partition of unity,

Np+1∑
i=3

∆(i) = 1 . (3.4)

The explicit form of the damping factors can be found in Appendix B. They are constructed

in such a way that a damping factor ∆(i) vanishes when any parton, with the exception of

parton i, becomes either soft or collinear to any other parton, including the incoming ones.

This implies that in the combination ∆(i)FLM, only soft and collinear limits of parton i

can lead to non-integrable singularities and, eventually, to the appearance of 1/ϵn poles.

We then write

〈
FLM(1a, 2b; 3, ... , Np + 1;X)

〉
=

Np+1∑
i=3

〈
∆(i)FLM(1a, 2b; 3, ... , Np + 1;X)

〉
. (3.5)

Since we focus on the all-gluon final state, FLM is unchanged under any permutation of the

final-state partons. Then we obtain

Np+1∑
i=3

〈
∆(i)FLM(1a, 2b; 3, ... , Np + 1;X)

〉
=

〈
(Np − 1)∆(m)FLM(m)

〉
. (3.6)

In the above result, we have relabelled the arguments of FLM in such a way that the

damping factors become identical for each term in the sum and we denote the potentially-

unresolved gluon as m. The remaining N = Np − 2 final-state gluons are resolved. For

simplicity, we do not show the dependence of FLM on their momenta and polarizations.

We also omit the dependence of FLM on the kinematics of color-singlet final-state particles.

We note that in Eq. (3.6) the functions FLM include 1/(Np − 1)! symmetry factors

for the all-gluon final state. The factor (Np − 1) on the right hand side of that equation

combines with 1/(Np − 1)! and turns into 1/(Np − 2)! = 1/N ! where N is the minimal

required number of resolved jets. This is the same symmetry factor as in e.g. the virtual

contribution and we will simply not write it explicitly in what follows. Thus, by an abuse

of notation, we will write the right-hand side of Eq. (3.6) as
〈
∆(m)FLM(m)

〉
, with the

understanding that symmetry factors in FLM refer to resolved final-state gluons only.

To deal with matrix elements and phase spaces in soft and collinear limits we need the

corresponding operators. These operators were introduced earlier [1] and we repeat their

– 6 –



definitions here for completeness. The actions of soft Si and collinear Cij operators on a

function A are described by the following formulas

SiA = lim
Ei→0

A , CijA = lim
ρij→0

A , (3.7)

where Ei is the energy of parton i and ρij = 1− cos θij , with θij is the angle between the

three-momenta of partons i and j.6 When these operators appear in the formulas for cross

sections, it is understood that they act on all quantities to the right of them; when limits

in the conventional sense do not exist, they extract the most singular contributions.

The soft and collinear operators acting on the damping factors lead to the following

results7

Sm∆
(m) = 1 , Cam∆

(m) = 1 , Cim∆
(m) =

Em

Ei + Em
≡ zm,i , (3.8)

for a = 1, 2 and i ≥ 3.

We will now use these operators to isolate and subtract the singular contributions,

starting with the soft one. We write〈
∆(m)FLM(m)

〉
=

〈
SmFLM(m)

〉
+
〈
Sm∆

(m)FLM(m)
〉
, (3.9)

where we introduced the handy notation

Sm ≡ 1 − Sm . (3.10)

The soft limit of the matrix element squared reads

SmFLM(m) = −g2s,b
Np∑
(ij)

pi · pj
(pi · pm)(pj · pm)

(T i ·T j) · FLM , (3.11)

where gs,b is the bare coupling constant, and we have used Eq. (2.7) to write the color-

correlated matrix element squared in a convenient way. In Eq. (3.11), the sum runs over

distinct indices i and j. We remind the reader that the color-charge operators of different

particles T i commute with each other. Furthermore, we use the Casimir operators to

compute squares of color-charge operators with T 2
q = T 2

q̄ = CF and T 2
g = CA.

Since the unresolved gluon m decouples from FLM, we can integrate Eq. (3.11) over

its d-dimensional phase space. To do so, we introduce an upper bound on the soft gluon

energy, Em ≤ Emax.
8 Performing this integration, we find

〈
SmFLM(m)

〉
=− [αs]

(2Emax/µ)
−2ϵ

ϵ2

Np∑
(ij)

〈
η−ϵij Kij (T i ·T j) · FLM

〉
≡ [αs]

〈
IS(ϵ) · FLM

〉
,

(3.12)

6Since our primary variables are energies and angles, we need to fix a reference frame at the beginning

of the calculation.
7Derivation of these results can be found in Appendix B.
8Emax is an arbitrary quantity that should be larger than the largest energy that a particle in a particular

process can have. For additional information, see Ref. [1].
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where

[αs] =
αs(µ)

2π

eϵγE

Γ(1− ϵ)
, (3.13)

and

Kij =
Γ2(1− ϵ)

Γ(1− 2ϵ)
η1+ϵij 2F1(1, 1, 1− ϵ, 1− ηij) , ηij = ρij/2 . (3.14)

We now return to Eq. (3.9) and focus on the second term on the right-hand side. This

term is soft-regulated, but contains collinear singularities. In order to remove them, we

introduce angular partitions of unity ωmi, which satisfy the following equations

Np∑
i=1

ωmi = 1; Cjmω
mi = δij . (3.15)

We thus write

〈
∆(m)FLM(m)

〉
=

〈
SmFLM(m)

〉
+

Np∑
i=1

〈
SmCim∆

(m)FLM(m)
〉

+

Np∑
i=1

〈
SmCim ω

mi∆(m)FLM(m)
〉
,

(3.16)

where

Cim ≡ 1 − Cim . (3.17)

The last term on the right-hand side of Eq. (3.16) is fully regulated and can be integrated

in four dimensions. In the hard-collinear limits that appear in the second term on the right-

hand side in Eq. (3.16), the gluon decouples from FLM either partially or fully, allowing us

to integrate over its phase space in d dimensions.

We continue with the second term on the right-hand side of Eq. (3.16), and consider

the situation where the gluon m becomes collinear to the final-state gluon i and produces

a single final-state gluon that we label as [im]. Integrating over the phase space of gluon

m and renaming [im] 7→ i, we find〈
SmCim∆

(m)FLM(m)
〉
= [αs]

〈
Γi,g
ϵ
FLM

〉
. (3.18)

In Eq. (3.18) we have introduced the generalized energy-dependent final-state gluon anoma-

lous dimension

Γi,g =

(
2Ei
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)
γ22z,g→gg(ϵ, Li) , i = 3, ... , Np , (3.19)

where, for any function f(z) regular at z = 1, we define

γnkf(z),g→gg(ϵ, Li) =−
1∫

0

dz (1− Sz)
[
z−nϵ(1− z)−kϵ f(z)Pgg(z)

]
+ 2T 2

g

1− ekϵLi

kϵ
f(1) ,

(3.20)
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and Li = log(Emax/Ei). In Eq. (3.16), we introduced an operator Sz which extracts the

(soft) z → 1 limit of the expression it acts upon, and used Pgg to denote the spin-averaged

gluon splitting function defined in Eq. (A.23). We emphasize that Γi,g depends on the

energy of the hard-collinear parton and on Emax, but we do not show these dependencies

in what follows.

We continue with the case when the gluon m becomes collinear to one of the initial-state

partons, say 1a. The matrix element squared that enters the definition of the function FLM

depends on the energy fraction z = 1 − Em/E1, which implies that one cannot integrate

over the energy of the collinear gluon. However, integrating over the relative angle between

m and a is possible; performing this integration, we find

〈
SmCam∆

(m)FLM(m)
〉
= [αs]

〈
Γ1,a

ϵ
FLM

〉
+

[αs]

ϵ
⟨Pgen

aa (ϵ)⊗ FLM⟩ . (3.21)

In Eq. (3.21) Γ1,a is the generalized initial-state anomalous dimension which reads

Γ1,a =

(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

(
γa + T 2

a

1− e−2ϵL1

ϵ

)
, (3.22)

where γa is the anomalous dimensions of the initial-state parton a.9 When writing Eq. (3.21)

we have used the fact that we only consider final-state gluons; because of that the parton

type does not change after the collinear splitting. The function Pgen
aa in Eq. (3.21) is the

generalized splitting function

Pgen
aa (z, E1) =

(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

[
−P̂ (0)

aa (z) + ϵPfin
aa (z)

]
. (3.23)

where P̂
(0)
aa are the Altarelli-Parisi splitting functions which can be found in Appendix A,

together with the definition of the function Pfin
aa .

10 Furthermore, in Eq. (3.21) we also used

the shorthand notation

Pgen
aa ⊗ FLM ≡

1∫
0

dz Pgen
aa (z)

FLM(z · 1a, 2b; . . . )
z

. (3.24)

The case when the gluon m becomes collinear to the initial-state parton 2b is described

by an equation which is analogous to Eq. (3.21) but contains Γ2,b instead of Γ1,a, and the

“right” convolution

FLM ⊗ Pgen
bb ≡

1∫
0

dz Pgen
bb (z)

FLM(1a, z · 2b; . . . )
z

. (3.25)

9We remind the reader that the quark and gluon anomalous dimensions read γq = 3/2CF and γg =

β0 = 11/6CA − 2/3TRnf . Since in this paper we only deal with gluon final states, we systematically set

nf to zero in what follows.
10We note that Pfin

aa is a function of ϵ; for brevity, we do not show this dependence.
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We can now combine the various contributions and write the real-emission part of the

NLO cross section. We find11

dσ̂Rab = [αs]
〈
(IS(ϵ) + IC(ϵ)) · FLM

〉
+

[αs]

ϵ

[
⟨Pgen

aa ⊗ FLM⟩+
〈
FLM ⊗ Pgen

bb

〉 ]
+

Np∑
i=1

〈
SmCim ω

mi∆(m)FLM(m)
〉
,

(3.26)

where we introduced the hard-collinear operator

IC(ϵ) =

Np∑
i=1

Γi,fi
ϵ

, (3.27)

with f1 = a and f2 = b.

The infrared poles in Eq. (3.26) cancel against those in the virtual contribution and

the collinear renormalization of the PDFs, producing a finite remainder proportional to

terms with lower parton multiplicities. To show this, we note that the infrared poles of the

one-loop amplitude M1 can be written using Catani’s formula [70]

M1(1a, 2b; 3, ... , Np;X) =
αs(µ)

2π
I1(ϵ) M0(1a, 2b; 3, ... , Np;X)

+Mfin
1 (1a, 2b; 3, ... , Np;X) ,

(3.28)

where Mfin
1 is the infrared finite one-loop amplitude and

I1(ϵ) =
1

2

eϵγE

Γ(1− ϵ)

Np∑
(ij)

Vsing
i (ϵ)

T 2
i

(T i ·T j)

(
µ2

2pi · pj

)ϵ
eiπλijϵ , Vsing

i (ϵ) =
T 2
i

ϵ2
+
γi
ϵ
. (3.29)

The parameters λij in Eq. (3.29) are 1 if i and j are both incoming or outgoing partons

and zero otherwise. Therefore, we can write

2s dσ̂Vab =
〈
FLV

〉
= [αs]

〈
IV(ϵ) · FLM

〉
+
〈
F fin
LV

〉
, (3.30)

where

IV(ϵ) = I1(ϵ) + I
†
1(ϵ) . (3.31)

In the equation above we have introduced the operator I1 in place of Catani’s original

operator to factor out the same strong coupling [αs] that appears in the real-emission

contribution. It is defined by the following equation

I1(ϵ) =
Γ(1− ϵ)

eϵγE
I1(ϵ) , (3.32)

such that

[αs] I1(ϵ) =
αs(µ)

2π
I1(ϵ) . (3.33)

11We note that, since we consider gluonic final states, Pgen
aa is the same as Pgen

bb . Nevertheless, we find it

convenient to distinguish between these two.
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Furthermore, F fin
LV in Eq. (3.30) is analogous to FLM in Eq. (2.6) but with 2Re

[
Mfin

1 M∗
0

]
instead of |M0|2.

The collinear renormalization of parton distribution functions is standard. The NLO

contribution to the cross section reads

2s dσ̂pdfab =
αs(µ)

2πϵ

[〈
P̂ (0)
aa ⊗ FLM

〉
+
〈
FLM ⊗ P̂

(0)
bb

〉]
. (3.34)

Finally, combining virtual (see Eq. (3.30)), real-emission (see Eq. (3.26)) and PDF-

renormalization (see Eq. (3.34)) contributions, we derive the following finite formula for

the NLO cross section

dσ̂NLO
ab = dσ̂Vab + dσ̂Rab + dσ̂pdfab = [αs]

〈
I
(0)
T · FLM

〉
+ ⟨F fin

LV⟩

+ [αs]
[ 〈

PNLO
aa ⊗ FLM

〉
+
〈
FLM ⊗ PNLO

bb

〉 ]
+
〈
ONLO∆(m)FLM(m)

〉
,

(3.35)

where I
(0)
T is the O(ϵ0) coefficient in the expansion of IT(ϵ), displayed in Eq. (3.2).

A few comments about this result are in order. First, as we have anticipated at the

beginning of this section, we have defined an infrared-finite sum12 of the virtual, soft, and

collinear I-operators that appears in the fully-unresolved part of dσ̂NLO
ab〈

IT(ϵ) · FLM

〉
=

〈[
IV(ϵ) + IS(ϵ) + IC(ϵ)

]
· FLM

〉
= O(ϵ0) . (3.36)

As we show in the next section, iterations of this operator will appear in the result for the

NNLO contribution to the cross section; this fact will play an important role in proving the

cancellation of poles at NNLO as well. Second, we have denoted the subtraction operator

for the fully-regulated real-emission contribution as

ONLO =

Np∑
i=1

SmCim ω
mi . (3.37)

Finally we have exploited the expansion of Pgen
aa

Pgen
aa (z, Ei) = −P̂ (0)

aa (z) + ϵPNLO
aa (z, Ei) +O(ϵ2) , (3.38)

to obtain a manifestly finite quantity once we combine the hard-collinear subtraction terms

with the PDF-renormalization contributions. The function PNLO
aa is defined in Eq. (I.3).

When using this function it is understood that Ei should be set to E1 in
〈
PNLO
aa ⊗ FLM

〉
and to E2 in

〈
FLM ⊗ PNLO

bb

〉
.

For the reader’s convenience, the definitions introduced in this section are repeated in

Appendix A. A more detailed discussion of the NLO calculation, including expansions of

the various functions in powers of ϵ and a demonstration of the cancellation of the ϵ-poles,

is presented in Appendix C.

12We show that this sum is ϵ-finite in Appendix C.
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4 Calculations at next-to-next-to-leading order

In this section we extend the NLO QCD analysis described in the previous section to

NNLO. At this order of perturbation theory we have to combine the double-virtual, the

real-virtual, the double-real and the PDF renormalization contributions to compute the

differential cross section. Hence, we write

dσ̂NNLO
ab = dσ̂VV

ab + dσ̂RVab + dσ̂RR
ab + dσ̂pdfab . (4.1)

Although the NNLO computation is significantly more involved than the NLO one, our

aim is to replicate the latter as much as possible. In doing so, we face the following

dilemma. On the one hand, the double-real contributions need to be split into partitions

and sectors in order to define the approach to collinear singular limits in a unique way. On

the other hand, this “sectoring” destroys the emergence of structures that can be combined

in a natural way with the double-virtual and real-virtual corrections. Hence, finding an

optimal balance between splitting the real-emission contributions into many well-defined

pieces and identifying proper structures early in the calculation is the central challenge to

organizing the NNLO computation in an efficient way. We explain how we address this

challenge in this section.

Similar to the NLO case, we distinguish between resolved and potentially unresolved

partons with the help of the partitions ∆(i) and ∆(ij) defined in Appendix B. We use

symmetries of the final-state gluons to define the NNLO contribution to the cross section

without the PDFs renormalization in the following way

2s dσ̄NNLO =
〈
FVV(1a, 2b; 3, ..., Np)

〉
+
〈
∆(m)FRV(1a, 2b; 3, ..., Np,mg)

〉
+

1

2!

〈
∆(mn)FLM(1a, 2b; 3, ..., Np,mg, ng)

〉
.

(4.2)

Here, FVV and FRV are defined analogously to Eq. (2.6), but using double-virtual and real-

virtual matrix elements, while m and n are potentially-unresolved partons. Furthermore,

all the functions FVV, FRV and FRR include the symmetry factor 1/(Np − 2)! arising from

the N = Np − 2 identical resolved gluons in the final state. The dependence of the matrix

elements and phase spaces on colorless final-state particles is not shown.

It is convenient to remove the (remaining) symmetry factor 1/2! from the double-real

contribution by introducing the energy ordering of the unresolved gluons m and n

1

2!

〈
∆(mn)FLM(...,mg, ng)

〉
=

〈
∆(mn)ΘmnFLM(...,mg, ng)

〉
, (4.3)

where Θmn = Θ(Em − En). We obtain

2s dσ̄NNLO =
〈
FVV(1a, 2b; 3, ..., Np)

〉
+
〈
∆(m)FRV(1a, 2b; 3, ..., Np,mg)

〉
+
〈
∆(mn)ΘmnFLM(1a, 2b; 3, ..., Np,mg, ng)

〉
.

(4.4)

The above equation provides the starting point for our calculation. It follows that the

NNLO QCD corrections to the cross section contain contributions that exist in three dis-

tinct phase spaces. These phase spaces overlap in configurations where the gluons labelled
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as m and n become unresolved. When this happens, the corresponding amplitudes become

singular and integrating over unresolved phase spaces leads to the appearance of 1/ϵn poles,

similar to the NLO case. Our goal is to isolate and remove these singularities locally in

the phase space, demonstrate the cancellation of poles between the different contributions

in Eq. (4.4), and determine the finite remainder.

We begin by isolating the soft limits of the real-emission contributions. As already

discussed in Ref. [1], two soft limits are needed: one to describe the double-soft limit

Em ∼ En → 0, which we denote as Smn, and one for the single-soft limit En → 0 at fixed

Em, which we denote as Sn. We write

2s dσ̄NNLO =
〈
FVV

〉
+

〈
Smn∆

(mn)ΘmnFLM(m, n)
〉

+
〈
∆(m)FRV(m)

〉
+
〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉

+
〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉
,

(4.5)

where the operator Sx = I − Sx has already been introduced in the context of the NLO

QCD computation. Furthermore, when writing Eq. (4.5), we have dropped the arguments

related to the resolved partons, i.e.

FLM(m, n) ≡ FLM(1a, 2b, 3, ... , Np,mg, ng) . (4.6)

Next, we take the fourth term on the right-hand side of Eq. (4.5)〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉
, (4.7)

make use of the fact that〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉
=

〈
SmSn∆

(mn)ΘmnFLM(m, n)
〉
, (4.8)

and add collinear subtractions for the gluon m. We find〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉
=

〈
ONLO∆

(m)SnΘmnFLM(m, n)
〉

+

Np∑
i=1

〈
SmCim∆(m)SnΘmnFLM(m, n)

〉
.

(4.9)

We remind the reader that the operator ONLO, defined in Eq. (3.37), subtracts singularities

associated with parton m, and we have used Eq. (B.13) to simplify Eq. (4.9). To obtain a

similar structure for the real-virtual contribution, we rewrite FRV as

〈
∆(m)FRV(m)

〉
=

〈
SmFRV(m)

〉
+

Np∑
i=1

〈
SmCim∆

(m)FRV(m)
〉
+
〈
ONLO∆(m)FRV(m)

〉
. (4.10)

Since the cancellation of infrared singularities can only occur among terms with similar

kinematics of the hard final-state partons, we would like to write the NNLO QCD cross

section in such a way that contributions with the same number of resolved final-state
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partons are combined. At NNLO this number varies between N and N + 2, so there are

three terms that need to be considered. Hence, we aim to write the cross section in the

following way

2s dσ̄NNLO = ΣN +ΣN+1 +ΣN+2 . (4.11)

Most of the contributions to the above equation are yet to be determined. However, as a

first step, we can use Eq. (4.5) and the rearrangement of terms that led to Eqs. (4.9) and

(4.10) to write13

2s dσ̄NNLO = Σ
(1)
N +Σ

(1)
N+1 +ΣRR , (4.12)

where

Σ
(1)
N =

〈
FVV

〉
+
〈
SmnΘmnFLM(m, n)

〉
+

〈
SmFRV(m)

〉
+

Np∑
i=1

〈
SmCim∆

(m)
[
FRV(m) + SnΘmnFLM(m, n)

]〉
,

Σ
(1)
N+1 =

〈
ONLO∆

(m)
[
FRV(m) + SnΘmnFLM(m, n)

]〉
,

ΣRR =
〈
SmnSn∆

(mn)ΘmnFLM(m, n)
〉
.

(4.13)

The quantity Σ
(1)
N is double-unresolved, in the sense that both gluons m and n are either

soft or collinear. The superscript indicates that this is the first of several contributions

to ΣN that has been identified. Similarly, the quantity Σ
(1)
N+1 is the first single-unresolved

term contributing to ΣN+1 that we identify. On the contrary, ΣRR is a mix of various con-

tributions as it contains unregulated collinear singularities. As we will see, upon extracting

these singularities, some parts of ΣRR will contribute to ΣN and ΣN+1 and will play an

important role in the cancellation of infrared poles.

It is well-known that extracting all singularities from the double-real contribution is

a complicated problem as many of them overlap. To disentangle them, we partition the

angular phase space [1, 20, 21, 60]. Further details are given in Appendices B and D. Using

these results, we split ΣRR into four distinct terms. We write

ΣRR = Σfin
N+2 +Σ

(2)
N +ΣRR,2c +ΣRR,1c , (4.14)

where, as we already mentioned, the subscripts of the first two terms on the right-hand

side indicate the number of resolved partons. In brief, the first term on the right-hand

side in Eq. (4.14) is fully resolved, the second is the triple-collinear subtraction term, the

third is the double-collinear term and the last term is the single-collinear contribution. To

elaborate further, the first term Σfin
N+2 is the fully-regulated contribution given by

Σfin
N+2 =

〈
SmnSnΩ1∆

(mn)ΘmnFLM(m, n)
〉
, (4.15)

where Ω1 is a function of collinear-subtraction operators and partition functions defined

in Eq. (D.5). The quantity Σfin
N+2 is the only contribution to the NNLO cross section with

13All the steps that are needed for the rearrangements can be found in Fig. 1.
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N + 2 resolved final-state partons and it can be implemented in a numerical code without

further ado.

The second term Σ
(2)
N is the triple-collinear contribution. It reads

Σ
(2)
N =

〈
SmnSnΩ2∆

(mn)ΘmnFLM(m, n)
〉
, (4.16)

where Ω2 is a triple-collinear projection operator that can be found in Eq. (D.6). We

note that Σ
(2)
N was computed in Ref. [68] and can be immediately borrowed from there. It

represents the second contribution to the fully-unresolved term ΣN that we have identified.

The third term ΣRR,2c is the double-collinear contribution where gluons are emitted

from different legs

ΣRR,2c =
〈
SmnSnΩ3∆

(mn)ΘmnFLM(m, n)
〉

=−
Np∑
(ij)

〈
SmnSnCjnCim[dpm][dpn]ω

mi,nj∆(mn)ΘmnFLM(m, n)
〉
,

(4.17)

where the angular partition functions ωmi,nj are defined in Appendix B. Although this

contribution is fairly simple, it is useful to rewrite it before proceeding further. According

to Eq. (4.17) both collinear operators Cim and Cjn act on the phase space of partons m and

n. This is necessary to be able to use the results for Σ
(2)
N from Ref. [68]. Eventually, we will

have to combine these double-collinear contributions with collinear limits of the single-soft,

the real-virtual and other terms, where by definition the collinear operators do not act on

the potentially unresolved phase spaces. Hence, it is convenient to rewrite Eq. (4.17) in

the same way, ensuring that Cim and Cjn do not act on the phase space of the unresolved

partons. We explain how to do this in Appendix E.2. Here, we just state the result and

write ΣRR,2c as follows

ΣRR,2c = Σ
(3)
N +Σ

fin,(1)
N , (4.18)

where Σ
(3)
N is the third (divergent) double-unresolved contribution that we have extracted.

Likewise, Σ
fin,(1)
N is the first ϵ-finite contribution to ΣN that we have encountered. We

stress that this is not the same as the finite part of Σ
(1)
N defined previously. The two terms

read

Σ
(3)
N =−

Np∑
(ij)

〈
SnCjnCim∆

(mn)ΘmnFLM(m, n)
〉
,

Σ
fin,(1)
N =−

[(
Γ(1− 2ϵ)

Γ2(1− ϵ)

)2

− 1

] Np∑
(ij)

〈
SnCjnCim∆(mn)ΘmnFLM(m, n)

〉
.

(4.19)

We note that the unresolved phase space [dpm][dpn] does not appear in the above formulas,

indicating that collinear operators do not act on it anymore. In addition, we have used

CjnCim ω
mi,nj = 1 to remove the partition functions. Furthermore, if the gluons are emitted

off different external legs (which is ensured by the two collinear operators), we have

SmnSn [...] = 0 , (4.20)
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allowing us to write SmnSn = Sn. Finally, to see that Σ
fin,(1)
N is finite, we observe that

Eq. (4.19) is completely soft-regulated, while the two collinear operators Cim and Cjn each

produce an O(ϵ−1) singularity upon integrating over the phase space of gluons m and n.

This is compensated by the prefactor
(
Γ(1− 2ϵ)/Γ2(1− ϵ)

)2 − 1 ∼ O(ϵ2), leading to an

infrared finite quantity. To summarize, we have written ΣRR,2c as the sum of two double-

unresolved contributions, one of which contains poles and one of which is ϵ-finite.

We are left with ΣRR,1c, which is the double-real single-collinear contribution. It reads

ΣRR,1c =
〈
SmnSnΩ4∆

(mn)ΘmnFLM(m, n)
〉

=

Np∑
(ij)

〈
SmnSn

[
Cim[dpm] + Cjn[dpn]

]
ωmi,nj∆(mn)ΘmnFLM(m, n)

〉

+

Np∑
i=1

〈
SmnSn

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
× [dpm][dpn]ω

mi,ni∆(mn)ΘmnFLM(m, n)
〉
,

(4.21)

where the functions θ(α) with α = a, b, c, d indicate that a particular contribution is confined

to a certain phase-space sector. These sectors, together with the corresponding phase-space

parameterizations, are defined in Appendices D and E, respectively. The challenge therefore

is to write ΣRR,1c as a sum of terms with a well-defined number of resolved partons. To

do this, we need to extract the remaining collinear singularities from ΣRR,1c. We do so in

the next section.

4.1 Analyzing single-collinear contributions

The 1/ϵn singularities in ΣRR,1c simplify if the contributions of different partitions and

sectors are combined. To appreciate why doing so is non-trivial, we need to remind ourselves

why partitions and sectors were introduced in the first place. The reason was to disentangle

overlapping singular limits, making them uniquely defined. However, it also complicates

the identification of physical quantities such as e.g. collinear anomalous dimensions and

splitting functions. We emphasize that the ability to recognize these universal structures

in the early stages of the calculation is very useful for canceling the infrared divergences

in an efficient and transparent manner. Hence, our strategy will be to remove sectors

in a controlled way, eventually getting to the point where various contributions can be

rearranged into recognizable universal structures.

As a result of this analysis we are able to represent ΣRR,1c by a sum of five divergent

Σ
(4,...,8)
N and four finite (Σ

fin,(2,...,5)
N ) double-unresolved quantities, and two divergent Σ

(2,3)
N+1

and two finite Σ
fin(1,2)
N+1 single-unresolved quantities, see Fig. 1. These quantities are used

in Eq. (4.67) and Eq. (5.1), respectively, to construct relevant contributions to the NNLO

cross section. The remainder of this section describes manipulations of ΣRR,1c that lead to

such a representation.

We begin by separating sectors θ(b) and θ(d) from the remaining contributions to ΣRR,1c.
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We write

ΣRR,1c = Σ
(a,c,dc)
RR,1c +Σ

(b,d)
RR,1c , (4.22)

where14

Σ
(a,c,dc)
RR,1c =

〈
SmnSn

[ Np∑
(ij)

(Cim + Cjn)ω
mi,nj +

Np∑
i=1

(Cinθ
(a) + Cimθ

(c))ωmi,ni

]

× [dpm][dpn]∆
(mn)ΘmnFLM(m, n)

〉
,

(4.23)

and

Σ
(b,d)
RR,1c =

Np∑
i=1

〈
SmnSnCmn(θ

(b) + θ(d))[dpm][dpn]ω
mi,ni∆(mn)ΘmnFLM(m, n)

〉
. (4.24)

We first consider Σ
(a,c,dc)
RR,1c . In this case Eq. (4.20) holds, so that SmnSn can be replaced

by Sn. We then write

Σ
(a,c,dc)
RR,1c =

〈
Sn

[ Np∑
(ij)

(Cim + Cjn)ω
mi,nj

+

Np∑
i=1

(
Cinθ

(a) + Cimθ
(c)
)
ωmi,ni

]
[dpm][dpn]∆

(mn)ΘmnFLM(m, n)

〉
.

(4.25)

We can simplify this expression by renaming gluons m and n in such a way that the collinear

operators always refer to the gluon m. We also exploit the fact that under such a relabelling

sector θ(a) becomes sector θ(c), see Eq. (D.1). Hence, we obtain

Σ
(a,c,dc)
RR,1c =

〈
S(m, n)

[ Np∑
(ij)

Cim ω
mi,nj

+

Np∑
i=1

Cimθ
(c)ωmi,ni

]
[dpm][dpn]∆

(mn)FLM(m, n)

〉
,

(4.26)

where the soft-regulating operator S(m, n) reads

S(m, n) = SnΘmn + SmΘnm . (4.27)

We note that we can rewrite the operator S(m, n) in several equivalent ways

S(m, n) = SnΘmn + SmΘnm = 1 − SnΘmn − SmΘnm

= SmSn + SmSnΘmn + SnSmΘnm = Sn(1 − SmΘnm) + SnSmΘnm ,
(4.28)

and we will use the different representations displayed above in what follows.

14The superscript (a, c, dc) reminds us that Σ
(a,c,dc)
RR,1c includes contributions of sectors a and c and of the

double-collinear partitions.
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To simplify Σ
(a,c,dc)
RR,1c we need to extract the remaining collinear singularities. Since

we relabeled gluons so that the collinear operators refer to the gluon m, the unregulated

singularities affect gluon n only. However, there is an additional technical detail that should

be highlighted before proceeding.

As we already mentioned, the many single-collinear contributions will have to be com-

bined with collinear limits from single-soft, real-virtual and other terms where the collinear

operators do not act on the phase space. Therefore, it is useful to rewrite Σ
(a,c,dc)
RR,1c in such

a way that: i) Cim does not act on the phase space and ii) restrictions imposed by the

presence of sector θ(c) are lifted. We explain how to do this in Appendix E.2. Here, we

just report the final result, which is obtained once we insert 1 = Cim+Cim in the equation

for Σ
(a,c,dc)
RR,1c . We find

Σ
(a,c,dc)
RR,1c = Σ

(a,c,dc),1
RR,1c +Σ

(a,c,dc),2
RR,1c , (4.29)

where

Σ
(a,c,dc),1
RR,1c =

〈
S(m, n)

[ Np∑
(ij)

CjnCim ω
mi,nj

+

Np∑
i=1

(ηin/2)
−ϵCinCim ω

mi,ni

]
∆(mn)FLM(m, n)

〉
,

(4.30)

and

Σ
(a,c,dc),2
RR,1c =

Γ(1− 2ϵ)

Γ2(1− ϵ)

〈
S(m, n)

[ Np∑
(ij)

CjnCim

+

Np∑
i=1

(ηin/2)
−ϵCinCim

]
∆(mn)FLM(m, n)

〉
.

(4.31)

As was the case in Eq. (4.19), the phase space [dpm][dpn] does not appear in these formulas

anymore, indicating that collinear operators there do not act on it. We also note that

the sector function θ(c) disappeared from Eq. (4.30), leaving as a remnant the factor of

(ηin/2)
−ϵ. Furthermore, Eq. (4.31) becomes potentially ambiguous because the collinear

operators Cin and Cim do not commute in general. Therefore the order in which they appear

in the above formula (and in similar formulas) is important.15 On the other hand, since the

operator S(m, n) represents a soft subtraction, it commutes with the collinear operators.

Finally, we have omitted an overall factor Γ(1−2ϵ)/Γ2(1− ϵ) in Σ
(a,c,dc),1
RR,1c because it would

only generate O(ϵ) terms in the result.

We will continue with the discussion of the contribution Σ
(a,c,dc),1
RR,1c . It is convenient to

rewrite the factor (ηin/2)
−ϵ in Eq. (4.30) as follows

(ηin/2)
−ϵ =

[
(ηin/2)

−ϵ − 1
]
+ 1 , (4.32)

15For the all-gluonic final states that we consider, these limits will always commute
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and combine the second term with the i ̸= j sum in that equation. We find

Σ
(a,c,dc),1
RR,1c =

〈
S(m, n)

[ Np∑
i,j=1

CjnCim ω
mi,nj

+

Np∑
i=1

[
(ηin/2)

−ϵ − 1
]
CinCim ω

mi,ni

]
∆(mn)FLM(m, n)

〉
,

(4.33)

where we emphasize that the first sum includes terms with i = j. We also note that the

comment concerning the non-commutativity of operators Cin and Cim that we just made

applies to Eq. (4.33) as well.

Another important point is that the second term in Eq. (4.33) is finite in the limit

ϵ → 0. The reason for this is that the only singularity present in this term comes from

the collinear limit i||m, which gives an O(ϵ−1) contribution once integrated over the phase

space of gluon m. On the other hand, the presence of Cin allows us to expand the difference[
(ηin/2)

−ϵ − 1
]
, giving an O(ϵ) quantity.

Furthermore, we note that, in the first term on the right-hand side of Eq. (4.33), the

partitioning can be replaced with another, more suitable one. Indeed, since by construction

Np∑
j=1

Cim ω
mi,nj ≡

Np∑
j=1

ωmi,nj
i||m Cim = Cim , CjnCim ω

mi,nj = CjnCim , (4.34)

one finds

Np∑
i,j=1

CjnCim ω
mi,nj =

Np∑
i=1

Cim −
Np∑
i,j=1

CjnCim ≡
Np∑
i,j=1

Cjn ω
nj Cim , (4.35)

where ωnj is, e.g., a NLO partition where the unresolved gluon is n.

Finally, it is convenient to split the soft subtraction operator S(m, n) acting on the

first term in Eq. (4.33) in a particular way. Employing the following representation (cf.

Eq. (4.28))

S(m, n) = SnΘmn + SmΘnm = Sn(1 − SmΘnm) + SnSmΘnm , (4.36)

we rewrite the formula for Σ
(a,c,dc),1
RR,1c in such a way that partonic multiplicities are clearly

separated

Σ
(a,c,dc),1
RR,1c = Σ

(2)
N+1 +Σ

(4)
N +Σ

fin,(1)
N+1 +Σ

fin,(2)
N . (4.37)

We note that in Eq. (4.37), the first ϵ-finite contribution to the single-unresolved cross

section is denoted as Σ
fin,(1)
N+1 . We emphasize again that this does not correspond to the
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finite part of Σ
(1)
N+1. The individual contributions read

Σ
(2)
N+1 =

Np∑
i,j=1

〈
Sn(1 − SmΘnm)Cjn ω

jnCim∆
(mn)FLM(m, n)

〉

=

Np∑
i=1

〈
ONLO(1 − SnΘmn)Cin∆

(mn)FLM(m, n)
〉
,

Σ
(4)
N =

Np∑
i,j=1

〈
SnSmCjn ω

jnCim∆
(mn)ΘnmFLM(m, n)

〉
,

Σ
fin,(1)
N+1 =

Np∑
i=1

〈[
(ηin/2)

−ϵ − 1
]
Sn(1 − SmΘnm)CinCim ω

mi,ni∆(mn)FLM(m, n)
〉

=

Np∑
i=1

〈
O(i)

NLO ω
mi,ni
i∥m

[
(ηim/2)

−ϵ − 1
]
(1 − SnΘmn)Cin∆

(mn)FLM(m, n)
〉
,

Σ
fin,(2)
N =

Np∑
i=1

〈[
(ηin/2)

−ϵ − 1
]
SnSmCinCim ω

mi,ni∆(mn)ΘnmFLM(m, n)
〉
,

(4.38)

where we define O(i)
NLO = SmCim so that ONLO =

∑Np

i=1O
(i)
NLOω

mi. We note that when

moving from the first to the second line in Σ
(2)
N+1 and Σ

fin,(1)
N+1 we have relabelled m to n and

vice versa.

We now return to Σ
(a,c,dc),2
RR,1c (see Eq. (4.30)) and rewrite it as follows

Σ
(a,c,dc),2
RR,1c = Σ

(5)
N +Σ

fin,(3)
N , (4.39)

where

Σ
(5)
N =

〈
S(m, n)

[ Np∑
(ij)

CjnCim +

Np∑
i=1

(ηin/2)
−ϵCinCim

]
∆(mn)FLM(m, n)

〉
,

Σ
fin,(3)
N =

[
Γ(1− 2ϵ)

Γ2(1− ϵ)
− 1

]〈
S(m, n)

[ Np∑
(ij)

CjnCim +

Np∑
i=1

(ηin/2)
−ϵCinCim

]

×∆(mn)FLM(m, n)

〉
.

(4.40)

Again, we note that Σ
fin,(3)
N is finite because the soft-regulated collinear limits CjnCim

produce an O(ϵ−2) pole when integrated over the angles of m and n, and the prefactor

Γ(1− 2ϵ)/Γ2(1− ϵ)− 1 is O(ϵ2). This concludes our discussion of all single-collinear limits,

except for those in triple-collinear sectors (b) and (d).

We now turn to Σ
(b,d)
RR,1c, defined in Eq. (4.24). We start by mapping sector θ(d) onto
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sector θ(b) by renaming gluons m to n and vice versa where appropriate.16 We find

Σ
(b,d)
RR,1c =

Np∑
i=1

〈
Smn(SnΘmn + SmΘnm)Cmn θ

(b)[dpm][dpn]ω
mi,ni∆(mn)FLM(m, n)

〉

=

Np∑
i=1

〈
Smn(1 − SnΘmn − SmΘnm)Cmn θ

(b)[dpm][dpn]ω
mi,ni∆(mn)FLM(m, n)

〉
.

(4.41)

Making use of the fact that the action of the collinear operator Cmn on the function

FLM(m, n) is symmetric in m and n, we can exchange m ↔ n in the term with Θnm in

Eq. (4.41). We obtain

Σ
(b,d)
RR,1c =

Np∑
i=1

〈
Smn(1 − 2SnΘmn)Cmn θ

(b)[dpm][dpn]ω
mi,ni∆(mn)FLM(m, n)

〉
. (4.42)

The action of the collinear operator Cmn on the phase space of two unresolved partons

leads to a non-trivial result. To derive it, we consider the specific phase-space parametriza-

tion described in Appendix E and find

Cmn[dΩ
(d−1)
m ][dΩ

(d−1)
n ]θ(b)ωmi,niFLM(m, n)

= N (b,d)
ϵ ωmi,ni

m∥n η
−ϵ
i[mn](1− ηi[mn])

ϵ[dΩ
(d−1)
[mn] ]

[
ρmn

dx4

x1+2ϵ
4

[dΩ
(d−3)
a ]

[Ω(d−3)]
dΛ

]
CmnFLM(m, n) .

(4.43)

Here [mn] labels a clustered gluon whose momentum is p[mn] = pm+pn calculated in the strict

collinear limit and the expression for CmnFLM(m, n) is reported in Eq. (F.1). From this

equation, it follows that CmnFLM(m, n) ∼ FLM([mn]). Since it depends on the kinematics

of the clustered parton [mn] only, we can integrate over dx4, dΩ
(d−3)
a and dΛ. We find (see

Appendix F for details)

Σ
(b,d)
RR,1c =−

Np∑
i=1

[αs]

2ϵ
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ

(d−1)
[mn] ] σ−ϵi[mn] ω

mi,ni
m||n

× Smn(1 − 2SnΘmn)∆
([mn]) 1

EmEn

[
Pgg(z)FLM([mn])

+ ϵ
[
P⊥
gg(z)(r

µ
i,(b)r

ν
i,(b) + gµν)− P⊥,r

gg (z)gµν
]
FLM,µν([mn])

]〉
.

(4.44)

In Eq. (4.44) we use z = Em/(Em + En) and P⊥
gg and P⊥,r

gg are splitting functions defined

in Eqs. (A.24) and (A.25), respectively. Furthermore, we have introduced

σij =
ηij

1− ηij
. (4.45)

The four-vector ri,(b) describes spin correlations that arise in the collinear limit, see

Appendix E.2 for further details. In particular, we note that ri,(b) is partition-dependent

16We note that this exchange of sectors b and d is only possible at the level of integrated subtraction

terms, and is not possible for the fully-regulated term Σfin
N+2.
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as indicated by the subscript i (cf. Eq. (E.39)).

Following the discussion in Ref. [1], it is convenient to split Eq. (4.44) into two terms

Σ
(b,d)
RR,1c = Σ

(b,d),sa
RR,1c +Σ

(b,d),sc
RR,1c , (4.46)

where the first term on the right-hand side is spin-averaged, while the second is spin-

correlated. The spin-averaged contribution depends on the spin-averaged splitting function

Pgg. It provides the most divergent part of Σ
(b,d)
RR,1c, with its Laurent expansion starting

at O(ϵ−2). The spin-correlated contribution Σ
(b,d),sc
RR,1c refers to all terms in Eq. (4.44) that

are proportional to FLM,µν([mn]). Since such terms are multiplied by ϵ, the spin-correlated

part is less divergent than the spin-averaged one; its Laurent expansion starts at O(ϵ−1).

For this reason, in the following paragraphs we focus on the spin-averaged contribution

Σ
(b,d),sa
RR,1c and relegate a detailed discussion of Σ

(b,d),sc
RR,1c to Appendix F.

Our starting point is the following expression for the spin-averaged contribution

Σ
(b,d),sa
RR,1c =−

Np∑
i=1

[αs]

2ϵ
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ

(d−1)
[mn] ]σ−ϵi[mn] ω

mi,ni
m||n

× Smn(1 − 2SnΘmn)∆
([mn]) 1

EmEn
Pgg(z)FLM([mn])

〉
.

(4.47)

To rewrite it, it is convenient to “undo” the collinear limit. We find

− [αs]

2ϵ
N (b,d)
ϵ

1

EmEn
Pgg(z)FLM([mn]) ≡

Nm||n(ϵ)

2

∫
[dΩ

(d−1)
n ]CmnFLM(m, n) , (4.48)

where

Nm||n(ϵ) = 22ϵ
Γ(1 + 2ϵ)Γ(1− 2ϵ)

Γ(1 + ϵ)Γ(1− ϵ)
. (4.49)

Note that the integration on the right-hand side of Eq. (4.48) is performed over the angular

phase space of the unresolved parton n only. As a result, Σ
(b,d),sa
RR,1c becomes

Σ
(b,d),sa
RR,1c =

Nm||n(ϵ)

2

Np∑
i=1

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ

(d−1)
[mn] ][dΩ

(d−1)
n ]σ−ϵi[mn] ω

mi,ni
m||n

× Smn(1 − 2SnΘmn)∆
([mn])CmnFLM(m, n)

〉
.

(4.50)

Next, we note that the action of Smn on CmnFLM(m, n) is equivalent to the action of a soft

operator S[mn], which refers to the zero-energy limit of a clustered parton [mn]. We also

note that the joint action of Sn and Smn can also be described as SmnSn ≡ SmSn, and that

the action of Sn on the clustered parton [mn] gives m. Following these observations, we
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find

Σ
(b,d),sa
RR,1c =

Nm||n(ϵ)

2

Np∑
i=1

[〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ

(d−1)
[mn] ][dΩ

(d−1)
n ]σ−ϵi[mn] ω

mi,ni
m||n

× S[mn]∆
([mn])CmnFLM(m, n)

〉
−
〈
2ΘmnSmSn σ

−ϵ
im∆(m)ωmi,ni

m∥n CmnFLM(m, n)
〉]

.

(4.51)

We focus on the first term on the right-hand side in Eq. (4.51). Thanks to the con-

straints on the energies of m and n, the energy of the clustered parton E[mn] may exceed

Emax and go all the way up to 2Emax. The two regions for the energy of the clustered par-

ticle, namely E[mn] ∈ [0, Emax] and E[mn] ∈ [Emax, 2Emax], are very different: the first one is

physical whereas the second one is not.17 Indeed, since Emax is chosen to exceed the max-

imal energy that a parton can have in a physical process, FLM([mn]) = 0 for E[mn] > Emax.

Nevertheless, this unphysical region gives a non-zero contribution in the soft limit because

the parton [mn] does not appear in the matrix element. Following this discussion, we write

Σ
(b,d),sa
RR,1c as the sum of two terms

Σ
(b,d),sa
RR,1c = Σ

(b,d),sa,I
RR,1c +Σ

(b,d),sa,II
RR,1c . (4.52)

The first term Σ
(b,d),sa,I
RR,1c includes the contribution where the energy of the clustered particle

[mn] does not exceed Emax as well as the last term on the right-hand side of Eq. (4.51),

while Σ
(b,d),sa,II
RR,1c accommodates the contribution with the energy of the clustered particle

exceeding Emax.

The term Σ
(b,d),sa,I
RR,1c can be written in the following way

Σ
(b,d),sa,I
RR,1c =

Nm||n(ϵ)

2

Np∑
i=1

〈
Sm(1 − 2ΘmnSn)σ

−ϵ
im∆(m)ωmi,ni

m∥n CmnFLM(m, n)
〉
, (4.53)

where in the first (Θmn-independent) term we renamed [mn] → [m]. The above expression

contains divergences which arise when gluon m becomes collinear to parton i. We extract

these divergences by introducing collinear operators and write

Σ
(b,d),sa,I
RR,1c = Σ

fin,(2)
N+1 +Σ

(6)
N +Σ

(3)
N+1 , (4.54)

where

Σ
fin,(2)
N+1 =

Np∑
i=1

1

2

〈
O(i)

NLOω
mi,ni
m∥n (1 − 2ΘmnSn)

[
Nm||n(ϵ)σ

−ϵ
im − 1

]
∆(m)CmnFLM(m, n)

〉
,

Σ
(6)
N =

Np∑
i=1

Nm||n(ϵ)

2

〈
SmCimσ

−ϵ
im (1 − 2ΘmnSn)∆

(m)CmnFLM(m, n)
〉
,

Σ
(3)
N+1 =

1

2

〈
ONLO(1 − 2ΘmnSn)∆

(m)CmnFLM(m, n)
〉
.

(4.55)

17This issue has already been discussed in Ref. [1].
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The first term in the above formula is finite in the limit ϵ→ 0, the second term is double-

unresolved, and the last one is single-unresolved. We remind the reader that O(i)
NLO =

SmCim and ONLO =
∑

iO
(i)
NLOω

mi. We also note that in Σ
(3)
N+1 we replaced the NNLO

partition functions ωmi,ni
m||n with NLO partion functions ωmi, c.f. Eq. (4.35).

We continue with the discussion of Σ
(b,d),sa,II
RR,1c . It can be obtained from Eq. (4.51) upon

neglecting the last term on the right-hand side and restricting the integration over energies

to the region E[mn] > Emax. We find

Σ
(b,d),sa,II
RR,1c =

Nm||n(ϵ)

2

Np∑
i=1

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ

(d−1)
[mn] ][dΩ

(d−1)
n ]σ−ϵi[mn] ω

mi,ni
m||n

× Θ(Em + En − Emax)S[mn]∆
([mn])CmnFLM(m, n)

〉
.

(4.56)

We can also replace S[mn] with −S[mn] in the above equation as FLM([mn]) has zero

support if the energy of the clustered parton exceeds Emax. Finally, changing the integra-

tion variables to E[mn] = Em +En and z = Em/(Em +En), computing the collinear [mn]||n
limit of FLM and integrating over the angular phase space of the gluon n, we obtain

Σ
(b,d),sa,II
RR,1c =

N
(b,d)
ϵ

2

Np∑
i=1

〈 2Emax∫
Emax

dE[mn]

E4ϵ−1
[mn]

Emax
E[mn]∫

1−Emax
E[mn]

dz [z(1− z)]−2ϵPgg(z)

×
∫
[dΩ

(d−1)
[mn] ]σ−ϵi[mn] ω

mi,ni
m||n S[mn]FLM([mn])

〉
.

(4.57)

Using the standard result for the remaining soft limit S[mn]FLM([mn]) in Eq. (4.57), we find

Σ
(b,d),sa,II
RR,1c = −

[αs]
2 δsag (ϵ)(Emax/µ)

−2ϵ

ϵ

×
Np∑
i=1

Np∑
(kl)

∫ [dΩ
(d−1)
[mn] ]

[Ω(d−2)]

〈
σ−ϵi[mn] ω

mi,ni
m||n

ρkl
ρk[mn] ρl[mn]

(T k ·T l)FLM

〉
,

(4.58)

where

δsag (ϵ) =
N

(b,d)
ϵ E4ϵ

max

2

2Emax∫
Emax

dE[mn]

E1+4ϵ
[mn]

Emax
E[mn]∫

1−Emax
E[mn]

dz [z(1− z)]−2ϵPgg(z) . (4.59)

The integration over the angle of the clustered gluon [mn] in Eq. (4.58) is described in

Appendix G. The result reads

Σ
(b,d),sa,II
RR,1c = Σsa

N +Σsa,fin
N , (4.60)
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where Σsa
N is given by

Σsa
N = 2[αs]

2δsag (ϵ)

(
Emax

µ

)−2ϵ

×

[
−
〈
IS(ϵ) · FLM

〉
+

(2Emax/µ)
−2ϵ

2ϵ2
Nc(ϵ)

N∑
i=1

T 2
i

〈
FLM

〉]
,

(4.61)

with Nc(ϵ) reported in Eq. (A.5). The quantity Σsa,fin
N is finite and reads

Σsa,fin
N = [αs]

2 2−2ϵ δsag (ϵ)

(
Emax

µ

)−4ϵ Np∑
i=1

〈
Wm∥n,fin
i · FLM

〉
, (4.62)

where Wm∥n,fin
a is computed in Appendix G with the result given in Eq. (G.10).

The final contribution to consider is the spin-correlated term Σ
(b,d),sc
RR,1c in Eq. (4.44). In

Appendix F, we show (see Eq. (F.44)) that among the contributions that the spin-correlated

term of Eq. (4.44) can produce, there are two that are identical to Σsa
N and Σsa,fin

N , provided

we substitute δsag 7→ δ⊥,rg , where δ⊥,rg is defined in Eq. (A.30). We call these contributions

Σsc
N and Σsc,fin

N . Combining them with Σsa
N and Σsa,fin

N , respectively, we define the following

quantities

Σ
(7)
N = Σsa

N +Σsc
N = 2[αs]

2δg(ϵ)

(
Emax

µ

)−2ϵ

×

[
−
〈
IS(ϵ) · FLM

〉
+

(2Emax/µ)
−2ϵ

2ϵ2
Nc(ϵ)

N∑
i=1

T 2
i

〈
FLM

〉]
,

(4.63)

and

Σ
fin,(4)
N = Σsa,fin

N +Σsc,fin
N = [αs]

2 2−2ϵ δg(ϵ)

(
Emax

µ

)−4ϵ Np∑
i=1

〈
Wm∥n,fin
i · FLM

〉
, (4.64)

with δg(ϵ) = δsag (ϵ) + δ⊥,rg (ϵ), see Eq. (A.30). We denote the remaining spin-correlated

terms as

Σ
(8)
N = Σ

(b,d),sc,I,1
RR,1c , (4.65)

and

Σ
fin,(5)
N = [αs]

2 δ⊥g

(
Emax

µ

)−4ϵ Np∑
i=1

〈
W(i)
r · FLM

〉
, (4.66)

where Σ
(b,d),sc,I,1
RR,1c is given in Eq. (F.38).

To recapitulate, we have succeeded in writing ΣRR,1c as a sum of contributions to

the single- and double-unresolved terms ΣN+1 and ΣN . We can combine them with the

corresponding contributions of ΣRR,2c as well as those of Eq. (4.13), and explore the can-

cellation of the ϵ-poles in ΣN+1 and ΣN . We study such cancellations in Section 5 but

before diving into this discussion we need to rearrange double-unresolved terms to make

the investigation of the pole cancellation easier. We discuss a suitable rearrangement in

the next subsections.
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4.2 Rearranging double-unresolved terms

We now turn our attention to the question of how the double-unresolved terms can be

rearranged. Once this is accomplished, the preparatory work will be complete and the

cancellation of singularities between the different contributions can be explored.

We have seen that the contributions with two unresolved partons can be written as a

sum of eight divergent and five finite terms, i.e.

ΣN =

8∑
i=1

Σ
(i)
N +

5∑
i=1

Σ
fin,(i)
N . (4.67)

The contributions are in Eqs (4.13, 4.16, 4.19, 4.38, 4.40, 4.55, 4.63, 4.64, 4.65, 4.66). Three

of the divergent contributions, namely Σ
(3,4,5)
N , contain various collinear limits and we find

that combining and rearranging them is helpful for understanding the cancellation of poles.

To make the required manipulations more transparent, in Σ
(4)
N we write Cjn as (1−Cjn),

use the fact that
∑
j=1

ωjn = 1 and separate the i ̸= j and i = j sums. We find

Σ
(3)
N +Σ

(4)
N +Σ

(5)
N

=−
Np∑
(ij)

〈 (
SnCjnCim − (SnΘmn + SmΘnm)CjnCim

)
∆(mn)FLM(m, n)

〉

+

Np∑
i=1

〈
SnSmCim∆

(mn)ΘnmFLM(m, n)
〉
−

Np∑
(ij)

〈
SnSmCjnCim∆

(mn)ΘnmFLM(m, n)
〉

−
Np∑
i=1

〈 (
SnSmCinCimΘnm − (ηin/2)

−ϵS(m, n)CinCim
)
∆(mn)FLM(m, n)

〉
.

(4.68)

Combining terms with i ̸= j sums in the above equation, we obtain

Σ
(3)
N +Σ

(4)
N +Σ

(5)
N =

=

Np∑
i=1

〈
SnSmCim∆

(mn)ΘnmFLM(m, n)
〉
+

Np∑
(ij)

〈
SnSmCjnCim∆

(mn)ΘnmFLM(m, n)
〉

−
Np∑
i=1

〈 (
SnSmCinCim − (ηin/2)

−ϵS(m, n)CinCim
)
∆(mn)FLM(m, n)

〉
.

(4.69)

We can further simplify the above equation if we rewrite the i ̸= j sum as follows

Np∑
(ij)

〈
SnSmCjnCim∆

(mn)ΘnmFLM(m, n)
〉

=
1

2

Np∑
i,j=1

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉
− 1

2

Np∑
i=1

〈
SnSmCinCim∆

(mn)FLM(m, n)
〉
.

(4.70)
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We now take the last term on the right-hand side of the above equation and combine it

with the next-to-last term in Eq. (4.69). We find

−1

2

Np∑
i=1

〈
(SnSm + 2SnSmΘnm)CinCim∆

(mn)FLM(m, n)
〉
. (4.71)

We split the second term under the sum sign in Eq. (4.71) into two identical ones, and

change m ↔ n in one of them. We obtain

− 1

2

Np∑
i=1

〈
(SnSm + SnSmΘnm + SmSnΘmn)CinCim∆

(mn)FLM(m, n)
〉

+
1

2

Np∑
i=1

〈
SmSnΘmn [Cin, Cim]∆

(mn)FLM(m, n)
〉

=− 1

2

Np∑
i=1

〈 (
S(m, n)CinCim − SmSnΘmn [Cin, Cim]

)
∆(mn)FLM(m, n)

〉
.

(4.72)

Putting everything together, we find

Σ
(3)
N +Σ

(4)
N +Σ

(5)
N =

=

Np∑
i=1

〈
SnSmCim∆

(mn)ΘnmFLM(m, n)
〉
+

1

2

Np∑
i,j=1

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉

+
1

2

Np∑
i=1

〈[
2(ηin/2)

−ϵ − 1
]
S(m, n)CinCim∆(mn)FLM(m, n)

〉
+

1

2

Np∑
i=1

〈
SmSnΘmn [Cin, Cim]∆

(mn)FLM(m, n)
〉
.

(4.73)

We can now combine this result with the remaining double-unresolved contributions.

We find

ΣN =
〈
FVV

〉
+
〈
SmnΘmnFLM(m, n)

〉
+
〈
SmFRV(m)

〉
+

Np∑
i=1

〈
SmCim∆

(m)
[
FRV(m) + SnΘmnFLM(m, n)

]〉
+

Np∑
i=1

〈
SnSmCim∆

(mn)ΘnmFLM(m, n)
〉
+

1

2

Np∑
i,j=1

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉

+
1

2

Np∑
i=1

〈[
2(ηin/2)

−ϵ − 1
]
S(m, n)CinCim∆(mn)FLM(m, n)

〉
(4.74)

+
1

2

Np∑
i=1

〈
SmSnΘmn [Cin, Cim]∆

(mn)FLM(m, n)
〉
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− 2[αs]
2 δg(ϵ)

(
Emax

µ

)−2ϵ
[〈
IS(ϵ) · FLM

〉
− (2Emax/µ)

−2ϵ

2ϵ2
Nc(ϵ)

Np∑
i=1

T 2
i

〈
FLM

〉]

+

Np∑
i=1

Nm||n(ϵ)

2

〈
SmCim σ

−ϵ
im (1 − 2ΘmnSn)∆

(m)CmnFLM(m, n)
〉

+Σ
(2)
N +Σ

(8)
N +

5∑
i=1

Σ
fin,(i)
N .

It is clear from the above formula that ΣN contains a large number of terms of different

physical origin that exhibit infrared and collinear singularities, which will cancel when

combined with the PDFs renormalization contributions. To simplify the discussion of

how this happens, we will identify groups of terms which exhibit shared features. These

features include quartic, triple and quadratic correlations of color-charge operators, which

originate from exchanges of soft real and virtual gluons, as well as double- and single-

boosted kinematics that are generated by hard-collinear initial-state emissions. We will

focus on these different categories in turn, since the cancellation of ϵ-poles has to occur

independently for each of them.

In Subsection 4.3 we describe some manipulations of the virtual and soft contribu-

tions to Eq. (4.74), which set the stage for the discussion of the cancellation of poles in

color-correlated contributions that can be found in Subsections 5.2 and 5.3. With color-

correlated infrared singularities out of the way, we are left with terms that are proportional

to squares of color charges of the resolved partons, which include both boosted and un-

boosted contributions. Such terms primarily come from collinear emissions. We discuss

such contributions and the cancellation of the corresponding singularities in Subsections 5.4

and 5.5.

4.3 Simplifying virtual and soft corrections

In this subsection we focus on the color-correlated contributions to the fully-unresolved

quantity ΣN . To this end, we will examine those terms in Eq. (4.74) that contain soft

limits and/or loop amplitudes. Similar to what was done in Section 5.1, we will write the

results in terms of generalizations of the operators IS, IV and IC, with an eye on combining

these into manifestly-finite IT structures. Furthermore, we will observe the appearance

of terms involving triple correlators of color charges, which we will discuss separately in

Section 5.2. .

We begin by considering the double-virtual contribution ⟨FVV⟩ to Eq. (4.74). We write

the loop expansion of the amplitude of the 1a+2b → X+N g process to O(α2
s) with respect

to the LO as

|M⟩c = |M0⟩c +
[
αs(µ)

2π

]
|M1⟩c +

[
αs(µ)

2π

]2
|M2⟩c +O(α3

s) . (4.75)

The double-virtual contribution to the cross section is obtained by squaring the amplitude

– 29 –



and retaining the O(α2
s) terms. The result reads18

⟨M|M⟩α2
s
= ⟨M0|M2⟩+ ⟨M2|M0⟩+ ⟨M1|M1⟩ . (4.76)

Following Ref. [70], we extract the infrared poles of |M1⟩ and |M2⟩ and write them as

|M1⟩ = I1(ϵ) |M0⟩+ |Mfin
1 ⟩ ,

|M2⟩ = I1(ϵ) |M1⟩+ I2(ϵ) |M0⟩+ |Mfin
2 ⟩ ,

(4.77)

where |Mfin
1 ⟩ and |Mfin

2 ⟩ are infrared-finite. The operator I1(ϵ) was introduced in the

context of the NLO calculation and is given in Eq. (3.29). The operator I2(ϵ) reads

I2(ϵ) = −1

2
I1(ϵ)

(
I1(ϵ) +

2β0
ϵ

)
+ cϵ

(
β0
ϵ

+K

)
I1(2ϵ) +H2 , (4.78)

with19

K =

(
67

18
− π2

6

)
CA − 10

9
TRnf , cϵ =

e−ϵγEΓ(1− 2ϵ)

Γ(1− ϵ)
. (4.79)

The operator H2 contains O(ϵ−1) poles only. We split this function into a term containing

triple color correlations and a color-diagonal term

H2(ϵ) = H2,tc(ϵ) +H2,cd(ϵ) . (4.80)

The two quantities H2,tc and H2,cd were explicitly computed in Refs. [71, 72]. The triple

color-correlated term H2,tc is given in Eq. (5.27). The color-diagonal piece reads

H2,cd(ϵ) =
1

2ϵ

Np∑
i=1

Hfi , (4.81)

where fi denotes the flavor of parton i. Explicitly one has

Hg = C2
A

(
5

12
+

11

144
π2 +

ζ3
2

)
+ CAnf

(
−29

27
− π2

72

)
+
CFnf
2

+
5

27
n2f , (4.82)

and

Hq = C2
F

(
π2

2
− 6ζ3 −

3

8

)
+ CACF

(
245

216
− 23

48
π2 +

13

2
ζ3

)
+ CFnf

(
π2

24
− 25

108

)
. (4.83)

The matrix element squared that appears in the double-virtual term FVV is then

⟨M|M⟩α2
s
=

〈
M0

∣∣∣∣ 12I21 (ϵ) + 1

2

(
I†1(ϵ)

)2
+ I†1(ϵ)I1(ϵ) +

(
H2 +H†

2

) ∣∣∣∣M0

〉
+

〈
M0

∣∣∣∣−β0ϵ (
I1(ϵ) + I†1(ϵ)

)
+ cϵ

(
β0
ϵ

+K

)(
I1(2ϵ) + I†1(2ϵ)

) ∣∣∣∣M0

〉
+ 2Re

[
⟨M0 | I1(ϵ) + I†1(ϵ) |M

fin
1 ⟩

]
+ 2Re

[
⟨M0|Mfin

2 ⟩
]
+ ⟨Mfin

1 |Mfin
1 ⟩ .

(4.84)

18We drop the subscript “c” in the notation for the color vector of a matrix element.
19We remind the reader that in this paper we are accounting for gluonic final states only. For this reason

nf should be set to 0, and β0 to 11/6CA.
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The one-loop operators I1 in the second and third lines appear as the sum of I1 and I†1; for

this reason, they can immediately be written using the function IV defined in Eq. (3.31).

However, this does not happen automatically for entries in the first line in Eq. (4.84). To

force the appearance of IV, we write

1

2
I
2
1(ϵ) +

1

2

(
I
†
1(ϵ)

)2
+ I

†
1(ϵ)I1(ϵ) =

1

2
I2V(ϵ)−

1

2

[
I1, I

†
1

]
. (4.85)

As we will see, in the general case the commutator in the above equation contains triple

color-correlated poles. We will study them in detail in Section 5.2. For now, we use

Eq. (4.85) and write the double-virtual contribution as follows

〈
FVV

〉
= [αs]

2

〈[
1

2
I2V(ϵ)−

Γ(1− ϵ)

eϵγE

(
β0
ϵ
IV(ϵ)−

(
β0
ϵ

+K

)
IV(2ϵ)

)]
· FLM

〉
+ [αs]

2

〈[
−1

2

[
I1(ϵ), I

†
1(ϵ)

]
+H2,tc +H†

2,tc +H2,cd +H†
2,cd

]
· FLM

〉
+ [αs]

〈
IV(ϵ) · F fin

LV

〉
+
〈
F fin
LV2

〉
+
〈
F fin
VV

〉
.

(4.86)

In Eq. (4.86) F fin
LV2 and F fin

VV contain the finite remainders of the one-loop squared and two-

loop amplitudes interfered with the tree level, respectively. Furthermore, we have made

use of the fact that H2 ∼ O(ϵ−1) to replace the coupling αs(µ)/(2π) with [αs] in front of

it. This concludes our discussion of the double-virtual contribution, and we will make use

of Eq. (4.86) in Section 5 to discuss the cancellation of poles.

Next, we consider the double-soft term
〈
SmnΘmnFLM

〉
in Eq. (4.74). As was mentioned

earlier, it was computed in Ref. [69] for an arbitrary opening angle between the hard

radiators. We can write the result in terms of a double color-correlated and a quartic

color-correlated component〈
SmnΘmnFLM(m, n)

〉
=

〈
SmnΘmnFLM(m, n)

〉
T 2 +

〈
SmnΘmnFLM(m, n)

〉
T 4 . (4.87)

The quartic color-correlated component has a simple (factorized) form

⟨SmnΘmnFLM(m, n)⟩T 4 = 2g4s,b

Np∑
(ij),(kl)

〈∫
[dpm][dpn]Θ(Em − En)Sij(pm)Skl(pn)

× {T i ·T j ,T k ·T l} · FLM

〉
= [αs]

2 1

2

〈
I2S(ϵ) · FLM

〉
.

(4.88)

In the above, we have introduced the short-hand notation Sij(pm) for the eikonal function

Sij(pm) =
pi · pj

2(pi · pm)(pj · pm)
. (4.89)

The (double) color-correlated term appears to be significantly more complex [69]. However,

upon careful inspection, we find that its poles can be written in a reasonably simple manner.
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We obtain〈
SmnΘmnFLM(m, n)

〉
T 2

= g4s,b

Np∑
i<j

∫
[dpm][dpn]Θ(Em − En)

〈
S̃ij(pm, pn) (T i ·T j) · FLM

〉
= [αs]

2

[
CA
ϵ2
c1(ϵ) +

β0
ϵ
c2(ϵ) + β0 c3(ϵ)

] 〈
ĨS(2ϵ) · FLM

〉
+
〈
SmnΘmnFLM(m, n)

〉fin
T 2 ,

(4.90)

where S̃ij is the double-soft current defined in Ref. [73]. We note that the last term in

Eq. (4.90) is ϵ-finite and can be found in Eq. (I.17). Furthermore, the quantities c1,2,3 are

polynomials in ϵ and are given in Eq. (A.8). Additionally, we have introduced

ĨS(2ϵ) = −(2Emax/µ)
−4ϵ

(2ϵ)2

Np∑
i,j=1
i ̸=j

η−2ϵ
ij K̃ij(ϵ) (T i ·T j) , (4.91)

where

K̃ij(ϵ) =
Γ2(1− 2ϵ)

Γ(1− 4ϵ)
η1+3ϵ
ij 2F1(1 + ϵ, 1 + ϵ, 1− ϵ, 1− ηij) . (4.92)

We note apparent similarities between ĨS and K̃ij and IS and Kij defined in Eqs. (3.12)

and (3.14). In fact, one can use the following property of the hypergeometric functions

2F1(a, b, c, z) = (1− z)c−a−b2F1(c− a, c− b, c, z) , (4.93)

to show that

K̃ij(ϵ) = Kij(2ϵ)
2F1(−2ϵ,−2ϵ; 1− ϵ, 1− ηij)

2F1(−2ϵ,−2ϵ, 1− 2ϵ, 1− ηij)
= Kij(2ϵ) +O(ϵ3) . (4.94)

It follows that

ĨS(2ϵ) = IS(2ϵ) +O(ϵ) . (4.95)

This relation will be very helpful for demonstrating the cancellation of poles in color-

correlated terms. Following this discussion, we write the double-soft term as〈
SmnΘmnFLM(m, n)

〉
= [αs]

2

〈[
1

2
I2S(ϵ) +

(
CA
ϵ2
c1(ϵ) +

β0
ϵ
c2(ϵ) + β0 c3(ϵ)

)
ĨS(2ϵ)

]
· FLM

〉
+
〈
SmnΘmnFLM(m, n)

〉fin
T 2 .

(4.96)

This concludes our discussion of the double-soft limits.
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We now move on to the third term on the right-hand side of Eq. (4.74), which involves

the soft limit of the real-virtual contribution. This limit reads [74, 75]

Sm FRV(m)

=− g2s,b

Np∑
(ij)

{
2Sij(pm) (T i ·T j) · FLV − αs(µ)

2π

β0
ϵ
2Sij(pm) (T i ·T j) · FLM

− 2
[αs]

ϵ2
CAAK(ϵ)

(
Sij(pm)

)1+ϵ
(T i ·T j) · FLM

− [αs]
4π Γ(1 + ϵ)Γ3(1− ϵ)

ϵΓ(1− 2ϵ)

Np∑
k=1
k ̸=i,j

κij Ski(pm)
(
Sij(pm)

)ϵ
fabc T

a
k T

b
i T

c
j FLM

}
,

(4.97)

where κij ≡
(
λij−λim−λjm

)
= +1 when both i and j are incoming momenta and κij = −1

otherwise. We point out that κij is symmetric under the exchange i ↔ j. Moreover, we

have introduced the constant (cf. Eq. (A.9))

AK(ϵ) =
Γ3(1 + ϵ) Γ5(1− ϵ)

Γ(1 + 2ϵ) Γ2(1− 2ϵ)
= 1 +O(ϵ2) . (4.98)

The terms in Eq. (4.97) that include Sij(pm) can be integrated over the unresolved

phase space along the same lines as the soft subtraction term at NLO (see Eq. (3.12)), giving

rise to the operator IS. The term with FLV in Eq. (4.97) can be further simplified using

Catani’s formula (Eq. (3.28)) to extract divergences from the loop amplitude. However,

care is needed since the operators I1 and IS do not commute in general. Hence, upon

integrating the first term on the right-hand side of Eq. (4.97) over the phase space of gluon

m, we find the following expression for the combination of divergent loop and soft-emission

contributions

[αs]
2
〈[
IS(ϵ)·I1(ϵ) + I

†
1(ϵ)·IS(ϵ)

]
· FLM

〉
. (4.99)

We can rewrite the above quantity using the identity

ISI1 + I
†
1IS =

1

2

((
I1 + I

†
1

)
IS + IS

(
I1 + I

†
1

)
+
[
IS , I1 − I

†
1

])
, (4.100)

where the first and second terms can be expressed through IV and IS, and the third term

contains triple color correlations and will be discussed in detail in Section 5.2.

The integration of the third term on the right-hand side of Eq. (4.97), which includes

the factor (Sij(pm))
1+ϵ, leads to

−2g2s,b

Np∑
(ij)

〈(
Sij(pm)

)1+ϵ
(T i ·T j) · FLM

〉

= − [αs]

4ϵ2

(
2Emax

µ

)−4ϵ Np∑
(ij)

〈
η−2ϵ
ij K̃ij(ϵ) (T i ·T j) · FLM

〉
= [αs]

〈
ĨS(2ϵ) · FLM

〉
.

(4.101)
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The last term on the right-hand side of Eq. (4.97) contains explicit triple color corre-

lators. Integrating this term over the phase space of gluon m is non-trivial and is discussed

at length in Appendix H. In what follows we will refer to it as the triple color-correlated

real-virtual subtraction term, IRVtri . Putting everything together, we find that the soft limit

of the real-virtual correction can be written in the following way〈
Sm FRV(m)

〉
= [αs]

2

〈
1

2

[
IS(ϵ)·IV(ϵ) + IV(ϵ)·IS(ϵ)

]
· FLM

〉
+ [αs]

〈
IS(ϵ) · F fin

LV

〉
− [αs]

2Γ(1− ϵ)

eϵγE
β0
ϵ

〈
IS(ϵ)FLM

〉
− [αs]

2

ϵ2
CAAK(ϵ)

〈
ĨS(2ϵ) · FLM

〉
+ [αs]

2

〈(
1

2

[
IS(ϵ) , I1(ϵ)− I

†
1(ϵ)

]
+ IRVtri (ϵ)

)
· FLM

〉
.

(4.102)

We have now analyzed all terms with quartic and triple-color correlators. These arose

due to soft limits of real emission amplitudes and virtual corrections; because of that, they

are associated with unboosted kinematics. We have also found a number of terms with

double-color correlations. Further terms of this kind emerge when a soft or virtual operator

appears in conjunction with a collinear limit, and such terms can also lead to unboosted

kinematic configurations. Our next goal is to identify such contributions in Eq. (4.74).

We begin with the term that describes the hard-collinear limits of the real-virtual

amplitude squared
〈
SmCimω

mi∆(m)FRV(m)
〉
. These limits were studied in Refs. [75, 76].

They involve both the tree-level splitting function Pii as well as the the one-loop split-

ting function P 1L
ii , whose explicit form can be found in Appendix A. Even though P 1L

ii is

more complicated than the corresponding tree-level splitting function, the integration over

unresolved phase space of the gluon m proceeds in exactly the same way as in the NLO

computation.

Similar to the NLO case, it is useful to distinguish between the initial-state and the

final-state splittings. When the unresolved parton m becomes collinear to a final-state

parton i we find〈
SmCimω

mi∆(m)FRV(m)
〉
= [αs]

2

〈
Γi,g
ϵ
IV(ϵ) · FLM

〉
− [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈
Γi,g
ϵ
FLM

〉
− [αs]

2

ϵ2
CAhc(ϵ)

〈
Γ1L
i,g

2ϵ
FLM

〉
+ [αs]

〈
Γi,g
ϵ
F fin
LV

〉
,

(4.103)

where

hc(ϵ) =
Γ2(1− 2ϵ)Γ(1 + ϵ)

Γ(1− 3ϵ)
= 1 +O(ϵ3) . (4.104)

Furthermore, the one-loop generalized anomalous dimension for the final-state splitting

reads

Γ1L
i,g =

[(
2Ei
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]2
ϵ2 cos(πϵ)

CA
γ33,1Lz,g→gg(ϵ, Li) , i = 3, ..., Np , (4.105)
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where γ33,1Lz,g→gg is defined analogously to Eq. (3.20), but with the splitting function P 1L
gg

instead of Pgg. The ϵ-expansion of the one-loop generalized anomalous dimension reads

Γ1L
i,g = γi + 2T 2

iLi +O(ϵ) , i = 3, ..., Np . (4.106)

We continue with the case where the unresolved parton m becomes collinear to an

initial state parton, say 1a. In this case we find

〈
SmC1mω

m1∆(m)FRV(m)
〉
= [αs]

2

〈
Γ1,f1

ϵ
IV(ϵ) · FLM

〉
+ [αs]

〈
Γ1,f1

ϵ
F fin
LV

〉
+

[αs]
2

ϵ

〈
Pgen
aa ⊗ (IV(ϵ) · FLM)

〉
+

[αs]

ϵ

〈
Pgen
aa ⊗ F fin

LV

〉
− [αs]

2Γ(1− ϵ)

eϵγE
β0
ϵ

[〈
Γ1,f1

ϵ
FLM

〉
+

1

ϵ

〈
Pgen
aa ⊗ FLM⟩

]
− [αs]

2

ϵ2
CAhc(ϵ)

〈
Pgen
aa ⊗

(
Γ1L
1,f1

(ϵ)

2ϵ
FLM

)〉
− [αs]

2

2ϵ3
CAhc(ϵ)

〈
P1L,gen
aa ⊗ FLM

〉
,

(4.107)

where the one-loop initial-state generalized anomalous dimension is

Γ1L
1,f1(ϵ) =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]2 [
γf1 + 2T 2

f1

1− e−4ϵL1

4
π cot(πϵ)

]
= γf1 + 2T 2

f1L1 +O(ϵ) ,

(4.108)

and we have also introduced a generalized splitting function at one-loop

P1L,gen
aa (z, E1) =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]2 [
− P̂ (0)

aa (z) + ϵP̂ 1L,fin
aa (z)

]
. (4.109)

We observe that the one-loop generalized anomalous dimension Γ1L
i,g coincides with its

tree-level counterpart Γi,g at O(ϵ0), cf. Eq. (C.17). Similarly, the one-loop and tree-level

generalized splitting functions P1L,gen
aa and Pgen

aa have the same expansion at O(ϵ0). Further

details concerning these one-loop generalized anomalous dimensions and splitting functions

can be found in Appendix A. Finally, we note that in Eq. (4.107) some terms involve the

convolution of a splitting function with the product of IV or the anomalous dimensions

and FLM. In these cases, the relevant energy in IV or Γ1L
1,f1

is also multiplied by a factor of

z.
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Summing the initial and final state collinear limits we find

Np∑
i=1

〈
SmCimω

mi∆(m)FRV

〉
= [αs]

2 ⟨IC(ϵ)IV(ϵ) · FLM⟩+ [αs]
〈
IC(ϵ) · F fin

LV

〉
+

[αs]
2

ϵ

〈
Pgen
aa ⊗ (IV(ϵ) · FLM)

〉
+

[αs]

ϵ

〈
Pgen
aa ⊗ F fin

LV

〉
+

[αs]
2

ϵ

〈
(IV(ϵ) · FLM)⊗ Pgen

bb

〉
+

[αs]

ϵ

〈
F fin
LV ⊗ Pgen

bb

〉
− [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

[
1

ϵ
⟨Pgen

aa ⊗ FLM⟩+ 1

ϵ

〈
FLM ⊗ Pgen

bb

〉
+ ⟨IC(ϵ) · FLM⟩

]
− [αs]

2

ϵ2
CAhc(ϵ)

〈
ĨC(2ϵ) · FLM

〉
− [αs]

2

2ϵ3
CAhc(ϵ)

〈
P1L,gen
aa ⊗ FLM + FLM ⊗ P1L,gen

bb

〉
,

(4.110)

with

ĨC(2ϵ) =

Np∑
i=1

Γ1L
i,fi

(ϵ)

2ϵ
. (4.111)

We point out that the relation between the one-loop and tree-level hard-collinear operators

ĨC(2ϵ) ≡ IC(2ϵ) +O(ϵ) , (4.112)

is analogous to that of the soft operators, see Eq. (4.95).

We now consider the fifth and sixth terms in Eq. (4.74)〈
SmCim∆

(m)
(
SnΘmnFLM(m, n)

)〉
+
〈
Sn

(
SmCim ∆(m)ΘnmFLM(m, n)

)〉
, (4.113)

where we have used Sn∆
(mn) = ∆(m). At first glance, it may seem that the two terms

in Eq. (4.113) can be trivially combined, since the first contains an energy-ordering theta-

function which enforces Em > En, while the second requires En > Em. However, one should

be careful about the order in which the various operators act on FLM. In the first term,

one should compute the soft limit Sn of FLM first, then integrate over the unresolved phase

space of n, and then compute the hard-collinear limit SmCim and integrate over the phase

space of m. In the second term, the hard-collinear limit SmCim is evaluated first, followed

by the integration over the phase space of m. Then we take the soft limit Sn and integrate

over the phase space of n. We emphasize that these operations do not commute. Indeed,

one can show by explicit calculation that the following holds true〈
Sn

(
SmCim∆

(m)ΘnmFLM(m, n)
)〉

=
〈
SmCim∆

(m)
(
SnΘnmFLM(m, n)

)〉
− [αs]

ϵ2
CA

Γ3(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)

×
〈
η−ϵim SmCim

[(
2Emax

µ

)−2ϵ

−
(
2Em

µ

)−2ϵ ]
∆(m)FLM(m)

〉
.

(4.114)
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Thus we can rewrite Eq. (4.113) as follows〈
SmCim∆

(m)SnΘmnFLM(m, n)
〉
+
〈
SnSmCim ∆(m)ΘnmFLM(m, n)

〉
=
〈
SmCim∆

(m)SnFLM(m, n)
〉
− [αs]

ϵ2
CA

Γ3(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)

×

〈
η−ϵim SmCim

[(
2Emax

µ

)−2ϵ

−
(
2Em

µ

)−2ϵ ]
∆(m)FLM(m)

〉
.

(4.115)

It is straightforward to integrate the second term on the right-hand side of Eq. (4.115)

over the phase space of parton m since the required calculation is NLO-like. On the

contrary, the first term on the right-hand side in Eq. (4.115) requires some discussion. We

begin by acting with the soft operator Sn on FLM(m, n) and integrating over the phase

space of n. We find〈
SmCim∆

(m)SnFLM(m, n)
〉

=− [αs]

ϵ2

(
2Emax

µ

)−2ϵ Np+1∑
(kl)

〈
SmCimη

−ϵ
kl Kkl∆

(m) (T k ·T l) · FLM(m)
〉
.

(4.116)

The important point is that the sum in the above expression runs over Np + 1 partons

which includes the parton m. To simplify such an expression, we split the sum into the

following contributions

Np+1∑
(kl)

AklT k ·T l =

Np∑
k,l ̸=i
k ̸=l

AklT k ·T l +

Np∑
k ̸=i

(AikT i +AmkTm) · T k

+

Np∑
k ̸=i

T k · (AkiT i +AkmTm) + 2AimT i ·Tm ,

(4.117)

for an arbitrary symmetric Aij . We consider the action of the operator SmCim in each of

the terms in Eq. (4.117). In the first term, these operators act directly on FLM(m). In

the second term, the factor Amk becomes Aik because of the collinear i||m limit. Thus the

corresponding color factors combine into (T i + Tm) · T k = T [im] · T k. The same occurs

in the third term, leading to T k · T [im]. Finally, in the last term, the product of the color

charges is 2T i · Tm = −CA, because the parton m is a gluon. Using the limit

lim
ηij→0

Kij =
Γ3(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)
, (4.118)

we find

Np+1∑
(kl)

SmCimη
−ϵ
kl Kkl

[
(T k ·T l) · FLM(m)

]
=

Np∑
(kl)

η−ϵkl Kkl (T k ·T l) SmCim · FLM(m)

− CA
Γ3(1− ϵ)Γ(1 + ϵ)

Γ(1− 2ϵ)
η−ϵim SmCimFLM(m) ,

(4.119)
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where in the first term on the right-hand side the sum over partons k and l includes a

clustered parton [im] in place of parton i.

Putting everything together and including the sum over all unresolved partons, we find

Np∑
i=1

[〈
SmCim∆

(m)SnΘmnFLM

〉
+
〈
SnSmCim ∆(m)ΘnmFLM

〉]
= [αs]

2
〈
IS(ϵ)·IC(ϵ) · FLM

〉
+

[αs]
2

ϵ2
hc(ϵ)CA

〈
I
(4)
C (ϵ) · FLM

〉
+

[αs]
2

ϵ

〈
Pgen
aa ⊗ IS(ϵ) · FLM + IS(ϵ) · FLM ⊗ Pgen

bb

〉
+

[αs]
2

2ϵ3
CAhc(ϵ)

〈
P(4),gen
aa ⊗ FLM + FLM ⊗ P(4),gen

bb

〉
.

(4.120)

In the above formula, we have employed generalizations of IC and Pgen
ab . They are defined

in Appendix A. For the specific case that we are interested in here, we have

I
(4)
C (ϵ) =

Np∑
i=1

Γ
(4)
i,fi

(ϵ)

2ϵ
, (4.121)

where

Γ
(4)
i,fi

=

(
2Ei
µ

)−4ϵ Γ4(1− ϵ)

Γ2(1− 2ϵ)

[
γfi + T 2

fi

1− e−4ϵLi

2ϵ

]
, i = 1, 2 ,

Γ
(4)
i,g =

(
2Ei
µ

)−4ϵ Γ4(1− ϵ)

Γ2(1− 2ϵ)
γ24z,g→gg(ϵ, Li) , i = 3, ..., Np ,

(4.122)

and

P(4),gen
ab (z, Ea) =

[(
2Ea
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]2 [
−P̂ (0)

ab (z) + ϵP(4),fin
ab (z)

]
. (4.123)

The function P(4),fin
ab is given in Eq. (A.35). It follows from the above formulas that Γ

(4)
i,fi

and P(4),gen
ab coincide with Γi,fi and Pgen

ab to O(ϵ0). Similarly, IC and I
(4)
C have the same

pole structure

I
(4)
C (ϵ) ≡ IC(2ϵ) +O(ϵ0) . (4.124)

Before closing this section, we make a brief comment about the term on the third-to-

last line of Eq. (4.74), which is proportional to δg(ϵ). It turns out that one can rewrite it

in the following way

2[αs]
2δg(ϵ)

(
Emax

µ

)−2ϵ [
−
〈
IS(ϵ) · FLM

〉
+

(2Emax/µ)
−2ϵ

2ϵ2
Nc(ϵ)

Np∑
i=1

T 2
i

〈
FLM

〉]
=− [αs]

2 22+2ϵ
(
CAδ

CA
g (ϵ) + β0δ

β0
g (ϵ)

)〈
ĨS(2ϵ) · FLM

〉
+O(ϵ0) ,

(4.125)

where

δCA
g (ϵ) =

(
−131

72
+
π2

6

)
+O(ϵ) ; δβ0g (ϵ) = log 2 +O(ϵ) . (4.126)
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The reason why this rewriting is useful will become clear when we discuss the cancellation

of color-correlated contributions with unboosted kinematics.

In summary, we have derived expressions for all the divergent terms in Eq. (4.74)

that involve virtual amplitudes and the various soft limits. Such contributions involve

infrared poles in color-correlated matrix elements that don’t appear in other parts of the

calculations. Thus, we anticipate that the poles of the color-correlated contributions cancel

amongst themselves. We describe this cancellation, as well as the cancellation of the

poles of the single-unresolved and color-uncorrelated double-unresolved contributions, in

the following section.

5 Cancellation of poles

We begin our discussion of the infrared poles by focusing on the single-unresolved contri-

bution. We show that the cancellation of poles there is equivalent to that in the NLO QCD

contribution to the process qq̄ → X+(N+1)g. We then continue with the discussion of the

various contributions to the double-unresolved term ΣN , starting from the color-correlated

ones.

5.1 Single-unresolved terms

As explained in the previous section, when extracting singularities from the double-real

and real-virtual contributions, we find terms featuring N + 1 resolved partons. In this

section we will show that, once combined, these terms exhibit significant simplifications,

allowing us to cancel the poles in the same way as we did for the NLO contribution. We

consider Σ
(1)
N+1, Σ

(2)
N+1 and Σ

(3)
N+1, given in Eqs. (4.13), (4.38) and (4.55), respectively. We

will refer to the sum of these contributions as Σdiv
N+1. It reads

Σdiv
N+1 =

3∑
i=1

Σ
(i)
N+1 =

〈
ONLO∆

(m)
[
FRV(m) + SnΘmnFLM(m, n)

]〉
+

Np∑
i=1

〈
ONLO(1 − SnΘmn)Cin∆

(mn)FLM(m, n)
〉

+
1

2

〈
ONLO∆

(m)(1 − 2SnΘmn)CmnFLM(m, n)
〉
.

(5.1)

In the equation above, gluon m is resolved, since all the singularities associated with its

emission are regulated by the ONLO operator (see Eq. (3.37)). The gluon n, on the other

hand, plays the role of an unresolved parton in NLO computations. Such a structure

suggests a close relation between Σdiv
N+1 and the NLO cross section for the production

of (N + 1) jets. In order to make this correspondence transparent, we need to rewrite

Eq. (5.1) in terms of virtual, soft and collinear operators defined in the phase space for

(N + 1) partons.

We begin our analysis with the first term in Eq. (5.1). It contains the one-loop ampli-

tudes with (N+1) final-state partons and a contribution from the soft limit of gluon n. The
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former term can be treated analogously to what has been done in Section 3; its infrared

singularities can be written with the help of Catani’s formula. The latter contribution,

once integrated over the n-parton phase space, returns the same structure as in Eq. (3.12),

up to replacing Emax with Em. This is due to the energy-ordering factor Θmn appearing

in Eq. (5.1), which forces the energy of gluon m, rather than Emax, to serve as the upper

cut-off for the integration over the energy of gluon n in the soft limit. We thus find〈
ONLO∆

(m)
[
FRV(m) + SnΘmnFLM(m, n)

]〉
=

= [αs]
〈
ONLO∆

(m)
[
I
Np+1
V + I

Np+1
S (Em)

]
· FLM(m)

〉
+
〈
ONLO∆

(m)F fin
RV(m)

〉
,

(5.2)

where I
Np+1
V is constructed in analogy with Eq. (3.31), but starting from Catani’s operator

I1 in Eq. (3.29) with Np 7→ Np + 1. Similarly, I
Np+1
S (Em) can be obtained by replacing

Np 7→ Np + 1 in Eq. (3.12) and using Em in place of Emax.

We then address the contributions shown in the second and third lines in Eq. (5.1).

Both of these contributions describe soft-subtracted collinear limits; as such they provide

either generalized anomalous dimensions (in case of final state splittings) or generalized

anomalous dimensions and splitting functions (in case of initial state splittings). It follows

from Eq. (5.1) that in both of these cases integrations over the energy of the soft-collinear

parton n extends to Em and not to Emax.

We would like to assemble these two terms to create the collinear operator IC for the

process with (Np + 1) partons, which could then be combined with the terms in Eq. (5.2)

to produce an infrared-finite operator IT, similar to what we did when describing the NLO

calculation in Section 3. At first glance it appears simple to do that. Indeed, the second

line of Eq. (5.1) contains terms with collinear limits of Np (and not Np + 1) partons, and

the required collinear limit of one additional parton is supplied by the third line of this

equation. However, there seems to be a mismatch between these terms because the final

state collinear operators acting on ∆(mn) in the second line produce zi,n∆
(m), whereas in

the third line the collinear operator does not act on ∆(m) and, therefore, cannot produce

such a factor. The resolution of this hypothetical problem boils down to the fact that we

consider a gluon-only final state, which is highly symmetric. The additional factor of zi,n
effectively lowers this symmetry, and hence plays the same role as the factor 1/2 in the last

term in Eq. (5.1).20 We can thus write the second and third lines on the right-hand side

of Eq. (5.1) as

Np∑
i=1

〈
ONLO (1 − SnΘmn)Cin∆

(mn)FLM(m, n)
〉

+
1

2

〈
ONLO∆(m)(1 − 2SnΘmn)CmnFLM(m, n)

〉
= [αs]

[ 〈
ONLO∆(m)

(
Pgen
aa ⊗ FLM(m)

)〉
+
〈
ONLO∆(m)

(
FLM(m)⊗ Pgen

bb

)〉 ]
+ [αs]

〈
ONLO

[
I
Np+1
C (Em) ·∆(m)FLM(m)

]〉
.

(5.3)

20More explicitly, the additional factor zi,n produces an additional factor of 1/2 upon integrating over

the final-state phase space.
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Similar to the (Np + 1) virtual and soft operators, I
Np+1
C (Em) is defined as in Eq. (3.27),

but with Np 7→ Np+1 and setting Emax 7→ Em in the definition of Γi,fi . We emphasize that

the ONLO operator does not commute with the collinear operator I
Np+1
C or the splitting

function Pgen
ab . Indeed the latter depends on the energy of parton m, which is sensitive to

the action of the soft limit encoded in ONLO.

The expression for Σdiv
N+1 is the sum of Eqs. (5.2) and (5.3). We note that this quantity

still contains hard-collinear singularities related to initial state emissions. To remove them,

we need to add the PDF renormalization contribution proportional to the ONLO operator,

i.e.

Σdiv,pdf
N+1 =

αs(µ)

2πϵ

[〈
P̂ (0)
aa ⊗ONLO∆

(m)FLM(m)
〉
+
〈
ONLO∆

(m)FLM(m)⊗ P̂
(0)
bb

〉]
. (5.4)

In contrast with the observation made below Eq. (5.3), in the expression of Σdiv,pdf
N+1 we

can exchange the order of the Altarelli-Parisi splitting functions and the ONLO operator.

In fact, P̂
(0)
qq is independent of any energy variables, and thus can be moved “inside” the

fully-resolved operator. Given this, we can write Eq. (5.4) as

Σdiv,pdf
N+1 =

αs(µ)

2πϵ

[〈
ONLO∆

(m)
(
P̂ (0)
aa ⊗ FLM(m)

)〉
+
〈
ONLO∆

(m)
(
FLM(m)⊗ P̂

(0)
bb

)〉]
, (5.5)

and combine it with Σdiv
N+1. We obtain

Σ
fin,(3)
N+1 = Σdiv

N+1 +Σdiv,pdf
N+1

= [αs]
〈
ONLO∆(m)

(
I
Np+1
T (Em) · FLM(m)

)〉
+ [αs]

[〈
ONLO∆(m)

(
PNLO
aa ⊗ FLM(m)

)〉
+
〈
ONLO∆(m)

(
FLM(m)⊗ PNLO

bb

)〉]
+
〈
ONLO∆(m) F fin

RV(m)
〉
.

(5.6)

As expected, Eq. (5.6) contains a generalized version of the ϵ-finite operator IT given in

Eq. (3.36). It reads

I
Np+1
T (Em) ≡ I

Np+1
V + I

Np+1
S (Em) + I

Np+1
C (Em) . (5.7)

Note also that, as we mentioned at the beginning of this section, Σ
fin,(3)
N+1 contains almost

exactly the NLO contribution to the (N +1)-jet production cross section; the only missing

piece is the fully-regulated term with up to N + 2 resolved jets.

In addition to Σ
fin,(3)
N+1 , there are three other contributions with N + 1 resolved final

state partons that are explicitly ϵ-finite; they appeared in the course of simplifying ΣRR,1c,

discussed in the previous section. We combine all these contributions into a single quantity

that we will refer to as dσ̂NNLO
N+1 . It is given by

2s dσ̂NNLO
N+1 = Σ

fin,(1)
N+1 +Σ

fin,(2)
N+1 +Σ

fin,(3)
N+1 +Σsp

N+1 , (5.8)

where Σ
fin,(1)
N+1 is given in Eq. (4.38) and Σ

fin,(2)
N+1 in Eq. (4.55). The final term originates

from the spin-correlated contributions discussed in Appendix F; in particular, it describes
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the ONLO piece of the expression given in Eq. (F.18). We can expand these three terms in

ϵ, leading to the following O(ϵ0) result

Σ
fin,(1)
N+1 = [αs]

〈
P̂ (0)
qq ⊗

[
O(1)

NLO ω
m1,n1
1∥n log

(η1m
2

)
∆(m)FLM(m)

]〉
+ [αs]

〈[
O(2)

NLO ω
m2,n2
2∥n log

(η2m
2

)
∆(m)FLM(m)

]
⊗ P̂ (0)

qq

〉
−

Np∑
i=1

[αs]
〈
O(i)

NLO ω
mi,ni
i∥n Γi,fi log

(ηim
2

)
∆(m)FLM(m)

〉
Emax 7→Em

,

Σ
fin,(2)
N+1 =−

Np∑
i=1

[αs] γ
22
z,g→gg

〈
O(i)

NLO ω
mi,ni
m∥n log

(
ηim

4(1− ηim)

)
∆(m)FLM(m)

〉
,

Σsp
N+1 =

Np∑
i=1

[αs]

2
γ22⊥,g→gg

〈
O(i)

NLO ω
mi,ni
m∥n ∆(m)(rµi r

ν
i + gµν)FLM,µν(m)

〉

+

Np∑
i=1

[αs]

2
γ22,r⊥,g→gg

〈
O(i)

NLO ω
mi,ni
m∥n ∆(m)FLM(m)

〉
,

(5.9)

where γ22z,g→gg is reported in Eq. (3.20) and γ22⊥,g→gg and γ22,r⊥,g→gg in Eq. (A.29).

5.2 Double-unresolved triple color-correlated contributions

Having demonstrated how ϵ-poles in single-unresolved terms disappear, we continue with

the discussion of poles in the double-unresolved contribution ΣN . We begin with the

investigation of ϵ-poles that involve matrix elements of triple correlators of color-charge

operators
〈
M0|fabc T ai T bj T ck |M0

〉
. Such terms vanish for processes with three or fewer

partons at tree level, but are non-zero in general.

As we explained in the previous subsection, triple color-correlated terms arise in two

distinct ways. First, there are two contributions that contain triple color correlators ex-

plicitly. One of these is the H2,tc term of the double-virtual contribution in Eq. (4.86) and

the other one was denoted by IRVtri in the integrated soft limit of the real-virtual correction

in Eq. (4.102).

Second, triple correlators of color charges appear in commutators of various I-operators.

Such commutators are present in Eqs. (4.86, 4.102); they arise because we expressed the

double-virtual contribution and the soft limit of the real-virtual corrections through an

operator IV. All in all, combining the relevant terms, we find21

Σtri
N = [αs]

2
〈(

1

2

[
IS(ϵ) , I1(ϵ)− I

†
1(ϵ)

]
+ IRVtri (ϵ)

)
· FLM

〉
,

+ [αs]
2

〈(
−1

2

[
I1(ϵ), I

†
1(ϵ)

]
+H2,tc +H†

2,tc

)
· FLM

〉
.

(5.10)

We find it convenient to rewrite the commutators that appear in Eq. (5.10) as follows

1

2

[
IS , I1 − I

†
1

]
− 1

2

[
I1, I

†
1

]
= − [I+, I−] + [2I+ + IS, I−] , (5.11)

21In general, there are triple color correlators in ϵ-finite terms present in ΣN that are not included in

Eq. (5.10).
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where we introduced two additional I-operators

I+(ϵ) =
I1(ϵ) + I

†
1(ϵ)

2
, I−(ϵ) =

I1(ϵ)− I
†
1(ϵ)

2
, (5.12)

such that

IV(ϵ) = I1(ϵ) + I
†
1(ϵ) ≡ 2I+(ϵ) . (5.13)

We combine the commutators and the operator H2,tc, and write

Σtri
N = [αs]

2
〈(
IRVtri + I

(cc)
tri

)
· FLM

〉
, (5.14)

where I
(cc)
tri is defined as

I
(cc)
tri = − [I+, I−] + [2I+ + IS, I−] +H2,tc +H†

2,tc . (5.15)

Eq. (5.14) collects all potentially divergent terms where the triple color-correlated contri-

butions can appear and provides the starting point for their analysis.

To proceed, we need to compute the commutators of the various I-operators that

appear in Eq. (5.15). To do that, we write I1 as (see Eqs. (3.29) and (3.33))

I1 = −1

2

Np∑
i=1

(
T 2
i

ϵ2
+
γi
ϵ

)
+

1

2

Np∑
(ij)

(
1

ϵ2
+

γi

T 2
i ϵ

)
(T i ·T j)

(
eiλijπϵeϵLij − 1

)
, (5.16)

where Lij = log
(
µ2/sij

)
with sij = 2pi·pj , and λij = 1 if both i and j are either incoming or

outgoing, and λij = 0 otherwise. Since we are interested in commutators of I-operators, in

general the only non-vanishing contributions come from color-correlated terms. Therefore,

the first term on the right hand side in Eq. (5.16) is irrelevant, and only the term with the

T i ·T j product can play a role. Hence, we define

I
(cc)
1 =

1

2

Np∑
(ij)

(
1

ϵ2
+

γi

T 2
i ϵ

)
(T i ·T j)

(
eiλijπϵeϵLij − 1

)
, (5.17)

and we can use this operator instead of I1 to compute the commutators in Eq. (5.14). To

this end, we compute the color-correlated versions of I± using I
(cc)
1 and find22

I
(cc)
+ =

1

2

Np∑
(ij)

(T i ·T j)

(
1

ϵ
Lij + δ+ij

)
+O(ϵ) ,

I
(cc)
− =

iπ

2

Np∑
(ij)

(T i ·T j)

(
1

ϵ
λij + δ−ij

)
+O(ϵ) ,

(5.18)

where

δ+ij =
1

2
L2
ij +

γi

T 2
i

Lij −
1

2
π2λ2ij , δ−ij =

γi

T 2
i

λij + Lij λij . (5.19)

22We defined the color-correlated versions of I± operators 2I
(cc)
± = I

(cc)
1 ±

(
I
(cc)
1

)†
.
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We note that the objects shown in Eq. (5.18) are sufficient to compute the poles in the

triple color-correlated contributions to ΣN .

We can now proceed with the calculation of the commutators in Eq. (5.14). Since they

involve objects such as
[
T k ·T l,T i ·T j

]
, it is convenient to report the following general

relation: given two operators A and B defined as

A =

Np∑
(ij)

aij(T i · T j) , B =

Np∑
(ij)

bij(T i · T j) , (5.20)

where aij and bij are symmetric tensors,23 their commutator reads

[A,B] = i

Np∑
(ijk)

(
akj + ajk

)(
bij + bji

)
F (kij) , F (kij) = fabc T

a
k T

b
i T

c
j . (5.21)

Note that in the above equation, we introduced the handy notation (ijk) to label triplets

with different i, j and k in the sum.

Eq. (5.21) can be used to compute the commutators in Eq. (5.14), replacing I± with

their color-correlated analogues I
(cc)
± , as discussed above. We find

[
I
(cc)
+ , I

(cc)
−

]
=− π

2

Np∑
(ijk)

F (kij)

[
2Lkj λij
ϵ2

+
λij

(
δ+kj + δ+jk

)
ϵ

+
Lkj

(
δ−ij + δ−ji

)
ϵ

+ 2
(
δ+kj + δ+jk

)(
δ−ij + δ−ji

)]
+O(ϵ) .

(5.22)

The second commutator that we need is [2I+ + IS, I−]. To compute it, we extract the

color-correlated contributions to IS. Proceeding along the same lines as in the derivation

of I
(cc)
± , we obtain

I
(cc)
S =

Np∑
(ij)

T i ·T j

[
log(ηij)

ϵ
+ ϕij

]
+O(ϵ) , (5.23)

with

ϕij = −2 log

(
2Emax

µ

)
log(ηij)−

1

2
log2(ηij)− Li2(1− ηij) . (5.24)

Considering the expressions in Eq. (5.18) and Eq. (5.23), and following the discussion in

Appendix C, it is easy to show that the equation

2I
(cc)
+ + I

(cc)
S =

Np∑
(ij)

T i · T j

(
δ+ij + ϕij

)
+O(ϵ) , (5.25)

23If one starts with non-symmetric tensors, as is the case for the δ±ij functions, then it is clear that only

their symmetric components will contribute to the sums of the type shown in Eq. (5.20).
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holds. With this representation at hand, we can calculate the second color-correlated

commutator required in Eq. (5.15)

[
2I

(cc)
+ + I

(cc)
S , I

(cc)
−

]
=− π

2

Np∑
(ijk)

F (kij)

[
2λij
ϵ

(
δ+kj + ϕkj + δ+jk + ϕjk

)
+
(
δ−ij + δ−ji

)(
δ+kj + ϕkj + δ+jk + ϕjk

)]
+O(ϵ) .

(5.26)

It remains to determine a suitable representation for the triple color-correlated part of

the operator H2, which we denote as H2,tc. According to Ref. [72], one can write H2,tc as

a commutator

H2,tc =
1

2ϵ
[Γ, C] , (5.27)

where the two operators Γ and C are related to the ϵ-expansion of the I
(cc)
1 operator

I
(cc)
1 =

Γ

ϵ
+ C +O(ϵ) . (5.28)

Since I
(cc)
1 = I+ + I−, we easily obtain

Γ =
1

2

∑
(ij)

T i ·T j

(
Lij + iπλij

)
, C =

1

2

∑
(ij)

T i ·T j

(
δ+ij + iπ δ−ij

)
. (5.29)

Here, in analogy with Eq. (5.21), we have used the shorthand notation (ij) to indicate

that the sum runs over all possible pairs of distinct partons. It is then straightforward to

compute the commutator of these two operators following the preceding discussion. The

result reads

H2,tc +H†
2,tc = − π

2ϵ

Np∑
(ijk)

F (kij)
[
Lkj

(
δ−ij + δ−ji

)
+ λkj

(
δ+ij + δ+ji

)]
. (5.30)

We can now combine the three triple color-correlated terms in Eqs. (5.22), (5.26) and

(5.30) to obtain the final expression the operator I
(cc)
tri of Eq. (5.15), i.e.

I
(cc)
tri (ϵ) =

π

2

Np∑
(ijk)

F (kij)

[
2Lkj λij
ϵ2

−
4ϕjkλij

ϵ
+
(
δ−ij + δ−ji

)(
δ+kj + δ+jk − 2ϕjk

)]
, (5.31)

where we have used ϕjk = ϕkj and have omitted O(ϵ) terms.

The calculation of Σtri
N requires us to compute IRVtri up to finite terms in ϵ. Such

a calculation is non-trivial; we describe it in Appendix H. The result for IRVtri is given

in Eq. (H.15). Once IRVtri is computed, it is then possible to show that Σtri
N is free of

ϵ-poles. To do that, we need to rewrite Eq. (5.31) to make the role of the factors λij
clear. We recall that λij are phase factors that distinguish between time-like and space-like
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processes. In fact, λij = 1 if partons i and j are both either incoming or outgoing, and

zero otherwise. Furthermore, important simplifications in Eq. (5.31) occur because ϕjk

and Lkj = log(µ2/skj) are symmetric and F
(kij)
LM is antisymmetric with respect to k ↔ j

exchange. Thus, for a process with only outgoing (or only incoming) partons, we have

λij = 1 for all i, j and hence the triple color-correlated poles in Eq. (5.31) vanish. A similar

analysis shows that ϵ-poles in IRVtri also vanish if all resolved partons are in the final state.

To understand what happens in processes where both incoming and outgoing partons

are present, it is convenient to write λij in the following way

λij = 1− δi1 − δi2 − δj1 − δj2 + 2δi1 δj2 + 2δi2 δj1 , (5.32)

where 1 and 2 label the initial state partons. We have already argued that the first term

on the right-hand side provides a vanishing contribution to Eq. (5.31). Terms in Eq. (5.32)

that depend on the index i only also do not contribute since they do not break the k ↔ j

(anti)symmetry. The terms that depend on the index j also vanish. To see this, we write

∑
(ijk)

⟨M|F (kij)AkjCj |M⟩ =
Np∑
(jk)

Np∑
i ̸=j,k

⟨M|fabcAkj Cj T ak T cj T bi |M⟩

= −
Np∑
(jk)

⟨M|fabcAkj Cj T ak T cj (T bj + T bk)|M⟩

=
iCA
2

Np∑
(jk)

⟨M|AkjCj (T k · T j − T j · T k) |M⟩ = 0 ,

(5.33)

where Akj stands for Lkj or ϕkj + ϕjk. Furthermore, we have used color conservation

Np∑
i ̸=j,k

T bi |M⟩ = −(T bj + T bk)|M⟩ , (5.34)

to go from the first line to the second in Eq. (5.33), and the SU(3) commutation relations

for color charges in the next step.

Finally, we write Ljk = log(µ/(2Ej)) + log(µ/(2Ek))− log(ηjk). Using the same argu-

ments as above, it is easy to show that the first two of these terms do not contribute to

I
(cc)
tri . The only terms that remain include log(ηjk) and the final two terms of Eq. (5.32).

Combining all these results, we finally arrive at an expression for the triple color-correlated

poles

I
(cc)
tri =

Np∑
k ̸=1,2

F (k12)

[
− 2π

ϵ2
log

(
η2k
η1k

)
− 2π

ϵ

(
2 log

(
4E2

max

µ2

)
log

(
η1k
η2k

)

+ log2 η1k − log2 η2k + 2Li(1− η1k)− 2Li(1− η2k)

)]
+O(ϵ0) .

(5.35)

Comparing this result with the expression for IRVtri in Eq. (H.15), we find that their poles

are equal and opposite in sign. This establishes the cancellation of ϵ-poles in triple color-

correlated contributions for a generic 1a + 2b → X +N g process.
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5.3 Other color-correlated double-unresolved contributions

We continue with the discussion of divergent contributions to ΣN that contain double

color-correlated matrix elements squared with double-unresolved kinematics. As these

contributions must involve either a loop amplitude or a soft limit, we are interested in

those terms in Eqs. (4.86, 4.96, 4.102, 4.110, 4.120, 4.125) that contain either IV or IS or

both.

The sum of the elastic (i.e. unboosted) terms involving color correlations, which we

denote as Σ
(V+S),el
N , reads

Σ
(V+S),el
N = [αs]

2 1

2

〈 [
I2V + IVIS + ISIV + I2S + 2ICIV + 2ICIS

]
· FLM

〉
+ [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈[
−
[
IS(ϵ) + IV(ϵ)

]
+ IV(2ϵ) + c̃(ϵ) ĨS(2ϵ)

]
· FLM

〉
+ [αs]

2

〈[
K

Γ(1− ϵ)

eϵγE
IV(2ϵ) + CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ2
− 22+2ϵδCA

g (ϵ)

)
× ĨS(2ϵ)

]
· FLM

〉
+ [αs]

〈[
IV(ϵ) + IS(ϵ)

]
· F fin

LV

〉
,

(5.36)

where

c̃(ϵ) =
eϵγE

Γ(1− ϵ)

(
c2(ϵ) + ϵ c3(ϵ)− 22+2ϵϵ δβ0g (ϵ)

)
. (5.37)

Before continuing, we recall that the soft and virtual operators IS and IV have color-

correlated poles starting at O(ϵ−1), while IC does not contain any color-correlated terms

and IT is finite. It follows that the combination IV+S = IV + IS = IT − IC contains

color-correlated contributions starting at O(ϵ0).

Using these properties, it is easy to see that the first and last lines of Eq. (5.36) do not

contain divergent color-correlated contributions. Indeed, the sum of I-operators in the first

line gives I2T−I2C, while the final line yields IV+S. Further details about this rearrangement

and the origin of each term can be found in Ref. [77].

We continue with the discussion of terms proportional to β0 that appear in the second

line of Eq. (5.36). Here we can reconstruct two different versions of IV+S. Indeed, the

first two terms in square brackets return IV+S(ϵ), while the third and fourth terms suggest

that the combination IV+S(2ϵ) can be assembled. To do so, we add and subtract the soft

operators IS(2ϵ) and ĨS(2ϵ) such that

Σ
(V+S),el,β0
N = [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈[
−
[
IS(ϵ) + IV(ϵ)

]
+ IV(2ϵ) + c̃(ϵ)ĨS(2ϵ)

]
· FLM

〉
= [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈[
− IV+S(ϵ) + IV+S(2ϵ) +

(
c̃(ϵ)− 1

)
ĨS(2ϵ)

+ ĨS(2ϵ)− IS(2ϵ)
]
· FLM

〉
.

(5.38)

We now argue that this contribution does not contain divergent color-correlated terms.

First, since IV+S(2ϵ) and IV+S(ϵ) must coincide at O(ϵ0), the difference IV+S(2ϵ)− IV+S(ϵ)

contains color-correlated terms at O(ϵ) only. Second, it is easy to check that

c̃(ϵ)− 1 = O(ϵ2) , (5.39)
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and since color-correlated terms in ĨS(2ϵ) appear for the first time at order O(ϵ−1), the

third term in Eq. (5.38) also does not give rise to color-correlated poles. Finally, as we

have mentioned previously (cf. Eq. (4.95)), the difference

ĨS(2ϵ)− IS(2ϵ) = O(ϵ) , (5.40)

which implies that the combination of the fourth and the fifth term in Eq. (5.38) is also

finite. Hence, we have proved that all terms proportional to β0 in Eq. (5.36) are free of

divergent color-correlated contributions. Finally, for future purposes, it is convenient to

introduce the following decomposition

Σ
(V+S),el,β0
N = [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈[
−IV+S(ϵ) + IV+S(2ϵ) +

(
c̃(ϵ)− 1

)
ĨS(2ϵ)

]
· FLM

〉
+Σ

fin,(6)
N ,

(5.41)

where

Σ
fin,(6)
N = [αs]

2β0
ϵ

Γ(1− ϵ)

eϵγE

〈[
ĨS(2ϵ)− IS(2ϵ)

]
· FLM

〉
. (5.42)

The term in the third line in Eq. (5.36) can be analyzed in a similar manner. We write

K IV(2ϵ) + CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ2
− 22+2ϵδCA

g (ϵ)

)
ĨS(2ϵ) = K IV+S(2ϵ)

+

[
CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ2
− 22+2ϵδCA

g (ϵ)

)
−K

]
ĨS(2ϵ) +K

(
ĨS(2ϵ)− IS(2ϵ)

)
,

(5.43)

where we dropped the factor Γ(1− ϵ)/eϵγE as it contributes at O(ϵ0) only. We observe that

the first and the third terms on the right-hand side of the above equation do not contain

singular color-correlated terms for the reasons discussed above. The second term on the

right-hand side in Eq. (5.43) also does not contain divergent color-correlated contributions

because

CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ2
− 22+2ϵδCA

g (ϵ)

)
−K = O(ϵ) . (5.44)

This completes the analysis of the unboosted color-correlated contributions.

Additionally, there are boosted terms with color correlations in Eqs. (4.110) and (4.120).

It is straightforward to show that the sum of these terms assumes a particularly simple

form

Σ
(V+S),boost
N =

[αs]
2

ϵ

〈
Pgen
aa ⊗

[
IV+S(ϵ) · FLM

]
+
[
IV+S(ϵ) · FLM

]
⊗ Pgen

bb

〉
. (5.45)

Given the properties of IV+S(ϵ) stated above, it is clear that Σ
(V+S),boost
N contains color-

correlated divergences atO(ϵ−1). These divergences get canceled upon combining Eq. (5.45)

with similar contributions that arise as the result of the collinear renormalization of parton

distribution functions. We briefly discuss this point at the end of Sec. 5.4, after Eq. (5.60).

Hence, the analysis performed in the current and previous sections proves the cancel-

lation of all color-correlated divergent terms in a generic process 1a + 2b → X +N g. The

remaining divergences in the double-unresolved contribution ΣN are not color-correlated

and, instead, are proportional to the squares of color charges of the external partons. These

are related to collinear emissions and we continue with their analysis in the next section.
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5.4 Collinear double-unresolved contributions

Having demonstrated the cancellation of poles in the color-correlated contributions to ΣN
in the previous two sections, we need to discuss the remaining terms in this quantity. Such

terms are related to collinear emissions and, therefore, are proportional to the squares of

color charges of the external hard partons. In this subsection we manipulate the corre-

sponding contributions to Eq. (4.74) in order to write them in terms of collinear operators

IC and splitting functions Pgen
ab . This will pave the way for demonstrating the cancellation

of the poles, which we undertake in Subsections 5.5.

The first term that we have yet to discuss is the last one in the third line of Eq. (4.74).

We find it convenient to split it into two pieces

1

2

Np∑
i,j=1

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉

=

Np∑
i,j=1
i<j

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉
+

1

2

Np∑
i=1

〈
SnSmCinCim∆

(mn)FLM(m, n)
〉
.

(5.46)

In the first term on the right-hand side of Eq. (5.46) the unresolved partons m and n become

collinear to two different resolved partons i and j, and we have used the symmetry of the

limits to remove the factor 1/2. In the second term in Eq. (5.46) both m and n become

collinear to the same parton i. It is straightforward to evaluate the first term since all we

need to do is perform the NLO-like computation twice. The result reads

Np∑
i,j=1
i<j

〈
SnSmCjnCim∆

(mn)FLM(m, n)
〉

=
[αs]

2

ϵ2

{
1

2

Np∑
(ij)

〈
Γi,fiΓj,fj · FLM

〉
+
〈
Pgen
aa ⊗ FLM ⊗ Pgen

bb

〉

+

Np∑
i=1
i ̸=1

〈
Pgen
aa ⊗

[
Γi,fi · FLM

]〉
+

Np∑
i=1
i ̸=2

〈[
Γi,fi · FLM

]
⊗ Pgen

bb

〉}
.

(5.47)

The last term in Eq. (5.46) requires more care, as it involves a product of two operators

that describe the soft-subtracted collinear limits of gluons m and n relative to the same hard

parton. We would like to relate this contribution to the iteration of two collinear emissions

and write it in terms of the functions Pgen
ab and Γi,fi , as done in Eq. (5.47). It turns out

that this is nearly possible but that the intertwined phase space of the two collinear gluons
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leads to one additional term when such a rewriting is performed. Indeed, for i = 1 we find

1

2

〈
SmSnC1mC1n∆

(mn)FLM(m, n)
〉
=

[αs]
2

2ϵ2
〈
Γ2
1,a · FLM

〉
+

[αs]
2

ϵ2
〈
Pgen
aa ⊗

[
Γ1,a · FLM

]〉
+

[αs]
2

2ϵ2
〈[
Pgen
aa ⊗̄ Pgen

aa

]
⊗ FLM

〉
+

[αs]
2

2ϵ2
⟨G1(z)⊗ FLM⟩ .

(5.48)

The “bar”-convolution [f⊗̄g] is defined as

[
f(z1, Ei) ⊗̄ g(z2, Ei)

]
(z, Ei) =

1∫
0

dz1 dz2 f(z1, Ei)g(z2, z1Ei)δ(z − z1z2) . (5.49)

The first three terms on the right-hand side of Eq. (5.48) represent the “naive” product

of two soft-subtracted collinear limits and the function G1 incorporates the modifications

required by the non-trivial dependence of the double-collinear phase space of two unresolved

gluons on their energies. To obtain the results for i = 2 we can use Eq. (5.48) and replace

i = 1 with i = 2 and exchange “left” and “right” convolutions. The functions Gi read

Gi(z, Ei) =
[
Γi,fi − Γi,fi(z)

]
Pgen
fifi

(z, Ei) , i = 1, 2 , (5.50)

with

Γi,fi(z) =

(
2zEi
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

[
γfi + T 2

fi

1− e−2ϵLz·i

ϵ

]
. (5.51)

In the above equation Lz·i = logEmax/(zEi). A similar computation for the final-state

parton i yields

1

2

〈
SmSnCimCin∆

(mn)FLM(m, n)
〉
=

[αs]
2

2ϵ2
〈
Γ2
i,fi
FLM

〉
+

[αs]
2

2ϵ2
〈
GiFLM

〉
, (5.52)

where

Gi =

[(
2Ei
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]2 [
γ22z,g→gg(ϵ, Li) +

T 2
g

ϵ
e−2ϵLi

]
×
[
γ42z,g→gg(ϵ, Li)− γ22z,g→gg(ϵ, Li)

]
,

(5.53)

and i = 3, ... , Np. Combining Eqs. (5.47), (5.48) and (5.52) and summing over the final-

state partons, we find the following result for the last term in the third line of Eq. (4.74)

1

2

Np∑
i,j=1

〈
SmSnCimCjn∆

(mn)FLM(m, n)
〉
= [αs]

2

{
1

2

〈
I2C(ϵ) · FLM

〉
+

1

2ϵ2

Np∑
i=3

⟨Gi FLM⟩+ 1

ϵ

[〈
Pgen
aa ⊗

[
IC(ϵ) · FLM

]〉
+
〈[
IC(ϵ) · FLM

]
⊗ Pgen

bb

〉]
+

1

2ϵ2

(〈[
Pgen
aa ⊗̄ Pgen

aa

]
⊗ FLM

〉
+

〈
FLM ⊗

[
Pgen
bb ⊗̄ Pgen

bb

]〉)
+

1

2ϵ2

[〈
G1 ⊗ FLM

〉
+
〈
FLM ⊗G2

〉]
+

1

ϵ2
〈
Pgen
aa ⊗ FLM ⊗ Pgen

bb

〉}
.

(5.54)
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As we will show in the next subsection, the above equation is already in a suitable form to

discuss the cancellation of some 1/ϵ collinear contributions to ΣN .

We now briefly discuss the terms in the fourth and fifth lines of Eq. (4.74). The term

in the fourth line contains two soft-subtracted collinear operators CinCim and a factor

[2(ηin/2)
−2ϵ− 1]. The two soft-subtracted collinear limits produce an O(ϵ−2) term but the

prefactor is arranged in such a way that the actual singularity is just O(ϵ−1). In what

follows we will mostly focus on the cancellation of 1/ϵ2 collinear singularities and for this

reason we do not need to discuss how this term can be rewritten. Furthermore, the term on

the fifth line includes a commutator of the limits Cim and Cin. Since we consider final-state

gluons only, this contribution is identically zero for the purposes of this paper. However, we

note that this term would no longer vanish when one considers processes with both quarks

and gluons in the final state. The only term in Eq. (4.74) that we have yet to consider is

the one on the penultimate line, which originates from the soft-regulated double collinear

limits in sectors (b) and (d). The first part of the computation proceeds similarly to the

NLO case, and results in〈
Cmn

[
FLM(m, n)− 2SnΘmnFLM(m, n)

]〉
=

[αs]

ϵ

(
2Em

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

〈
2 γ22z,g→gg(ϵ)FLM(m)

〉
,

(5.55)

where γ22z,g→gg(ϵ) = γ22z,g→gg(ϵ, Li = 0) and we have renamed the clustered parton [mn] →
m.24 To complete the calculation, we need to evaluate the soft-regulated collinear limit

SmCim. Recalling that σij = ηij/(1− ηij), we find Cimσ
−ϵ
im = η−ϵim and obtain

Np∑
i=1

Nm∥n(ϵ)

2

〈
SmCimσ

−ϵ
im∆(m)Cmn

[
FLM(m, n)− 2SnΘmnFLM(m, n)

]〉
=

[αs]
2

ϵ
N (b,d)
sc

〈
γ22z,g→gg(ϵ)

[
I
(4)
C (ϵ) · FLM

]〉
+

[αs]
2

2ϵ2
N (b,d)
sc

〈
γ22z,g→gg(ϵ)

[
P(4),gen
aa ⊗ FLM + FLM ⊗ P(4),gen

bb

]〉
,

(5.56)

where I
(4)
C and P(4),gen

ab are defined in Eqs. (4.121) and (4.123), respectively, and the nor-

malization constants are collected in Appendix A.1.

This concludes the discussion of the collinear contributions to ΣN ; through O(ϵ−2)

they are given by the sum of Eqs. (5.54) and (5.56). In addition to these terms, there

are also remnants of virtual and soft contributions that are not color correlated. All these

terms will have to be combined together with the collinear renormalizations of parton

distribution functions to demonstrate the cancellation of singularities.

Before discussing the details of this cancellation, we will write down the term in

Eq. (4.1) that arises from the collinear renormalization of the parton distribution func-

24We are free to do so because both m and n are gluons, and hence the clustered parton [mn] is also a

gluon.
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tions at O(α2
s). It reads

dσ̂pdfab =

[
αs(µ)

2π

]∑
x

[
P̂1,xa ⊗ dσ̄NLO

xb + dσ̄NLO
ax ⊗ P̂1,xb

]
+

[
αs(µ)

2π

]2∑
x,y

[
P̂1,xa ⊗ dσ̄LOxy ⊗ P̂1,yb + P̂2,xa ⊗ dσ̄LOxb + dσ̄LOax ⊗ P̂2,xb

]
,

(5.57)

where we have used the following short-hand notation

P̂1,ab(z) =
P̂

(0)
ab (z)

ϵ
, P̂2,ab(z) =

[
P̂

(0)
ax ⊗ P̂

(0)
xb

]
(z)− β0P̂

(0)
ab (z)

2ϵ2
+
P̂

(1)
ab (z)

2ϵ
. (5.58)

We note that at variance with Eq. (3.35), dσ̄NLO does not include the PDFs renormaliza-

tion. Furthermore, the summation in Eq. (5.57) is performed over all initial-state parton

flavors. However, since we consider processes with qq̄ initial states and gluonic final states,

the Altarelli-Parisi splitting functions always have identical indices. We can therefore write

the contribution from the PDFs renormalization as follows

dσ̂pdfab =

[
αs(µ)

2π

] [
P̂

(0)
aa ⊗ dσ̄NLO

ab

ϵ
+

dσ̄NLO
ab ⊗ P̂

(0)
bb

ϵ

]
+

[
αs(µ)

2π

]2{[
P̂

(0)
aa ⊗ P̂

(0)
aa − β0P̂

(0)
aa

2ϵ2
− P̂

(1)
aa

2ϵ

]
⊗
〈
FLM

〉
+
〈
FLM

〉
⊗

[
P̂

(0)
bb ⊗ P̂

(0)
bb − β0P̂

(0)
bb

2ϵ2
−
P̂

(1)
bb

2ϵ

]
+
P̂

(0)
aa ⊗

〈
FLM

〉
⊗ P̂

(0)
bb

ϵ2

}
.

(5.59)

The NLO cross section dσ̄NLO
ab can be obtained from the results of Section 3 and reads

dσ̄NLO
ab = [αs]

〈
IT(ϵ) · FLM

〉
+
〈
F fin
LV

〉
+

[αs]

ϵ

[〈
Pgen
aa ⊗ FLM

〉
+
〈
FLM ⊗ Pgen

bb

〉]
+
〈
ONLO∆(m)FLM(m)

〉
.

(5.60)

As mentioned earlier, we do not include the O(αs) contribution of the collinear renor-

malization of PDFs in the definition of dσ̄NLO
ab , and therefore this quantity still contains

unsubtracted hard-collinear poles. We also note that we already used the convolution of

the Altarelli-Parisi splitting function with the ONLO term in Eq. (5.60) to cancel ϵ-poles in

single-unresolved contributions to dσ̂NNLO
N+1 shown in Eq. (5.8).

Before continuing with the discussion of the double-unresolved collinear contributions,

we can use Eq. (5.59) to complete the demonstration of the cancellation of the color-

correlated divergences, see the discussion after Eq. (5.45). We note that terms in the first

line of Eq. (5.59) contain divergent contributions that involve a convolution of a splitting

function and a next-to-leading order cross section. The latter contains the IT operator

which has color-correlated terms at O(ϵ0). These terms are identical to those that appear

in the operator IV+S in Eq. (5.45). Using the relation between Pgen
ab and P̂

(0)
ab shown in

Eq. (3.38), it is easy to check that the color-correlated contribution to the ϵ-poles cancel

when Eq. (5.45) and the first line of Eq. (5.59) are combined.
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5.5 Pole cancellation in double-unresolved color-uncorrelated contributions

We are now in the position to discuss the double-unresolved terms that are free of color

correlations. These terms must be collected from Eqs. (4.86, 4.96, 4.102, 4.110, 4.120,

4.125, 5.54, 5.56) and Eq. (5.59). They include terms with double-boosted kinematics

(db), terms with a single boost from either the right (rb) or the left (lb), as well as elastic

terms (el). We discuss these contributions separately. We write

Σcoll
N = Σc,el

N +Σlb
N +Σrb

N +Σdb
N , (5.61)

where the superscript “c” emphasizes that the first term on the right-hand side originates

from collinear limits. We begin by considering the double-boosted term, which only receives

contributions from the double-collinear limits in Eq. (5.54) and the PDFs renormalization

in Eq. (5.59). Their sum reads

Σdb
N =

[αs]
2

ϵ2
〈
Pgen
aa ⊗ FLM ⊗ Pgen

bb

〉
+

[
αs(µ)

2π

]2 1

ϵ2
〈
P̂ (0)
aa ⊗ FLM ⊗ P̂

(0)
bb

〉
+

[αs]

ϵ2

[
αs(µ)

2π

] [〈
P̂ (0)
aa ⊗ FLM ⊗ Pgen

bb

〉
+
〈
Pgen
aa ⊗ FLM ⊗ P̂

(0)
bb

〉]
.

(5.62)

Using the expansion

Pgen
aa = −P̂ (0)

aa + ϵPNLO
aa +O(ϵ2) , (5.63)

and the fact that αs(µ)/(2π) = [αs] + O(ϵ2), we can simplify the expression of Σdb
N and

find

Σdb
N = [αs]

2
〈
PNLO
aa ⊗ FLM ⊗ PNLO

bb

〉
, (5.64)

which is finite in ϵ.

We continue with the single-boosted terms, and demonstrate the pole cancellation up

to O(ϵ−1). Focusing on the left boost, i.e. the boost applied to the initial-state parton with

momentum p1, and combining selected contributions from Eqs. (4.110, 4.120, 5.54, 5.56)

and Eq. (5.59), we obtain the following result

Σlb
N = [αs]

2
〈
PNLO
aa ⊗

[
IT(ϵ) · FLM

]〉
+ [αs]

〈
PNLO
aa ⊗ F fin

LV

〉
+

1

2ϵ2

〈{
[αs]

2
[
Pgen
aa ⊗̄ Pgen

aa

]
+

[
αs(µ)

2π

]2 [
P̂ (0)
aa ⊗ P̂ (0)

aa

]
+ 2[αs]

[
αs(µ)

2π

] [
P̂ (0)
aa ⊗̄ Pgen

aa

]}
⊗ FLM

〉
+

[αs]
2

2ϵ3

〈[
CAhc(ϵ)

(
P(4),gen
aa − P1L,gen

aa

)
+ ϵG1

]
⊗ FLM

〉
−
[
αs(µ)

2π

]2 β0
2ϵ2

〈
P̂ (0)
aa ⊗ FLM

〉
− [αs]

[
αs(µ)

2π

]
β0
ϵ2

〈
Pgen
aa ⊗ FLM

〉
+

[αs]
2

2ϵ2
N (b,d)
sc

〈
γ22z,g→gg(ϵ)P(4),gen

aa ⊗ FLM

〉
,

(5.65)

where we have dropped irrelevant O(ϵ) terms in the first line, and we used the bar-

convolution, defined in Eq. (5.49).
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The two terms on the first line of Eq. (5.65) are clearly finite in ϵ. As for the sum of

the second and third lines, we recall that

P(k),gen
aa = −P̂ (0)

aa +O(ϵ) , (5.66)

and hence

[αs]
2
[
Pgen
aa ⊗̄ Pgen

aa

]
= [αs]

2
[
P̂ (0)
aa ⊗̄P̂ (0)

aa

]
+O(ϵ) ,

2[αs]

[
αs(µ)

2π

] [
P̂ (0)
aa ⊗̄ Pgen

aa

]
= − 2[αs]

2
[
P̂ (0)
aa ⊗̄P̂ (0)

aa

]
+O(ϵ) .

(5.67)

The two convolutions of Altarelli-Parisi splitting functions are related by[
αs(µ)

2π

]2 [
P̂ (0)
aa ⊗ P̂ (0)

aa

]
(z)− [αs]

2
[
P̂ (0)
aa ⊗̄P̂ (0)

aa

]
(z)

= [αs]
2

1∫
0

dz1 dz2
(
1− z−2ϵ

1

)
P̂ (0)
aa (z1) P̂

(0)
aa (z2) δ(z − z1z2) +O(ϵ) ≡ O(ϵ) .

(5.68)

It follows that the O(ϵ−2) poles on the second and third lines of Eq. (5.65) vanish.

To discuss the cancellation of the poles in the fourth line on the right-hand side of

Eq. (5.65) we require the functions P 1L,gen
aa , P

(4),gen
aa , and G1. These quantities are defined

in Eqs. (4.109), (4.123) and (5.50), respectively. Using both Eq. (5.66) and the relation

P1L,gen
aa = −P̂ (0)

aa +O(ϵ) , (5.69)

we see that O(ϵ−3) poles disappears. Furthermore, using

hc(ϵ)
(
P(4),gen
aa (z, E1)− P1L,gen

aa (z, E1)
)
= 2ϵ log(z)P̂ (0)

aa (z) +O(ϵ2) ,

ϵGi(z, E1) = −2ϵ log(z)P̂ (0)
aa (z) +O(ϵ2) ,

(5.70)

we observe the cancellation of O(ϵ−2) poles in the fourth line of Eq. (5.65). The cancel-

lation of the O(ϵ−2) poles in the last two lines of Eq. (5.65) follows from the expansions

γ22z,g→gg(ϵ) = 11/6CA+O(ϵ) and N
(b,d)
sc = 1+O(ϵ), and recalling that β0 = 11/6CA in our

setup. Demonstrating the complete cancellation of the single poles takes more effort. We

comment on this point at the end of this section.

Finally, we discuss the pole cancellation in elastic terms. We begin by summing terms

that arise from hard-collinear limits and that do not involve contributions from virtual

loops. These terms can be found in Eqs (4.110, 4.120, 5.54) and (5.56). The result reads

Σc,el
N = [αs]

2

{〈[
I2C(ϵ)

2
− β0

ϵ

Γ(1− ϵ)

eϵγE
IC(ϵ)

]
· FLM

〉

+
1

ϵ2

〈[
CAhc(ϵ)

(
I
(4)
C (ϵ)− ĨC(2ϵ)

)
+

1

2

Np∑
i=3

Gi

]
· FLM

〉

+
1

ϵ

〈
N (b,d)
sc

[
γ22z,g→gg(ϵ)I

(4)
C (ϵ)

]
· FLM

〉}
+ [αs]

〈
IC(ϵ) · F fin

LV

〉
.

(5.71)
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In Eq. (5.36) we defined the color-correlated component of the elastic term Σ
(V+S),el
N , and

in the discussion that followed we demonstrated that the color-correlated poles vanish.

However, this still left color-uncorrelated poles in Σ
(V+S),el
N , starting at O(ϵ−2). Combining

this term with Σc,el
N we find

Σ
(V+S),el
N +Σc,el

N = [αs]
〈
IT(ϵ) · F fin

LV

〉
+ [αs]

2

{
1

2

〈
I2T(ϵ) · FLM

〉
+K

〈
IT(2ϵ) · FLM

〉
+
β0
ϵ

Γ(1− ϵ)

eϵγE

〈(
IT(2ϵ)− IT(ϵ)

)
· FLM

〉
+
β0
ϵ

Γ(1− ϵ)

eϵγE

〈(
c̃(ϵ)− 1

)
ĨS(2ϵ) · FLM

〉
+Σ

fin,(6)
N

+

〈[
CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ
− 22+2ϵδCA

g (ϵ)

)
−K

]
ĨS(2ϵ) · FLM

〉
+
〈
K

(
ĨS(2ϵ)− IS(2ϵ)

)
· FLM

〉
+

1

ϵ2

〈[
CAhc(ϵ)

(
I
(4)
C (ϵ)− ĨC(2ϵ)

)
−Kϵ2IC(2ϵ) +

1

2

Np∑
i=3

Gi

]
· FLM

〉

+
1

ϵ

〈[
N (b,d)
sc γ22z,g→gg(ϵ)I

(4)
C (ϵ)− β0

Γ(1− ϵ)

eϵγE
IC(2ϵ)

]
· FLM

〉}
.

(5.72)

The terms in the first line are manifestly finite. We explained in Section 5.3 that IT(2ϵ)−
IT(ϵ) = O(ϵ); thus the second line is finite as well. The third, fourth, and fifth lines give

rise to O(ϵ−1) poles only; this follows from the fact that the highest pole in ĨS is O(ϵ−2),

but the coefficients of ĨS suppress this singularity as can be seen by using Eqs. (5.39), (5.40)

and (5.44). Likewise, the fifth line contains poles of O(ϵ−1), since

CAhc(ϵ)
(
I
(4)
C (ϵ)− ĨC(2ϵ)

)
=

Np∑
i=3

CA T 2
i

(
−65

72
+
π2

3

)
+O(ϵ) , (5.73)

and

Gi = 2CA T 2
i

(
65

72
− π2

3

)
+O(ϵ) , (5.74)

while ϵ2IC(2ϵ) = O(ϵ). Finally, using Eq. (4.124) and expansions already employed in this

section, we can easily check that the last line of Eq. (5.72) contains O(ϵ−1) poles only.

At this point, it is useful to review what we have accomplished regarding the double-

unresolved contributions. In Sections 5.2 and 5.3, we have combined contributions of soft

limits of real-emission amplitudes and contributions of loop amplitudes to demonstrate the

cancellation of all ϵ-poles that contain correlators of color-charge operators. We are then

left with ϵ-poles proportional to squares of the color charges of the external partons. In

this section, we combined these remaining divergences with the ones from hard-collinear

limits and showed that all poles multiplying double-boosted matrix elements vanish, and

that poles multiplying single-boosted and elastic contributions vanish up to O(ϵ−1).

We have done this by combining structures that emerge from virtual, soft, and collinear

singularities into finite operators such as IT, or, where this has not been possible, we
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have used simple relationships between the ϵ-expansions of the various operators. This

dramatically simplifies the cancellation of the singularities. As a result we are able to

demonstrate the cancellation of poles without resorting to excessive evaluations of multiple

singular terms, which would have been needed had we followed the approach of Refs [1, 60].

In order to investigate how the remaining O(ϵ−1) color-uncorrelated poles cancel, we

need to consider the O(ϵ−1) terms from Eqs. (5.65) and (5.72), the triple-collinear and spin-

correlated terms Σ
(2)
N and Σ

(8)
N in Eq. (4.74), the term in the fourth line in Eq. (4.74), and the

contribution from the NLO Altarelli-Parisi kernel P̂
(1)
qq in the collinear renormalization of

parton distribution functions.25 Although it should be possible to organize the cancellation

of the remaining 1/ϵ terms following what has been done for higher poles, it becomes much

more cumbersome to do so. For this reason, we simply note that the cancellation of the

remaining O(ϵ−1) poles has been checked by means of a straightforward, but tedious,

algebraic computation. Everything that is needed to confirm this cancellation is provided

in the main body of this paper and the relevant appendices.

Having cancelled all the poles, we can take the ϵ → 0 limit and obtain a finite result

for the NNLO contribution to the cross section dσ̂NNLO
qq̄ for the process 1q+2q̄ → X +Ng.

We present this result in the following section.

6 Final result

In this section we present a formula for the finite NNLO QCD contribution dσ̂NNLO
qq̄ to the

partonic cross section of the process 1q +2q̄ → X +Ng. This formula is the main result of

this paper. As explained in the preceding sections, we arrive at this result by considering

double-real, double-virtual, real-virtual and PDF-renormalization contributions to dσ̂NNLO
qq̄

and manipulating them to remove all singularities without impacting the fully-differential

nature of the result. An important feature of our approach is the organization of the

subtraction terms into iterations of NLO-like structures, which allows us to ameliorate the

proliferation of subtraction terms that plagues NNLO calculations. As a result, the NNLO

remainder can be written in a very compact form.

We split dσ̂NNLO
qq̄ into contributions with N + 2, N + 1 and N resolved final-state

partons (c.f. Eq. (4.11)) and write

dσ̂NNLO
qq̄ = dσ̂NNLO

N+2 + dσ̂NNLO
N+1 + dσ̂NNLO

N . (6.1)

The first term on the right-hand side is the finite, fully-regulated contribution given in

Eq. (4.15). The single-unresolved cross section dσ̂NNLO
N+1 can be found in Eq. (5.8). The

double-unresolved contribution dσ̂NNLO
N is obtained by combining the many different terms

calculated in the previous sections. As was explained there, it is convenient to write dσ̂NNLO
N

as the sum of double-boosted, single-boosted and elastic leading-order terms

dσ̂NNLO
N = dσ̂NNLO

db + dσ̂NNLO
sb + dσ̂NNLO

el . (6.2)

25Since we consider gluonic final states only, we need to remove the contribution of final state quarks

from P
(1)
qq . The resulting expression P̂

(1)

qq,ÑS
is shown in Eq. (A.20).
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We now present each contribution separately, using several functions that we collect in

Appendix I. The double-boosted contribution is described by the very simple expression

2s dσ̂NNLO
db =

[
αs(µ)

2π

]2 〈
PNLO
qq ⊗ FLM ⊗ PNLO

qq

〉
, (6.3)

where PNLO
qq is the finite remainder of NLO splitting functions, and can be found in Eq. (I.3).

As expected, this contribution is independent of the multiplicity of the final state.

The expression for the single-boosted contribution is slightly more complex and corre-

sponds to

2s dσ̂NNLO
sb =

[
αs(µ)

2π

]2{〈
PNLO
qq ⊗

[
I
(0)
T · FLM

]〉
+
〈[
I
(0)
T · FLM

]
⊗ PNLO

qq

〉
+
〈
PW
qq ⊗

[
W1∥n,fin

1 · FLM

]〉
+
〈[
W2∥n,fin

2 · FLM

]
⊗ PW

qq

〉
+
〈
PNNLO
qq ⊗ FLM

〉
+
〈
FLM ⊗ PNNLO

qq

〉
+
〈
PNLO
qq ⊗ F fin

LV

〉
+
〈
F fin
LV ⊗ PNLO

qq

〉}
,

(6.4)

Here, we remind the reader that I
(0)
T is the ϵ → 0 limit of the finite operator IT(ϵ).

Its explicit expression is reported in Eq. (A.66). The function W i∥n,fin
i , appearing in the

second line of Eq. (6.4), is given in Eq. (G.12), while the NNLO splitting function PNNLO
qq

is reported in Eq. (I.5).

Finally, the elastic contribution reads

2s dσ̂NNLO
el =

[
αs(µ)

2π

]2{〈[
Ifincc + Ifintri + Ifinunc

]
· FLM

〉
+

Np∑
i=1

〈[
γW(Li) θi2W i∥n,fin

i + δ(0)g Wm∥n,fin
i + δ⊥g W(i)

r

]
· FLM

〉}
+

[
αs(µ)

2π

] 〈
I
(0)
T · F fin

LV

〉
+
〈
SmnΘmnFLM(m, n)

〉fin
T 2 +

〈
F fin
LV2

〉
+
〈
F fin
VV

〉
.

(6.5)

In this equation θi2 = 1 if i is the final-state parton (i > 2) and 0 otherwise. In the first line

we have the combination of a double color-correlated contribution, a triple color-correlated

component, and a color-uncorrelated part. They are presented in Eq. (I.8), (I.9), and (I.12)

respectively. In the second line of Eq. (6.5), the functions γW , W i∥n,fin
i , Wm∥n,fin

i and W(i)
r

appear. They are given in Eqs (I.15), (G.12), (G.10) and (F.41). The constants δ
(0)
g and

δ⊥g are reported in Eq. (I.16). The term
〈
SmnΘmnFLM(m, n)

〉fin
T 2 in Eq. (6.5) refers to the

finite remainder of the double-soft integrated subtraction term. It can be extracted from

Ref. [69], and its explicit expression is reported in Eq. (I.17). Finally, F fin
LV2 and F fin

VV are

the process-dependent finite remainders of virtual amplitudes.

We claim that the above result for dσ̂NNLO
qq̄ can be used, without further ado, to

implement the finite remainder of NNLO QCD corrections to a process qq̄ → X +Ng in a

computer code. In theory, this can be done for arbitrary N , but the practical realization of
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this idea will have to wait until finite remainders for two-loop amplitudes for such processes

become available.

Nevertheless, it is important to emphasize that the form of the final results is well-

suited for numerical implementation, in the sense that the parameter N that controls the

final state multiplicity only appears in relatively few places. Indeed, the splitting functions

that appear in the boosted contributions are universal and are determined only by the

flavor of the external partons and their energies. In the elastic contribution, the final

state multiplicity only affects the upper limit in the sum over partons, see e.g. Eqs (6.5),

(I.8), (I.9) and (I.12). It follows that implementing the color-uncorrelated elastic terms in a

numerical code is also quite simple for any N . Perhaps the most complicated contributions,

from this point of view, are those containing color correlations, such as I
(0)
T . However, even

in this case a numerical implementation for a given N should be straightforward, using

e.g. the ideas of color ordering.

Results of the general computation reported here can be compared with those obtained

for specific values of N . The N = 0 case corresponds to the Drell-Yan process, and the

N = 1 case to the gluonic contribution to the V + jet production. It is well-known that,

in both cases, the correlators of color-charge operators can be expressed through Casimir

operators. For example, in the case of q1q̄2 → V + g3, we find

T 1 · T 2 =
CA
2

− CF , T 1 · T 3 = T 2 · T 3 = −CA
2

. (6.6)

Using such expressions it is straightforward to replace all products of color-charge operators

in Eqs. (6.3, 6.4, 6.5) with the corresponding Casimir operators. One can also easily check

that the partition functions defined for generic N turn into structures already used in

earlier computations. It follows from the definition in Eq. (B.10) that ∆(ij) = 1 for the

Drell-Yan process and

∆(mn) =
p⊥,3

p⊥,3 + p⊥,m + p⊥,n
, (6.7)

for V + jet partitioning. Similarly, it is easy to see that ω-partitions are the same as those

used in Ref. [1, 60] for N = 0 and Ref. [78] for N = 1.

We have reproduced the analytic results for the finite NNLO remainders for Drell-

Yan production that were reported in Ref. [60] starting from Eqs (6.3, 6.4, 6.5), and

setting N = 0. We have also checked that, upon setting N = 1, the general formulas

reproduce the results of a dedicated computation of the NNLO QCD corrections to the

process qq̄ → V + g that we performed earlier. Although this computation was also based

on the nested soft-collinear subtraction scheme, it was organized very differently, with

an emphasis on separately integrating all the different subtraction terms over unresolved

phase spaces before combining and simplifying them. The two approaches are sufficiently

independent to provide an important check of the general-N formula that we reported in

this section.

7 Conclusions

In this paper, we have shown how to use the nested soft-collinear subtraction scheme to

describe the production of a generic color-singlet state accompanied by an arbitrary number

– 58 –



of gluons in quark-antiquark annihilation at NNLO QCD. We have identified recurring

structures associated with the sums of single-soft, single-collinear and one-loop virtual

corrections. We have also shown that by organizing the calculation in such a way that

the iterative nature of these finite contributions is fully exposed, much of the complexity

of NNLO computations related to an interplay of soft and collinear singularities can be

ameliorated. This has allowed us to demonstrate the cancellation of all color-correlated

poles, as well as color-uncorrelated poles through O(ϵ−2), in a straightforward manner.

We have also confirmed the cancellation of the remaining ϵ-poles, and obtained compact

expressions for the finite subtraction terms, which we have checked, where possible, against

previous results and independent calculations. To the best of our knowledge, it is the first

time that such expressions have been presented for the production of an arbitrary number

of gluons at a hadron collider.26

Although we considered a qq̄ initial state in this paper, many of our arguments apply

to gg annihilation as well; the only modifications required for this channel would be the

use of gluon splitting functions in place of the quark ones as well as the necessary changes

in the color charges where appropriate. These modifications are clearly minor and do not

impact the logic of the computation that we report in this paper.

The results of this study provide a necessary step towards the complete generalization

of the nested soft-collinear subtraction scheme to arbitrary initial and final states. Indeed,

on the one hand, the gluonic final state ensures that the maximal number of infrared and

collinear singularities are present, so processes with final state quarks should have a simpler

singularity structure. On the other hand, we relied on the symmetries of the final state and

particular features of the initial state, and this will not be possible if generic processes are

considered. Although nothing will change as a matter of principle, the combinatorics of

collinear limits will become more complicated. We look forward to addressing these issues

in future studies.
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A Constants, angular integrals, splitting functions, anomalous dimen-

sions and fundamental operators

In this section we provide a collection of formulas that are used throughout the main text

of this paper. They include:

(i) various constants in Appendix A.1;

(ii) angular integrals in Appendix A.2;

(iii) the relevant Altarelli-Parisi splitting functions in Appendix A.3;

(iv) generalized splitting functions and anomalous dimensions in Appendix A.4;

(v) operators arising from soft and collinear limits as well as from virtual corrections,

and useful relations between them in Appendix A.5;

A.1 Useful constants

Here we summarize the various constants that we have introduced throughout the manuscript.

First we discuss the notations related to color. Following Ref. [79], we denote the color-

charge operators with T i; squares of color-charge operators are the Casimir operators of

the corresponding representations of SU(3). They read T 2
q = T 2

q̄ = CF , T
2
g = CA, where

CF = (N2
c − 1)/(2Nc), CA = Nc, and Nc = 3 is the number of colors. Quark and gluon

anomalous dimensions read γq = 3/2CF and γg = 11/6CA − 2/3TRnf , where TR = 1/2

and nf is the number of massless quark flavors.

We renormalize the strong coupling in the MS scheme, i.e.

g2s,b = g2sSϵµ
2ϵ

[
1− αs(µ)

2π

β0
ϵ

+

(
αs(µ)

2π

)2(β20
ϵ2

− β1
2ϵ

)
+O(α3

s)

]
, (A.1)

where Sϵ = (4π)−ϵeϵγE and

β0 =
11

6
CA − 2

3
TRnf = γg , β1 =

17

6
C2
A − 5

3
CATRnf − CFTRnf . (A.2)

We note that we only consider gluons in the final state, so that nf is set to zero throughout

this paper. Furthermore, it is convenient to define the following coupling

[αs] ≡
αs(µ)

2π

eϵγE

Γ(1− ϵ)
. (A.3)

Then, combining Eqs. (A.1) and (A.3), we find

g2s,b = 8π2[αs]
Γ(1− ϵ)

(4π)ϵ

[
1 +O(αs)

]
. (A.4)
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In the main text of this paper we encounter a number of angular integrals, for which

we introduce the following normalization constants:

N (b,d)
ϵ =

Γ(1− ϵ) Γ(1 + 2ϵ)

Γ(1 + ϵ)
= 1 +

π2

3
ϵ2 +O(ϵ3) ,

Nm||n(ϵ) = 22ϵ
Γ(1 + 2ϵ)Γ(1− 2ϵ)

Γ(1 + ϵ)Γ(1− ϵ)
= 1 + 2ϵ log 2 +

1

2
ϵ2
(
π2 + 4 log2 2

)
+O(ϵ3) ,

Nc(ϵ) = − Γ(1− ϵ)Γ(1− 2ϵ)

Γ(1− 3ϵ)
+

2Γ2(1− ϵ)

Γ(1− 2ϵ)
= 1 +O(ϵ3) .

(A.5)

We note that all the above normalization constants are equal to one to zeroth order in ϵ.

To describe virtual corrections we have used the convention of Ref. [70, 74]

λij =

{
+1 i and j are both incoming or outgoing ,

0 otherwise ,

κij =
(
λij − λim − λjm

)
=

{
+1 i and j are both incoming or outgoing ,

−1 otherwise .

(A.6)

For double-virtual amplitudes we have used the following constants [70]

K =

(
67

18
− π2

6

)
CA − 10

9
TRnf ,

cϵ =
e−ϵγEΓ(1− 2ϵ)

Γ(1− ϵ)
= 1 +

π2

4
ϵ2 +

7

3
ζ3 ϵ

3 +O(ϵ4) .

(A.7)

To describe integrated double-soft limits (see Eq. (4.90)), we have introduced

c1(ϵ) = 1 +

(
π2

6
− 32

9

)
ϵ2 +

(
217

27
− 137

9
log 2− 22 log2 2 +

11ζ3
2

)
ϵ3 ,

c2(ϵ) = 1 +
π2

3
ϵ2 ,

c3(ϵ) = 4 log 2 + 8ϵ log2 2 .

(A.8)

We emphasize that c1,2,3 do not contain powers of ϵ beyond those shown above.

To compute soft and collinear limits of the real-virtual contribution FRV, we used

AK(ϵ) =
Γ3(1 + ϵ) Γ5(1− ϵ)

Γ(1 + 2ϵ) Γ2(1− 2ϵ)
= 1− π2

3
ϵ2 +O(ϵ3) ,

hc(ϵ) =
Γ2(1− 2ϵ)Γ(1 + ϵ)

Γ(1− 3ϵ)
= 1 +O(ϵ3) .

(A.9)

We also have defined (see Eq. (4.125))

δCA
g (ϵ) =

(
−131

72
+
π2

6

)
+O(ϵ) , δβ0g (ϵ) = log 2 +O(ϵ) . (A.10)
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When combining the unboosted terms involving color correlations (see Section 5.3), we

require the following combinations of some of the above constants

c̃(ϵ) =
eϵγE

Γ(1− ϵ)

(
c2(ϵ) + ϵc3(ϵ)− 22+2ϵϵ δβ0g (ϵ)

)
= 1 +O(ϵ2) ,

CA

(
c1(ϵ)

ϵ2
− AK(ϵ)

ϵ2
− 22+2ϵδCA

g (ϵ)

)
−K = O(ϵ) .

(A.11)

A.2 A collection of simple angular integrals

Throughout the manuscript we make use of various integrals over the angles of unresolved

gluons. We summarize some of the useful formulas here. First, we define the normalized

element of the solid angle in (d− 1)- and (d− 2)-dimensions

[dΩ
(d−1)
i ] ≡

dΩ
(d−1)
i

2(2π)d−1
, [dΩ

(d−2)
i ] ≡

dΩ
(d−2)
i

2(2π)d−2
. (A.12)

Then, we find

[Ω(d−2)] ≡
∫

[dΩ(d−2)] =
1

8π2
(4π)ϵ

Γ(1− ϵ)
. (A.13)

Furthermore, we use

∫
[dΩ

(d−1)
a ]

[Ω(d−2)]

ρij
ρiaρja

= − 21−2ϵ

ϵ
η−ϵij Kij ,∫

[dΩ
(d−1)
a ]

[Ω(d−2)]

1

ρia
= − 2−2ϵ

ϵ

Γ2(1− ϵ)

Γ(1− 2ϵ)
,∫

[dΩ
(d−1)
a ]

[Ω(d−2)]

(ρia
4

)−ϵ 1

ρia
= − 2−2ϵ

2ϵ

2ϵ Γ(1− ϵ) Γ(1− 2ϵ)

Γ(1− 3ϵ)
,

(A.14)

where Kij is given by (cf. Eq. (3.14))

Kij =
Γ2(1− ϵ)

Γ(1− 2ϵ)
η1+ϵij 2F1(1, 1, 1− ϵ, 1− ηij) . (A.15)

Other integrals that we require involve the collinear limits acting on the angular phase

space measure; they can be computed using the phase space parametrization described in

Appendix E. Here we just give two examples that appear frequently∫
[Cij dΩ

(d−1)
j ]

1

ρij
= −2−2ϵ

ϵ

[ 1

8π2
(4π)ϵ

Γ(1− ϵ)

]
, (A.16)

and ∫
[Cij dΩ

(d−1)
j ]

1

ρij
Θ
(
ηij <

ηik
2

)
= −1

ϵ

[ 1

8π2
(4π)ϵ

Γ(1− ϵ)

]
ρ−ϵik . (A.17)
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A.3 Altarelli-Parisi splitting functions

In this section we report the Altarelli-Parisi splitting functions that we use in this paper.

The only leading order splitting function that we require reads

P̂ (0)
qq (z) = CF

[
2D0(z)− (1 + z) +

3

2
δ(1− z)

]
, (A.18)

where

Dn(z) ≡
[
logn(1− z)

1− z

]
+

. (A.19)

At NLO, we need the non-singlet splitting function from which the contribution of identical

quarks has been subtracted, which reads

P̂
(1)

qq,ÑS
(z) = CACF

[
π2

6
(1 + z)− 62

9
z − 19

18
+

(
67

9
− π2

3

)
D0(z)

+
2 + 11z2

6(1− z)
log z − 1 + z2

1− z
Li2(1− z) + δ(1− z)

(
17

24
+

11

18
π2 − 3ζ3

)]
+ C2

F

[
3− 2z − 2

1 + z2

1− z
log(1− z) log z + 2 log z +

1 + 3z2

2(1− z)
log2 z

+ 2
1 + z2

1− z
Li2(1− z) + δ(1− z)

(
3

8
− π2

2
+ 6ζ3

)]
.

(A.20)

A.4 Generalized splittings and anomalous dimensions

A.4.1 Tree-level

We start by introducing the two tree-level splitting functions needed throughout the paper

Pqq(z) = CF

[
1 + z2

1− z
− ϵ(1− z)

]
,

Pµνgg (z) = 2CA

[
−gµν

(
1− z

z
+

z

1− z

)
+ 2(1− ϵ)z(1− z)κµ⊥κ

ν
⊥

]
,

(A.21)

where κµ⊥ is a transverse momentum defined as

κµ⊥ =
kµ⊥√
−k2⊥

, κ2⊥ = −1 . (A.22)

We also need the gluon spin-averaged splitting function

Pgg(z) = 2CA

[
z

1− z
+

1− z

z
+ z(1− z)

]
. (A.23)

To describe the spin-correlated component arising from sectors (b) and (d) we have intro-

duced the functions

P⊥
gg(z) = 4CA(1− ϵ) z (1− z) , (A.24)

P⊥,r
gg (z) = 2CA z(1− z)(1− 2ϵ) , (A.25)
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P (0)
gg (z) = 2CA

(
z

1− z
+

1− z

z

)
, (A.26)

Pgg(z, ϵ) = P (0)
gg (z) +

1

2
P⊥
gg(z) = 2CA

(
1− z

z
+

z

1− z
+ z(1− z) (1− ϵ)

)
. (A.27)

We also require the following integral of the soft-subtracted function Pgg over z

γnkf(z),g→gg(ϵ, Li) =−
1∫

0

dz (1− Sz)
[
z−nϵ(1− z)−kϵ f(z)Pgg(z)

]
+ 2CA

1− ekϵLi

kϵ
f(1) ,

(A.28)

where Sz stands for the soft z → 1 limit and Li = log(Emax/Ei). We also define the

following integrals over z

γ22⊥,g→gg = −
1∫

0

dz
P⊥
gg(z)

[z(1− z)]2ϵ
, γ22,r⊥,g→gg = −

1∫
0

dz
P⊥,r
gg (z)

[z(1− z)]2ϵ
, (A.29)

as well as integrals over z and the energy of the unresolved parton

δsag (ϵ) =
N

(b,d)
ϵ

2
E4ϵ

max

2Emax∫
Emax

dEm

E1+4ϵ
m

ξ∫
1−ξ

dz [z(1− z)]−2ϵPgg(z) ,

δ⊥,rg (ϵ) =
N

(b,d)
ϵ

2
E4ϵ

max

2Emax∫
Emax

dEm

E1+4ϵ
m

ξ∫
1−ξ

dz [z(1− z)]−2ϵ ϵ P⊥,r
gg (z) ,

δ⊥g (ϵ) =
N

(b,d)
ϵ

2
E4ϵ

max

2Emax∫
Emax

dEm

E1+4ϵ
m

ξ∫
1−ξ

dz [z(1− z)]−2ϵ P⊥
gg(z) ,

δg(ϵ) =
N

(b,d)
ϵ

2
E4ϵ

max

2Emax∫
Emax

dEm

E1+4ϵ
m

ξ∫
1−ξ

dz [z(1− z)]−2ϵ
(
Pgg(z, ϵ) + ϵ P⊥

gg(z)
)
,

(A.30)

where we have defined ξ = Emax/Em.

For the configurations where a final state gluon becomes collinear to an initial state

parton 1a, we require convolutions of the type

1∫
0

dz P(k)
aa (z, E1) g(z) =

1∫
0

dz

[
(1− Sz)

[
(1− z)−kϵPaa(z)

]
− 2T 2

a

1− e−kϵL1

kϵ
δ(1− z)

]
g(z) ,

(A.31)

where k = 2 at NLO and k = 4 at NNLO. It is worth rewriting the above splitting function

as

−

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

] k
2

P(k)
aa (z, E1) = Γ

(k)
1,a δ(1− z) + P(k),gen

aa (z, E1) , (A.32)
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with

Γ
(k)
1,a =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

] k
2 [
γa + 2T 2

a

1− e−kϵL1

kϵ

]
, (A.33)

P(k),gen
aa (z, E1) =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

] k
2 [

−P̂ (0)
aa (z) + ϵP(k),fin

aa (z)
]
. (A.34)

Here P̂
(0)
aa is the Altarelli-Parisi splitting function given in Eq. (A.18), while P(k),fin

aa is an

O(ϵ0) function that can be obtained by comparing Eqs. (A.31) and (A.34), namely

P(k),fin
aa (z) =

1

ϵ

[
2

∞∑
n=1

(−1)n(kϵ)n

n!
Dn(z) + (1− z)−kϵP reg

aa (z) + (1− z)

]
, (A.35)

with

P reg
aa (z) = −

[
(1 + z) + ϵ(1− z)

]
. (A.36)

If the unresolved final state gluon goes collinear to another final state parton ig, the gen-

eralized gluon final-state anomalous dimension reads

Γ
(k)
i,g =

[(
2Ei
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

] k
2

γ2kz,g→gg(ϵ, Li) , i ∈ [3, Np] , (A.37)

where γnkf(z),g→gg is defined in Eq. (3.20) and repeated in Eq. (A.28). Throughout the paper,

we use

Pgen
aa = P(2),gen

aa , Pfin
aa = P(2),fin

aa , Γi,fi = Γ
(2)
i,fi

, (A.38)

to lighten the notation.

A.4.2 One-loop

When computing the real-virtual contributions, one finds a convolution similar to the one

in Eq. (A.31) for the case when a final-state gluon is collinear to initial state parton 1a. It

reads

1∫
0

dz P(k),1L
aa (z, E1)g(z) =

1∫
0

dz

[
(1− Sz)

[
(1− z)−kϵP 1L

aa,i(z)
]

+ 2T 2
a

1− e−(2+k)ϵL1

(2 + k)
π cot(πϵ)δ(1− z)

]
g(z) .

(A.39)

The initial-state one-loop splitting function for a q → q splitting is given by [75, 76, 80]

P 1L
qq,i(z) =− CA

ϵ2

[
Γ2(1− ϵ)Γ2(1 + ϵ)

Γ(1− 2ϵ)Γ(1 + 2ϵ)
(1− z)−ϵ + 2

∞∑
n=1

ϵ2n Li2n(1− z)

]

× (1− z)−ϵPqq(z) +
2CF
ϵ2

(1− z)−ϵPqq(z)
∞∑
n=1

ϵn Lin(1− z)

− CF (CA − CF )
z + ϵ(1− z)

1− 2ϵ
(1− z)−ϵ .

(A.40)
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We rewrite P(k),1L
aa in analogy with Eq. (A.32), getting[(

2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]k
P(k),1L
aa (z, E1) =

CA
ϵ2

[
Γ
(k),1L
1,a δ(1−z)+P(k),1L,gen

aa (z, E1)
]
, (A.41)

where

Γ
(k),1L
1,a =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]k [
γa + 2T 2

a

1− e−(2+k)ϵL1

(2 + k)
π
cos(πϵ)

sin(πϵ)

]
, (A.42)

P(k),1L,gen
aa (z, E1) =

[(
2E1

µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]k [
− P̂ (0)

aa (z) + ϵP(k),1L,fin
aa (z)

]
. (A.43)

In Eq. (A.43), the function P(k),1L,fin
aa is finite in ϵ and can be extracted from Refs [75, 76, 80].

For the final state collinear limits, the equivalent of Eq. (A.37) is the generalized gluon

one-loop, final-state anomalous dimension

Γ
(k),1L
i,g =

[(
2Ei
µ

)−2ϵ Γ2(1− ϵ)

Γ(1− 2ϵ)

]k
ϵ2 cos(πϵ)

CA
γ3(k+1),1L
z,g→gg (ϵ, Li) , i ∈ [3, Np] , (A.44)

with

γ
n(k+1),1L
f(z),g→gg(ϵ, Li) =−

1∫
0

dz (1− Sz)
[
z−nϵ(1− z)1−(k+1)ϵf(z)P 1L

gg (z)
]

− 2C2
A

1− e−(2+k)ϵLi

(2 + k)

π

ϵ2 sin(πϵ)
f(1) .

(A.45)

The above formula requires the following splitting function

P 1L
gg (z) = CAPgg(z)

[
a(z) + b̃(z)

2

]
+ P̃ new

gg (z)

[
nf − CA(1− ϵ)

(1− ϵ)(1− 2ϵ)(3− 2ϵ)

]
, (A.46)

where

a(z) = (1− z)F1(1− z) ,

b̃(z) =
2

ϵ2
+ zF1(z) ,

(A.47)

with

F1(z) =
2

zϵ2

[
− Γ(1− ϵ)Γ(1 + ϵ)z−ϵ(1− z)ϵ − 1 + (1− z)ϵ2F1(ϵ, ϵ, 1 + ϵ, z)

]
, (A.48)

and

P̃ new
gg (z) = −CA

[
1− 2z(1− z)ϵ

1− ϵ

]
. (A.49)
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A.5 Definitions of the main operators, commutators, and expansions

Throughout this paper we have used virtual, soft, and collinear operators to encode singu-

larities, and have made use of various relations between them. For the reader’s convenience

we list these definitions and relations here.

We begin with Catani’s operator [70]

I1(ϵ) =
1

2

eϵγE

Γ(1− ϵ)

Np∑
(ij)

Vsing
i (ϵ)

T 2
i

T i ·T j

(
µ2

2pi · pj

)ϵ
eiπλijϵ , (A.50)

where the relevant constants are defined in Subsection A.1. We find it convenient to modify

the normalization slightly, yielding

I1(ϵ) =
1

2

Np∑
(ij)

Vsing
i (ϵ)

T 2
i

T i ·T j

(
µ2

2pi · pj

)ϵ
eiπλijϵ , (A.51)

from which we define the operators for amplitudes-squared

I±(ϵ) =
I1(ϵ)± I

†
1(ϵ)

2
, IV(ϵ) = I1(ϵ) + I

†
1(ϵ) ≡ 2I+(ϵ) . (A.52)

The Laurent expansion for IV(ϵ) reads

IV(ϵ) =

∞∑
n=−2

ϵnI
(n)
V , (A.53)

where

I
(−2)
V = −

Np∑
i=1

T 2
i , I

(−1)
V =

Np∑
(ij)

T i ·T jLij −
Np∑
i=1

γi . (A.54)

The soft operator is equal to

IS(ϵ) = −(2Emax/µ)
−2ϵ

ϵ2

Np∑
(ij)

η−ϵij Kij (T i · T j) , (A.55)

where Kij is defined in Eq. (3.14). The Laurent expansion of IS reads

IS(ϵ) =

∞∑
n=−2

ϵnI
(n)
S , (A.56)

and we require the following terms in the above expansion

I
(−2)
S =

Np∑
i=1

T 2
i ,

I
(−1)
S =

Np∑
(ij)

T i ·T j log ηij − 2Lmax

Np∑
i=1

T 2
i ,
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I
(0)
S = −

Np∑
(ij)

T i ·T j

[
2Lmax log ηij +

1

2
log2 ηij + Li2(1− ηij)

]

+

[
2L2

max −
π2

6

] Np∑
i=1

T 2
i , (A.57)

I
(1)
S =

Np∑
(ij)

T i ·T j

[
2L2

max log ηij +

(
Lmax −

1

2
log(1− ηij)

)
log2 ηij

+
1

6
log3 ηij + 2Lmax Li2(1− ηij)− Li3(1− ηij)− Li3(ηij)

]

−
[
Lmax

(
4

3
L2
max −

π2

3

)
+ 3ζ3

] Np∑
i=1

T 2
i ,

where Lmax = log(2Emax/µ).

The computation of the soft contributions requires a variant of the soft operator,

namely

ĨS(2ϵ) = −(2Emax/µ)
−4ϵ

(2ϵ)2

Np∑
(ij)

η−2ϵ
ij K̃ij (T i · T j) , (A.58)

where K̃ij is defined in Eq. (4.92). The following property relates IS and ĨS

ĨS(2ϵ) = IS(2ϵ) +O(ϵ) . (A.59)

We also require an ϵ-expansion for ĨS. Given Eq. (A.59), the first three coefficients Ĩ
(n)
S

with n = −2,−1, 0 can be directly obtained from those in Eq. (A.57), up to a rescaling by

factors of 1/4, 1/2 and 1 respectively. The coefficient at O(ϵ) reads

Ĩ
(1)
S =

Np∑
(ij)

T i ·T j

[(
2Lmax −

3

2
log(1− ηij)

)
log2 ηij +

1

3
log3 ηij

+

(
π2

6
+ 4L2

max − Li2(1− ηij)

)
log ηij

+ 4Lmax Li2(1− ηij)− Li3(1− ηij)− 3Li3(ηij)

]

+

[
2

3
Lmax

(
π2 − 4L2

max

)
− 7ζ3

] Np∑
i=1

T 2
i .

(A.60)

Moving to collinear limits, we define the hard-collinear operator as

I
(k)
C (ϵ) =

Np∑
i=1

2

k

Γ
(k)
i,fi

ϵ
, (A.61)

where Γ
(k)
i,fi

is given in Eq. (A.33) if i = 1, 2 and in Eq. (A.37) if i ∈ [3, Np]. To treat the

hard-collinear limits of the real-virtual matrix element we have introduced

ĨC(2ϵ) =

Np∑
i=1

Γ1L
i,fi

2ϵ
, (A.62)
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where Γ1L
i,fi

is given in Eq. (A.42) if i = 1, 2 and in Eq. (A.44) if i ∈ [3, Np]. We note that

the following relations hold

ĨC(2ϵ) = IC(2ϵ) +O(ϵ) ,

I
(4)
C (ϵ) = IC(2ϵ) +O(ϵ0) .

(A.63)

Furthermore, we have used the ϵ-finite operator IT defined as

IT(ϵ) = IV(ϵ) + IS(ϵ) + IC(ϵ) , (A.64)

to simplify the NLO and NNLO calculations. Its expansion in ϵ reads

IT(ϵ) =

∞∑
n=0

ϵnI
(n)
T , (A.65)

with expansion coefficients given by

I
(0)
T = −

Np∑
(ij)

T i · T j

[(
2Lmax +

1

2
log ηij

)
log ηij −

1

2
Lij

(
Lij +

2γi

T 2
i

)

+ Li2(1− ηij) +
π2

2
λij

]

+

Np∑
i=1

T 2
i

[
2L̃2

i −
π2

6
− 2γi

T 2
i

L̃i θ̄i2 +

(
67

9
− 11

3
L̃i −

2π2

3

)
θi2

]
,

I
(1)
T =

Np∑
(ij)

T i · T j

[
1

6

(
L3
ij + log3 ηij

)
+ 2Lmax log ηij −

π2

2
λijLij

+

(
Lmax −

1

2
log(1− ηij)

)
log2 ηij + 2Lmax Li2(1− ηij)− Li3(ηij)

− Li3(1− ηij) +
γi

2T 2
i

(
L2
ij − π2λij

)]

+

Np∑
i=1

T 2
i

[
− 4

3
L̃3
i +

π2

3
L̃i − 3ζ3 +

(
2L̃2

i −
π2

6

)
γi θ̄i2 +

(
808

27
− 134

9
L̃i

+
11

3
L̃2
i + π2

(
4

3
L̃i −

55

36

)
− 16ζ3

)
θi2

]
,

(A.66)

where θi2 = 1 if i > 2 and 0 otherwise, and θ̄i2 = 1− θi2.

While discussing the rearrangement of the single-unresolved terms (cf. Section 5.1),

we have introduced a variant of the virtual, soft and collinear operators, valid in the case

of N + 1 final-state partons. In particular, we have defined

I
Np+1
V (ϵ) = I

Np+1
1 (ϵ) +

(
I
Np+1
1 (ϵ)

)†
, (A.67)

with I
Np+1
1 defined as in Eq. (A.51), up to replacing Np 7→ Np +1. Similarly, we have also

used

I
Np+1
S (Em) = −(2Em/µ)

−2ϵ

ϵ2

Np+1∑
(ij)

η−ϵij Kij (T i ·T j) , (A.68)
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and

I
Np+1
C (Em) =

Np+1∑
i=1

Γi,fi
ϵ

∣∣∣∣
Emax 7→Em

, (A.69)

where one needs to set Emax 7→ Em in the definition of Γi,fi , see Eqs. (3.19, 3.22).
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B Partitions at NLO and NNLO for an arbitrary number of final-state

particles

To treat the infrared singularities of a process with a large number of final state particles, we

require partitions that separate resolved and potentially unresolved partons. To construct

them, we consider a process that involves Np partons at leading order and an arbitrary

colorless final state

f1(p1) + f2(p2) → f3(p3) + ...+ fNp(pNp) +X . (B.1)

At next-to-leading order, we need to add another particle to the final state to describe

the real-emission process. We denote the corresponding list of final-state partons in this

case as ψN+1 = {f3, f4, ... , fNp , fNp+1}, where N = Np − 2 is the number of final-state

partons at leading order.

In principle, any of these final state partons can become unresolved. Suppose we want

to describe a situation when this happens with a parton i. We then write the set of N + 1

partons as

ψN+1 = {i, ψ(i)
N } , (B.2)

where ψ
(i)
N = ψN+1/{i} and introduce the function

d(i) =
∏

k∈ψ(i)
N

pk,⊥
∏

l,m∈ψ(i)
N

l<m

(1− cos θlm) , (B.3)

where pk,⊥ is the transverse momentum of parton k.27 These functions are used to construct

the partitions

∆(i) =
d(i)∑

j∈ψN+1

d(j)
, (B.4)

where i ∈ ψN+1. It follows from their definition that the functions ∆(i) provide a partition

of unity ∑
i∈ψN+1

∆(i) = 1 . (B.5)

It is straightforward to determine the action of soft and collinear operators on the

partition functions. In the soft limit of parton k, described by the operator Sk, we find

Sk∆
(i) = δki . (B.6)

In the limit where partons l and m become collinear, we have

Clm∆
(i) =


0 , l,m ̸= i ,

1 , l = i, m ∈ {1, 2} ,
zi,m , l = i,m ∈ ψN ,

(B.7)

27We note that in the case of only one hard jet, k, d(i) reduces to pk,⊥.
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where zi,m = Ei/(Ei +Em) and we assumed that partons 1 and 2 are in the initial state.

The limits obtained by the interchange of l and m assignments follow naturally from the

above formulas and are not shown for this reason.

A new element required for NNLO computations is the double-real emission process.

To construct the corresponding partition functions, we consider an extended set of final-

state partons

ψN+2 = {f3, f4, ..., fNp+1, fNp+2} . (B.8)

Two of these final-state partons can become unresolved and we assume that this happens

with partons i and j. We then write ψN+2 = {(i, j), ψ(ij)
N }, define functions d(ij) as follows

d(ij) =
∏

k∈ψ(ij)
N

pk,⊥
∏

l,m∈ψ(ij)
N

l<m

(1− cos θlm) , (B.9)

and use them to construct the NNLO partitions

∆(ij) =
d(ij)∑

(lm)∈ψN+2

d(lm)
, (B.10)

Similar to the NLO case the functions ∆(ij) provide partition of unity∑
(ij)∈ψN+2

∆(ij) = 1 , (B.11)

where the sum is over unordered pairs (ij).

For the NNLO computation, we require the double-soft (Slm), the single-soft (Sl), the

collinear (Clk) and the triple-collinear (Clk,m) limits of the partition functions ∆(ij). The

double-soft limit reads

Slm∆(ij) = δ(ij),(lm) , (B.12)

where the Kronecker delta indicates that the unordered pair (ij) should coincide with the

unordered pair (lm) for this limit to be different from zero. The single-soft limit is

Sl∆
(ij) =


0 , l ̸= i, l ̸= j ,

∆(j) , l = i ,

∆(i) , l = j ,

(B.13)

where ∆(i) and ∆(j) in the above formulas are NLO partitions constructed for sets ψN+1 =

{j, ψ(ij)
N } and ψN+1 = {i, ψ(ij)

N }, respectively.
Next, we consider the collinear limits. We find

Clk∆
(ij) =


0 , l ̸= i, j, k ̸= i, j ,

∆(j) , l ∈ {1, 2}, k ∈ {i, j} ,
∆([ij]) , {l, k} = {i, j} ,
zk,i∆

(j) , l = i, k ̸= j ,

(B.14)
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where [ij] represents the “clustered particle” whose four-momentum is given by p[ij] =

(1 + Ej/Ei) pi and the function ∆([ij]) is constructed from the set ψN+1 = {[ij], ψ(ij)
N }. In

the final line of Eq. (B.14), the ∆-function is constructed using the transverse momentum

of the clustered particle [kl].

It is instructive to explain how the last formula in Eq. (B.14) is derived, since the other

formulas in that equation can be computed in a similar way. To describe the collinear i||k
limit, where k is a final state particle, we write ∆(ij) as follows

∆(ij) =
d(ij)

d(ij) + d(ik) +
∑

m ̸=k,j
d(im) + d(kj) +

∑
m ̸=i,j

d(km) +
∑

m,n ̸=i,k
d(mn)

. (B.15)

We now study what happens to the various entries in the above formula when the relevant

limit is taken. First, we note that the numerator d(ij) does not contain i but contains k.

We replace p⊥,k with p⊥,[ik] and write the resulting expression as

Cik d
(ij) =

Ek
Ek + Ei

d(j) = zk,i d
(j) , (B.16)

where d(j) is constructed using the list {j, ψ(ij)
N+2(k → [ki])}. The various entries in the

denominator of Eq. (B.15) behave as follows

Cik d
(ik) = d([ik]) ,

Cik

N∑
m ̸=k,j

d(im) = zk,i

N∑
m ̸=k,j

d(m) ,

Cik d
(kj) = zi,k d

(j) ,

Cik

N∑
m̸=i,j

d(km) = zi,k

N∑
m ̸=i,j

d(m) .
(B.17)

Therefore

Cik∆
(ij) = zk,i

d(j)

d([ik]) + d(j) +
∑

m ̸=j,i,k d
(m)

= zk,i∆
(j) , (B.18)

with ∆(j) being a NLO partition where partons i and k that appear in the original list of

partons are clustered together.

Finally, formulas for triple-collinear limits can be derived in a similar way. We find

that the only non-vanishing limits are

Ckij ∆
(ij) =

{
1 , k ∈ {1, 2} ,
zk,ij∆

(ij) , k ∈ {3, ...} ,
(B.19)

where zk,ij = Ek/(Ek + Ei + Ej).

In addition to ∆-partitions, which allow us to separate resolved and potentially unre-

solved partons, we require angular partition functions ω. These functions are supposed to

define possible collinear singular directions between unresolved partons. Below we give an

example of how such functions can be designed.

– 73 –



We begin with the construction of these angular partition functions at NLO. To this

end, we consider a situation where parton m is potentially unresolved, so that ψN+1 =

{m, ψ(m)
N }. We define the quantities

gkl = ρ−1
kl , (B.20)

and use them to write the function ωmi as

ωmi =
gim∑

j∈ψ(m)
N

gjm
, i ∈ ψ

(m)
N . (B.21)

Since ∑
i∈ψ(m)

N

ωmi = 1 , Ckm ω
mi = δki , (B.22)

the functions ωmi possess the required properties to be used as angular partitions in NLO

computations.

We continue with the discussion of the NNLO case, where partons m and n are poten-

tially unresolved and the remaining Np hard partons are described by the set ψ
(mn)
N . We

proceed as follows. First, we employ the NLO partitions to construct a partition of unity

in the following way

1 =

Np∑
i,j=1
i ̸=j

ωmiωnj +

Np∑
i,j=1

δij ω
miωnj . (B.23)

The two sums on the right-hand side are almost the right partitions for double- and triple-

collinear limits except for the fact that the collinear m||n singularity is present in both

terms of this formula. However, we would like to move it into the triple-collinear partition.

To achieve this, we introduce yet another partition of unity which involves ρmn, ρim and

ρjn only and write

1 =
ρmn

dmnij
+
ρim + ρjn
dmnij

, (B.24)

where

dmnij = ρmn + ρim + ρjn . (B.25)

We now employ these expressions to define the double-collinear partition

ωmi,nj = ωmiωnj ρmn

dmnij
, i ̸= j , (B.26)

and the triple-collinear partition

ωmi,ni = ωmiωni + ωni

Np∑
j=1
j ̸=i

ρjm ω
mj

dmnji
+ ωmi

Np∑
j=1
j ̸=i

ρjn ω
nj

dmnij
. (B.27)

It is easy to check that the following identity holds

1 =

Np∑
i,j=1
i ̸=j

ωmi,nj +

Np∑
i=1

ωmi,ni . (B.28)
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The partitions constructed in Eqs. (B.26) and (B.27) satisfy all the properties that we

need for NNLO QCD computations. In particular, each partition selects a minimal number

of collinear singularities and satisfies the following relations

Cimω
mi,nj = ωmi,nj

m∥i = lim
ρim→0

ωmi,nj ,

Cmnω
mi,nj = δij ω

mi,nj
m∥n = lim

ρmn→0
ωmi,ni ,

CimCmnω
mi,nj = δij CimCmn ,

CimCjn ω
mk,nl = δki δlj CmiCnj ,

Cmn,i ω
mjnj = δij Cmn,i ,

Cjnω
mi,nj = ωmi,nj

n∥j = lim
ρjn→0

ωmi,nj ,

CjnCmn ω
mi,nj = δij CjnCmn ,

CimCin ω
mj,nj = δij CimCin .

(B.29)

We note that these relations are important for simplifying the required subtraction terms.

The partitions in Eqs (B.26) and (B.27) correspond to those defined in Eq. (B.14) in Ref. [1]

when we restrict them to the case of color-singlet production, i.e. Np = 2.
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C Details of the NLO calculation

The goal of this appendix is to provide further details about the NLO computation de-

scribed in Section 3. In particular, we would like to show that the operator IT(ϵ) introduced

in Eq. (3.2) does not contain poles in ϵ. According to Eq. (3.2), IT(ϵ) is given by a sum of

three terms that describe virtual, soft and hard-collinear contributions.

We begin with the ϵ-expansion of the operator IS defined in Eq. (3.12). We report its

definition here for convenience

IS(ϵ) = −(2Emax/µ)
−2ϵ

ϵ2

Np∑
(ij)

η−ϵij Kij (T i ·T j) . (C.1)

The function Kij is defined in Eqs. (3.14). We note that its expansion in ϵ reads

Kij = 1 +K
(2)
ij ϵ

2 +O(ϵ3) , K
(2)
ij = Li2(1− ηij)−

π2

6
. (C.2)

Although it is straightforward to construct the expansion of IS, arranging it in a particular

way is helpful for an efficient demonstration of the cancellations of infrared poles.

We note that the I-operators include quantities raised to ϵ-dependent powers. For

example, in the case of IS, there are factors (2Emax/µ)
−ϵ and η−ϵij . The expansion of such

quantities in ϵ starts with 1 and it is convenient to make this explicit. To this end, we

introduce the function

fk(x) =
x−kϵ − 1

ϵ
. (C.3)

such that fk(x) ∼ O(ϵ0) as ϵ→ 0. We then use this function to write IS as〈
IS(ϵ) · FLM

〉
= − 1

ϵ2

〈[
1 + ϵf2(2Emax/µ)

]
×

Np∑
(ij)

[
1 + ϵf1(ηij) + ϵ2K

(2)
ij

]
(T i · T j) · FLM

〉
,

(C.4)

where O(ϵ) terms have been neglected. Since we only need terms through O(ϵ0), we can

simplify the above equation further. We find

〈
IS(ϵ) · FLM

〉
= − 1

ϵ2

Np∑
(ij)

〈[
1 + ϵf2(2Emax/µ)

]
(T i · T j) · FLM

〉

−
Np∑
(ij)

〈
f1(ηij)

ϵ
(T i · T j) · FLM

〉

−
Np∑
(ij)

〈[
f1(ηij)f2(2Emax/µ) +K

(2)
ij

]
(T i · T j) · FLM

〉
.

(C.5)

Next, we note that in the first term on the right-hand side in Eq. (C.5), only the color

charge operators depend on the summation indices i and j. For this reason, the summation
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over one of the indices can be performed using the color conservation condition

Np∑
k=1

T k|M⟩c = 0 . (C.6)

It follows that
Np∑
j ̸=i

c⟨M|T i · T j |M⟩c = −T 2
i |M|2 , (C.7)

and we obtain

〈
IS(ϵ) · FLM

〉
=

Np∑
i=1

〈[
1 + ϵf2(2Emax/µ)

] T 2
i

ϵ2
FLM

〉

−
Np∑
(ij)

〈
f1(ηij)

ϵ
(T i · T j) · FLM

〉

−
Np∑
(ij)

〈[
f1(ηij)f2(2Emax/µ) +K

(2)
ij

]
(T i · T j) · FLM

〉
.

(C.8)

It is seen from the above equation that the residue of the 1/ϵ2 pole is proportional to the

sum of the Casimir factors T 2
i . We recall that the infrared poles of the one-loop amplitude

described by Catani’s function exhibit a similar feature. The 1/ϵ pole in the second line of

Eq. (C.8) contains color correlations, while the terms in the third line are ϵ-finite.

We turn to the virtual corrections. We have introduced the operator IV(ϵ) in Eq. (3.31),

and we display it here for convenience

IV(ϵ) = I1(ϵ) + I
†
1(ϵ) , I1(ϵ) =

1

2

Np∑
(ij)

Vsing
i (ϵ)

T 2
i

(T i ·T j)

(
µ2

2pi · pj

)ϵ
eiπλijϵ . (C.9)

The quantities λij and Vsing
i (ϵ) are defined in Eq. (3.29). Expanding in ϵ, we find

〈
IV(ϵ) · FLM

〉
=

Np∑
(ij)

Vsing
i (ϵ)

T 2
i

〈[
1 + ϵf1(sij/µ

2)− π2

2
λijϵ

2 +O(ϵ3)
]

× (T i · T j) · FLM

〉
.

(C.10)

In the first term on the right-hand side of Eq. (C.10), we can use color conservation to sum

over the index j. Doing so allows us to write the virtual contributions as follows

〈
IV(ϵ) · FLM

〉
=−

Np∑
i=1

[
T 2
i

ϵ2
+
γi
ϵ

] 〈
FLM

〉
+

Np∑
(ij)

〈
f1(sij/µ

2)

ϵ
(T i · T j) · FLM

〉

+

Np∑
i,j=1
j ̸=i

〈[
γi

T 2
i

f1(sij/µ
2)− π2

2
λij

]
(T i · T j) · FLM

〉
,

(C.11)
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where we have dropped all terms beyond O(ϵ0). Since fn(x) ∼ O(ϵ0), poles in the color-

correlated structures appear only at O(ϵ−1), while all terms in the last line are finite.

Comparing Eqs. (C.8) and (C.11), we observe that the O(ϵ−2) poles cancel among

these two contributions. Furthermore, we note that the function f1(sij/µ
2) in Eq. (C.11)

can be written as

f1(sij/µ
2) = f1(ηij) + f1(2Ei/µ) + f1(2Ej/µ) + ϵ gij . (C.12)

The first term on the right-hand side above is the function that appears in the soft con-

tribution IS, the next two terms depend on one of the two indices i or j, and the last

term

gij = f1(2Ei/µ)f1(2Ej/µ) + f1(4EiEj/µ
2)f1(ηij) , (C.13)

is O(ϵ0). Thus we can further simplify the expression for IV by making use of color

conservation. We find

N∑
(ij)

〈
f1(2Ei/µ) + f1(2Ej/µ)

ϵ
(T i · T j) · FLM

〉
= −2

N∑
i=1

T 2
i

ϵ
⟨f1(2Ei/µ)FLM⟩ . (C.14)

Upon combining soft and virtual I-operators, we obtain the following result〈[
IV(ϵ) + IS(ϵ)

]
· FLM

〉
=

Np∑
i=1

〈[
T 2
i

ϵ

(
f2(2Emax/µ)− 2f1(2Ei/µ)

)
− γi

ϵ

]
FLM

〉
+O(ϵ0)

=−
Np∑
i=1

〈(
2Li

T 2
i

ϵ
+
γi
ϵ

)
FLM

〉
+O(ϵ0) ,

(C.15)

where we substituted the expansion of f1,2(x) in ϵ and used Li = log(Emax/Ei). The above

equation implies that the ϵ-divergences proportional to correlators of color charges cancel

in the sum of the virtual and soft functions, IV and IS.

To understand the cancellation of the remaining poles, we need to combine the above

result with the operator IC(ϵ) defined in Eq. (3.27). We repeat its definition here for

convenience

IC(ϵ) =

Np∑
i=1

Γi,fi
ϵ

. (C.16)

The generalized collinear anomalous dimension Γi,fi that appears in the above equation

can be found in Eq. (3.22). Expanding it in powers of ϵ, we find

Γi,fi = γi + 2T 2
iLi +O(ϵ) , i = 1, ... , Np , (C.17)

so that IC(ϵ) becomes

IC(ϵ) =

Np∑
i=1

(
2Li

T 2
i

ϵ
+
γi
ϵ

)
+O(ϵ0) . (C.18)
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Comparing this result with Eq. (C.15), we conclude that the following combination of

I-operators 〈
IT(ϵ) · FLM

〉
=

〈[
IV(ϵ) + IS(ϵ) + IC(ϵ)

]
· FLM

〉
, (C.19)

is finite, as stated in the main text. Finally, we note that the cancellation between the

initial-state collinear singularities and the PDFs renormalization has been discussed in

detail in Section 3.
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D Partitions and sectors for the NNLO collinear limits

In Section 4 we defined the soft-subtracted double-real contribution ΣRR, and we discussed

the extraction of its collinear singularities. To do so, we first split the angular phase space

into partitions using the functions ωmi,nj defined in Appendix B, and then further split the

triple-collinear angular partitions into sectors using

θ(a) = Θ
(
ηin <

ηim
2

)
, θ(c) = Θ

(
ηim <

ηin
2

)
,

θ(b) = Θ
(ηim

2
< ηin < ηim

)
, θ(d) = Θ

(ηin
2
< ηim < ηin

)
.

(D.1)

It follows that

θ(a) + θ(b) + θ(c) + θ(d) ≡ 1 . (D.2)

A parametrization of the angular phase space that naturally achieves this sectoring is given

in Ref. [20] and is detailed in Appendix E.1. This procedure ensures that each partition

and sector contains the minimal number of singular collinear limits. We then apply the

appropriate collinear operators and write ΣRR as the sum of four distinct contributions

ΣRR =

4∑
i=1

Σ
(i)
RR ≡

4∑
i=1

〈
Smn SnΩi∆

(mn)ΘmnFLM(m, n)
〉
, (D.3)

where the four quantities Ωi provide the partition of unity

4∑
i=1

Ωi ≡ 1 . (D.4)

They read (cf. Refs. [1, 60, 61])

Ω1 =

Np∑
(ij)

CimCjn[dpm][dpn]ω
mi,nj

+

Np∑
i=1

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]Cmn,i ω

mi,ni , (D.5)

Ω2 =

Np∑
i=1

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]Cmn,i ω

mi,ni , (D.6)

Ω3 =−
Np∑
(ij)

CjnCim[dpm][dpn]ω
mi,nj , (D.7)

Ω4 =

Np∑
(ij)

[
Cim[dpm] + Cjn[dpn]

]
ωmi,nj

+

Np∑
i=1

[
Cinθ

(a) + Cmnθ
(b) + Cimθ

(c) + Cmnθ
(d)

]
[dpm][dpn]ω

mi,ni , (D.8)
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where we have introduced the triple-collinear operator Cmn,i, which extracts the singular

behavior in the limit ρim ∼ ρin ∼ ρmn → 0. We note that in the above definitions of Ωi,

[dpm] and [dpn] are phase-space elements for partons m and n, and that they appear to the

right of the single collinear operators (Cim, Cmn, etc.) but to the left of the triple-collinear

operators Cmn,i. Therefore, the single-collinear operators act on the phase-space elements,

while the triple-collinear operators do not [60]. This allows us to use the results of Ref. [81]

for Ω2.
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E Phase-space parametrization and collinear limits

E.1 Phase-space parametrizations for unresolved partons

In this subsection we describe phase-space parametrizations for two unresolved partons that

naturally achieve the angular sectoring required for NNLO computations [20]. We recall

that there are two distinct kinematic configurations that require different parametrizations.

The first is a triple-collinear configuration which requires a genuine NNLO parametrization

to describe strongly-ordered collinear limits. The second is the case where the two partons

are emitted by different hard legs and can be described by two independent NLO-like

parametrizations.

In both cases, we begin by separating the energy and the angular parts of the phase

space and write

[dpm][dpn] = (dEmE
1−2ϵ
m ) (dEnE

1−2ϵ
n )[dΩ

(d−1)
mn ] , (E.1)

where

[dΩ
(d−1)
mn ] = [dΩ

(d−1)
m ][dΩ

(d−1)
n ] , [dΩ

(d−1)
i ] =

dΩ
(d−1)
i

2(2π)d−1
. (E.2)

We first focus on the triple-collinear sectors and assume that the unresolved partons

m and n are emitted by a hard parton i, with i ∈ [1, Np]. It is convenient to choose the

momentum of parton i as the reference direction. We then write

pµm = Em

(
tµ + cos θim e

µ
i + sin θim b

µ
)
,

pµn = En

(
tµ + cos θin e

µ
i + sin θin (cosϕmn b

µ + sinϕmn a
µ)
)
,

(E.3)

where

tµ = (1, 0⃗) , eµi = (0, n⃗i) , pµi = Ei(t
µ + eµi ) . (E.4)

Here n⃗i is a unit vector in (d − 1) spatial dimensions and a and b are d-dimensional unit

vectors such that

t · a = ei · a = t · b = ei · b = a · b = 0 . (E.5)

We can use this parametrization to express the angular part of the phase space as [20]

[dΩ
(d−1)
mn ] =

dΩ
(d−2)
b dΩ

(d−3)
a

26ϵ(2π)2d−2
[ηim(1− ηim)]

−ϵ[ηin(1− ηin)]
−ϵ

× |ηim − ηin|1−2ϵ

D1−2ϵ

dηim dηin dλ

[λ(1− λ)]
1
2
+ϵ

,

(E.6)

where

D = ηim + ηin − 2ηim ηin + 2(2λ− 1)
√
ηim ηin(1− ηim)(1− ηin) . (E.7)

The variable λ parametrizes the dependence on the azimuthal angle ϕmn through the rela-

tion

sin2 ϕmn = 4λ(1− λ)
|ηim − ηin|2

D2
. (E.8)
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The phase space can be split into four different sectors that we will refer to as (a), (b),

(c), (d). The following parametrizations are chosen for each of the four sectors

a) ηim = x3 , ηin = x3x4/2 , (E.9)

b) ηim = x3 , ηin = x3(1− x4/2) , (E.10)

c) ηim = x3x4/2 , ηin = x3 , (E.11)

d) ηim = x3(1− x4/2) , ηin = x3 , (E.12)

with 0 ≤ x3,4 ≤ 1. We use them to obtain explicit expressions for

[dΩ
(i)
mn] = [dΩ

(d−1)
mn ] θ(i) , i = a, b, c, d , (E.13)

with θ(i) defined in Eq. (D.1). It turns out that the angular phase spaces for sectors (a)

and (c) and for sectors (b) and (d) are identical. For sectors (a) and (c) we find

[dΩ
(a,c)
mn ] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]2 [Γ2(1− ϵ)

Γ(1− 2ϵ)

]
[dΩ

(d−2)
b ]

[Ω
(d−2)
b ]

[dΩ
(d−3)
a ]

[Ω
(d−3)
a ]

× dx3

x1+2ϵ
3

dx4

x1+2ϵ
4

dλ

π[λ(1− λ)]
1
2
+ϵ

(
256F (a,c)

ϵ

)−ϵ
4F

(a,c)
0 x23x4 ,

(E.14)

where

F (a,c)
ϵ =

(1− x3)(1− x3x4/2)(1− x4/2)
2

4[N(x3, x4/2, λ)]2
, F

(a,c)
0 =

1− x4/2

2N(x3, x4/2, λ)
. (E.15)

For sectors (b) and (d) we obtain

[dΩ
(b,d)
mn ] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]2 [Γ2(1− ϵ)

Γ(1− 2ϵ)

]
[dΩ

(d−2)
b ]

[Ω
(d−2)
b ]

[dΩ
(d−3)
a ]

[Ω
(d−3)
a ]

× dx3

x1+2ϵ
3

dx4

x1+2ϵ
4

dλ

π[λ(1− λ)]
1
2
+ϵ

(
256F (b,d)

ϵ

)−ϵ
4F

(b,d)
0 x23x

2
4 ,

(E.16)

where

F (b,d)
ϵ =

(1− x3)(1− x4/2)(1− x3(1− x4/2))

4[N(x3, 1− x4/2, λ)]2
, F

(b,d)
0 =

1

4N(x3, 1− x4/2, λ)
. (E.17)

The function N(x3, x4, λ) introduced in the above equations reads

N(x3, x4, λ) = 1 + x4(1− 2x3)− 2(1− 2λ)
√
x4(1− x3)(1− x3x4) . (E.18)

To simplify the subtraction terms, we need particular collinear limits of the unresolved

phase space. To obtain those, we note that the following identities hold

lim
x4→0

F (a,c)
ϵ =

1− x3
2

,

lim
x4→0

F (b,d)
ϵ =

1

64λ2
,

lim
x4→0

F
(a,c)
0 =

1

2
,

lim
x4→0

F
(b,d)
0 =

1

16λ(1− x3)
.

(E.19)

– 83 –



The x4 → 0 limit corresponds to the n||i and m||i collinear limits in sectors (a) and (c),

respectively, and to the m||n limit in sectors (b) and (d). The singular quantities in sectors

(a) and (c) are ηin and ηim, respectively, and they are given in Eqs (E.9) and (E.11). For

sectors (b) and (d), the limit of the corresponding singular variable is more complex. It

reads

lim
x4→0

ηmn = lim
x4→0

x3x
2
4

4N(x3, 1− x4, λ)
=

x3x
2
4

16λ(1− x3)
≡ η̄mn . (E.20)

The phase-space parametrization is significantly simpler for the double-collinear par-

titions. Consider the case when parton m is collinear to parton i and parton n to parton j,

with i ̸= j. We parametrize the momenta pm and pn using the momenta of partons i and

j respectively, i.e.

pµm = Em(t
µ + cos θim e

µ
i + sin θim b

µ
m) ,

pµn = En(t
µ + cos θjn e

µ
j + sin θjm b

µ
n ) ,

(E.21)

and set

ηim = x3 , ηjn = x4 . (E.22)

We then write the angular phase space for the double-collinear partition [dΩdc
mn] as

[dΩdc
mn] ≡ [dΩ

(d−1)
m ][dΩ

(d−1)
n ] , (E.23)

where

[dΩ
(d−1)
m ] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
24−4ϵ [dΩ

(d−2)
m ]

[Ω(d−2)]

dx3

x1+ϵ3

(1− x3)
−ϵx3 ,

[dΩ
(d−1)
n ] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
24−4ϵ [dΩ

(d−2)
n ]

[Ω(d−2)]

dx4

x1+ϵ4

(1− x4)
−ϵx4 .

(E.24)

E.2 Action of the collinear operators on the phase space

In our definitions of the angular terms Ω1,..,4 in Eqs (D.5)-(D.8), the collinear operators act

on the phase space of the two unresolved partons. As we have seen, it is useful to rewrite

the subtraction terms in such a way that these operators do not act on the phase-space

measure. We have quoted the results in the main text of the paper without deriving them,

see e.g. Eq. (4.30). The goal of this subsection is to provide the omitted details.

We begin by considering the double-collinear partitioning with a collinear operator Cim;

an example can be found in the first term on the right-hand side of Eq. (4.26). Since in the

double-collinear parametrization of the phase space the collinear limit i||m is controlled by

the variable x3 (see Eq. (E.22)), we find

∫
Cim

[dΩdc
mn]

ρim
[...] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
23−4ϵ

∫
[dΩ

(d−2)
m ]

[Ω(d−2)]
[dΩ

(d−1)
n ]

1∫
0

dx3

x1+ϵ3

Cim[...]

=−
[

1

8π2
(4π)ϵ

Γ(1− ϵ)

]
23−4ϵ

ϵ

∫
[dΩ

(d−2)
m ]

[Ω(d−2)]
[dΩ

(d−1)
n ]Cim[...] ,

(E.25)
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where [...] stands for generic non-singular contributions whose exact form is not relevant

for the following discussion. If we repeat the above steps without acting with Cim on the

phase space, we find∫
[dΩdc

mn]

ρim
Cim [...]

=

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
23−4ϵ

∫
[dΩ

(d−2)
m ]

[Ω(d−2)]
[dΩ

(d−1)
n ]

1∫
0

dx3

x1+ϵ3

(1− x3)
−ϵCim [...]

= −Γ2(1− ϵ)

Γ(1− 2ϵ)

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
23−4ϵ

ϵ

∫
[dΩ

(d−2)
m ]

[Ω(d−2)]
[dΩ

(d−1)
n ]Cim [...] .

(E.26)

Comparing the two formulas, we conclude that∫
Cim

[dΩdc
mn]

ρim
[...] =

Γ(1− 2ϵ)

Γ2(1− ϵ)

∫
[dΩdc

mn]

ρim
Cim [...] . (E.27)

We can use the above relation when rewriting Eq. (4.17) as Eq. (4.19). Since in this case

we have two collinear operators CjnCim, we need to apply it twice, i.e.∫
CjnCim

[dΩdc
mn]

ρim ρjn
[...] =

[
Γ(1− 2ϵ)

Γ2(1− ϵ)

]2 ∫ [dΩdc
mn]

ρim ρjn
CjnCim [...] , (E.28)

so that Eq. (4.17) becomes

ΣRR,2c =−
[
Γ(1− 2ϵ)

Γ2(1− ϵ)

]2 Np∑
(ij)

〈
SmnSnCjnCim ω

mi,nj∆(mn)ΘmnFLM(m, n)
〉
. (E.29)

We stress that the absence of the phase space [dpm][dpn] in the above equation indicates

that the collinear operators CjnCim no longer act on it.

Similar formulas can also be derived for the triple-collinear partitions that involve

sector θ(c). As an example, we discuss the second term on the right-hand side of Eq. (4.26).

In this case, the collinear limit i||m corresponds to the x4 → 0 limit in the phase space

parametrization in Eq. (E.14). We use Eq. (E.19) to compute this limit and find∫
Cim

[dΩ
(c)
mn]

ρim
[...] =

Γ(1− 2ϵ)

Γ2(1− ϵ)

∫
[dΩ

(d−1)
mn ]

ρim
(ηin/2)

−ϵCim [...] , (E.30)

where the integration over the angular variables of parton m on the right hand side of

Eq. (E.30) is not restricted to sector (c) anymore. It follows from the above discussion that

Eq. (4.26) can be rewritten as

Σ
(a,c,dc)
RR,1c =

Γ(1− 2ϵ)

Γ2(1− ϵ)

〈
S(m, n)

[ Np∑
(ij)

Cim ω
mi,nj

+

Np∑
i=1

(ηin/2)
−ϵCim ω

mi,ni

]
∆(mn)FLM(m, n)

〉
.

(E.31)
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This expression is the starting point to obtain Eqs. (4.30) and (4.31).

Finally, we perform similar manipulations for sector (b) where the collinear limit of

interest is m||n. This limit corresponds to x4 → 0 in the phase space parametrization given

in Eq. (E.16). Using Eq. (E.19) we find∫
Cmn

[dΩ
(b,d)
mn ]

ρmn
[...] =

[
1

8π2
(4π)ϵ

Γ(1− ϵ)

]
N (b,d)
ϵ

∫
[dΩ

(d−1)
[mn] ]

× η−ϵi[mn]

(
1− ηi[mn]

)ϵ
dΛ

dΩ
(d−3)
a

[Ω(d−3)]

dx4

x1+2ϵ
4

Cmn[...] .

(E.32)

The normalization constants N
(b,d)
ϵ that appear in Eq. (E.32) can be found in Eq. (A.5),

while [dΩ
(d−1)
[mn] ] is the (exact) angular phase space of the clustered parton [mn], whose

momentum p[mn] = pm+ pn must be computed in the strict collinear limit. Furthermore we

have introduced a new variable Λ such that

dΛ =
Γ(1 + ϵ) Γ(1− ϵ)

Γ(1 + 2ϵ) Γ(1− 2ϵ)

λ−1/2+ϵ(1− λ)−1/2−ϵ

π
dλ . (E.33)

We note that the action of the operator Cmn on the matrix element squared is non-

trivial because it can lead to integrands that depend on the parameter λ and the transverse

vector aµ. This phenomenon, known as spin correlations, is discussed in the next appendix.

Here we assume that the action of Cmn in Eq. (4.24) does not lead to such terms. In this

case we can integrate over x4, the directions of aµ, and the azimuthal variable Λ using∫
dΛ = 1 . (E.34)

Comparing the result with the one that is obtained when the collinear operator Cmn does

not act on the phase space, we find∫
Cmn

[dΩ
(b,d)
mn ]

ρmn
[...] = 22ϵ−1Γ(1 + 2ϵ)Γ(1− 2ϵ)

Γ(1 + ϵ)Γ(1− ϵ)

∫
[dΩ

(d−1)
mn ]

ρmn
Cmn[...] , (E.35)

where the integration over the angular variables of partons on the right-hand side is unre-

stricted. We use this relation in Eq. (4.48) and the analysis that follows.

As we just mentioned, the action of the collinear operator Cmn on matrix elements may

result in a limit that depends on λ and aµ. In such cases Eq. (E.35) cannot be used. To

understand how to proceed, we write (see Appendix F)

Cmn FLM(m, n) =
g2s,b

EnEm ρmn

[
− gµνP (0)

gg (z) + P⊥
gg(z)κ

µ
⊥,(b)κ

ν
⊥,(b)

]
FLM,µν([mn]) , (E.36)

where vector κ⊥,(b) is a unit space-like vector which is orthogonal to pm

κ⊥,(b) · pm = 0 . (E.37)

Using the phase space parametrization for sector (b), we can write this vector as

κµ⊥,(b) = aµ
√
1− λ+ rµi,(b)

√
λ , (E.38)
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where vectors a and b were introduced in Eq. (E.3) and ri,(b) is the auxiliary spacelike

vector (ri,(b) · ri,(b) = −1) defined as

rµi,(b) = sin θim e
µ
i − cos θim b

µ . (E.39)

The momentum of the clustered parton [mn] is aligned with the momentum pm, which does

not depend on λ and aµ. Since FLM([mn]) is independent of λ and aµ, we can integrate

over dΩ
(d−3)
a and dΛ. Specifically, we need to calculate

〈
κµ⊥,(b) κ

ν
⊥,(b)

〉
=

∫
dΛ

dΩ
(d−3)
a

Ω(d−3)
κµ⊥,(b) κ

ν
⊥,(b) . (E.40)

To compute this integral, we use Eq. (E.34) together with∫
dΛ

dΩ
(d−3)
a

Ω(d−3)
aµ = 0 ,∫

dΛλ =
1 + 2ϵ

2
,

∫
dΛ

dΩ
(d−3)
a

Ω(d−3)
aµ aν = −

gµν⊥,(d−3)a

d− 3
,∫

dΛ (1− λ) =
1− 2ϵ

2
,

(E.41)

and find

〈
κµ⊥,(b) κ

ν
⊥,(b)

〉
=−

gµν⊥,(d−3)

2
+

1 + 2ϵ

2
rµi,(b)r

ν
i,(b)

=
1

2

[
gµν⊥,(d−3) + rµi,(b)r

ν
i,(b)

]
+ ϵ rµi,(b)r

ν
i,(b)

≡−
gµν⊥,(d−2)

2
+ ϵ rµi,(b) r

ν
i,(b) .

(E.42)

We then obtain 〈
κµ⊥,(b) κ

ν
⊥,(b)

〉
FLM,µν =

1

2
FLM + ϵ rµi,(b) r

ν
i,(b) FLM,µν , (E.43)

where we used

−gµν⊥,(d−2)FLM,µν = −gµν FLM,µν = FLM , (E.44)

as allowed by the transversality of scattering amplitudes.
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F Spin correlations

In this appendix we discuss the double-real contributions where the so-called spin correla-

tions appear. These effects arise in sectors (b) and (d) in the limits when gluons m and n

become collinear to each other. To make this appendix self-contained, we start by consid-

ering the m||n limit, which is described by the following expression (see also Eq. (E.36))

Cmn FLM(m, n) =
g2s,b

EmEn ρmn
Pµνgg (z)FLM,µν([mn])

=
g2s,b

EnEm ρmn

[
P (0)
gg (z)FLM([mn]) + P⊥

gg(z)κ
µ
⊥,(b)κ

ν
⊥,(b) FLM,µν([mn])

]
,

(F.1)

where the splitting functions were introduced in Appendix A.4.1, z = Em/(Em + En), and

κ⊥,(b) is defined in Eq. (E.38). The four-momentum of the clustered parton [mn] is equal

to

pµmn = (Em + En)n
µ
m =

Em + En

Em
pµm , (F.2)

where the vector nm is a light-like vector defined as nm = pm/Em. To proceed further,

we assume that the collinear limit m||n occurs in a particular triple-collinear partitioning,

characterized by the partition function ωmi,ni, and to restrict our analysis to sector (b).

The contribution that we are interested in reads (see Eq. (4.24))

Σ
(b)
RR,1c,i =

〈
Smn SnΘmnCmn θ

(b)[dpm][dpn]ω
mi,ni∆(mn) FLM(m, n)

〉
=− [αs]

2ϵ
N (b,d)
ϵ

〈
Smn Sn

Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

Θmn

∫
[dΩ[mn]]σ

−ϵ
i[mn]∆

([mn])

× ωmi,ni
m∥n

1

EmEn

[
Pgg(z, ϵ)FLM([mn]) + ϵ P⊥

gg(z) r
µ
i,(b) r

ν
i,(b) FLM,µν([mn])

]〉
,

(F.3)

where we recall that σij = ηij/(1− ηij). To derive Eq. (F.3) we exploited the parametriza-

tion presented in Appendix E, integrated over the angles of parton n and used the relation

displayed in Eq. (E.43). All the splitting functions that appear in Eq. (F.3) can be found

in Appendix A.

We note that the hard matrix element squared appears in Eq. (F.3) in two distinct

ways: once as FLM([mn]) and once as FLM,µν([mn]), where the open spin indices refer to

the clustered parton. In fact, the relation between the two contributions reads

FLM([mn]) =
∑
λ[mn]

ε
λ[mn]
µ ε

λ[mn],∗
ν FLM,µν

(
[mn]

)
= −gµν FLM,µν([mn]) , (F.4)

where the sum runs over the physical polarizations of the clustered parton [mn] and the

last step follows from the transversality of FLM,µν .

In Eq. (F.3) the only term that requires further discussion is the one proportional to

FLM,µν([mn]). In fact, we find it convenient to split these terms in such a way that the
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coefficient of FLM([mn]) in Eq. (F.3) is the spin-averaged g → gg splitting function Pgg (c.f.

Eq. (A.23)) and the soft subtraction term associated with it. We will refer to all other

contributions that appear in the expression for Σ
(b)
RR,1c,i as “spin-correlated”. Hence, we

write

Σ
(b)
RR,1c,i = − [αs]

2ϵ
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

Θmn

∫
[dΩ[mn]]σ

−ϵ
i[mn] ω

mi,ni
m∥n

×
{

1

EmEn
Pgg(z)Smn∆

([mn]) FLM

(
[mn]

)
− 2CA

E2
n

Sm∆(m) FLM(m) (F.5)

+
ϵ

EmEn

[
P⊥
gg(z)

(
rµi,(b) r

ν
i,(b) + gµν

)
− P⊥,r

gg (z) gµν
]
Smn∆

([mn]) FLM,µν([mn])

}〉
,

where we have used the relation[
Pgg(z, ϵ) + ϵ P⊥

gg(z)
]
FLM([mn]) = Pgg(z)FLM([mn])− ϵ gµν P⊥,r

gg (z)FLM,µν([mn]) , (F.6)

with P⊥,r
gg defined in Eq. (A.25). The second line in Eq. (F.5) contains “spin-averaged”

and the third line “spin-correlated” contributions. They read

Σ
(b),sa
RR,1c,i =− [αs]

2ϵ
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

Θmn

∫
[dΩ[mn]]σ

−ϵ
i[mn] ω

mi,ni
m∥n

×
[

1

EmEn
Pgg(z)Smn∆

([mn]) FLM([mn])− 2CA
E2

n

Sm∆(m) FLM(m)

]〉
,

(F.7)

and

Σ
(b),sc
RR,1c,i = − [αs]

2
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

Θmn

∫
[dΩ[mn]]σ

−ϵ
i[mn] ω

mi,ni
m∥n

× 1

EmEn

[
P⊥
gg(z)

(
rµi,(b) r

ν
i,(b) + gµν

)
− P⊥,r

gg (z) gµν
]
Smn∆

([mn]) FLM,µν([mn])

〉
.

(F.8)

We continue with the discussion of the spin-correlated collinear limits. We find that

after adding the contribution of sector (d) to Σ
(b),sc
RR,1c,i, the energy-ordering constraint dis-

appears and we obtain the following expression for the full spin-correlated part

Σ
(b,d),sc
RR,1c,i = − [αs]

2
N (b,d)
ϵ

〈 Emax∫
0

dEm

E2ϵ−1
m

dEn

E2ϵ−1
n

∫
[dΩ[mn]]σ

−ϵ
i[mn] ω

mi,ni
m∥n

× 1

EmEn

[
P⊥
gg(z)

(
rµi r

ν
i + gµν

)
− P⊥,r

gg (z) gµν
]
Smn∆

([mn]) FLM,µν([mn])

〉
,

(F.9)

where we have relabelled ri,(b) as ri for brevity. We note that the energy integration for

each of the two particles m and n extends to Emax. As we discussed in Section 4.1, this leads

to a possible contribution of the unphysical region E[mn] > Emax. Since Emax is chosen in
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such a way that FLM,µν([mn]) has no support for E[mn] > Emax, only the soft subtraction

term contributes in this case. Hence, in the above formula we can write

Smn = Θ[mn],max S[mn] −Θmax,[mn]S[mn] , (F.10)

where in the first (second) term on the right hand side the energy of the clustered particle is

restricted to be smaller (larger) than Emax, respectively. The integration over the energies

of partons m and n can be rearranged to conform with the above splitting of the soft

operator

Emax∫
0

dEm

Emax∫
0

dEn =

Emax∫
0

dE[mn]E[mn]

1∫
0

dz +

2Emax∫
Emax

dE[mn]E[mn]

Emax
E[mn]∫

1−Emax
E[mn]

dz . (F.11)

Following this rearrangement, we have (cf. Eq. (4.52))

Σ
(b,d),sc
RR,1c,i = Σ

(b,d),sc,I
RR,1c,i +Σ

(b,d),sc,II
RR,1c,i , (F.12)

where

Σ
(b,d),sc,I
RR,1c,i = − [αs]

2
N (b,d)
ϵ

〈∫
[dp[mn]]E

−2ϵ
[mn]Θmax,[mn] σ

−ϵ
i[mn] ω

mi,ni
m∥n

×
1∫

0

dz[
z(1− z)

]2ϵ [P⊥
gg(z)

(
rµi r

ν
i + gµν

)
− P⊥,r

gg (z) gµν
]

× S[mn]∆
([mn]) FLM,µν([mn])

〉
,

(F.13)

and

Σ
(b,d),sc,II
RR,1c,i = − [αs]

2
N (b,d)
ϵ

〈∫
[dp[mn]] E

−2ϵ
[mn] Θmax,[mn] σ

−ϵ
i[mn] ω

mi,ni
m∥n

×

Emax
E[mn]∫

1−Emax
E[mn]

dz[
z(1− z)

]2ϵ [P⊥
gg(z)

(
rµi r

ν
i + gµν

)
− P⊥,r

gg (z) gµν
]

× S[mn]∆
([mn]) FLM,µν([mn])

〉
,

(F.14)

where [dp[mn]] identifies the phase space of the clustered parton [mn]. We first discuss

Σ
(b,d),sc,I
RR,1c,i , where the integration over z decouples from the rest and can be easily performed.

We find

Σ
(b,d),sc,I
RR,1c,i =

[αs]

2
N (b,d)
ϵ

〈∫
[dp[mn]]E

−2ϵ
[mn]Θmax,[mn] σ

−ϵ
i[mn] ω

mi,ni
m∥n

×
[
γ22⊥,g→gg

(
rµi r

ν
i + gµν

)
− γ22,r⊥,g→gg g

µν
]
S[mn]∆

([nn]) FLM,µν([mn])

〉
,

(F.15)
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where the functions γ22⊥,g→gg and γ22,r⊥,g→gg are given in Eq. (A.29). Since this contribution

is soft-regulated, the only singularity left there is [mn]||i. To regularize and extract this

collinear divergence, we insert 1 = Ci[mn] + Ci[mn] into the above formula and obtain

Σ
(b,d),sc,I
RR,1c,i = Σ

(b,d),sc,I,1
RR,1c,i +Σ

(b,d),sc,I,2
RR,1c,i , (F.16)

where

Σ
(b,d),sc,I,1
RR,1c,i =

[αs]

2
N (b,d)
ϵ

〈∫
[dpm]E

−2ϵ
m Θmax,m Cim σ

−ϵ
im ω

mi,ni
m∥n

×
[
γ22⊥,g→gg

(
rµi r

ν
i + gµν

)
− γ22,r⊥,g→gg g

µν
]
Sm∆(m) FLM,µν(m)

〉
,

(F.17)

and

Σ
(b,d),sc,I,2
RR,1c,i =

[αs]

2
N (b,d)
ϵ

〈
O(i)

NLOE
−2ϵ
m θmax,m σ

−ϵ
im ω

mi,ni
m∥n

×
[
γ22⊥,g→gg

(
rµi r

ν
i + gµν

)
− γ22,r⊥,g→gg g

µν
]
∆(m) FLM,µν(m)

〉
.

(F.18)

We note that we have relabelled [mn] 7→ m when writing the above equations. The function

Σ
(b,d),sc,I,2
RR,1c,i is a fully-regulated single-unresolved contribution which is finite in the limit

ϵ→ 0 and can be numerically integrated in four space-time dimensions.

On the other hand, the quantity Σ
(b,d),sc,I,1
RR,1c,i will include a 1/ϵ pole once we integrate

over the unresolved parton m. To do this, we need to evaluate the soft and collinear

limits of rµi r
ν
i FLM,µν([mn]), which we have not encountered before. Doing so requires us to

revisit the construction of the vectors ri. We recall that, following Eq. (E.3), the angular

parametrization employs the direction of parton i as a reference axis, so that (cf. Eq. (E.4))

pµi = Ei(t
µ + eµi ) , (F.19)

where t is a time-like vector with t2 = 1 and ei is a space-like vector with e2i = −1. The

momentum of the clustered particle [mn] is defined as

pµ[mn] = E[mn]

(
tµ + cos θ[mn]i e

µ
i + sin θ[mn]i b

µ
i

)
, (F.20)

with

bµi ei,µ = 0 . (F.21)

The vector ri reads

rµi = sin θ[mn]i e
µ
i − cos θ[mn]i b

µ
i , (F.22)

from which it follows that

pµ[mn] ri,µ = 0 . (F.23)

This implies that ri is a valid polarization vector for the clustered gluon [mn]. Armed with

this understanding, it is straightforward to write a general expression for the soft limits

S[mn] of spin-correlated amplitudes-squared. We find

rµi r
ν
i S[mn] FLM,µν([mn]) = −g2s,b

Np∑
k,l=1

(pk · ri) (pl · ri)
(pk · p[mn]) (pl · p[mn])

(T k ·T l) · FLM . (F.24)
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One also needs to consider the limit Ci[mn] of this expression, which develops singularities

arising from two contributions in the sum: first from k = i, l = i, and second from k =

i, l ̸= i or k ̸= i, l = i.

We begin with the first one and write

(pi · ri)(pi · ri)
(pi · p[mn]) (pi · p[mn])

=
1

E2
[mn]

sin2 θ[mn]i(
1− cos θ[mn]i

)2 =
1

E2
[mn]

(
2− ρ[mn]i

)
ρ[mn]i

, (F.25)

where we used the explicit parametrization of momenta pi and p[mn] and the vector ri. The

collinear limit of the term in Eq. (F.24) with k = i, l = i therefore reads

−g2s,bCi[mn]
(pi · ri) (pi · ri)

(pi · p[mn])(pi · p[mn])
(T i ·T i) · FLM =

−2g2s,b
E2

[mn] ρ[mn]i
T 2
i FLM . (F.26)

Next, we consider terms with k = i and l ̸= i

−g2s,b
∑
l ̸=i

(pi · ri) (pl · ri)
(pi · p[mn]) (pl · p[mn])

(T i ·T l) · FLM . (F.27)

Since pi · ri ∼ sin θ[mn]i and pi · p[mn] ∼ (1 − cos θ[mn]i), and all other factors in the above

expression are regular in the limit θ[mn]i → 0, we conclude that this contribution is actually

integrable in the collinear limit [mn] || i. The same conclusion holds for the symmetric k ̸= i

and l = i terms. Hence, we find the following result

Ci[mn] S[mn] r
µ
i r

ν
i FLM,µν([mn]) = −

2g2s,b
E2

[mn] ρ[mn]i
T 2
i FLM . (F.28)

This coincides with the limit without spin correlations, Ci[mn] S[mn]FLM([mn]), so that

Ci[mn] S[mn](g
µν + rµi r

ν
i )FLM,µν([mn]) = 0 . (F.29)

We can use this cancellation to simplify Σ
(b,d),sc,I,1
RR,1c,i in Eq. (F.17). We write

Σ
(b,d),sc,I,1
RR,1c,i =

[αs]

2
N (b,d)
ϵ

〈∫
[dp[mn]]E

−2ϵ
[mn]Θmax,[mn] η

−ϵ
i[mn]

×
[
γ22⊥,g→gg Ci[mn]

(
rµi r

ν
i + gµν

)
− γ22,r⊥,g→gg g

µνCi[mn] S[mn]

]
×∆([mn]) FLM,µν([mn])

〉
.

(F.30)

The only limit in the above equation that we have not yet encountered is

Ci[mn] r
µ
i r

ν
i FLM,µν([mn]) . (F.31)

As we will show later, it evaluates to

Ci[mn] r
µ
i r

ν
i FLM,µν([mn]) =

g2s,b
pi · p[mn]

·

P
spin
fif[im]

(z)⊗ F
(i)
LM(z · [mni]) , i ≤ 2 ,

P spin
fif[im]

(z)FLM , i > 2 ,
(F.32)
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where the splitting functions are given by the following equations

P spin
fif[im]

(z) =


1
2 CF

(1+z)2

1−z , fi = f[im] = {q, q̄} ,

2CA

[
z

1−z +
(1−z)/z+z(1−z)

2(1−ϵ)

]
, fi = f[im] = g ,

(F.33)

and we have adopted the convention that F
(1)
LM(z ·1) ≡ FLM(z ·1a, 2b, ...)/z and F

(2)
LM(z ·2) ≡

FLM(1a, z · 2b, ...)/z.
We are now in the position to evaluate the limits of Eq. (F.30) and to integrate over

the angular phase space. For the final-state emissions (i > 2) we find

Σ
(b,d),sc,I,1
RR,1c,i

∣∣∣
i>2

=
[αs]

2
N (b,d)
ϵ

〈∫
[dpi][dp[mn]]E

−2ϵ
[mn]Θmax,[mn] η

−ϵ
i[mn]

×
[
γ22⊥,g→gg

g2s,b
E[mn]Eiρi[mn]

(
P spin
gg (z)− Pgg(z)

)
z FLM([mni])

+ γ22,r⊥,g→gg Ci[mn]S[mn] z FLM

(
[mn])

]〉
,

(F.34)

while for i ≤ 2 we find

Σ
(b,d),sc,I,1
RR,1c,i

∣∣∣
i≤2

=
[αs]

2
N (b,d)
ϵ

〈∫
[dp[mn]]E

−2ϵ
[mn]Θmax,[mn] η

−ϵ
i[mn]

×
[
γ22⊥,g→gg

g2s,b
E[mn]Eiρi[mn]

(
P spin
qq (z)− Pqq(z)

)
⊗ F

(i)
LM(z · [mni])

+ γ22,r⊥,g→gg Ci[mn]S[mn] FLM([mn])
]〉

.

(F.35)

We can then integrate over the remaining energy and angular variables using the formulas

in Appendix A.2 and obtain

Σ
(b,d),sc,I,1
RR,1c,i

∣∣∣
i>2

=
[αs]

2

4ϵ

22ϵ Γ(1− ϵ) Γ(1− 2ϵ)

Γ(1− 3ϵ)
N (b,d)
ϵ

〈(
2Ei
µ

)−4ϵ

×
[
− γ22⊥,g→gg

[
γ24z,g→gg − γ24, spinz,g→gg

]
+ γ22,r⊥,g→gg γ

24
z,g→gg(ϵ, Li)

]
FLM

〉
,

Σ
(b,d),sc,I,1
RR,1c,i

∣∣∣
i≤2

=
[αs]

2

4ϵ

22ϵ Γ(1− ϵ) Γ(1− 2ϵ)

Γ(1− 3ϵ)
N (b,d)
ϵ

〈(
2Ei
µ

)−4ϵ

×
{
γ22⊥,g→gg

∫ 1

0
dz (1− z)−4ϵ

[
Pqq(z)− P spin

qq (z)
]
⊗ F

(i)
LM(z · i)

− γ22,r⊥,g→gg

∫ 1

0
dz P(4)

qq (z, Li)⊗ F
(i)
LM(z · i)

}〉
,

(F.36)

where we have defined

γ24, spinz,g→gg = −
∫ 1

0
dz

[
z−2ϵ (1− z)−4ϵ z P spin

gg (z)− 2CA (1− z)−1−4ϵ
]
. (F.37)
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Finally, combining emissions off different legs, we write Σ
(b,d),sc,I,1
RR,1c as

Σ
(b,d),sc,I,1
RR,1c =

[αs]
2

4ϵ

22ϵ Γ(1− ϵ) Γ(1− 2ϵ)

Γ(1− 3ϵ)
N (b,d)
ϵ

×
{
−

Np∑
i=3

〈(
2Ei
µ

)−4ϵ

γ22⊥,g→gg

[
γ24z,g→gg − γ24, spinz,g→gg

]
FLM

〉

+

2∑
i=1

〈(
2Ei
µ

)−4ϵ

γ22⊥,g→gg

1∫
0

dz (1− z)−4ϵ
[
Pqq(z)− P spin

qq (z)
]
⊗ F

(i)
LM(z · i)

〉}

+
[αs]

2

4ϵ
N (b,d)
sc γ22,r⊥,g→gg

2∑
i=1

〈 1∫
0

dz P(4),gen
qq (z)⊗ F

(i)
LM(z · i)

〉

+
[αs]

2

2
N (b,d)
sc γ22,r⊥,g→gg

〈
I
(4)
C (ϵ) · FLM

〉
,

(F.38)

where we have introduced

N (b,d)
sc =

22ϵ Γ3(1− 2ϵ)

Γ(1− 3ϵ)Γ3(1− ϵ)
N (b,d)
ϵ . (F.39)

We return to the “unphysical” contribution Σ
(b,d),sc,II
RR,1c,i of Eq. (F.12). Using Eq. (F.24),

we can immediately obtain the soft limit S[mn]FLM,µν [mn]. Integrating over E[mn] and z, we

find

Σ
(b,d),sc,II
RR,1c,i = [αs] g

2
s,b

(
Emax

µ

)−4ϵ 〈∫
dΩ[mn] σ

−ϵ
i[mn] ω

mi,ni
m∥n

[
δ⊥g (r

µ
i r

ν
i + gµν)

− δ⊥,rg gµν
] Np∑
k,l=1

nk,µ nl,ν(
nk · n[mn]

) (
nl · n[mn]

) (T k ·T l) · FLM

〉
,

(F.40)

where δ⊥g and δ⊥,rg are given in Eq. (A.30). At this point, we introduce the functions

〈
W(i)
r · FLM

〉
≡
∫ [dΩ

(d−1)
[mn] ]

[Ω(d−2)]

〈
σ−ϵi[mn] ω

mi,ni
m∥n

×
(
rµi r

ν
i + gµν

) Np∑
k,l=1

nk,µ nl,ν(
nk · n[mn]

)(
nl · n[mn]

) F (kl)
LM

〉
,

〈
W i∥n
i · FLM

〉
≡− ϵ 22ϵ

∫ [dΩ
(d−1)
[mn] ]

[Ω(d−2)]

〈
σ−ϵi[mn] ω

mi,ni
m∥n

×
Np∑
k,l=1
k ̸=l

nk · nl(
nk · n[mn]

)(
nl · n[mn]

) F (kl)
LM

〉
,

(F.41)

where we have used the shorthand notation F
(ij)
LM = (T i ·T j) ·FLM, and write Eq. (F.40) as

Σ
(b,d),sc,II
RR,1c,i = [αs]

2

(
Emax

µ

)−4ϵ 〈
δ⊥g W(i)

r · FLM + δ⊥,rg

2−2ϵ

ϵ
W i∥n
i · FLM

〉
. (F.42)
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The function W(i)
r is finite in ϵ because the pole arising from the term proportional to rµi r

ν
i

cancels with that arising from the gµν term. This can be understood as follows: the most

singular contribution affecting the term proportional to rµi r
ν
i stems from the combination

k = l = i, since the partition functions damp all other potential collinear configurations.

In this case, the singularity is proportional to 2Cfi/ρ[mn]i, as we already saw in Eq. (F.26).

On the other hand, the singularity proportional to gµν can only arise when k = i, l ̸= i and

k ̸= i, l = 1, given that n2l = n2k = 0. We can then isolate the divergent ratio 1/(ni · n[mn])

and sum over colors, obtaining precisely −2Cfi/ρ[mn]i. We conclude that W(i)
r does not

contribute to the pole content of Σ
(b,d),sc,II
RR,1c,i .

By contrast, the term in Eq. (F.42) containing the function W i∥n
i does contain singu-

larities of O(ϵ−1), which could (in principle) be dependent on the partitions ωmi,ni
m∥n . This

would imply that the pole structure of Σ
(b,d),sc,II
RR,1c,i would depend on the choice of partition

functions. However, in Appendix G we will show that the sum over all the external legs of

W i∥n
i can be written as

Np∑
i=1

〈
W i∥n
i · FLM

〉
= − ϵ 22ϵ

Np∑
i=1

Np∑
k,l=1
k ̸=l

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈
ρkl

ρkm ρlm
σ−ϵim ω

mi,ni
m∥n F

(kl)
LM

〉

= 2

Np∑
i,j=1
i ̸=j

〈
η−ϵij KijF

(ij)
LM

〉

+

Np∑
i=1

[
Nc(ϵ)T

2
i ⟨FLM⟩+ ϵ2

〈
W i∥n,fin
i · FLM

〉 ]
,

(F.43)

where we have relabelled [mn] 7→ m. It is clear from the above equation that the poles

of Σ
(b,d),sc,II
RR,1c,i are in fact independent of the partition functions, whose explicit form only

affects the finite remainder W i∥n,fin
i given in Eq. (G.12). Summing over emissions from all

legs, we find

Σ
(b,d),sc,II
RR,1c = 2[αs]

2δ⊥,rg (ϵ)

(
Emax

µ

)−2ϵ

×
[
−
〈
IS(ϵ) · FLM

〉
+

(2Emax/µ)
−2ϵ

2ϵ2
Nc(ϵ)

N∑
i=1

T 2
i

〈
FLM

〉]

+ [αs]
2 2−2ϵδ⊥,rg (ϵ)

(
Emax

µ

)−4ϵ Np∑
i=1

〈
W i∥n,fin
i · FLM

〉
+ [αs]

2δ⊥g

(
Emax

µ

)−4ϵ Np∑
i=1

〈
W(i)
r · FLM

〉]
.

(F.44)

The complete result for spin-correlated contributions is obtained upon combining

Eqs. (F.18), (F.38) and (F.44).
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a b c F3g(z, εa, εb, εc)

in in in (1− z)/z + z/(1− z) + z(1− z)

in out out z(1− z)

out in out z/(1− z)

out out in (1− z)/z

Table 1. The table from Ref. [82], page 160. Note that we use z = 1 − Eb/Ea at variance with

Ref. [82].

It remains to prove the results for spin-correlated splitting functions introduced in

Eq. (F.32). To this end, we consider the cases where i is the initial-state or the final-state

parton separately. We begin with the discussion of the final-state splitting, in which case i

is a gluon. Since ri can be considered to be the polarization vector of the clustered gluon,

the calculation of the collinear limit in Eq. (F.32) is equivalent to the computation of a

g → gg splitting for polarized gluons. The corresponding results can be found in Ref. [82].

To understand how they can be used, we note that Ref. [82] defines polarization vectors

relative to the decay plane formed by the momenta of the final state particles, there called

b and c. Their momenta define a two-dimensional plane in (d − 1)-dimensional space (we

discard the temporal component for obvious reasons). We need (d−2) polarization vectors

to fully describe the quantum state of a gluon. Hence, for each of the gluons, we choose one

polarization vector to lie in the plane defined by the momenta and (d−3) to be orthogonal

to that plane. It is clear that we can choose the “out-of-the-plane” polarization vectors to

be the same for the three gluons a, b, c.

The dependence of the g → gg splitting on the polarization of the partons is charac-

terized by the function F3g(z) shown in Table F. One can use this function to write the

collinear limit of the scattering amplitude as follows [82]

|Mn+1(εb, εc)|2 ∼
4g2s,bCA

(p[mn] + pi)2
F3g(z; εa, εb, εc)|Mn(εa)|2 . (F.45)

As explained in Ref. [82], this formula implies that the polarizations of the parent and

daughter partons are kept fixed. For our purposes, we identify parton [mn] with parton b

and parton i with c. Therefore we need to sum over the polarizations of partons a and

c and keep the polarization of the gluon b fixed and equal to ri. Note that, since this

polarization is composed of vectors ei and bi, it is “in-plane”, according to the language of

Ref. [82]. Hence, for our purposes we require

Ci[mn]r
µ
i r

ν
i FLM,µν([mn]) =

4g2s,bC
2
A

(p[mn] + pi)2
FLM,µν([mni])

×
{
εµa(in) ε

ν
a(in)F3g(ain, bin, cin) +

∑
out

εµa(out) ε
ν
a(out)F3g(aout, bin, cout)

}
.

(F.46)

The “in-plane” polarization for the gluon a in the collinear limit is b. It remains to write
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λa εb λc Fqqg(z, λa, εb, λc)

± in ± (1 + z)2/(1− z)

± out ± (1− z)

Table 2. The table from Ref. [82], page 160, that can be used to compute q → qg splittings.

the sum for the “out-of-plane” polarizations, which reads∑
out

εµa(out) ε
ν
a(out) = −gµν + tµtν +

eµi e
ν
i

e2i
+
bµi b

ν
i

b2i
. (F.47)

Thanks to the transversality of FLM,µν([mni]) w.r.t. p[mni], we find

tµFLM,µν([mni]) = −eµi FLM,µν([mni]) . (F.48)

This implies that (
tµtν +

eµi e
ν
i

e2i

)
FLM,µν([mni]

)
= 0 . (F.49)

Hence, we obtain

Ci[mn] r
µ
i r

ν
i FLM,µν([mn]

)
=

2g2s,bCA

E[mn]Eiρi[mn]
FLM,µν([mni])

{
bµbνF3g(ain, bin, cin)

+ (−gµν + bµbν)F3g(aout, bin, cout)

}
=

g2s,b
E[mn]Eiρi[mn]

FLM,µν([mni]) P r, µν
gg (z) ,

(F.50)

where z = Ei/(Ei + E[mn]) and

P r, µν
gg (z) = 2CA

[
− z

1− z
gµν +

(
1− z

z
+ z(1− z)

)
bµbν

]
. (F.51)

Since we will have to use this result in Eq. (F.34), where the integration over directions of

b decouples from the rest, we will only require the spin-averaged version of P r, µν
gg , that is〈

P r, µν
gg (z)

〉
= (−gµν)P spin

gg (z) , (F.52)

where (c.f. Eq. (F.33))

P spin
gg (z) = 2CA

[
z

1− z
+

(1− z)/z + z(1− z)

2(1− ϵ)

]
, (F.53)

Since the spin-averaging also applies to the standard collinear limit Ci[mn]FLM([mn]), we

obtain

Ci[mn](r
µ
i r

ν
i + gµν)FLM,µν([mn]) =

g2s,b
E[mn]Eiρi[mn]

(
P spin
gg (z)− Pgg(z)

)
FLM([mni])

= −1− 2ϵ

1− ϵ

g2s,bCA

E[mn]Eiρi[mn]

(1− z)(1 + z2)

z
FLM([mni]) .

(F.54)
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To describe the initial-state splitting, we require the q → q∗g splitting. To compute

it, we start from the final state q∗ → qg and then perform the parton crossing. Similar to

the gluon case, we need to keep the gluon polarized. The polarization-dependent splitting

functions can again be found in Ref. [82]; they are reproduced in Table 2. We only need

to consider the “in plane” polarization of the gluon and sum over quark polarizations.

Performing the crossing, we find

C[mn]ir
µ
i r

ν
i FLM,µν([mn]) =

4g2s,b
E[mn]Ei ρi[mn]

P spin
qq (z)

FLM(z · i, ...)
z

, (F.55)

where z = 1− E[mn]/Ei, i = 1, 2, and P spin
qq is given in Eq. (F.33).
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G Partition-dependent contribution

In this appendix, we discuss two contributions that appear in the computation of double-

unresolved limits. They are required to obtain terms in the final result in the second line

of Eq. (6.4) and in the third line of Eq. (6.5), respectively. They read

Np∑
k=1

⟨Wm∥n
k · FLM⟩ ≡

Np∑
k=1

Np∑
(ij)

⟨Wm∥n,(ij)
k F

(ij)
LM ⟩

=− ϵ 22ϵ
Np∑
k=1

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈
σ−ϵkm

ρij
ρim ρjm

ωmk,nk
m∥n F

(ij)
LM

〉
,

(G.1)

and

⟨Wk∥n
k · FLM⟩ = −ϵ 22ϵ

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈[
(ηkm/2)

−ϵ − 1
] ρij
ρim ρjm

ωmk,nk
k∥n F

(ij)
LM

〉
, (G.2)

where we have used the shorthand notation F
(ij)
LM = (T i ·T j) · FLM, which will appear in

this appendix.

Extracting singularities from Wm∥n
k

We first investigate Eq. (G.1). We note that the contribution of
〈
Wm∥n
k · FLM

〉
to cross

sections will be multiplied by 1/ϵ2 which originates from the integration over gluon ener-

gies. For this reason, we require the expansion of Eq. (G.1) through O(ϵ2). We also note

that, thanks to the partition functions ωmk,nk
m∥n that appear in Eq. (G.1), the only allowed

collinear singularities correspond to the kinematic configurations where m||k. To isolate

such divergences, we write

Np∑
k=1

〈
Wm∥n
k · FLM

〉
=− ϵ 22ϵ

Np∑
k=1

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈[
(1 − Ckm)

(
σ−ϵkm − 1

)
+ 1− Ckm

(
1− σ−ϵkm

) ] ρij
ρim ρjm

ωmk,nk
m∥n F

(ij)
LM

〉
.

(G.3)

Next, we note that the first term in the above equation is O(ϵ2) already. The second term

allows us to sum over index k using the relation

Np∑
k=1

ωmk,nk
m∥n = 1 , (G.4)

and the last one can be simplified since the collinear Ckm limit selects particular contribu-

tions from the sum.

We now consider the second and the third term in more detail. The former reads

−ϵ 22ϵ
Np∑
k=1

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈
ρij

ρim ρjm
ωmk,nk
m∥n F

(ij)
LM

〉
= 2

Np∑
(ij)

〈
η−ϵij Kij F

(ij)
LM

〉
. (G.5)
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To compute the contribution of the third term, we note that

Ckm
(
1− σ−ϵkm

) ρij
ρim ρjm

ωmk,nk
m∥n = (1− η−ϵkm)

1

ρkm
(δik + δjk) . (G.6)

Using this expression in Eq. (G.3), it becomes possible to sum either over j or i using the

color conservation condition. We obtain

ϵ 22ϵ
N∑
k=1

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

〈
Ckm

(
1− σ−ϵkm

) ρij
ρim ρjm

ωmk,nk
m∥n F

(ij)
LM

〉
= Nc(ϵ)

Np∑
i=1

T 2
i ⟨FLM⟩ ,

(G.7)

where

Nc(ϵ) =
2Γ2(1− ϵ)

Γ(1− 2ϵ)
− Γ(1− ϵ)Γ(1− 2ϵ)

Γ(1− 3ϵ)
= 1 +O(ϵ3) . (G.8)

Combining all the relevant terms, we find

Np∑
k=1

〈
Wm∥n
k · FLM

〉
= 2

Np∑
(ij)

〈
η−ϵij KijF

(ij)
LM

〉
+Nc(ϵ)

Np∑
i=1

T 2
i ⟨FLM⟩

+ ϵ2
Np∑
k=1

〈
Wm∥n,fin
k · FLM

〉
,

(G.9)

where

〈
Wm∥n,fin
k · FLM

〉
=

Np∑
(ij)

∫
dΩ

(3)
m

2π

〈
(1 − Ckm) log (σkm)

ρij
ρim ρjm

ωmk,nk
m∥n F

(ij)
LM

〉
. (G.10)

Notice that Wm∥n,fin
k is finite in ϵ, thus we evaluate it in d = 4 dimensions.

Extracting singularities from Wk∥n
k

We can compute the second contribution ⟨Wk∥n
k ·FLM⟩ shown in Eq. (G.2) in the same way.

As in the previous case, we introduce collinear subtraction operators as

⟨Wk∥n
k · FLM⟩ =− ϵ 22ϵ

Np∑
(ij)

∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

×
〈
(1 − Ckm + Ckm)

[
(ηkm/2)

−ϵ − 1
] ρij
ρim ρjm

ωmk,nk
k∥n F

(ij)
LM

〉
.

(G.11)

The term with (1 − Ckm) leads to an O(ϵ2) contribution that we express through

〈
Wk∥n,fin
k · FLM

〉
=

Np∑
(ij)

∫
dΩ

(3)
m

2π

〈
(1 − Ckm) log

(ηkm
2

) ρij
ρim ρjm

ωmk,nk
k∥n F

(ij)
LM

〉
. (G.12)

– 100 –



The calculation of the term with Ckm proceeds exactly as already explained in the

previous subsection. We use

Ckm ω
mk,nk
k∥n

ρij
ρim ρjm

=
1

ρkm
(δik + δjk) , (G.13)

sum over one of the color indices and employ the following integral∫
[dΩ

(d−1)
m ]

[Ω(d−2)]

2

ρkm

[(ηkm
2

)−ϵ
− 1

]
=

2−2ϵ

ϵ

[
2Γ2(1− ϵ)

Γ(1− 2ϵ)
− 2ϵ Γ(1− ϵ)Γ(1− ϵ)

Γ(1− 3ϵ)

]
≡ 2−2ϵ

ϵ
Nk(ϵ) ,

(G.14)

to find the final result

⟨Wk∥n
k · FLM⟩ = ϵ2⟨Wk∥n,fin

k · FLM⟩ −Nk(ϵ)T
2
k⟨FLM⟩ . (G.15)
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H Triple color-correlated contributions to real-virtual corrections

In this appendix we discuss the computation of the triple color-correlated component arising

from the integrated soft limit of the real-virtual contribution. The relevant factorization

formula in the soft limit is given in Eq. (4.97), and we are interested in the final term

Stri
m FRV(m) = −[αs]

4π Γ(1 + ϵ)Γ3(1− ϵ)

ϵΓ(1− 2ϵ)

Np∑
(ijk)

κij Ski(pm)
(
Sij(pm)

)ϵ
F

(kij)
LM , (H.1)

where (ijk) labels triplets with different i, j and k and we have used the notation

F
(kij)
LM =

〈
M(0)

∣∣fabc T ak T bi T cj ∣∣M(0)
〉
, (H.2)

to indicate the triple color-correlated matrix element. The phase factor κij is reported in

Eq. (A.6), and the eikonal factor Sij in Eq. (4.89). Here we just recall that κij is completely

symmetric under the exchange i↔ j and (obviously) is independent of k.

We begin by pointing out that the triple color-correlated matrix element gives a non-

zero contribution only when there are at least four colored particles in the Born-level

process. Indeed, with three colored particles one can use color conservation to obtain the

following identity

fabc T
a
1 T

b
2 T

c
3

∣∣M(0)
〉
= −fabc T a1 T b2

(
T c1 + T c2

) ∣∣M(0)
〉
= 0 . (H.3)

Our goal is to integrate Eq. (H.1) over the phase space of the soft gluon with momentum

pm. We begin by integrating over the energy Em and obtain

〈
Stri
m FRV

〉
= − [αs]

2 4π
3−ϵ 2ϵ Γ(1 + ϵ)Γ4(1− ϵ)

ϵ2 Γ(1− 2ϵ)

(
4E2

max

µ2

)−2ϵ

×
∑
(ijk)

〈
κij G

kij F
(kij)
LM

〉
,

(H.4)

In Eq. (H.4) we have defined

Gkij =

∫
dΩ

(d−1)
m

2(2π)d−1

ρki
ρkmρim

(
ρij

ρimρjm

)ϵ
, (H.5)

which is a function of the angular variables ρij , ρik and ρjk. We note that since κij is a

symmetric tensor and F
(kij)
LM is fully anti-symmetric, only the anti-symmetric contribution

Gkij −Gkji can contribute to the sum, whereas the symmetric part drops out. We will use

this result when writing intermediate expressions for
〈
Stri
m FRV(m)

〉
.

To perform the remaining integration over the soft-gluon angle, we employ the Mellin-

Barnes representation of d-dimensional angular integrals presented in Ref. [83], and write
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the integral as

Gkij =

∫
dΩ

(d−1)
m

2(2π)d−1

ρki
ρkmρim

(
ρij

ρimρjm

)ϵ
= ρki ρ

ϵ
ij

+i∞∫
−i∞

dzij dzjk dzki
(2πi)3

π−2+ϵ

24+2ϵ
Γ(−zij)Γ(−zki)Γ(−zjk)

× Γ(1 + ϵ+ zij + zki)Γ(−1− 3ϵ− zij − zki − zjk)Γ(ϵ+ zij + zjk)

× Γ(1 + zki + zjk)
1

Γ(−4ϵ)Γ(ϵ)Γ(1 + ϵ)
η
zij
ij ηzkiki η

zjk
jk .

(H.6)

In the above equation we have introduced the three complex Mellin-Barnes variables

zij , zki, zjk, and ηij = ρij/2. The integration contour has to be chosen in such a way

that the poles of Γ(... + x) are separated from the poles of Γ(... − x), with x being a

generic integration variable. In order to resolve the singularity structure in ϵ we employ

the packages MBresolve [84] and MB [85], which allow us to express our original integral

as a linear combination of integrals that can be safely expanded in ϵ under the integration

sign, and whose integration contours are straight vertical lines in the complex plane. Upon

applying this procedure we find that it is possible to express the function Gkij up to O(ϵ0)

in terms of classical and generalized polylogarithms (GPLs) [86, 87] up to weight three. It

is convenient to write the final result for the angular integral as follows

Gkij =

∫
dΩ

(d−1)
m

2(2π)d−1

ρki
ρkmρim

(
ρij

ρimρjm

)ϵ
= − ϵ2

4π2

[
2−ϵπϵ Γ(1− ϵ)

Γ(1− 4ϵ)Γ2(1 + ϵ)

]
G
kij

, (H.7)

where

G
kij

=
3

4ϵ3
+

1

2ϵ2

[
log (ηij)− 3 log (ηik)− log (ηjk)

]
+

1

ϵ

[
1

2
log2 (ηij)

+ log (ηij) (− log (ηik)− log (ηjk)) + log (ηik) (log (ηjk)− 2 log (1− ηik))

− 2Li2 (ηik) +
3

2
log2 (ηik) +

1

2
log2 (ηjk) + π2

]
+O(ϵ0) .

(H.8)

Note that the ϵ-dependent prefactor in Eq. (H.7) starts at O(ϵ2), so that the whole angular

integral is effectively O(ϵ−1), as expected.

Inserting the result for Gkij into Eq. (H.4) we get the following final result for the

triple color-correlated contribution to the real-virtual counterterm

〈
Stri
m FRV

〉
= [αs]

2 πΓ5(1− ϵ)

Γ(1− 2ϵ)Γ(1− 4ϵ)Γ(1 + ϵ)

(
4E2

max

µ2

)−2ϵ ∑
(ijk)

〈
κij G

kij
F

(kij)
LM

〉
. (H.9)

To proceed further it is convenient to split the function G
kij

into contributions using its

symmetry properties under the i↔ j permutations. We write

G
kij

= G
kij
s +G

kij
r , (H.10)
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with

G
kij
s =

3

4

1

ϵ3
+

1

2ϵ2
log

(
ηij

ηjkηik

)
+

1

ϵ

[
2π2

3
+

1

2
log2

(
ηij

ηjkηik

)]
+O(ϵ0) , (H.11)

and

G
kij
r = − log ηik

ϵ2
+

1

ϵ

[
log2 ηik + 2Li2(1− ηik)

]
+O(ϵ0) . (H.12)

The functionG
kij
s is symmetric under i↔ j permutations; hence, it does not contribute

to
〈
Stri
m FRV(m)

〉
and can be dropped. Note also that the function G

kij
r , up to O(ϵ−1), is

symmetric under the i ↔ k permutation. It follows that
〈
Stri
m FRV(m)

〉
is free of poles for

processes with a color-singlet initial state, as in this case we have κij = −1.

For a hadron collider process with two incoming and any number of outgoing partons,

the function κij reads

κij = −1 + 2δi1δj2 + 2δi2δj1 , (H.13)

from which it follows that∑
(ijk)

〈
κij G

kij
F

(kij)
LM

〉
=

∑
(ijk)

〈
κij G

kij
r F

(kij)
LM

〉
= 2

∑
k ̸=1,2

〈(
G
k12
r −G

k21
r

)
F

(k12)
LM

〉
.

(H.14)

Using this result together with Eq. (H.12) and Eq. (H.9), we obtain the final formula for

the poles in the triple color-correlated contribution to the soft limit of the real-virtual

corrections. It reads〈
Stri
m FRV

〉
= [αs]

2
∑
k ̸=1,2

〈
F

(k12)
LM

{
2π

ϵ2
log

η2k
η1k

+
2π

ϵ

[
log2 η1k − log2 η2k

+ 2 log

(
4E2

max

µ2

)
log

(
η1k
η2k

)
+ 2Li2(1− η1k)− 2Li2(1− η2k)

]
+O(ϵ0)

}〉
.

(H.15)

We now present the formula for the O(ϵ0) terms of Eq. (H.8). We exploit once again the

symmetry properties of the triple color-correlated contribution under the exchange of i↔ j

indices and therefore only present results for the antisymmetric part. The result reads

G
kij
r,fin = Li2(ηij) log

(
ηik
ηjk

)
− Li2(ηik) log

(
ηjk
ηijηik

)
+ Li2(ηjk) log

(
ηik
ηijηjk

)
+ log(ηik)Li2

(
−
ηik − ηjk
1− ηik

)
+ log(ηik)Li2

(
−
ηik − ηjk
ηjk

)
+ 3Li3(1− ηik)

− 3Li3(1− ηjk) + Li2

(
1− ηjk
1− ηik

)
log(ηikηjk) + Li2

(
ηik
ηjk

)
log(ηik ηjk)

− log(ηjk)Li2

(
−
ηjk − ηik
ηik

)
− log(ηjk)Li2

(
−
ηjk − ηik
1− ηjk

)
+ Li3(ηik)

− Li3(ηjk) + log2(ηik)

[
1

2
log

(
1− ηjk
ηij

)
+ log

(
ηjk − ηik
ηjk

)]
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+ log(ηik)

[
− 1

2
log2(ηij) + log(1− ηij) log(ηij) +

1

2
log2

(
1− ηjk
1− ηik

)
+

1

2
log2

(
ηik
ηjk

)
+ log(1− ηjk) log(ηjk(ηjk − ηik)) + log2(ηjk)−

13π2

6

]
+ log(1− ηjk)

[
− log(ηjk) log

(
ηij

ηjk − ηik

)
− log2(ηjk)−

π2

6

]
+ log(1− ηik)

[
log(ηik)

[
log

( ηij
ηjk − ηik

)
− log(1− ηjk)

]
+ log2(ηik) (H.16)

− log(ηjk) log(ηjk − ηik)−
log2(ηjk)

2
+
π2

6

]
+

1

2
log(ηij) log

2(ηjk)

+
1

2
log2(ηij) log(ηjk)− log(1− ηij) log(ηij) log(ηjk)−

1

3
log3

(
ηik
ηjk

)
− 1

2
log

(
1− ηjk
1− ηik

)
log2

(
ηik
ηjk

)
− 1

2
log2

(
1− ηjk
1− ηik

)
log

(
ηik
ηjk

)
− log2(ηjk) log(ηjk − ηik) +

2

3
π2 log

(
ηik
ηjk

)
+ log

(
ηik

1− ηik

)
×
[π2
6

− log(1− ηjk) log(ηjk)
]
− 1

2
log3(ηik) + log2(1− ηik) log(ηik)

+
log3(ηjk)

2
− log2(1− ηjk) log(ηjk) +

3

2
π2 log(ηjk)−

1

6
π2 log

(
ηjk

1− ηjk

)
+ log(ηij)

[
G(η̃ik, w

+, 1)−G(η̃jk, w
+, 1) +G(η̃ik, w

−, 1)−G(η̃jk, w
−, 1)

]
−G(η̃ik, w

+, η̃jk, 1) +G(η̃jk, w
+, η̃ik, 1) +G(η̃ik, w

+, 1, 1)−G(η̃ik, w
+, η̃ik, 1)

−G(η̃jk, w
+, 1, 1) +G(η̃jk, w

+, η̃jk, 1)−G(η̃ik, w
−, η̃jk, 1) +G(η̃jk, w

−, η̃ik, 1)

+G(η̃ik, w
−, 1, 1)−G(η̃ik, w

−, η̃ik, 1)−G(η̃jk, w
−, 1, 1) +G(η̃jk, w

−, η̃jk, 1) ,

where we defined

w± =
2− ηij − ηik − ηjk ±

√
(ηij − ηik − ηjk) 2 − 4ηikηjk(1− ηij)

2 (ηikηjk − ηik − ηjk + 1)
, (H.17)

and η̃ab = 1/(1− ηab).

The expression in Eq. (H.16) is well defined in the region ηik < ηjk. However, this is

sufficient to cover the entire phase space since the other region can be obtained by swapping

indices i and j. Thanks to the antisymmetry of the result under such an exchange, this

only amounts to an overall sign change.
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I Collection of functions used in the final result

In this appendix we collect all the functions that are necessary to write the final result for

the NNLO QCD contribution to the partonic cross section of the process qq̄ → X + Ng

given in Section 6. For the reader’s convenience, we attempt to make this appendix as

self-contained as possible.

We use the following notations

z̄ = 1− z , Dn(z) =

[
logn(1− z)

1− z

]
+

, (I.1)

L̃i = log

(
2Ei
µ

)
, Li = log

(
Emax

Ei

)
, Lmax = log

(
2Emax

µ

)
. (I.2)

To present the double-boosted contribution in Eq. (6.3) we have used the following

splitting function

PNLO
qq (z, Ei) = CF

[
z̄ + 4D1(z) +

[
4D0(z) + 3δ(z̄)

]
L̃i − 2(1 + z)

[
L̃i + log(z̄)

]]
. (I.3)

The single-boosted contribution in Eq. (6.4) depends on the function W i∥n,fin
i , defined in

Eq. (G.12), and an operator I
(0)
T , reported in Eq. (A.66). We have also introduced the

function

PW
qq (z, Ei) =− 1

2ϵ

Γ2(1− ϵ)

Γ(1− 2ϵ)

(
2Ei
µ

)−4ϵ [
P(4)
qq (z, Li)− e−2ϵLiP(2)

qq (z, Li)
]

= CF

[[
1 + z − 2D0(z)

]
Li + 2D1(z) + δ(z̄)L2

i − (1 + z) log(z̄)
]
,

(I.4)

where in the second line we have taken the ϵ→ 0 limit. Furthermore, we use

PNNLO
qq (z, Ei) = C2

FP
NNLO,a
qq (z, Ei) + CFCAP

NNLO,na
qq (z, Ei) , (I.5)

with

PNNLO,a
qq (z, Ei) = 2L̃2

i

[
8D1(z) + 6D0(z)−

(
3z2 + 1

)
log(z)

z̄
− 4(z + 1) log(z̄)

− z − 5

]
+ L̃i

[
24D2(z) + 12D1(z)−

8π2

3
D0(z) +

8Li2(z̄)

z̄
−
(
1 + 3z2

) log2(z)
z̄

+ 4
(
1 + z + z2

) log(z)
z̄

− log(z̄)

(
8z2 log(z)

z̄
+ 2(5 + z)

)
− 12(1 + z) log2(z̄)

+
4π2

3
(z + 1) + 9− 7z

]
+ 8D3(z)−

8π2

3
D1(z) + 16ζ3D0(z)− 2

(
5 + 3z2

) Li3(z)
z̄

−
(
5− 3z2

) Li3(z̄)
z̄

+
log(z̄)

z̄

[ (
7− z2

)
Li2(z̄)− 6

(
1 + z2

)
log2(z) +

4π2

3
(1− z2) (I.6)

+
(
7− 2z + 7z2

)
log(z) + z̄

(
6− 9

2
z

)
− 4(z + 1)z̄ log2(z̄)

]
+

log(z)

z̄

[(
5

2
− 9z

2

)
z̄
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− 2
(
1 + z2

)(
Li2(z̄)−

5π2

6

)]
+ 3z̄

(
Li2(z̄) +

2π2

9

)
+

(
5

4
+

13

12
z2
)

log3(z)

z̄

+
2ζ3(1 + 7z2)

z̄
− log2(z̄)

[
2z̄ −

(
5

2
− 3z2

2

)
log(z)

z̄

]
+ 8z +

z

2
log2(z)− 9

+ δ(z̄)

[(
9

2
− 4π2

3

)
L̃2
i +

(
16ζ3 +

9

2
log 2

)
L̃i +

3π2

16
− π4

45
− 9

16
log2 2

]
,

and

PNNLO,na
qq (z, Ei) = −11

3
L̃2
i

[
2D0(z)− 1− z

]
+ L̃i

[(
134

9
− 2π2

3

)
D0(z)−

44

3
D1(z)

+ 2
(
1 + z2

) Li2(z)
z̄

+

[
2

3
+

11

3
z2 + 2(1 + z2) log(z̄)

]
log(z)

z̄
+

22

3
(z + 1) log(z̄)

+
2π2

3
− 52

9
− 91z

9

]
− 22

3
D2(z) +

(
134

9
− 2π2

3

)
D1(z) +

[
9ζ3 −

208

27
+

11π2

6

− 2 log 2

3

]
D0(z)−

(
1 + 6z + 19z2

)
6

Li2(z)

z̄
+

2 log 2

3
+

(
1 + z2

)
4z̄

[
2Li3(z)− 8Li3(z̄)

− 2
(
log(z)− 2 log(z̄)

)
Li2(z)− log2(z) log(z̄) + 4 log(z) log2(z̄)

]
+

2 + 11z2

8z̄
log2(z)

+
11

3
(1 + z) log2(z̄) +

20− 57z − 49z2

36z̄
log(z)− log z̄

[
52

9
+

173

18
z − 1

2
(1− z) log(z)

− π2

6

1 + 3z2

z̄

]
− 5− 4z2

z̄
ζ3 +

π2

36

12z + 49z2 − 35

z̄
+

563

108
+

197

108
z + δ(z̄)

{
L2
max

[
64

9

− π2

3
+

22 log 2

3

]
+ L̃2

i

(
π2

3
− 227

18
− 22

3
log 2

)
+ Lmax

[
11ζ3
2

− 22π2

9
+

383

54

− 77

3
log2 2− 125 log 2

9

]
+ L̃i

[
263

6
− 7ζ3 −

7π2

9
+

11 log2 2

3
+

(
224

9
− 4π2

3

)
log 2

]
− 2Li4(1/2) +

22 log3 2

9
+ ζ3

(
217

8
+

25 log 2

4

)
+

211π4

1440
− 1561

36
− 103π2

432
− log4 2

12

+

(
15π2

4
− 284

9

)
log 2 +

(
5π2

12
− 415

36

)
log2 2

}
.

(I.7)

It remains to discuss functions that contribute to dσ̂NNLO
el , see Eq. (6.5). The quantity

Ifincc collects color-correlated contributions and reads

Ifincc =
1

2

(
I
(0)
T

)2
+KI

(0)
T + CA

[
11

6

(
I
(1)
T + Ĩ

(1)
S − 2I

(1)
S +

π2

24
I
(−1)
V

)
+ I

(−1)
S

[(
2π2

3
− 131

18
+

22

3
log 2

)
Lmax −

17ζ3
4

+
1975

108
− 11

12
π2

− 11 log2 2− 2

3
π2 log 2

]
+ I

(0)
S

(
π2

3
− 131

36
+

11 log 2

3

)]
,

(I.8)

where K is a constant given in Eq. (A.7) and I
(n)
S , Ĩ

(n)
S , I

(n)
V , I

(n)
T are the coefficients of the

n-th power in the ϵ-expansion of the corresponding operators reported in Appendix A.5.
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The finite part of the triple color-correlated operator is given by

Ifintri = I
(cc),fin
tri +

Np∑
(ijk)

κij G
kij
r,fin F

(kij) , (I.9)

where F (kij) = fabc T
a
k T

b
i T

c
j . We note that I

(cc),fin
tri corresponds to the O(ϵ0) contributions

of the operator I
(cc)
tri in Eq. (5.15) and reads

I
(cc),fin
tri =

π

2

Np∑
(ijk)

F (kij)
(
δ−ij + δ−ji

)(
δ+kj + δ+jk − 2ϕjk

)
, (I.10)

where

δ+ij =
1

2
L2
ij +

γi

T 2
i

Lij −
1

2
π2λ2ij ,

δ−ij =
γi

T 2
i

λij + Lij λij ,

ϕij =− 2Lmax log(ηij)−
1

2
log2(ηij)− Li2(1− ηij) .

(I.11)

Furthermore, the term G
kij
r,fin can be found in Eq. (H.16).

The operator Ifinunc in Eq. (6.5) collects color-uncorrelated contributions. It reads

Ifinunc =

Np∑
i=1

Dc(Ei) + I
(−2)
S CA

{[
2π2

3
− 131

18
+

22 log 2

3

]
L2
max −

935ζ3
72

+
9607

324

+

[
− 8ζ3 −

11π2

6
+

1433

108

]
log 2−

π2
(
945 + 199π2

)
1440

− 11

3
log3 2

+

(
143

36
− π2

3

)
log2 2

}
,

(I.12)

where we have introduced

Dc(Ei) = CACF

{
Li

[
2

9

(
3π2 − 64− 66 log 2

)
L̃i − 16ζ3

+
1

27

(
802− 36π2 log 2 + 3(131 + 33 log 2) log 2

)]
+

1

9

(
3π2 − 64− 66 log 2

)
L2
i +

1

6

(
9π2 − 64− 66 log 2

)
L̃i

− 12ζ3 +
1

36

(
802− 36π2 log 2 + 3(131 + 33 log 2) log 2

)}
+ C2

F

(
− 3

16

(
π2 − 3 log2 2

)
− 9

2
L̃i log 2

)
,

(I.13)

if i = 1, 2, and

Dc(Ei) = C2
A

{[
− 15ζ3

2
+

1010

27
− 22 log2 2− 1

6
π2(11 + 8 log 2)

]
L̃i
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+

[
−21ζ3

2
+

1987

54
− 22 log2 2 +

2 log 2

3
− 2

9
π2(11 + 6 log 2)

]
Li

− 2Li4(1/2) + ζ3

(
583

24
+

25 log 2

4

)
+

47π4

160
− 40201

648
(I.14)

− log 2

36

[
713 + log 2

(
316 + log 2

(
3 log 2− 88

))]
+

π2

432

[
259 + 36 log 2

(
33 + 5 log 2

)]}
,

if i ∈ [3, Np].

The function γW in Eq. (6.5) is a combination of anomalous dimensions. It is given

by

γW(Li) =
1

2ϵ

Γ2(1− ϵ)

Γ(1− 2ϵ)

(
2Ei
µ

)−4ϵ [
γ24z,g→gg(ϵ, Li)− e−2ϵLiγ22z,g→gg(ϵ, Li)

]
= CA

[
203

72
+ Li

(
11

6
+ Li

)]
,

(I.15)

where in the second line we have taken ϵ→ 0. Furthermore, the functions Wm∥n,fin
i , W i∥n,fin

i

and W(i)
r are given in Eqs (G.10), (G.12) and (F.41), respectively. The quantities δ

(0)
g and

δ⊥g correspond to

δ(0)g = CA

(
− 131

72
+
π2

6
+

11

6
log 2

)
, δ⊥g = CA

(
13

36
− log 2

3

)
. (I.16)

The finite remainder of the double-soft integrated subtraction term is given by〈
SmnΘmnFLM(m, n)

〉fin
T 2 =

=

[
αs(µ)

2π

]2 Np∑
(ij)

CA

〈{
− Si2(2δij)

6 tan(δij)
− 11

3
Ci3(2δij)− 2G−1,0,0,1(ηij)

+
7

2
G0,1,0,1(ηij)−

5

24
log4(ηij)−

1

12
log4(1 + ηij) +

1

2
log(1− ηij) log

3(ηij)−
[
5π2

12

+
11

12
log(1− ηij) +

7

4
log2(1− ηij)

]
log2(ηij) +

π2

12
log2(1 + ηij)−

7

4
Li2(ηij)

2

+ 3Li4(ηij)− 5Li4

(
1− 1

ηij

)
− 5Li4(1− ηij)− 2Li4

(
1

1 + ηij

)
+ Li4

(
1− ηij
1 + ηij

)
− Li4

(
−1− ηij
1 + ηij

)
− 1

2
Li4

(
1− η2ij

)
− Li2(ηij)

[
log2(ηij) +

11

6
log(ηij) +

1 + 2π2

12
(I.17)

+
11 log 2

3

]
+ Li2(−ηij)

[
2 log(1− ηij) log(ηij) + 2Li2(1− ηij)−

π2

3

]
− 2 log(1− ηij)Li3(−ηij) + 2Li3(1− ηij)

(
log(1 + ηij)− log(ηij)

)
+ Li3(ηij)

[
11

6

+ 2 log(ηij)− 2 log(ηij + 1)− 7 log(1− ηij)

]
+ log 2

[
− 11

3
log(1− ηij) log(ηij)
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+
21

4
ζ3 +

33π2 − 868

108

]
+

11

2
ζ3 log(1− ηij)−

7

4
ζ3 log(1 + ηij) + 6Li4

(
1

2

)
+ log(ηij)

[(
π2 − 1

12

)
log(1− ηij) + 2ζ3 −

1

6

]
− 11

24
ζ3 +

137π2

432
− 17π4

160
+

649

162

+
log4 2

4
− 11 log3 2

9
− 137 + 9π2

36
log2 2

}
(T i · T j) · FLM

〉
.

In the above equation we used δij = θij/2, where θij is the opening angle between momenta

of partons i and j. The Clausen functions are defined as

Cin(z) =
Lin(e

iz) + Lin(e
−iz)

2
, Sin(z) =

Lin(e
iz)− Lin(e

−iz)

2i
, (I.18)

and Ga1,a2,...,am(x) are the standard Goncharov polylogarithms.

The last two functions in Eq. (6.5) are F fin
LV2 and F fin

VV, which refer to the infrared-finite

components of the one-loop squared amplitude and the two-loop amplitude interfered with

tree level, respectively.
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the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev. D 94

(2016) 074019, [1606.03453].

[20] M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B

693 (2010) 259–268, [1005.0274].

– 111 –

http://dx.doi.org/10.1140/epjc/s10052-017-4774-0
http://arxiv.org/abs/1702.01352
http://dx.doi.org/10.1016/j.physrep.2021.03.006
http://arxiv.org/abs/2009.00516
http://dx.doi.org/10.1016/j.physrep.2022.10.001
http://arxiv.org/abs/2112.07099
http://arxiv.org/abs/2306.05976
http://dx.doi.org/10.1016/0550-3213(93)90365-V
http://arxiv.org/abs/hep-ph/9302225
http://dx.doi.org/10.1103/PhysRevD.52.1486
http://arxiv.org/abs/hep-ph/9412338
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/hep-ph/9512328
http://dx.doi.org/10.1016/S0550-3213(96)00589-5, 10.1016/S0550-3213(96)00589-5
http://arxiv.org/abs/hep-ph/9605323
http://dx.doi.org/10.1088/1126-6708/2003/09/055
http://arxiv.org/abs/hep-ph/0308127
http://dx.doi.org/10.1007/JHEP10(2013)204
http://arxiv.org/abs/1308.5605
http://dx.doi.org/10.1007/JHEP06(2021)089
http://arxiv.org/abs/2012.05012
http://dx.doi.org/10.1088/1126-6708/2005/06/010
http://arxiv.org/abs/hep-ph/0411399
http://dx.doi.org/10.1088/1126-6708/2005/09/056
http://arxiv.org/abs/hep-ph/0505111
http://dx.doi.org/10.1007/JHEP04(2013)066
http://arxiv.org/abs/1301.4693
http://dx.doi.org/10.1088/1126-6708/2005/06/024
http://arxiv.org/abs/hep-ph/0502226
http://dx.doi.org/10.1088/1126-6708/2007/01/052
http://arxiv.org/abs/hep-ph/0609043
http://dx.doi.org/10.1103/PhysRevLett.117.152004
http://dx.doi.org/10.1103/PhysRevLett.117.152004
http://arxiv.org/abs/1603.08927
http://dx.doi.org/10.1103/PhysRevD.94.074019
http://dx.doi.org/10.1103/PhysRevD.94.074019
http://arxiv.org/abs/1606.03453
http://dx.doi.org/10.1016/j.physletb.2010.08.036
http://dx.doi.org/10.1016/j.physletb.2010.08.036
http://arxiv.org/abs/1005.0274


[21] M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a

certain concept, Nucl. Phys. B 849 (2011) 250–295, [1101.0642].

[22] M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue

subtraction scheme, Nucl. Phys. B 890 (2014) 152–227, [1408.2500].

[23] C. Anastasiou, K. Melnikov and F. Petriello, A new method for real radiation at NNLO,

Phys. Rev. D 69 (2004) 076010, [hep-ph/0311311].

[24] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its

application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002,

[hep-ph/0703012].

[25] M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with

MATRIX, Eur. Phys. J. C 78 (2018) 537, [1711.06631].

[26] R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations,

Phys. Rev. D 85 (2012) 034025, [1111.7041].

[27] J. Gaunt, M. Stahlhofen, F. J. Tackmann and J. R. Walsh, N-jettiness Subtractions for

NNLO QCD Calculations, JHEP 09 (2015) 058, [1505.04794].

[28] R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a

jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002,

[1504.02131].

[29] G. F. R. Sborlini, F. Driencourt-Mangin and G. Rodrigo, Four-dimensional unsubtraction

with massive particles, JHEP 10 (2016) 162, [1608.01584].

[30] F. Herzog, Geometric IR subtraction for final state real radiation, JHEP 08 (2018) 006,

[1804.07949].

[31] L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Local

analytic sector subtraction at NNLO, JHEP 12 (2018) 107, [1806.09570].

[32] G. Bertolotti, L. Magnea, G. Pelliccioli, A. Ratti, C. Signorile-Signorile, P. Torrielli et al.,

NNLO subtraction for any massless final state: a complete analytic expression, 2212.11190.

[33] Z. Capatti, V. Hirschi, D. Kermanschah and B. Ruijl, Loop-Tree Duality for Multiloop

Numerical Integration, Phys. Rev. Lett. 123 (2019) 151602, [1906.06138].

[34] W. J. Torres Bobadilla et al., May the four be with you: Novel IR-subtraction methods to

tackle NNLO calculations, Eur. Phys. J. C 81 (2021) 250, [2012.02567].

[35] X. Chen, T. Gehrmann, E. W. N. Glover and M. Jaquier, Precise QCD predictions for the

production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147–150, [1408.5325].

[36] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003,

[1504.07922].

[37] F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in

association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015)

074032, [1508.02684].

[38] X. Chen, J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and M. Jaquier, NNLO QCD

corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066,

[1607.08817].

– 112 –

http://dx.doi.org/10.1016/j.nuclphysb.2011.03.020
http://arxiv.org/abs/1101.0642
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.006
http://arxiv.org/abs/1408.2500
http://dx.doi.org/10.1103/PhysRevD.69.076010
http://arxiv.org/abs/hep-ph/0311311
http://dx.doi.org/10.1103/PhysRevLett.98.222002
http://arxiv.org/abs/hep-ph/0703012
http://dx.doi.org/10.1140/epjc/s10052-018-5771-7
http://arxiv.org/abs/1711.06631
http://dx.doi.org/10.1103/PhysRevD.85.034025
http://arxiv.org/abs/1111.7041
http://dx.doi.org/10.1007/JHEP09(2015)058
http://arxiv.org/abs/1505.04794
http://dx.doi.org/10.1103/PhysRevLett.115.062002
http://arxiv.org/abs/1504.02131
http://dx.doi.org/10.1007/JHEP10(2016)162
http://arxiv.org/abs/1608.01584
http://dx.doi.org/10.1007/JHEP08(2018)006
http://arxiv.org/abs/1804.07949
http://dx.doi.org/10.1007/JHEP12(2018)107
http://arxiv.org/abs/1806.09570
http://arxiv.org/abs/2212.11190
http://dx.doi.org/10.1103/PhysRevLett.123.151602
http://arxiv.org/abs/1906.06138
http://dx.doi.org/10.1140/epjc/s10052-021-08996-y
http://arxiv.org/abs/2012.02567
http://dx.doi.org/10.1016/j.physletb.2014.11.021
http://arxiv.org/abs/1408.5325
http://dx.doi.org/10.1103/PhysRevLett.115.082003
http://arxiv.org/abs/1504.07922
http://dx.doi.org/10.1103/PhysRevD.92.074032
http://dx.doi.org/10.1103/PhysRevD.92.074032
http://arxiv.org/abs/1508.02684
http://dx.doi.org/10.1007/JHEP10(2016)066
http://arxiv.org/abs/1607.08817


[39] J. M. Campbell, R. K. Ellis and S. Seth, H + 1 jet production revisited, JHEP 10 (2019)

136, [1906.01020].

[40] M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Fully Differential

Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.

115 (2015) 082002, [1506.02660].

[41] J. Cruz-Martinez, T. Gehrmann, E. W. N. Glover and A. Huss, Second-order QCD effects in

Higgs boson production through vector boson fusion, Phys. Lett. B 781 (2018) 672–677,

[1802.02445].

[42] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A. Huss and I. Majer, VH + jet

production in hadron-hadron collisions up to order α3
s in perturbative QCD, JHEP 03 (2022)

008, [2110.12992].

[43] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and C. Savoini, Higgs Boson

Production in Association with a Top-Antitop Quark Pair in Next-to-Next-to-Leading Order

QCD, Phys. Rev. Lett. 130 (2023) 111902, [2210.07846].

[44] H. A. Chawdhry, M. L. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to

three-photon production at the LHC, JHEP 02 (2020) 057, [1911.00479].

[45] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to diphoton

production with an additional jet at the LHC, JHEP 09 (2021) 093, [2105.06940].

[46] M. Czakon, A. Mitov, M. Pellen and R. Poncelet, NNLO QCD predictions for W+c-jet

production at the LHC, JHEP 06 (2021) 100, [2011.01011].

[47] R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A. Huss, A. R. Garcia and

G. Stagnitto, NNLO QCD predictions for Z-boson production in association with a charm jet

within the LHCb fiducial region, Eur. Phys. J. C 83 (2023) 336, [2302.12844].

[48] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss and J. Pires,

Precise predictions for dijet production at the LHC, Phys. Rev. Lett. 119 (2017) 152001,

[1705.10271].

[49] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and J. Mo, NNLO QCD corrections in full

colour for jet production observables at the LHC, JHEP 09 (2022) 025, [2204.10173].

[50] S. Badger, M. Czakon, H. B. Hartanto, R. Moodie, T. Peraro, R. Poncelet et al., Isolated

photon production in association with a jet pair through next-to-next-to-leading order in

QCD, 2304.06682.

[51] M. Czakon, A. Mitov and R. Poncelet, Next-to-Next-to-Leading Order Study of Three-Jet

Production at the LHC, Phys. Rev. Lett. 127 (2021) 152001, [2106.05331].

[52] M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark

pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003, [1511.00549].

[53] S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair production at

the LHC: Fully differential QCD predictions at NNLO, JHEP 07 (2019) 100, [1906.06535].

[54] L. Buonocore, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli, L. Rottoli et al., Associated

production of a W boson with a top-antitop quark pair: next-to-next-to-leading order QCD

predictions for the LHC, 2306.16311.

[55] M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top

production at the LHC, Phys. Lett. B 736 (2014) 58–63, [1404.7116].

– 113 –

http://dx.doi.org/10.1007/JHEP10(2019)136
http://dx.doi.org/10.1007/JHEP10(2019)136
http://arxiv.org/abs/1906.01020
http://dx.doi.org/10.1103/PhysRevLett.115.082002
http://dx.doi.org/10.1103/PhysRevLett.115.082002
http://arxiv.org/abs/1506.02660
http://dx.doi.org/10.1016/j.physletb.2018.04.046
http://arxiv.org/abs/1802.02445
http://dx.doi.org/10.1007/JHEP03(2022)008
http://dx.doi.org/10.1007/JHEP03(2022)008
http://arxiv.org/abs/2110.12992
http://dx.doi.org/10.1103/PhysRevLett.130.111902
http://arxiv.org/abs/2210.07846
http://dx.doi.org/10.1007/JHEP02(2020)057
http://arxiv.org/abs/1911.00479
http://dx.doi.org/10.1007/JHEP09(2021)093
http://arxiv.org/abs/2105.06940
http://dx.doi.org/10.1007/JHEP06(2021)100
http://arxiv.org/abs/2011.01011
http://dx.doi.org/10.1140/epjc/s10052-023-11530-x
http://arxiv.org/abs/2302.12844
http://dx.doi.org/10.1103/PhysRevLett.119.152001
http://arxiv.org/abs/1705.10271
http://dx.doi.org/10.1007/JHEP09(2022)025
http://arxiv.org/abs/2204.10173
http://arxiv.org/abs/2304.06682
http://dx.doi.org/10.1103/PhysRevLett.127.152001
http://arxiv.org/abs/2106.05331
http://dx.doi.org/10.1103/PhysRevLett.116.082003
http://arxiv.org/abs/1511.00549
http://dx.doi.org/10.1007/JHEP07(2019)100
http://arxiv.org/abs/1906.06535
http://arxiv.org/abs/2306.16311
http://dx.doi.org/10.1016/j.physletb.2014.06.075
http://arxiv.org/abs/1404.7116


[56] E. L. Berger, J. Gao, C. P. Yuan and H. X. Zhu, NNLO QCD Corrections to t-channel Single

Top-Quark Production and Decay, Phys. Rev. D 94 (2016) 071501, [1606.08463].

[57] J. Campbell, T. Neumann and Z. Sullivan, Single-top-quark production in the t-channel at

NNLO, JHEP 02 (2021) 040, [2012.01574].

[58] M. Alvarez, J. Cantero, M. Czakon, J. Llorente, A. Mitov and R. Poncelet, NNLO QCD

corrections to event shapes at the LHC, JHEP 03 (2023) 129, [2301.01086].

[59] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and M. Marcoli, Automation of antenna

subtraction in colour space: gluonic processes, JHEP 10 (2022) 099, [2203.13531].

[60] F. Caola, K. Melnikov and R. Röntsch, Analytic results for color-singlet production at NNLO

QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C 79 (2019) 386,

[1902.02081].

[61] F. Caola, K. Melnikov and R. Röntsch, Analytic results for decays of color singlets to gg and

qq̄ final states at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys.

J. C 79 (2019) 1013, [1907.05398].

[62] K. Asteriadis, F. Caola, K. Melnikov and R. Röntsch, Analytic results for deep-inelastic

scattering at NNLO QCD with the nested soft-collinear subtraction scheme, Eur. Phys. J. C

80 (2020) 8, [1910.13761].

[63] K. Asteriadis, F. Caola, K. Melnikov and R. Röntsch, NNLO QCD corrections to weak boson

fusion Higgs boson production in the H → bb and H →WW ∗ → 4l decay channels, JHEP

02 (2022) 046, [2110.02818].

[64] C. Brønnum-Hansen, K. Melnikov, J. Quarroz, C. Signorile-Signorile and C.-Y. Wang,

Non-factorisable contribution to t-channel single-top production, JHEP 06 (2022) 061,

[2204.05770].

[65] F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov and R. Röntsch, Mixed

QCD-electroweak corrections to on-shell Z production at the LHC, Phys. Lett. B 811 (2020)

135969, [2005.10221].

[66] A. Behring, F. Buccioni, F. Caola, M. Delto, M. Jaquier, K. Melnikov et al., Mixed

QCD-electroweak corrections to W-boson production in hadron collisions, 2009.10386.

[67] F. Buccioni, F. Caola, H. A. Chawdhry, F. Devoto, M. Heller, A. von Manteuffel et al.,

Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant

mass region, JHEP 06 (2022) 022, [2203.11237].

[68] M. Delto and K. Melnikov, Integrated triple-collinear counter-terms for the nested

soft-collinear subtraction scheme, JHEP 05 (2019) 148, [1901.05213].

[69] F. Caola, M. Delto, H. Frellesvig and K. Melnikov, The double-soft integral for an arbitrary

angle between hard radiators, Eur. Phys. J. C 78 (2018) 687, [1807.05835].

[70] S. Catani, The Singular behavior of QCD amplitudes at two loop order, Phys. Lett. B 427

(1998) 161–171, [hep-ph/9802439].

[71] T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory

Amplitudes, JHEP 06 (2009) 081, [0903.1126].

[72] T. Becher, G. Bell, C. Lorentzen and S. Marti, Transverse-momentum spectra of electroweak

bosons near threshold at NNLO, JHEP 02 (2014) 004, [1309.3245].

– 114 –

http://dx.doi.org/10.1103/PhysRevD.94.071501
http://arxiv.org/abs/1606.08463
http://dx.doi.org/10.1007/JHEP02(2021)040
http://arxiv.org/abs/2012.01574
http://dx.doi.org/10.1007/JHEP03(2023)129
http://arxiv.org/abs/2301.01086
http://dx.doi.org/10.1007/JHEP10(2022)099
http://arxiv.org/abs/2203.13531
http://dx.doi.org/10.1140/epjc/s10052-019-6880-7
http://arxiv.org/abs/1902.02081
http://dx.doi.org/10.1140/epjc/s10052-019-7505-x
http://dx.doi.org/10.1140/epjc/s10052-019-7505-x
http://arxiv.org/abs/1907.05398
http://dx.doi.org/10.1140/epjc/s10052-019-7567-9
http://dx.doi.org/10.1140/epjc/s10052-019-7567-9
http://arxiv.org/abs/1910.13761
http://dx.doi.org/10.1007/JHEP02(2022)046
http://dx.doi.org/10.1007/JHEP02(2022)046
http://arxiv.org/abs/2110.02818
http://dx.doi.org/10.1007/JHEP06(2022)061
http://arxiv.org/abs/2204.05770
http://dx.doi.org/10.1016/j.physletb.2020.135969
http://dx.doi.org/10.1016/j.physletb.2020.135969
http://arxiv.org/abs/2005.10221
http://arxiv.org/abs/2009.10386
http://dx.doi.org/10.1007/JHEP06(2022)022
http://arxiv.org/abs/2203.11237
http://dx.doi.org/10.1007/JHEP05(2019)148
http://arxiv.org/abs/1901.05213
http://dx.doi.org/10.1140/epjc/s10052-018-6180-7
http://arxiv.org/abs/1807.05835
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://arxiv.org/abs/0903.1126
http://dx.doi.org/10.1007/JHEP02(2014)004
http://arxiv.org/abs/1309.3245


[73] S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the

next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287–325,

[hep-ph/9908523].

[74] S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591

(2000) 435–454, [hep-ph/0007142].

[75] Z. Bern, V. Del Duca, W. B. Kilgore and C. R. Schmidt, The infrared behavior of one loop

QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001,

[hep-ph/9903516].

[76] D. A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B

563 (1999) 477–505, [hep-ph/9903515].

[77] C. Signorile-Signorile and D. M. Tagliabue, Advances in the nested soft-collinear subtraction

scheme, PoS RADCOR2023 (2023) 075, [2308.11982].

[78] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in

association with a jet at next-to-next-to-leading order in perturbative QCD, JHEP 1306

(2013) 072, [1302.6216].

[79] S. Catani and M. H. Seymour, The Dipole formalism for the calculation of QCD jet

cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287–301, [hep-ph/9602277].

[80] J. M. Campbell and R. Ellis, An Update on vector boson pair production at hadron colliders,

Phys.Rev. D60 (1999) 113006, [hep-ph/9905386].

[81] M. Delto, M. Jaquier, K. Melnikov and R. Röntsch, Mixed QCD⊗QED corrections to

on-shell Z boson production at the LHC, 1909.08428.

[82] R. K. Ellis, W. J. Stirling and B. R. Webber, QCD and collider physics, vol. 8. Cambridge

University Press, 2, 2011. 10.1017/CBO9780511628788.

[83] G. Somogyi, Angular integrals in d dimensions, J. Math. Phys. 52 (2011) 083501,

[1101.3557].

[84] A. V. Smirnov and V. A. Smirnov, On the Resolution of Singularities of Multiple

Mellin-Barnes Integrals, Eur. Phys. J. C 62 (2009) 445–449, [0901.0386].

[85] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.

Commun. 175 (2006) 559–571, [hep-ph/0511200].

[86] A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res.

Lett. 5 (1998) 497–516, [1105.2076].

[87] A. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.

– 115 –

http://dx.doi.org/10.1016/S0550-3213(99)00778-6
http://arxiv.org/abs/hep-ph/9908523
http://dx.doi.org/10.1016/S0550-3213(00)00572-1
http://dx.doi.org/10.1016/S0550-3213(00)00572-1
http://arxiv.org/abs/hep-ph/0007142
http://dx.doi.org/10.1103/PhysRevD.60.116001
http://arxiv.org/abs/hep-ph/9903516
http://dx.doi.org/10.1016/S0550-3213(99)00583-0
http://dx.doi.org/10.1016/S0550-3213(99)00583-0
http://arxiv.org/abs/hep-ph/9903515
http://arxiv.org/abs/2308.11982
http://dx.doi.org/10.1007/JHEP06(2013)072
http://dx.doi.org/10.1007/JHEP06(2013)072
http://arxiv.org/abs/1302.6216
http://dx.doi.org/10.1016/0370-2693(96)00425-X
http://arxiv.org/abs/hep-ph/9602277
http://dx.doi.org/10.1103/PhysRevD.60.113006
http://arxiv.org/abs/hep-ph/9905386
http://arxiv.org/abs/1909.08428
http://dx.doi.org/10.1063/1.3615515
http://arxiv.org/abs/1101.3557
http://dx.doi.org/10.1140/epjc/s10052-009-1039-6
http://arxiv.org/abs/0901.0386
http://dx.doi.org/10.1016/j.cpc.2006.07.002
http://dx.doi.org/10.1016/j.cpc.2006.07.002
http://arxiv.org/abs/hep-ph/0511200
http://dx.doi.org/10.4310/MRL.1998.v5.n4.a7
http://dx.doi.org/10.4310/MRL.1998.v5.n4.a7
http://arxiv.org/abs/1105.2076
http://arxiv.org/abs/math/0103059


Alphabetical Index

A

AK , 33, 61

αs, 8, 60

[αs], 8, 60

B

β0, 60

β1, 60

C

C, 45

Cmn, 21, 88

Cij , 7

Cij , 8

c̃, 47, 62

c1, 32, 61

c2, 32, 61

c3, 32, 61

cϵ, 30, 61

Collinear operators

Relations, 36, 38, 55, 69

Color space and algebra, 4, 7, 29, 42, 44,

58, 60, 77, 102

Convolution, 64, 65

[f⊗̄g], 50

D

Dn, 63, 106

∆(i), 71

∆(ij), 72, 73

δ+ij , 43, 108

δ−ij , 43, 108

δCA
g , 38

δCA
g (ϵ), 61

δg, 25, 64

δ⊥g , 64

δ
(0)
g , 109

δβ0g (ϵ), 61

δβ0g , 38

δ⊥,rg , 64

δ⊥,rg , 25

δ⊥g , 109

δsag , 24, 64

d(i), 71

d(ij), 72

Damping factor

NLO

Definition, 71

Properties, 6, 7, 71

NNLO

Definition, 73

Properties, 72, 73

E

ηij , 8

F

F (kij), 44

FLM, 4

FLM(m), 6

FLM(m, n), 13

F
(i)
LM, 93

F
(kij)
LM , 102

FLM,µν , 88

FRV, 12

FVV, 12, 31

F fin
VV, 31

F fin
LV, 10

F fin
LV2 , 31

ϕij , 44, 108

Final result for the NNLO cross section,

56

G

Gkij , 102

Gi, 50

Gi(z, Ei), 50

Γ, 45

Γ1L
i,fi

, 34, 35

Γ1,a, 9

Γ
(k),1L
1,a , 66

Γ
(k)
1,a, 65

Γ
(4)
i,fi

, 38

– 116 –



Γi,fi , 50

Γi,g, 8

Γ
(4)
i,g , 38

Γ
(k),1L
i,g , 66

Γ
(k)
i,g , 65

γW , 109

γnkf(z),g→gg(ϵ, Li), 8, 64

γ
n(k+1),1L
f(z),g→gg, 66

γ24, spinz,g→gg, 93

γ22z,g→gg(ϵ), 51

γ33,1Lz,g→gg, 34

gs,b, 60

G
kij
s , 104

G
kij
r , 104

G
kij
r,fin, 104, 108

gs,b, 7

γ22,r⊥,g→gg, 64

γ22⊥,g→gg, 64

G
kij

, 103

Generalized anomalous dimension

Expansion, 35, 78

Graphical overview of the calculation, 26

H

H2,cd, 30

H2,tc, 30, 45

hc, 34, 61

H2, 30

Hard-collinear limit, 8, 9

I

I±, 67

I
(cc),fin
tri , 108

Ifintri , 108

Ifinunc, 108

I1, 10, 67

I2, 30

I1, 10, 43, 67, 77

IC, 10, 78

I
(4)
C , 38

I
Np+1
C , 41, 70

I
(k)
C , 68
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