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ABSTRACT: We describe how the nested soft-collinear subtraction scheme [1] can be used
to compute the next-to-next-to-leading order (NNLO) QCD corrections to the production
of an arbitrary number of gluonic jets in hadron collisions. We show that the infrared
subtraction terms can be combined into recurring structures that in many cases are simple
iterations of those terms known from next-to-leading order. The way that these recurring
structures are identified and computed is fairly general, and can be applied to any partonic
process. As an example, we explicitly demonstrate the cancellation of all singularities in
the fully-differential cross section for the g¢ — X + Ng process at NNLO in QCD. The finite
remainder of the NNLO QCD contribution, which arises upon cancellation of all e-poles,
is expressed via relatively simple formulas, which can be implemented in a numerical code
in a straightforward way. Our approach can be extended to describe arbitrary processes at
NNLO in QCD; the largest remaining challenge at this point is the combinatorics of quark
and gluon collinear limits.
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1 Introduction

The theoretical description of hard scattering processes at the LHC is based, almost entirely,
on perturbative QCD. Because of this, the development of theoretical methods that can be
used to provide predictions at progressively higher orders of perturbation theory has been
one of the most active and exciting topics in theoretical particle physics in the past decade
(see Refs [2-5] for the recent reviews).

An important part of the theoretical toolbox that allows the description of infrared-safe
observables at high orders of perturbative QCD is the treatment of infrared singularities.
It is well-known that these singularities cancel upon combining virtual corrections, unre-
solved real-radiation contributions, and the collinear renormalization of parton distribution
functions (PDFs). An important question is then how to organize this cancellation in a
process-independent way and how to arrive at finite remainders that are suitable for nu-
merical evaluations.

This problem was fully solved at next-to-leading order (NLO) in perturbative QCD
many years ago [6-11] (see also Ref. [12] for more recent work), but its extension to next-
to-next-to-leading order (NNLO) and beyond has proved to be difficult. In fact, there are
many NNLO subtraction and slicing schemes [1, 13-34] that have been used to perform
the many impressive computations at this perturbative order,! but it is fair to say that the
complete generality achieved at NLO is still elusive at NNLO.

A peculiar illustration of this statement is the fact that the cancellation of 1/€" infrared
poles? for a generic hadron collider process has not been demonstrated in any NNLO slicing
or subtraction scheme up to now, although important work in this direction, focusing
on gluonic states, has recently been presented in Ref. [59]. For ete™ collisions such a
cancellation for arbitrary final states has been shown only in the context of the so-called
local analytic sector subtraction scheme [31, 32].

The goal of this paper is to partially address this issue in the context of the nested
soft-collinear subtraction scheme [1]. This scheme has already been successfully applied to
compute the NNLO QCD corrections to a variety of processes such as color singlet pro-
duction [60] and decay [61], deep inelastic scattering [62], Higgs production in WBF [63],

!See Refs. [35-58] for a representative list of NNLO calculations by different collaborations.
2Throughout the paper we use dimensional regularization and work in d = 4 — 2e dimensions.



non-factorizable corrections to t-channel single-top production [64] as well as mixed QCD-
electroweak corrections to the production of electroweak gauge bosons and dilepton pairs
[65—67]. This suggests that the nested soft-collinear subtraction scheme possesses the flex-
ibility and the simplicity that is needed for studies of multi-particle final states.

Moreover, the computations of double-unresolved soft and collinear contributions for
arbitrary kinematics are usually considered to be some of the most challenging calculations
required to develop a particular subtraction scheme. Interestingly, in the case of the nested
soft-collinear subtraction scheme, such computations were completed several years ago [68,
69], but this has not led to immediate applications of this scheme to high-multiplicity
QCD processes. Understanding the reasons for that is essential for further developing the
nested soft-collinear subtraction scheme and for making it applicable to the description of
arbitrary collider processes.

In this paper, we take a step in that direction by describing the application of this
scheme to the study of NNLO QCD corrections to the production of an arbitrary number
of gluons and a colorless final state X in ¢ annihilation, i.e. the process 1,42, - X+ N g
with a,b € {q,q}.> However, we will keep the generic notation of a and b for the initial-
state partons, in order to make a future generalization easier. In particular, we stress that
the extension of this result to gg annihilation into X + N g is straightforward since many
of our arguments apply verbatim to this case as well, and the problem reduces to repeating
certain steps of the calculation using different splitting functions and replacing a few color
factors.

Moreover, although our results are currently restricted to gluonic final states, they
require the analysis of matrix elements containing the richest singularity structures that
can possibly arise, and we are confident that the new insights into the mechanisms of
infrared cancellations at NNLO in QCD that we obtain in this paper are useful for generic
final states. In fact, the outstanding challenge in generalizing the results from all-gluonic
to arbitrary final states is the combinatorics of various collinear limits. This aspect of the
problem does not show up prominently for all-gluonic final states because of the symmetry
of the relevant matrix elements under permutations of final-state gluons.

There is multiple evidence suggesting that infrared subtraction terms can be organized
into clear structures that iterate from NLO to NNLO and possibly, beyond. This is rather
obvious in case of leading collinear singularities where the highest collinear poles at each
perturbative order are described by convolutions of leading-order splitting functions. The
fact that a similar iterative description should hold for soft emissions as well follows from
Catani’s formula for e-poles of one- and two-loop amplitudes [70]. However, the iterative
nature of the subtraction terms is not manifest in many NNLO subtraction schemes be-
cause, following the idea of FKS subtraction at NLO, one often splits real-emission phase
spaces into partitions and sectors to project matrix elements onto the minimal number of
singular kinematic configurations that one has to deal with at any point in the calculation.

In this paper we show how these iterative structures can be recognized and constructed

3 A prototypical physical process is the gluonic contribution to ¢ annihilation into an electroweak vector
boson and a large number of jets.



in the context of the nested soft-collinear subtraction scheme. We also demonstrate that
the existence of these iterative structures provides a strong guide for organizing NNLO
QCD computations and leads to the reduction of the computational complexity, allowing
us to deal with final states of arbitrary multiplicity.

The main result of this paper is a formula that allows the computation of NNLO QCD
corrections to a process where a ¢q initial state annihilates into IV final-state hard gluons
and an arbitrary number of colorless particles, through a fully local subtraction procedure.
This formula can be implemented in a computer code in a straightforward way; it requires
finite remainders of two- and one-loop scattering amplitudes for a particular process and
the corresponding Born amplitudes. Since the cancellation of all 1/e™ singularities is proved
analytically, all required numerical integrations can be performed in four-dimensional space-
time.

The rest of the paper is organized as follows. After preliminary remarks in the next
section, we present the computation of NLO QCD corrections to the process 1, + 2, —
X + Ng with a,b € {q,q} in Section 3. The reader might also find it useful to refer
to Appendix C, where we elaborate on the cancellation of poles at NLO. This discussion
allows us to introduce the iterative structures that are crucial for the subsequent analyses
of the NNLO QCD corrections in Section 4. There we show how to rewrite the double-real
contribution as a sum of terms with well-defined partonic multiplicities, and how to express
these through operators corresponding to soft or collinear limits or virtual corrections. The
reader who is more interested in the mechanism of the pole cancellation at NNLO can skim
over this section and focus instead on Section 5. The final results for the finite remainders of
the NNLO QCD corrections are presented in Section 6. This section is quite self-contained
so that the reader who is only interested in these results can skip to this section right away.
We conclude in Section 7.

Finally, we note that the discussion of many technical details is relegated to multiple
appendices. In particular, we collect the definitions of the various constants, splitting
functions and fundamental operators used throughout the manuscript in Appendix A.
For the readers’ convenience, the many different notations that we use in the paper are
summarized in an alphabetic index that can be found at the end of the paper and used
to identify the place in the paper where a particular notation has been introduced for the
first time.

2 Preliminary considerations

Subtraction schemes should enable calculations of hard processes at lepton and hadron
colliders at higher orders in QCD perturbation theory. In this paper, we will consider
the process where NV jets and a color-singlet system X are produced in hadron collisions,
pp — X + N jets. The cross section of this process is given by the following formula

do = Z/dxldm falz1, pp) folxa, pp) doap(z1, 2, iR, pr; O) (2.1)
a,b



Here dd,p, is the cross section in the ab partonic channel, f,; are the parton distribution
functions (PDFs), ur and pup are the renormalization and factorization scales, respectively,
and O is an observable, which provides (among other things) an infrared-safe definition of
the N-jet final state.

The partonic cross section can be expanded in the strong coupling a,. We write

dégp = AL 4+ dgNEO 4+ dgDNEO + O(at?) | (2.2)

where the LO term is proportional to o, and we have suppressed the arguments of all the
functions for brevity.

The computation of partonic cross sections and kinematic distributions requires inte-
grating matrix elements squared over phase spaces of relevant final states. For a generic
process, we find it convenient to treat matrix elements as vectors in color space [9]. A
matrix element where N, partons? are assigned definite color indices is then written as a
projection on a particular color-space basis vector

M Ne (py, o pN,) = efcty s eny [M(PL, o PN e - (2.3)

The square of the amplitude summed over all possible color assignments is then

IM(P1, .oy pN,))? = (M (P14 oo, DN, ) M (DL, e DN e - (2.4)

Although it is sufficient to use the summed-over-colors amplitude squared to compute
leading-order cross sections, in higher orders of QCD perturbation theory color-correlated
matrix elements appear. For example, at NLO, one encounters (M|T;-T'j| M), where T
is the color charge operator of parton i(j) € {1,..,Np}. To address this possibility, it is
convenient to introduce a tensor product of leading-order matrix elements | M) in color
space. We therefore define the function

Fini(la, 25;3, . Np; X) = [Mo(1a,20: 3, -, Np; X))e ® (Mo(1a, 2; 3, ..., Np; X))

‘ (2.5)
x dLipsx O(ps, ..., PN,:PX)

to describe the partonic process 1, + 2, — X + N jets at leading order. In Eq. (2.5),
N, = N + 2 is the number of initial- and final-state partons, the symbol ® indicates a
tensor product in color space, and dLipsx is the Lorentz-invariant phase space for the
colorless system X, including the momentum-conserving delta function. Furthermore, we
always assume f; = g for i = 3,..., N, where f; is the flavor of parton 7, and hence we do
not show a flavor index for the final state partons.

The matrix element squared is obtained by taking the trace in color space

Tr [ﬁLM}c = dLipSX ’M0‘2 0= FLM s (2.6)

where the arguments of all functions have been suppressed. As we already mentioned, in
the course of NLO and NNLO calculations we will need to act on Fyy with a function

“In the case of pp — X + N jets we have N, =N +2.



of operators in color space, and take the trace in color space after that. Denoting such a
function as A, we introduce the notation

A Fiy =Tr [A ﬁLM} = (Mol AIMy)e dLipsx O (2.7)

The LO partonic cross section can be obtained by integrating Fin(1q, 2633, ..., Np; X)
over the phase space of the final-state partons. We write

NP
2s dgLP :N/H [dpi] Finm(1a,2653, ..., Np; X) = (Frwm) (2.8)
=3

where s = 2p; - po is the partonic center-of-mass energy squared. In Eq. (2.8) N is a
normalization factor that takes into account color and spin averages as well as symmetry
factors, and [dp;] is the phase-space element of a final-state parton i

(2.9)

3 Calculations at next-to-leading order

In this section we discuss the calculation of the partonic cross section of the process 1, +
2, = X + N g at next-to-leading order in perturbative QCD. Our main goal is to introduce
an infrared finite-operator I, see Eq. (3.2), that describes the sum of virtual, soft and
certain collinear contributions and, as we explain later, is important for simplifying NNLO
QCD calculations.

Computation of NLO corrections requires the one-loop (virtual) contribution, the real-
emission contribution and the contribution of the collinear renormalization of parton dis-
tribution functions®

doNEO = daY, + dol + dePy!t . (3.1)

It is well-known that the virtual contribution contains explicit poles in € that arise
from the integration over the loop momentum. For a generic process, these poles can
be written in a closed form using Catani’s function I;(e) [70]. On the other hand, the
real-emission contributions do not contain explicit poles in € until the integration over the
phase space of final-state partons is performed. Such an integration extends over singular
kinematic regions that correspond to soft and/or collinear emissions and generates the 1/¢"
poles. Eventually, many of these poles will cancel with poles in the one-loop contribution;
therefore, we would like to parametrize them in a manner similar to Catani’s function
for the virtual corrections. Hence, we define soft and hard-collinear analogs of Catani’s
function, which we call Ig(e) and Ic(e), respectively, as well as a function Iy (e) which is
related to I1(e). These functions will multiply terms with leading order kinematics, such
that the sum

It(e) = Iv(e) + Is(e) + Ic(e) (3:2)

SThroughout this paper we work with UV-renormalized matrix elements.



is e-finite.

To define all the I-operators in Eq. (3.2) and to explain how their combination arises,
we begin by considering the real-emission contribution to the NLO cross section. This
contribution refers to the process 1, + 2, — X + (N + 1) g. We write

2s dépy = (Fin(1as 263, .., Np + 1, X)) = Frm(m) (3.3)

Since the observable O in the definition of F1 requires at least N resolved partons, one
and only one parton among the N + 1 final-state ones in the above equation can become
unresolved, i.e. soft and/or collinear to another parton. To identify the unresolved parton,
we introduce damping factors A® such that they provide a partition of unity,

Np+1

> Al =1, (3.4)
=3

The explicit form of the damping factors can be found in Appendix B. They are constructed
in such a way that a damping factor A vanishes when any parton, with the exception of
parton i, becomes either soft or collinear to any other parton, including the incoming ones.
This implies that in the combination A® Fjyp, only soft and collinear limits of parton i
can lead to non-integrable singularities and, eventually, to the appearance of 1/€" poles.
We then write
Np+1
(Fin(La, 2633, o, Np + 1 X)) = > (ADFy(1a, 23, ..., Ny + 1, X)) (3.5)
i=3
Since we focus on the all-gluon final state, F is unchanged under any permutation of the
final-state partons. Then we obtain
Np+1
> (AP (16,2633, ., Np + 13 X)) = (N, = DA™ Fpyp(m)) . (3.6)
i=3
In the above result, we have relabelled the arguments of Fiy; in such a way that the
damping factors become identical for each term in the sum and we denote the potentially-
unresolved gluon as m. The remaining N = N, — 2 final-state gluons are resolved. For
simplicity, we do not show the dependence of F1yr on their momenta and polarizations.
We also omit the dependence of F1,\; on the kinematics of color-singlet final-state particles.
We note that in Eq. (3.6) the functions Fi include 1/(N, — 1)! symmetry factors
for the all-gluon final state. The factor (N, — 1) on the right hand side of that equation
combines with 1/(N, — 1)! and turns into 1/(N, — 2)! = 1/N! where N is the minimal
required number of resolved jets. This is the same symmetry factor as in e.g. the virtual
contribution and we will simply not write it explicitly in what follows. Thus, by an abuse
of notation, we will write the right-hand side of Eq. (3.6) as <A(m)FLM(m)>, with the
understanding that symmetry factors in Fi\ refer to resolved final-state gluons only.

To deal with matrix elements and phase spaces in soft and collinear limits we need the
corresponding operators. These operators were introduced earlier [1] and we repeat their



definitions here for completeness. The actions of soft \S; and collinear Cj; operators on a
function A are described by the following formulas
E¢~>0 pijﬁ)o

where E; is the energy of parton ¢ and p;; = 1 — cos 6;;, with 0;; is the angle between the
three-momenta of partons i and j. When these operators appear in the formulas for cross
sections, it is understood that they act on all quantities to the right of them; when limits
in the conventional sense do not exist, they extract the most singular contributions.

The soft and collinear operators acting on the damping factors lead to the following

results’
SnA™ =1, CouA™ =1, CpA™ = "= (3-8)

fora=1,2 and 7 > 3.

We will now use these operators to isolate and subtract the singular contributions,
starting with the soft one. We write

(A™ Frar(m)) = (SwFiar(m)) + (SuwA™ Frar(m)) (3.9)
where we introduced the handy notation

Sm=1— Sy . (3.10)

The soft limit of the matrix element squared reads

Np
SwFiai(m) = —g? Pi Py T;T;) Fim , 3.11
mFia(m) gvb%p@--pm)(pj-pm)( ) Fim (311

where gsp is the bare coupling constant, and we have used Eq. (2.7) to write the color-
correlated matrix element squared in a convenient way. In Eq. (3.11), the sum runs over
distinct indices ¢ and j. We remind the reader that the color-charge operators of different
particles T; commute with each other. Furthermore, we use the Casimir operators to
compute squares of color-charge operators with T° (21 = Tg = CF and Tg =C}y.

Since the unresolved gluon m decouples from Fpy, we can integrate Eq. (3.11) over
its d-dimensional phase space. To do so, we introduce an upper bound on the soft gluon
energy, By < Epax.® Performing this integration, we find

(2B /1) > {5,
2 Z (ni;°Kij (Ti-T;) - Fiwm)

(i5)
= [045]<Is(6) . FLM> ,

5Since our primary variables are energies and angles, we need to fix a reference frame at the beginning

(SmFrm(m)) = — [o] (3.12)

of the calculation.

"Derivation of these results can be found in Appendix B.

8 Emax is an arbitrary quantity that should be larger than the largest energy that a particle in a particular
process can have. For additional information, see Ref. [1].



where

(3.13)

and
I2(1—¢)

I'(1 —2e¢)
We now return to Eq. (3.9) and focus on the second term on the right-hand side. This

Kij = n R (L L1 —e1=ny), i = pi/2 . (3.14)

term is soft-regulated, but contains collinear singularities. In order to remove them, we
introduce angular partitions of unity w™, which satisfy the following equations

NP
Sum=1 Cjae™ =67 (3.15)
i=1
We thus write
Np
(A™ Fiap(m)) = (SmFiai(m)) + Y (SmCimA™ Fiar(m))
i=1
. (3.16)
+ ) (SnCimw™A™ Fppr(m)) |
i=1
where
Cim=1—Cin . (3.17)

The last term on the right-hand side of Eq. (3.16) is fully regulated and can be integrated
in four dimensions. In the hard-collinear limits that appear in the second term on the right-
hand side in Eq. (3.16), the gluon decouples from Fyp either partially or fully, allowing us
to integrate over its phase space in d dimensions.

We continue with the second term on the right-hand side of Eq. (3.16), and consider
the situation where the gluon m becomes collinear to the final-state gluon ¢ and produces
a single final-state gluon that we label as [im]. Integrating over the phase space of gluon
m and renaming [im] — 4, we find

(SuCimA™ Far(m)) = [ay] <Fi’9 FLM> : (3.18)

In Eq. (3.18) we have introduced the generalized energy-dependent final-state gluon anoma-
lous dimension

2B\ " T2(1—¢€) o .
Iig= - L; =3,..., N, 3.19
%9 ( U ) F(l . 26) ’.Yz,g—>gg(6? 1) ) t (AR A ( )

where, for any function f(z) regular at z = 1, we define

k
’Y?(Z)y—mg(e’ i) =

(3.20)

Az (1= 52) [ = )7 f(2) Py (2)]
" o ekELi

1

1

L) =—
+2 ke



and L; = log(Epax/F;). In Eq. (3.16), we introduced an operator S, which extracts the
(soft) z — 1 limit of the expression it acts upon, and used P,4 to denote the spin-averaged
gluon splitting function defined in Eq. (A.23). We emphasize that I'; ; depends on the
energy of the hard-collinear parton and on Fy,,x, but we do not show these dependencies
in what follows.

We continue with the case when the gluon m becomes collinear to one of the initial-state
partons, say 1,. The matrix element squared that enters the definition of the function Fip
depends on the energy fraction z = 1 — Ey/FE, which implies that one cannot integrate
over the energy of the collinear gluon. However, integrating over the relative angle between
m and a is possible; performing this integration, we find

<§mCamA(m)FLM(m)> = [a] <Fi’a FLM> + [028] (P81 (e) @ FLm) - (3.21)

In Eq. (3.21) Iy, is the generalized initial-state anomalous dimension which reads

2F1\ T T2(1—¢) o1 — e 2
I, = e 22
l,a < ,LL > F(l o 26) 7a + a € Y (3 )

where 7, is the anomalous dimensions of the initial-state parton a.” When writing Eq. (3.21)
we have used the fact that we only consider final-state gluons; because of that the parton
type does not change after the collinear splitting. The function Pg;" in Eq. (3.21) is the
generalized splitting function

~

2F\ ¥ I'2(1 —¢)
gen _ _ H(0) fin
PSRz, EY) ( . > T =20 P (2)+€Pra(2)] - (3.23)

where ]5(52) are the Altarelli-Parisi splitting functions which can be found in Appendix A,

together with the definition of the function Pi» 10 Furthermore, in Eq. (3.21) we also used
the shorthand notation

1
PEN @ Fiag = / dz PEN ()
0

Fiyv(z-1q,2p5...)
z

(3.24)

The case when the gluon m becomes collinear to the initial-state parton 2 is described
by an equation which is analogous to Eq. (3.21) but contains I'y ;, instead of I'y 4, and the

“right” convolution

1

Fi ® PE™ = / dz P (2)
0

FLM(laa z 2b; .. )
z

(3.25)

9We remind the reader that the quark and gluon anomalous dimensions read v, = 3/2CF and v, =
Bo =11/6Ca — 2/3Trny. Since in this paper we only deal with gluon final states, we systematically set
ny to zero in what follows.

10We note that PI™ is a function of €; for brevity, we do not show this dependence.



We can now combine the various contributions and write the real-emission part of the
NLO cross section. We find!'!

~ aS en en
daf}b = [a5]< (Is(E) + Ic(E)) . FLM> + [6] [ <P§a & FLM) + <FLM & be >}
Np (3.26)
+ Z (SCimw™A™ Fpp(m))
i=1
where we introduced the hard-collinear operator

No
Io(e) =) Tf : (3.27)
i=1
with fi = a and fo = b.

The infrared poles in Eq. (3.26) cancel against those in the virtual contribution and
the collinear renormalization of the PDFs, producing a finite remainder proportional to
terms with lower parton multiplicities. To show this, we note that the infrared poles of the
one-loop amplitude M can be written using Catani’s formula [70]

Qs
Mi(1g,24;3, ..., Np; X) = 255) Ii(e) Mo(1q,2p;3, ..., Np; X))

+ M (1,,2,:3,..., Ny X)

(3.28)

where /\/lliin is the infrared finite one-loop amplitude and

N .
1 efVE L VZ,Slng(e) MQ € B . 112 i
=z > T;-T; mhije | PIBe) = =L 4+ . (3.29
2P(1_€) () T12 ( ? ]) (2]?@])]) e ) [ (6) 62 + € ( )
ij

11(6)

The parameters \;; in Eq. (3.29) are 1 if ¢ and j are both incoming or outgoing partons
and zero otherwise. Therefore, we can write

25 do), = (Fiv) = [as)(Iv(€) - Fim) + (F) | (3.30)
where
Iv(e) = T1(e) + Ti(e) . (3.31)

In the equation above we have introduced the operator I; in place of Catani’s original
operator to factor out the same strong coupling [as| that appears in the real-emission
contribution. It is defined by the following equation

o =" 9 ), (3.32)
such that
[ovs] T1(e) = a;ﬁf) I(e) . (3.33)

1YWe note that, since we consider gluonic final states, P5" is the same as PE". Nevertheless, we find it

convenient to distinguish between these two.

~10 -



Furthermore, F{i in Eq. (3.30) is analogous to Fiy in Eq. (2.6) but with 2 Re [M{™ Mj]
instead of |Mol?.

The collinear renormalization of parton distribution functions is standard. The NLO
contribution to the cross section reads

. e . R
25 462" = S [(p0 & Fing) + (P BY)] (3.34)

Finally, combining virtual (see Eq. (3.30)), real-emission (see Eq. (3.26)) and PDF-
renormalization (see Eq. (3.34)) contributions, we derive the following finite formula for
the NLO cross section

doNFO = dgY, + A6 + dePY = [a (I Fiy) + (F2)

+ (o] [ <7)51L\IaLO ® FLM> + <FLM ® pll)\lI;LO>] n <ONLO A(m)FLM(m)> | (3.35)

where Iéo) is the O(e") coefficient in the expansion of It (e), displayed in Eq. (3.2).
A few comments about this result are in order. First, as we have anticipated at the
beginning of this section, we have defined an infrared-finite sum'? of the virtual, soft, and

collinear I-operators that appears in the fully-unresolved part of d&ﬁ}o

<IT(6) . FLM> = <[Iv(6) + Is(e) + Ic(e)] . FLM> = 0(60) . (336)

As we show in the next section, iterations of this operator will appear in the result for the
NNLO contribution to the cross section; this fact will play an important role in proving the
cancellation of poles at NNLO as well. Second, we have denoted the subtraction operator
for the fully-regulated real-emission contribution as

Np
ONLO = Z?m@m wmi . (3.37)
i=1

Finally we have exploited the expansion of Pgq

PEN (2, By) = —PO(2) + e PNEO(2, E;) + O(€2) (3.38)

to obtain a manifestly finite quantity once we combine the hard-collinear subtraction terms
with the PDF-renormalization contributions. The function PX-© is defined in Eq. (I.3).
When using this function it is understood that F; should be set to F; in <77}1\;LO & FLM>
and to Es in <FLM ® Pg,LO>.

For the reader’s convenience, the definitions introduced in this section are repeated in
Appendix A. A more detailed discussion of the NLO calculation, including expansions of
the various functions in powers of € and a demonstration of the cancellation of the e-poles,
is presented in Appendix C.

12We show that this sum is e-finite in Appendix C.
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4 Calculations at next-to-next-to-leading order

In this section we extend the NLO QCD analysis described in the previous section to
NNLO. At this order of perturbation theory we have to combine the double-virtual, the
real-virtual, the double-real and the PDF renormalization contributions to compute the
differential cross section. Hence, we write

doNNO = oYY + ol + doift + deby (4.1)

Although the NNLO computation is significantly more involved than the NLO one, our
aim is to replicate the latter as much as possible. In doing so, we face the following
dilemma. On the one hand, the double-real contributions need to be split into partitions
and sectors in order to define the approach to collinear singular limits in a unique way. On
the other hand, this “sectoring” destroys the emergence of structures that can be combined
in a natural way with the double-virtual and real-virtual corrections. Hence, finding an
optimal balance between splitting the real-emission contributions into many well-defined
pieces and identifying proper structures early in the calculation is the central challenge to
organizing the NNLO computation in an efficient way. We explain how we address this
challenge in this section.

Similar to the NLO case, we distinguish between resolved and potentially unresolved
partons with the help of the partitions A® and AU defined in Appendix B. We use
symmetries of the final-state gluons to define the NNLO contribution to the cross section
without the PDFs renormalization in the following way

25 A5 = ( Ry (1a, 233, 0y Np) ) + (A™ Fry (14, 265 3, ..y Ny, mg) )
LAt 1, 2, N (4.2)
+ 2'< LM( as ba3) ey pamgang)> .

Here, Fyv and Fry are defined analogously to Eq. (2.6), but using double-virtual and real-
virtual matrix elements, while m and n are potentially-unresolved partons. Furthermore,
all the functions Fyy, Fry and Frp include the symmetry factor 1/(IN, — 2)! arising from
the N = N, — 2 identical resolved gluons in the final state. The dependence of the matrix
elements and phase spaces on colorless final-state particles is not shown.

It is convenient to remove the (remaining) symmetry factor 1/2! from the double-real
contribution by introducing the energy ordering of the unresolved gluons m and n

1
2!

where Opy = O(Eyw — Ey). We obtain

(A Figg (1)) = (A O Fig (s my) (43

25 ™0 = (Fvy (1,233, 0 Np)) + (AT By (Lo, 233, 0 Npo )
+<A(mn)®mnFLM(1aa2b;37"-aNP’mg’ng)> ’ |

The above equation provides the starting point for our calculation. It follows that the
NNLO QCD corrections to the cross section contain contributions that exist in three dis-
tinct phase spaces. These phase spaces overlap in configurations where the gluons labelled
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as m and n become unresolved. When this happens, the corresponding amplitudes become
singular and integrating over unresolved phase spaces leads to the appearance of 1/€™ poles,
similar to the NLO case. Our goal is to isolate and remove these singularities locally in
the phase space, demonstrate the cancellation of poles between the different contributions
in Eq. (4.4), and determine the finite remainder.

We begin by isolating the soft limits of the real-emission contributions. As already
discussed in Ref. [1], two soft limits are needed: one to describe the double-soft limit
FEyn ~ E, — 0, which we denote as Syn, and one for the single-soft limit F, — 0 at fixed
FE, which we denote as S,. We write

25 d7"NO = (Fyv) + (SmnA™ O Fiar(m, n))
+ (A Fry (m)) + (SiunSa A™ O Frar(m, n)) (4.5)
+ <§mn§n A(mn) @mnFLM (m7 n)> )
where the operator S, = I — S, has already been introduced in the context of the NLO

QCD computation. Furthermore, when writing Eq. (4.5), we have dropped the arguments
related to the resolved partons, i.e.

Fivm(m,n) = Fim(1a, 25,3, ..., Np, mg, ng) . (4.6)
Next, we take the fourth term on the right-hand side of Eq. (4.5)
(SunSa A™ O Fiar(m, n)) (4.7)
make use of the fact that
(SinSa AT O Fini(m, 1)) = (SwSn AT O Frar(m,n)) | (4.8)
and add collinear subtractions for the gluon m. We find

<§mn8n A(mn) @mnFLM (m, 11)> = <ONLOA(m) Sn@mnFLM (m7 Il)>

Np (4.9)
+ Z <Smcim A(m)Sn(amnFLM(rn, 11)> .

=1

We remind the reader that the operator Onr,0, defined in Eq. (3.37), subtracts singularities
associated with parton m, and we have used Eq. (B.13) to simplify Eq. (4.9). To obtain a
similar structure for the real-virtual contribution, we rewrite Fry as

Np

(A™ Fry(m)) = (SwFrv(m)) + Z (SuCimA™ Fry(m)) + (Onro A™ Fry (m)) . (4.10)
=1

Since the cancellation of infrared singularities can only occur among terms with similar

kinematics of the hard final-state partons, we would like to write the NNLO QCD cross
section in such a way that contributions with the same number of resolved final-state
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partons are combined. At NNLO this number varies between N and N + 2, so there are
three terms that need to be considered. Hence, we aim to write the cross section in the
following way

25 d7"NEO = BN 4+ Bngg + Byge - (4.11)

Most of the contributions to the above equation are yet to be determined. However, as a
first step, we can use Eq. (4.5) and the rearrangement of terms that led to Egs. (4.9) and
(4.10) to write'3

25 40 = 50 1 50 | x| (4.12)

where

25\1[) = <Fvv> + <Smn®mnFLM(mv Il)> + <SmFRV(m)>
Np

+ Z (SuCimA™ [Fry (m) + SuOmnFiai(m,m)]) ,
=1

EE&)H = <(9NLOA(m) [Frv(m) + SuOmaFim(m,n)])
YRR = <§mn§n A(mn) Omn LM (m7 I‘l)> .

(4.13)

The quantity 25\1[) is double-unresolved, in the sense that both gluons m and n are either
soft or collinear. The superscript indicates that this is the first of several contributions
to X that has been identified. Similarly, the quantity Eg\l,)ﬂ is the first single-unresolved
term contributing to X1 that we identify. On the contrary, ¥rp is a mix of various con-
tributions as it contains unregulated collinear singularities. As we will see, upon extracting
these singularities, some parts of Xggr will contribute to ¥y and ¥y4; and will play an

important role in the cancellation of infrared poles.

It is well-known that extracting all singularities from the double-real contribution is
a complicated problem as many of them overlap. To disentangle them, we partition the
angular phase space [1, 20, 21, 60]. Further details are given in Appendices B and D. Using
these results, we split Xrg into four distinct terms. We write

YRR = ZfJi\?H + 253) + XRR,2¢c + YRR, 1c (4.14)

where, as we already mentioned, the subscripts of the first two terms on the right-hand
side indicate the number of resolved partons. In brief, the first term on the right-hand
side in Eq. (4.14) is fully resolved, the second is the triple-collinear subtraction term, the
third is the double-collinear term and the last term is the single-collinear contribution. To
elaborate further, the first term Zf}\?w is the fully-regulated contribution given by

S0 5 = (SmnSn Q1 A™ Oy Frar(m, n)) (4.15)

where €7 is a function of collinear-subtraction operators and partition functions defined
in Eq. (D.5). The quantity E?\?H is the only contribution to the NNLO cross section with

13 All the steps that are needed for the rearrangements can be found in Fig. 1.
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N + 2 resolved final-state partons and it can be implemented in a numerical code without
further ado.

The second term 25\2,) is the triple-collinear contribution. It reads

S = (FunSn Qo A O Fpg(m,n)) (4.16)

where 9 is a triple-collinear projection operator that can be found in Eq. (D.6). We
note that 25\2,) was computed in Ref. [68] and can be immediately borrowed from there. It
represents the second contribution to the fully-unresolved term ¥ that we have identified.

The third term YRrg 2. is the double-collinear contribution where gluons are emitted
from different legs

2RR,QC = <§mn§n Q3 A(mn) OmnFLM (m, TI)>
Np
= - Z <§mn§ncjncim [dpm] [dpn] wmz,njA(mn) OmnF1LM (m7 Il)> s
(i9)

(4.17)

where the angular partition functions w™™ are defined in Appendix B. Although this
contribution is fairly simple, it is useful to rewrite it before proceeding further. According
to Eq. (4.17) both collinear operators Cjy and Cj, act on the phase space of partons m and
n. This is necessary to be able to use the results for 25\2,) from Ref. [68]. Eventually, we will
have to combine these double-collinear contributions with collinear limits of the single-soft,
the real-virtual and other terms, where by definition the collinear operators do not act on
the potentially unresolved phase spaces. Hence, it is convenient to rewrite Eq. (4.17) in
the same way, ensuring that C;, and Cj, do not act on the phase space of the unresolved
partons. We explain how to do this in Appendix E.2. Here, we just state the result and
write YRR,2c as follows

YRR2c = ES\?/’) + E?\?’(l) ; (4.18)
where 25\?}) is the third (divergent) double-unresolved contribution that we have extracted.
Likewise, Z?\?’(l) is the first e-finite contribution to ¥y that we have encountered. We

stress that this is not the same as the finite part of Zg\lf) defined previously. The two terms

read
NP
EE\?[)) = Z <§ncjncimA(mn) 9mnFLM (m’ I‘l)> )
(i7) (4.19)
2 Np

(i)
We note that the unresolved phase space [dpm][dpa] does not appear in the above formulas,
indicating that collinear operators do not act on it anymore. In addition, we have used

CinCim W™ =1 to remove the partition functions. Furthermore, if the gluons are emitted
off different external legs (which is ensured by the two collinear operators), we have

SanSu[..] =0, (4.20)
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allowing us to write SunSn = Sa. Finally, to see that Ef]i\?’(l) is finite, we observe that

Eq. (4.19) is completely soft-regulated, while the two collinear operators Cjy, and Cj, each
produce an O(e~!) singularity upon integrating over the phase space of gluons m and n.
This is compensated by the prefactor (I'(1 — 2e)/T%(1 — 6))2 — 1 ~ O(€?), leading to an
infrared finite quantity. To summarize, we have written ¥rg 2. as the sum of two double-
unresolved contributions, one of which contains poles and one of which is e-finite.

We are left with XrR,1c, which is the double-real single-collinear contribution. It reads

SRR,1c = (SmnSn A™ @ Fr(m, n))

Np
= Z <§mn§n [sz [dpm] + Cjn [dpn]:| wmi,njA(mn) Omn LM (m7 n)>
@ o)

Np
+ > (S [Cint @ + Cua® + Cin® + Crn? |
=1

X [dpn] [dpa] ™ AT @ Fiag(m, ) )

where the functions 8(%) with o = a, b, ¢, d indicate that a particular contribution is confined
to a certain phase-space sector. These sectors, together with the corresponding phase-space
parameterizations, are defined in Appendices D and E, respectively. The challenge therefore
is to write ¥rR 1c as a sum of terms with a well-defined number of resolved partons. To
do this, we need to extract the remaining collinear singularities from ¥gg 1.. We do so in
the next section.

4.1 Analyzing single-collinear contributions

The 1/€" singularities in Ygg ic simplify if the contributions of different partitions and
sectors are combined. To appreciate why doing so is non-trivial, we need to remind ourselves
why partitions and sectors were introduced in the first place. The reason was to disentangle
overlapping singular limits, making them uniquely defined. However, it also complicates
the identification of physical quantities such as e.g. collinear anomalous dimensions and
splitting functions. We emphasize that the ability to recognize these universal structures
in the early stages of the calculation is very useful for canceling the infrared divergences
in an efficient and transparent manner. Hence, our strategy will be to remove sectors
in a controlled way, eventually getting to the point where various contributions can be
rearranged into recognizable universal structures.

As a result of this analysis we are able to represent ¥rg 1. by a sum of five divergent

253""’8) and four finite (2%1,(2,‘..,5)) double-unresolved quantities, and two divergent Z%ﬂ

and two finite E?\?&’Q) single-unresolved quantities, see Fig. 1. These quantities are used
in Eq. (4.67) and Eq. (5.1), respectively, to construct relevant contributions to the NNLO
cross section. The remainder of this section describes manipulations of ¥rR 1. that lead to

such a representation.

We begin by separating sectors ) and () from the remaining contributions to XRR, 1c-
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We write

Srrte = il + Siite (4.22)
wherel?
N, N,
ng’{cfc(:) = <Smn5n [Z(Cim + Cjn)wmz’w + Z(Cmg(a) + Cime(c))wmz,m]
(i5) i=1 (4.23)
X [dpu] [dp"]A(mn)GmnFLM(m?n)> )
and
Np
Sihe = - (BunSaCon (00 + 09 dpildpe o™ W AT Oy Fipi(m,m)) . (424)
i—1

We first consider E%{C ’{i CC ). In this case Eq. (4.20) holds, so that Sy,S, can be replaced
by S.. We then write

Np
s - (3 S5 n  onm

(i)

4.2
N (4.25)

+) 0 (Cinb ™ + Cime@))wm%"i] [dpem] [dpa] AT O Frap (m, n)> .
i=1
We can simplify this expression by renaming gluons m and n in such a way that the collinear
operators always refer to the gluon m. We also exploit the fact that under such a relabelling

sector (@) becomes sector 09, see Eq. (D.1). Hence, we obtain

Np
S = (Stmm| 3 Cimsti
(i7)

(4.26)
Np
+> Cim0<6>wmia“ﬂ [dpm] [dpa] AT Fypp (m, n)> :
i=1
where the soft-regulating operator S(m,n) reads
S(m,n) = S51Omn + SnOnm - (4.27)
We note that we can rewrite the operator S(m,n) in several equivalent ways
S(m,n) = S1Omn + SuOum = 1 — SOmn — Su®
( ) nmn mYnm nmn m%nm (4.28)

- §m§n + Smgne)mn + Sngm@nm = gn(l - Smenm) + Sngm@nm y

and we will use the different representations displayed above in what follows.

4 The superscript (a, ¢, dc) reminds us that Zg{’ldcc) includes contributions of sectors a and ¢ and of the
double-collinear partitions.
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To simplify ZgRC ld ) we need to extract the remaining collinear singularities. Since

we relabeled gluons so that the collinear operators refer to the gluon m, the unregulated
singularities affect gluon n only. However, there is an additional technical detail that should
be highlighted before proceeding.

As we already mentioned, the many single-collinear contributions will have to be com-
bined with collinear limits from single-soft, real-virtual and other terms where the collinear
operators do not act on the phase space. Therefore, it is useful to rewrite Zch 1d % in such
a way that: i) Cin does not act on the phase space and ) restrictions imposed by the
presence of sector 89 are lifted. We explain how to do this in Appendix E.2. Here, we
just report the final result, which is obtained once we insert 1 = Cjy + Cim in the equation

for S We find

a,c,dc a,c,dc),1l a,c,dc),2
E%{R 10) = E%{R,lc) + Z%3{13{,10) ’ (429)
where
Np
Egl’{’ldcc)’l = <S(m7 n) |: Z 6jncim wmi,nj
(i5)
. (4.30)
+ Z(nin/2)_e€in0im wmi,m':| A(mu) FLM (m7 n)> 9
=1
and

(a,c,dc),Z F(l - 2
RR,1c F2(1 _ 6)

[ > CinCim

2 (4.31)
+ Z 77m/2 Cmczm:| (mn)FLM(ma Il)> .

As was the case in Eq. (4.19), the phase space [dpm][dpa] does not appear in these formulas
anymore, indicating that collinear operators there do not act on it. We also note that
the sector function 6(©) disappeared from Eq. (4.30), leaving as a remnant the factor of
(nin/2)~¢. Furthermore, Eq. (4.31) becomes potentially ambiguous because the collinear
operators Cj, and Cjy, do not commute in general. Therefore the order in which they appear
in the above formula (and in similar formulas) is important.!> On the other hand, since the
operator S(m,n) represents a soft subtraction, it commutes with the collinear operators.
Finally, we have omitted an overall factor I'(1 —2¢)/I'2(1 —¢) in Zgl’{ﬁf)’l because it would
only generate O(e) terms in the result.

We will continue with the discussion of the contribution ESRC 1d °)1 . It is convenient to
rewrite the factor (7;n/2)7¢ in Eq. (4.30) as follows
(nin/Q)_€ = [(nin/Q)_E - 1] +1, (4'32)

15For the all-gluonic final states that we consider, these limits will always commute
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and combine the second term with the i # j sum in that equation. We find

Np
Zglé{c,’flcc)’l = <$(m, n) |: Z éjncim wmz,nj
i,j=1
Jr (4.33)
+ 2 [00/2)7° = 1]CinCim wmmﬂ A Fy vy (m, n)> ,
=1

where we emphasize that the first sum includes terms with ¢ = j. We also note that the
comment concerning the non-commutativity of operators C;, and Cj, that we just made
applies to Eq. (4.33) as well.

Another important point is that the second term in Eq. (4.33) is finite in the limit
€ — 0. The reason for this is that the only singularity present in this term comes from
the collinear limit i||m, which gives an O(e~!) contribution once integrated over the phase
space of gluon m. On the other hand, the presence of C;, allows us to expand the difference
[(7in/2)~¢ — 1], giving an O(€) quantity.

Furthermore, we note that, in the first term on the right-hand side of Eq. (4.33), the
partitioning can be replaced with another, more suitable one. Indeed, since by construction

Np Np
Z Cim wmi,nj = Zw:ﬁlmnj Cm = Cim , Can'im wmi,nj = C’anl-m s (4.34)
Jj=1 J=1
one finds
NP NP
Z C jnCim ™ = Zcm > CinCim= Y Cjnw" Cim (4.35)
i,j=1 i,j=1 3,j=1

where w" is, e.g., a NLO partition where the unresolved gluon is n.

Finally, it is convenient to split the soft subtraction operator S(m,n) acting on the
first term in Eq. (4.33) in a particular way. Employing the following representation (cf.
Eq. (4.28))

S(m,1) = S2Omn + SuOum = Sa(L — SuOum) + SaSemOuim » (4.36)

we rewrite the formula for E%’f fcc 'L in such a way that partonic multiplicities are clearly

separated

seotot 5@ 42 i) i

+1 11 (4.37)

We note that in Eq. (4.37), the first e-finite contribution to the single-unresolved cross

section is denoted as E?\?JS ). We emphasize again that this does not correspond to the
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finite part of 25\1,)4_1. The individual contributions read

NP
25\271_1 = Z <§n(1 — Sm@nm)éjn w]“CimA(m“)FLM (m, 11)>
ij=1
Np
= Z <ONLO(1 — S4Oumn) Cin A™ Fy pp(m, ﬂ)> ;
i=1
Np
0 =3 <5n§m€jn WO ATVO L v (m, n)> ,
ij=1
v (4.38)
DGESY < [(13n/2) ¢ = 1]Sa(L = SnOum) CinCim w™ ™A™ Fy yy (m, n)>
i=1
N '
=3 {Oflo i [(nim/2)¢ = 1)L — S4Om) CinA™ Fipr(m,n))
i=1
Np
yin@ _ o < [(in/2) ™ = 1] Sa S CinCim ™M AN Oy Fi pp(m, n)> :
i=1
where we define (’)1(\%0 = SmCim so that Onr.o = vaz”l (’)giowmi. We note that when

moving from the first to the second line in 25\2,)“ and Z?\?Jr(ll ) \we have relabelled m to n and

vice versa.

We now return to Egﬁc ’1dcc)’2 (see Eq. (4.30)) and rewrite it as follows

ng{cfc(:)g _ ng) I 21;1\;1,(3) : (4.39)
where
Np Np
253) = <S(m, ﬂ) |:Z Cjncim + Z(nin/Q)_ECinCim:| A(rm‘l)FLM(ma n)> ’
(i5) =1
N, N,
. P(1 - 2 : - -
»in() - [Fg(l—e; - 1] <S(m,n) [Z CiaCim + Y _(in/2) ECz‘nCim] (4.40)
(i) =1

x A Fy v (m, n)> .

Again, we note that E?\?’@) is finite because the soft-regulated collinear limits CjnCim
produce an O(e~2) pole when integrated over the angles of m and n, and the prefactor
['(1—2¢)/T?(1—¢) —1is O(e?). This concludes our discussion of all single-collinear limits,

except for those in triple-collinear sectors (b) and (d).

We now turn to Zgl’g)lc, defined in Eq. (4.24). We start by mapping sector #(¥) onto
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sector () by renaming gluons m to n and vice versa where appropriate.'® We find

Np
Sftithe = Y (Sun(5nOmn + SnOun)Conn 0 [dpa][dpn)e™ ™ AT F i (m, 1) )
=1

N (4.41)
p

= Z <§mn(1 — SnOmn — Sm@nm)cmn e(b) [dpm] [dpn] sz’mA(mn)FLM (ma Il)> .
=1

Making use of the fact that the action of the collinear operator Cy, on the function
Fry(m,n) is symmetric in m and n, we can exchange m <> n in the term with Oy in
Eq. (4.41). We obtain

NP
sod =3 <§m(1 — 25:0umn) i 0 [dpim] [dpa] ™™ AT Fy 1 (m, n)> L (442)
i=1
The action of the collinear operator Cy,, on the phase space of two unresolved partons
leads to a non-trivial result. To derive it, we consider the specific phase-space parametriza-
tion described in Appendix E and find

Conn[d2y V] [AQL V)0 ™ 0 F g (m, )

i (@=3) (4.43)
b,d) ming e er1+(d—1) dzy [dQg 7]
e( )OJ::Hx? nz‘[mn](l - ni[mn]) [dQ[mn} ] Pmn IL'FF% WdA

CmnFLM (m, TI) .

Here [mn] labels a clustered gluon whose momentum is Plmn] = Pm+pn calculated in the strict
collinear limit and the expression for CynFra(m,n) is reported in Eq. (F.1). From this
equation, it follows that CupnFry(m,n) ~ Fry([mn]). Since it depends on the kinematics
of the clustered parton [mn] only, we can integrate over dxy, A0 and dA. We find (see

Appendix F for details)

Np Emax
bd) _ [as] \ (b.d dEn dEy (d=1)] —e  mini
YRR,1c = Z % N )< / 2T et [dQ[mn] ]Ji[mn] W::H:
=1
— 1 4.44
X Smn(l - 25n®mn)A([muD EnFEn [PQQ(Z)FLM([mn]) ( )

)

te [P;g(Z)(Tf w9 — Pgt””(Z)g“”} Fing, [mﬂb] > :

In Eq. (4.44) we use z = Ey/(En + Ey) and Py and ngg’r are splitting functions defined
in Egs. (A.24) and (A.25), respectively. Furthermore, we have introduced

O = . 4.45
) 1— Mij ( )
The four-vector r; ;) describes spin correlations that arise in the collinear limit, see
Appendix E.2 for further details. In particular, we note that r; ;) is partition-dependent

16We note that this exchange of sectors b and d is only possible at the level of integrated subtraction
terms, and is not possible for the fully-regulated term E?\,"+2.
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as indicated by the subscript i (cf. Eq. (E.39)).
Following the discussion in Ref. [1], it is convenient to split Eq. (4.44) into two terms
b,d b,d), b,d),
2%{R,)lc = E%R,)lia + ZEREC ) (4.46)

where the first term on the right-hand side is spin-averaged, while the second is spin-
correlated. The spin-averaged contribution depends on the spin-averaged splitting function

P,,. It provides the most divergent part of Egg)lc, with its Laurent expansion starting
at O(e~2). The spin-correlated contribution Egl’g)l’zc refers to all terms in Eq. (4.44) that

are proportional to Fi, .. ([mn]). Since such terms are multiplied by e, the spin-correlated
part is less divergent than the spin-averaged one; its Laurent expansion starts at O(e~1).
For this reason, in the following paragraphs we focus on the spin-averaged contribution

Eg’l’g)l’ia and relegate a detailed discussion of Eg’l’g){ic to Appendix F.

Our starting point is the following expression for the spin-averaged contribution

Np Emax
(bd)sa _ [ovs] b dBw dE (d=1)7 _—e  mini
Z:RR,l(S:a - Z NG( ) 26‘111 26111 [dQ[mn] ] Ji[mn] wnn:H:
— 2e I DAl D
i=1 (4.47)
_ 1
X Smn(1 = 25,0 pn) Al P,y (2)Fia([mn]) ) .
EnE,
To rewrite it, it is convenient to “undo” the collinear limit. We find
o] oy 1 Ninjjn(€) / (d-1)
——=NPY—P B =— Q B 4.4
2¢ € EnFEn gg(Z) LM([mn]) 5 [d n ] Crn LM(mv 1’1) 5 ( 8)
where
JT(1+26)I(1 — 2¢
Nijja(e) = 22 ( ) ) (4.49)

T(1+er(1l—e)

Note that the integration on the right-hand side of Eq. (4.48) is performed over the angular

phase space of the unresolved parton n only. As a result, Zgg)l’ia becomes

N. max
st _ Nmnn(ﬁ)zp dBy dBy [\ 6-1)
) 2 ' ng—l E,%E_l

=1 0

][dQ]gd_l)] 0_76 wmz’,m‘

[mn] i[mn] “m||n

(4.50)
X San (1 — 25,0 mn) A L Frp(m, n)> .

Next, we note that the action of Spmn on CunFrnm(m, n) is equivalent to the action of a soft
operator Sy, which refers to the zero-energy limit of a clustered parton [mn]. We also
note that the joint action of S, and S, can also be described as SumuSn = SmSn, and that
the action of S, on the clustered parton [mn] gives m. Following these observations, we
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find

N, Emax
Niajjn(€) dEy dE _ _ .
(bd)sa _ “¥m|ln Z (d—1) (d=1)7 —e¢ i,n%
ERRJia - 92 |:< E25f1 E2ej1 [dQ[mn] HdQn ] Ui[mn] w::”:
i=1 m n

_ 4.51
« S[mn]A([mn])CmnFLM(m7 n)> (4.51)

— (268 Sh Tt AW Co i (1w, n)>] .

We focus on the first term on the right-hand side in Eq. (4.51). Thanks to the con-
straints on the energies of m and n, the energy of the clustered parton Ejy, may exceed
Fmax and go all the way up to 2F .. The two regions for the energy of the clustered par-
ticle, namely Fipy € [0, Bmax] and Ejgn) € [Emax, 2Emax], are very different: the first one is
physical whereas the second one is not.'” Indeed, since Epax is chosen to exceed the max-
imal energy that a parton can have in a physical process, Fyy([mn]) = 0 for Emn) > Emax-
Nevertheless, this unphysical region gives a non-zero contribution in the soft limit because
the parton [mn] does not appear in the matrix element. Following this discussion, we write

b,d
Z%ﬁ,)fia as the sum of two terms

b.d), b.d) sa,l b.d)sall
E%R,)lia:E%R,)lza +E£{R,)1ia . (4.52)

The first term Eg}? )l’ia’l includes the contribution where the energy of the clustered particle
[mn] does not exceed Epnax as well as the last term on the right-hand side of Eq. (4.51),
while Egﬁﬂl’za’n accommodates the contribution with the energy of the clustered particle
exceeding Fiax.

The term Z%g)l’za’l can be written in the following way

N,
ot Nupa(©) & /o T
Egl;{d,)fc ! :m‘% Z <Sm(1 - 2@mn5n>0'im A(m)w::”’: CmnFLM(m, n)> s (453)
=1

where in the first (Opn-independent) term we renamed [mn] — [m]. The above expression
contains divergences which arise when gluon m becomes collinear to parton i. We extract
these divergences by introducing collinear operators and write

b,d),sa,l fin,(2 6 3
St = si@ + 2§ + 3§ (4.54)

where

NP
fin, 1 i ini e
S = 30 (00 (1~ 20180 [N — 1A CoeFrsa(m. )

e )
=1
(6) L NmHn(e) = —e (m) (4.55)
20 = 30 = (S (1 = 20mnS) A™ Conn Fiag(mym) )
=1

1
2@ = 5(OxLo(1~ 20mnSn) A™ Cpn Fai (m, 1))

'"This issue has already been discussed in Ref. [1].
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The first term in the above formula is finite in the limit ¢ — 0, the second term is double-
unresolved, and the last one is single—unresolved. We remind the reader that (’)1(\%0 =
SmCim and Onio = Z ONLOw . We also note that in 25\311 we replaced the NNLO
partition functions w; H ™ with NLO partion functions w™, c.f. Eq. (4.35).

We continue with the discussion of E(Pl&i )l’ia’n. It can be obtained from Eq. (4.51) upon
neglecting the last term on the right-hand side and restricting the integration over energies

to the region E[mn] > Foax. We find

N. Emax
Nan(€) & dE, dFE
sodsarr _ N Z < m n

(d-1) (d=1)7 —e ini
RR,1c B 21 poe1 [d©2 J[d o Wl

[mn] z[mn] m||n

i=1 (4.56)

X O(En + By — Emax) Spuny A Crn Fiv (m, n)> .

We can also replace Spny with —Spy, in the above equation as Fyy([mn]) has zero
support if the energy of the clustered parton exceeds Fi.x. Finally, changing the integra-
tion variables t0 By = Ewn + By and z = En/(En + Ey), computing the collinear [mn]||n
limit of F1 and integrating over the angular phase space of the gluon n, we obtain

Emax
Eas
(b,d) Np 2F max [mn]
bdysall N dE Y
e O N - I R IE R W8
i=1 Emax [mn] I_Emax (457)

[mn]

/[dQ[(zn]l)] z[mn] m||n S[mn]FLM([mn])>

Using the standard result for the remaining soft limit Syng FLm([mn]) in Eq. (4.57), we find

() sa Il _ [as]? 65 (€) (Brmax /1) >
RRlc — — ;
N, N, (d—1) (4.58)
dQ ] o
ZZ/ ;mg <Ui_[n€1n} wnnxl\z(]?l# (Tk:'Tl)FLM> )
i=1 (ki) Q( Plk[mn] Pl[mn]
where
Emax
2Emax E[mn]
o NODpae dE L
=~ [ Sl [ apa-ar e . @)
[mn]
Emax 17@

Blmn)

The integration over the angle of the clustered gluon [mn] in Eq. (4.58) is described in
Appendix G. The result reads

) (4.60)
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where X% is given by

sa sa Emax %
% = 20,208 <e>( )

w
N (4.61)
max/ M 2
X [—<Is(6) 'FLM> + * ZT FLM )
with N,(e) reported in Eq. (A.5). The quantity $3*™ is finite and reads
a E —4¢ Np g
sa,fin —2¢ max n,fin
Y= [a,)2 272 55 () ( . ) Z <WZm ‘FLM> 7 (4.62)
i=1

where Wm”n’ is computed in Appendix G with the result given in Eq. (G.10).

The final contribution to consider is the spin-correlated term Eﬁ’i{l,)l’ic in Eq. (4.44). In
Appendix F, we show (see Eq. (F.44)) that among the contributions that the spin-correlated
term of Eq. (4.44) can produce, there are two that are identical to X3 and Esj\aﬁﬁn, provided
we substitute dg* — 5; ", where 5; " is defined in Eq. (A.30). We call these contributions
Y% and Zi\c,’ﬁn. Combining them with 3% and Zs]\a}’ﬁn, respectively, we define the following

quantities

. E —2¢
S0 = 55 1 5% = 200a%5,(0 (jj)
(4.63)

X [—<Is(6) . FLM> + QEIH;ZQM ZT2 FLM>

and

N,
E —4e Vp
E?\?’M) _ Zsa Jfin + ZSC fin [045}2 9—2€ 59(6) < r;ax) Z <W;“||n,ﬁn . FLM> , (4.64)

with dg(e) = 55(e) + 5;_’T(6), see Eq. (A.30). We denote the remaining spin-correlated
terms as

2§ = St (4.65)
and
fin (5 E —4¢ Np )
S G) _ [ 12 5;( /ITX> SOV Fiag) (4.66)
=1

where Egﬁi)l’ic’l’l is given in Eq. (F.38).

To recapitulate, we have succeeded in writing ¥ggr, 1. as a sum of contributions to
the single- and double-unresolved terms Y41 and ¥n. We can combine them with the
corresponding contributions of ¥gpg 2. as well as those of Eq. (4.13), and explore the can-
cellation of the e-poles in Y41 and Xpy. We study such cancellations in Section 5 but
before diving into this discussion we need to rearrange double-unresolved terms to make
the investigation of the pole cancellation easier. We discuss a suitable rearrangement in
the next subsections.
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4.2 Rearranging double-unresolved terms

We now turn our attention to the question of how the double-unresolved terms can be
rearranged. Omnce this is accomplished, the preparatory work will be complete and the
cancellation of singularities between the different contributions can be explored.

We have seen that the contributions with two unresolved partons can be written as a
sum of eight divergent and five finite terms, i.e.

8 5
sy=Y 2+ = (4.67)
=1 =1

The contributions are in Eqs (4.13, 4.16, 4.19, 4.38, 4.40, 4.55, 4.63, 4.64, 4.65, 4.66). Three

of the divergent contributions, namely 253’4’5)

, contain various collinear limits and we find
that combining and rearranging them is helpful for understanding the cancellation of poles.
To make the required manipulations more transparent, in E%) we write Cj, as (1—Cjy),

use the fact that Y w/™ = 1 and separate the i # j and i = j sums. We find
j=1

=@ 45 + 2P
Np
= - Z < (SannCim - (Sn@mn + Sm@nm)Canim) A(mn)FLM(rn; n)>
(i)

Ne Ne (4.68)
+) (S0 SmCimA™ O pm Funi(m, 1)) = > (SuSmCinCimA™ O Fiyi (m, 1))

i=1 (i7)

Np
— Z { (SuSmCinCimOum — (1in/2) "*S(m,1)CiyCim) A™ Fypp(m,n)) .

=1

Combining terms with ¢ # j sums in the above equation, we obtain

=9 50 + 3@ =

NP NP
= (SaSmCimA™ Opn FLar(m, 1)) + Y (SuSmCinCimA™ O FLar(m, 1)) (4:60)
i=1 (i) '

Np
- Z < (Sngmcincim - (nin/2)768(m, n) Cinoim) A(mn)FLM(W‘v n)> .
i=1

We can further simplify the above equation if we rewrite the ¢ # j sum as follows

Np
D (SuSmCinCimA™ Oy Fina (m, n))
(i)

(4.70)
LA 1
= 5 'Zl <SnSijnCimA(mn)FLM(m, 11)> - 5 Zl <SnSmCinCimA(mn)FLM(m, 1‘1)> .
i,j= i=
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We now take the last term on the right-hand side of the above equation and combine it
with the next-to-last term in Eq. (4.69). We find
NP
1 <35 < (mn)
_5 Z <(SnSm + 2SnSm®nm) CmCZ‘mA FLM(m, Il)> . (4.71)
i=1
We split the second term under the sum sign in Eq. (4.71) into two identical ones, and
change m <+ n in one of them. We obtain
1
- 5 Z <(§n§m + Sngmenm + Smgn@mn) CiuCimA(mn) FLM (m7 n)>
i=1
1
+5 > " {(SuSuOumn [Cin, Cim] A™ Fipp(m, n)) (4.72)
i=1

N,
1 & _
= - 5 E < (S(m, 1’1) Cincim - SmSn@mn [Cim C@m]) A(m]‘l)FLM(m'a 1’1)> .
i=1

Putting everything together, we find

=W+ 2 + 2P =

NP NP
=3 (S4SnCim AT O Fiyi (m, ) ) + 5 > (8uSmCinCimA™ Fipg(m, )
i=1 i,j=1

1 B - (4.73)
+ 2;<[2(mn/2> — 1]8(m, 1) CinCimA™) Fy i (m, 1))

N,
1 & —
+ 5 Z <SmSn®mn [Cim Cim]A(mn)FLM <m7 n)> .

i=1

We can now combine this result with the remaining double-unresolved contributions.
We find

XNy = <Fvv> + <Smn@muFLM(m, n)> + <SmFRv(m)>

Np

+ Z <§moimA(m) [FRV(m) + Sn('_)mnFLM(ma Il)] >
=1
Np 1 Np

+ Z {SnSmCimA™ O Fiar(m, n)) + 3 Z (S0SmCinCimA™ Fipr(m, n))

i=1 i,j=1
+ 2 {[20m/2) 7 — 1] S(m,n) CinCim A™ Fipg(m, n)) (4.74)
Np

1 _
45> (SnSuOun [Cin, Cin] A™ Fia(m, w)

i=1
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Emax
7

2¢2

—2¢ — %€ Np
- 2[a3]2 6g(€) ( ) [<IS(€) . FLM> — MN@(E) ZT? <FLM>
=1

N,
“ Nujn(€) —e m
+ Z +<Smcim Oim (1= 2@mn5n)A( )Cm“FLM(m’ n)>

=1
5
+20 +2( + S =0

i=1

It is clear from the above formula that > contains a large number of terms of different
physical origin that exhibit infrared and collinear singularities, which will cancel when
combined with the PDFs renormalization contributions. To simplify the discussion of
how this happens, we will identify groups of terms which exhibit shared features. These
features include quartic, triple and quadratic correlations of color-charge operators, which
originate from exchanges of soft real and virtual gluons, as well as double- and single-
boosted kinematics that are generated by hard-collinear initial-state emissions. We will
focus on these different categories in turn, since the cancellation of e-poles has to occur
independently for each of them.

In Subsection 4.3 we describe some manipulations of the virtual and soft contribu-
tions to Eq. (4.74), which set the stage for the discussion of the cancellation of poles in
color-correlated contributions that can be found in Subsections 5.2 and 5.3. With color-
correlated infrared singularities out of the way, we are left with terms that are proportional
to squares of color charges of the resolved partons, which include both boosted and un-
boosted contributions. Such terms primarily come from collinear emissions. We discuss
such contributions and the cancellation of the corresponding singularities in Subsections 5.4
and 5.5.

4.3 Simplifying virtual and soft corrections

In this subsection we focus on the color-correlated contributions to the fully-unresolved
quantity . To this end, we will examine those terms in Eq. (4.74) that contain soft
limits and/or loop amplitudes. Similar to what was done in Section 5.1, we will write the
results in terms of generalizations of the operators Ig, Iy and I, with an eye on combining
these into manifestly-finite IT structures. Furthermore, we will observe the appearance
of terms involving triple correlators of color charges, which we will discuss separately in
Section 5.2. .

We begin by considering the double-virtual contribution (Fyv) to Eq. (4.74). We write
the loop expansion of the amplitude of the 1,42, — X + N g process to O(a?) with respect
to the LO as

2
(M)e = |Mo)e + [0‘2(:)] M) + [(12(:)] |IMa)e 4+ O(ad) . (4.75)

The double-virtual contribution to the cross section is obtained by squaring the amplitude
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and retaining the O(a?) terms. The result reads'®
(M[M) a2 = (Mo|Maz) + (M2 M) + (M1[My) . (4.76)
Following Ref. [70], we extract the infrared poles of |[M;) and |My3) and write them as

[Mi) = Li(e) [Mo) + |M™)

] (4.77)
(Mz) = Li(e) M) + Iz(€) [Mo) + [M3")

where |M{") and |ME") are infrared-finite. The operator I1(e) was introduced in the
context of the NLO calculation and is given in Eq. (3.29). The operator I(e) reads

1 2
IQ(e) = —511(6) (Il(E) + fO) + C¢ <6€0 + K> 11(26) + Ho , (4.78)
with!? ) ( )
67 w 10 e VET(1 — 2¢
K g —_—— — _ € = . 4
<18 6 > Ca=gTeny,  c T(1—e) (479)

The operator Hs contains O(e~1) poles only. We split this function into a term containing
triple color correlations and a color-diagonal term

Ha(e) = Hae(€) + Hacale) - (4.80)
The two quantities Ho . and Haq were explicitly computed in Refs. [71, 72]. The triple
color-correlated term Hs . is given in Eq. (5.27). The color-diagonal piece reads

Np

1
H2,Cd(6) = % ZHfz ) (481)

=1

where f; denotes the flavor of parton ¢. Explicitly one has

5 11 (3 29 7 Crny 5
2 (2 2B A 2 2 4.82
Hy CA<12+1447T +2>+0A”f( 27 72)“L 5 Tarl (482)
and
w2 3 245 23 13 2 25
Hy=C% (T —6¢— 2 S T _2) @
0= Cr < g ~ 6 8> +CaCr (216 BT T3 Q”) +Crny <24 108> (4.83)

The matrix element squared that appears in the double-virtual term Fyy is then

(MIM) 2 = <M0

%1'12(6) 4 %(II(G))Q + I () Ii(e) + (Hg + H§> ‘ M0>

Bo (1'1(6) + Ij(e)) te (50 i K> (11(26) n 1}(2@) ‘M0> (4.84)

€ €

+ <M0

+ zRe[wo | Ii(e) + I{(e) | M{mﬁ + 2Re [(Mo| ME™)] + (MFH M) .

18We drop the subscript “c” in the notation for the color vector of a matrix element.
19We remind the reader that in this paper we are accounting for gluonic final states only. For this reason
ny should be set to 0, and Bo to 11/6 Ca.
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The one-loop operators I; in the second and third lines appear as the sum of I; and I I ; for
this reason, they can immediately be written using the function Iy defined in Eq. (3.31).
However, this does not happen automatically for entries in the first line in Eq. (4.84). To
force the appearance of Iy, we write

STH0 + 5 (TH0) + T T = L) — 5 [1T]] (1.85)

As we will see, in the general case the commutator in the above equation contains triple
color-correlated poles. We will study them in detail in Section 5.2. For now, we use
Eq. (4.85) and write the double-virtual contribution as follows

(o) =l (5720 - 0 (Brvio - (2 4+ 1) o)) | )

1r— _
+ Jou]? < [—2 T4, T + Hape + Hb o+ Hoca + Hg,cd} : FLM>

+ [as] (Iv(e) - A >+< LV2>+< v) -

In Eq. (4.86) FE\I}Q and F\f}{} contain the finite remainders of the one-loop squared and two-

(4.86)

loop amplitudes interfered with the tree level, respectively. Furthermore, we have made
use of the fact that Ha ~ O(e~!) to replace the coupling as(u)/(27) with [a] in front of
it. This concludes our discussion of the double-virtual contribution, and we will make use
of Eq. (4.86) in Section 5 to discuss the cancellation of poles.

Next, we consider the double-soft term <Smn®mnFLM> in Eq. (4.74). As was mentioned
earlier, it was computed in Ref. [69] for an arbitrary opening angle between the hard
radiators. We can write the result in terms of a double color-correlated and a quartic
color-correlated component

<Smn®mnFLM(ma n)> = <Smn@mnFLM(ma n)>T2 + <Smn@mnFLM(m7 n)>T4 . (4-87)

The quartic color-correlated component has a simple (factorized) form

Np
<Smn@mnFLM(m n)>T4 = 293 b Z / dpm dpn]@( - En)Sij(pm)Skl(pn)
(i7),(kl)

X {T"TjaTk‘Tl}'FLM>
1

2
= [ ]2

(4.88)

(I3(e) - Fim) -

In the above, we have introduced the short-hand notation S;;(pm) for the eikonal function

B . bi - Dj
Sij (Pm) = 2(p;i - pm)(Pj - Pm) (4.89)

The (double) color-correlated term appears to be significantly more complex [69]. However,
upon careful inspection, we find that its poles can be written in a reasonably simple manner.
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We obtain
<Smn @mnFLM (m7 11) >T2

Np
= G5p D / [Apm][dpa] O(Em — En){(Sij(pm, pw) (Ti-T) - Fiu) (4.90)
1<j

C = fin
= [a,]? [;61(6) + %62(6) + Bocs(e)| (Is(2€) - Funm) + (SmnOmaFLm(m, 1))
where §¢j is the double-soft current defined in Ref. [73]. We note that the last term in

Eq. (4.90) is e-finite and can be found in Eq. (I.17). Furthermore, the quantities c¢; 23 are
polynomials in € and are given in Eq. (A.8). Additionally, we have introduced

N,
Ig(2€) = —W zp: ;2 Kij(e) (Ti-T5) (4.91)
where
f(iij(e) = 1;_‘2((11__5;)) 772-1]%362171(1 +el1461—¢€1— nij) . (4.92)

We note apparent similarities between Is and INQJ- and Ig and K;; defined in Egs. (3.12)
and (3.14). In fact, one can use the following property of the hypergeometric functions

oF1(a,b,e,2) = (1 —2) %% Fi(c—a,c—b,c,z2), (4.93)

to show that

= _ ) 2F1(—26, —26;1—6,1 —771‘]‘)
a o F1(—2¢,—2¢,1 — 2¢,1 — m;5)

= K;j(2¢) + O(€%) . (4.94)

It follows that

Is(2¢€) = Is(2¢) + O(e) . (4.95)

This relation will be very helpful for demonstrating the cancellation of poles in color-
correlated terms. Following this discussion, we write the double-soft term as

<Smn®mnFLM (m7 I‘l)>
= [a5]2< |:;I§(€) + <€261(€) + %02(6) + Bo 03(e)> fs(QE):| . FLM> (4.96)
+ <Smn@mnFLM(m, t‘l) ;lg .

This concludes our discussion of the double-soft limits.
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We now move on to the third term on the right-hand side of Eq. (4.74), which involves
the soft limit of the real-virtual contribution. This limit reads [74, 75]

Sm FRv(m)
S (1) 5
Ag(ft) Po
== gg,b (z; {2Sij(pm) (TZTJ) Py — 7 ? 257,]( ) (T T ) Fiwm
ij
Qg 1+e€ 4.97
-2 [ 2] CA AK(E) <Sij(pm)> (TlT) . FLM ( )
Ar (14 )T%(1 —¢) ¢ & b e
- [aS] (GF(]. — 26 Z ﬁz] Sk’L pm ( zy(pm)) fabc Tk TZbT’] FLM} 3
k;éz,]
where £i; = (Aij —Aim—Ajm) = +1 when both i and j are incoming momenta and r;; = —1

otherwise. We point out that x;; is symmetric under the exchange ¢ <> j. Moreover, we
have introduced the constant (cf. Eq. (A.9))

D3(1+e)T%(1—¢)
[(1+ 2¢)T2(1 — 2¢)

Ak (e) = =1+0(). (4.98)

The terms in Eq. (4.97) that include S;j(pm) can be integrated over the unresolved
phase space along the same lines as the soft subtraction term at NLO (see Eq. (3.12)), giving
rise to the operator Is. The term with Fry in Eq. (4.97) can be further simplified using
Catani’s formula (Eq. (3.28)) to extract divergences from the loop amplitude. However,
care is needed since the operators I; and Is do not commute in general. Hence, upon
integrating the first term on the right-hand side of Eq. (4.97) over the phase space of gluon
m, we find the following expression for the combination of divergent loop and soft-emission
contributions

s { | I5(€) Ta(e) + T1(0) Is() | - Funa) - (4.99)

We can rewrite the above quantity using the identity
7 oo L ((7. L7t 7 7 7 _ 7
ISI1+I1IS—5 L+ ) Is+Is(I1+ 1)+ |Is, 11— 1), (4.100)

where the first and second terms can be expressed through Iy and Ig, and the third term
contains triple color correlations and will be discussed in detail in Section 5.2.

The integration of the third term on the right-hand side of Eq. (4.97), which includes
the factor (Sij(pm))' ", leads to

1
~2g3, Z< () (T Ty) - FLM>

N,

sl [ 2Bmax ) n / (4.101)

G () (R -
(i5)

— [a] <TS(2G) : FLM> .
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The last term on the right-hand side of Eq. (4.97) contains explicit triple color corre-
lators. Integrating this term over the phase space of gluon m is non-trivial and is discussed
at length in Appendix H. In what follows we will refer to it as the triple color-correlated

real-virtual subtraction term, Im .

Putting everything together, we find that the soft limit
of the real-virtual correction can be written in the following way

(Sn Fiy() = [ (5 [1s(0)-1v(6) + fv<e>-fs<e>} Fiar)

+ o < ) FR) — o O e pin)

[a

66’YE

)=lo
<Is FLM>
oS << 150 T - Th0] + 10)) - Fune )

We have now analyzed all terms with quartic and triple-color correlators. These arose

(4.102)

due to soft limits of real emission amplitudes and virtual corrections; because of that, they
are associated with unboosted kinematics. We have also found a number of terms with
double-color correlations. Further terms of this kind emerge when a soft or virtual operator
appears in conjunction with a collinear limit, and such terms can also lead to unboosted
kinematic configurations. Our next goal is to identify such contributions in Eq. (4.74).

We begin with the term that describes the hard-collinear limits of the real-virtual
amplitude squared <§mC’imwmiA(m)FR\/(m)>. These limits were studied in Refs. [75, 76].
They involve both the tree-level splitting function Pj;; as well as the the one-loop split-
ting function P}ZL, whose explicit form can be found in Appendix A. Even though P%L is
more complicated than the corresponding tree-level splitting function, the integration over
unresolved phase space of the gluon m proceeds in exactly the same way as in the NLO
computation.

Similar to the NLO case, it is useful to distinguish between the initial-state and the
final-state splittings. When the unresolved parton m becomes collinear to a final-state

parton ¢ we find

_ ) T,
(SuCimw™ A™ Fry(m)) = [a)? <6’gfv(€) : FLM>

r I o2 ri Tig fin
— [a ]2560 (ewE )<€»9FLM> _ [0;2] CAhc(e)<2’69FLM>+[as]< 6,g Eiv> :

where

(4.103)

CT21-2e)I(1+¢)
hel) = ——Fa 39

Furthermore, the one-loop generalized anomalous dimension for the final-state splitting

=1+0(). (4.104)

reads

1L _
Fi,g -

2
2E;\ P T2(1—¢) | e cos(me) a3y, '
< p > T(1 -2 Gy eg-ag(e La)s P Ny, (4105)
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where fyi’f”g’Lng is defined analogously to Eq. (3.20), but with the splitting function PglgL
instead of Py,. The e-expansion of the one-loop generalized anomalous dimension reads

F}IL} =%+ 2TZ2L1' + O(e), 1=3,...,Np . (4.106)

We continue with the case where the unresolved parton m becomes collinear to an
initial state parton, say 1,. In this case we find

_ T r
<SmClmwm1A(m)FR\/(m)> = [a,)? <1€’flfv(e) . FLM> + [as) <1€ﬁF€\§>

2
+ [aj]<77§2n ® (Iy(€) - Finm) > 4 [aes]<p§2n 2 FE\%
— [ag)? F(eleW_E €) % [ <F16,f1 FLM> + %<P§3n ® FLM>:| (4.107)

2 FlL
oo (p e (M2 ) )
€ 2¢

. [0‘5]2

2€3

Cahe(e)(PLoesm @ Fiar) |

where the one-loop initial-state generalized anomalous dimension is

2E1\ 2 I2(1 —¢) [ 1—e el
Ik (e) = +2T% — 7 cot(me
17f1( ) < L ) T(1— 2€) T 1 4 (me) (4.108)
=y +2TF L1+ O(e)
and we have also introduced a generalized splitting function at one-loop
1L 2F, e (1 —e¢) i > AL, G
Pikaen(z, Er) = ( . ) faag| L PR@+BEE] . @09)

We observe that the one-loop generalized anomalous dimension F}}Ié coincides with its
tree-level counterpart T; ; at O(€), cf. Eq. (C.17). Similarly, the one-loop and tree-level
generalized splitting functions P;}f &M and PE;" have the same expansion at (9(60). Further
details concerning these one-loop generalized anomalous dimensions and splitting functions
can be found in Appendix A. Finally, we note that in Eq. (4.107) some terms involve the
convolution of a splitting function with the product of Iy or the anomalous dimensions
and F1y. In these cases, the relevant energy in Iy or F%%fl is also multiplied by a factor of
z.
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Summing the initial and final state collinear limits we find

Np
D (SaCimw™A™ Fry) = [os]? (Ic(e) Iy () - Fm) + o] (To(e) - Fi)
=1
2
+ [a:] (P @ (Iv(e) - Fim) ) + [a:]<77§2n ® Fiy)
[065]2 gen [Oés] fin gen
250 F(l _6) 1 en 1 gen
— o] = b (P @ Fiwm) + p (Fm @ Piy)
[as]2 s
+ (Ic(e) - Fum) | — 2 CAhC(6)<IC(26) ‘FLM>
. [aS]Q 1L,gen 1L,gen
5¢3 CAhc(€)<Paa @ Frm + Fum @ Py, > ,
with
Np 1L
~ LT (e)
_ i, fi
Ic(2¢) = ; o - (4.111)

We point out that the relation between the one-loop and tree-level hard-collinear operators

To(26) = Ic(2€) + O(e) (4.112)

is analogous to that of the soft operators, see Eq. (4.95).

We now consider the fifth and sixth terms in Eq. (4.74)
(SuCimA™ (SO mnFini(m, 1)) + ( Sy (SwCim A™ O Fini(m,n))) (4.113)

where we have used SpA™) = AM) At first glance, it may seem that the two terms
in Eq. (4.113) can be trivially combined, since the first contains an energy-ordering theta-
function which enforces F, > E,, while the second requires E, > F,. However, one should
be careful about the order in which the various operators act on Fi. In the first term,
one should compute the soft limit Sy, of F1 first, then integrate over the unresolved phase
space of n, and then compute the hard-collinear limit S Cim and integrate over the phase
space of m. In the second term, the hard-collinear limit SuCim is evaluated first, followed
by the integration over the phase space of m. Then we take the soft limit S, and integrate
over the phase space of n. We emphasize that these operations do not commute. Indeed,
one can show by explicit calculation that the following holds true

<Sn (gmcimA(m) Onm LM (m, n)) >

[as]c 31— el(1+e€)
e T 2¢) (4.114)

—2e —2e
» <n;nfsmcim[ (QE;“> _ (fm) } A Figg(m) ).

= (SuCimA™ (SyOumFin(m,n))) -
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Thus we can rewrite Eq. (4.113) as follows
<§mcimA(m) Sn@mnFLM (m, n)> + <Sn§mcim A(m)GanLM (m7 n)>

— <§mCimA(m)SuFLM(m, n)> - [328] Ca r3(1rzle)_lj2(:)+ 2 (4.115)

- 2Bmax \ (2B
] () - (22) i)

It is straightforward to integrate the second term on the right-hand side of Eq. (4.115)

over the phase space of parton m since the required calculation is NLO-like. On the
contrary, the first term on the right-hand side in Eq. (4.115) requires some discussion. We
begin by acting with the soft operator S, on Fiy(m,n) and integrating over the phase
space of n. We find

(SuCinA™S, Fing(m,n))

9 N+l
) (2Emax\ " J= _ (4.116)
o {52] < p ) > <S“‘Cim77k:l6 Kiy A™ (Tk'Tz)'FLM(m)> :
(k1)

The important point is that the sum in the above expression runs over IV, 4+ 1 partons
which includes the parton m. To simplify such an expression, we split the sum into the
following contributions

Npt1 Ny Ny
S ANT Ty =Y AyTpTi+ > (AgTi+ AnpTh) - T
(k1) ki o
k#l (4.117)
Np
+ ) Th - (AT + ApnTn) + 24T Ty
ki

for an arbitrary symmetric A;;. We consider the action of the operator SClim in each of
the terms in Eq. (4.117). In the first term, these operators act directly on Fiy(m). In
the second term, the factor Ay becomes A;; because of the collinear i||m limit. Thus the
corresponding color factors combine into (T'; + Th) - T = T'(jm) - Tk. The same occurs
in the third term, leading to Ty - T'[;,). Finally, in the last term, the product of the color

charges is 2T'; - T, = —C 4, because the parton m is a gluon. Using the limit
31— e)l(1+e¢)
lim K;; = ) 4.118
mir0 T(1 - 2) (4.118)
we find
Np+1 Np
> SmCimn;;leKkl[(Tk'Tl) : FLM(m)] = 0 Kit (Ti-T) SenCim - Fraa(m)
(k) (kL) (4.119)
PBl—el(l+e) . —
—Ca ( ) ( )nim SmoimFLM(m) )

(1 —2e¢)
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where in the first term on the right-hand side the sum over partons k£ and [ includes a
clustered parton [im] in place of parton i.
Putting everything together and including the sum over all unresolved partons, we find
NP
Z |:<§mcimA(m)Sn@mnFLM> + <Sn§mcim A(m)@nm}?LMﬂ
i=1

= [063]2<IS(6)'IC(6) . FLM> + [C;]th(e)CA<Ié4)(6) . FLM>

2
+ m§<P§2n ® Is(€) - Fim + Is(e) - Fim ® Pgen>

(4.120)

[ < o ),gen ® FLM + FLM ® Pb4) gen>

In the above formula, we have employed generalizations of I¢ and Pf;n. They are defined
in Appendix A. For the specific case that we are interested in here, we have

@ Np F(4)( )
16(e) =Y~ (4.121)
i=1
where
—de 4 —4eL;
(4) _ (2B (1 —¢ o 1 —e™tH .
o ( ) P2 TR e ] TN )
—4e 14 .
4 _ (2B M(1—€) o ‘ o
Fi’g - < ) m’}/z,g%gg(gl/z) ) 1=3, "'7Np ,
and
,P(4),gen(z E ) B 2Ea —2€ F2(1 — 6) 2 [_P(O) (Z) i ,P(4),ﬁn(z) (4 123)
S AN (1 - 2¢) ab (2) T € Py : :

The function Péi)’ﬁn is given in Eq. (A.35). It follows from the above formulas that FE?Z

and Péi)’gen coincide with T; ;, and P&" to O(e"). Similarly, Ic and Ié4) have the same
pole structure
180(e) = Io(2¢) + O(<°) . (4.124)

Before closing this section, we make a brief comment about the term on the third-to-
last line of Eq. (4.74), which is proportional to d4(€). It turns out that one can rewrite it

in the following way

2[as]5,(e) (Emax>_2€ [— (Is(e) - Fnm) + M ZTQ (Fuwm) }

z 2¢? (4.125)
= — [os]22242 (Ca0f8 () + Bodfe (€)) (Ts(26) - Fiar) + O(e)
where
7T2
5CA(c) = ( 17321 + 6) +O(); 59 () = log 2 + O(e) . (4.126)
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The reason why this rewriting is useful will become clear when we discuss the cancellation
of color-correlated contributions with unboosted kinematics.

In summary, we have derived expressions for all the divergent terms in Eq. (4.74)
that involve virtual amplitudes and the various soft limits. Such contributions involve
infrared poles in color-correlated matrix elements that don’t appear in other parts of the
calculations. Thus, we anticipate that the poles of the color-correlated contributions cancel
amongst themselves. We describe this cancellation, as well as the cancellation of the
poles of the single-unresolved and color-uncorrelated double-unresolved contributions, in
the following section.

5 Cancellation of poles

We begin our discussion of the infrared poles by focusing on the single-unresolved contri-
bution. We show that the cancellation of poles there is equivalent to that in the NLO QCD
contribution to the process qg — X + (N +1)g. We then continue with the discussion of the
various contributions to the double-unresolved term ¥, starting from the color-correlated
ones.

5.1 Single-unresolved terms

As explained in the previous section, when extracting singularities from the double-real
and real-virtual contributions, we find terms featuring N + 1 resolved partons. In this
section we will show that, once combined, these terms exhibit significant simplifications,
allowing us to cancel the poles in the same way as we did for the NLO contribution. We
consider 25\1&_1, 25\2,)4_1 and ZS\?;LI, given in Eqs. (4.13), (4.38) and (4.55), respectively. We

will refer to the sum of these contributions as E?\}il. It reads

3
S = 305 = (OnoA™ [Fiy(m) + 5,0 Fiaa(m, )]
=1

Np
+ Z (ONLO(L — SyOumn) Cin A™ Fpp(m, n))
=1

1
+ §<ONLOA(‘“)(1 — 25,0un) Coan Frmi (m, 1)) .

(5.1)

In the equation above, gluon m is resolved, since all the singularities associated with its
emission are regulated by the Onpo operator (see Eq. (3.37)). The gluon n, on the other
hand, plays the role of an unresolved parton in NLO computations. Such a structure
suggests a close relation between E‘}\}il and the NLO cross section for the production
of (N + 1) jets. In order to make this correspondence transparent, we need to rewrite
Eq. (5.1) in terms of virtual, soft and collinear operators defined in the phase space for
(N + 1) partons.

We begin our analysis with the first term in Eq. (5.1). It contains the one-loop ampli-
tudes with (IV+1) final-state partons and a contribution from the soft limit of gluon n. The
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former term can be treated analogously to what has been done in Section 3; its infrared
singularities can be written with the help of Catani’s formula. The latter contribution,
once integrated over the n-parton phase space, returns the same structure as in Eq. (3.12),
up to replacing Enax with Ey. This is due to the energy-ordering factor ©n, appearing
in Eq. (5.1), which forces the energy of gluon m, rather than Ey,.x, to serve as the upper
cut-off for the integration over the energy of gluon n in the soft limit. We thus find

<ONLOA(m) [FRV(m) + SnOmn FLa (M, n)] > =

= o] (OntoA™ |7 4 17 (B)| - Fuaa(m)) + (OntoA™ Fig(m)) 02

where I\]yp—irl is constructed in analogy with Eq. (3.31), but starting from Catani’s operator
I in Eq. (3.29) with N, — N, + 1. Similarly, IéVPH(Em) can be obtained by replacing
N, — N, + 1 in Eq. (3.12) and using Ey, in place of Eyax.

We then address the contributions shown in the second and third lines in Eq. (5.1).
Both of these contributions describe soft-subtracted collinear limits; as such they provide
either generalized anomalous dimensions (in case of final state splittings) or generalized
anomalous dimensions and splitting functions (in case of initial state splittings). It follows
from Eq. (5.1) that in both of these cases integrations over the energy of the soft-collinear
parton n extends to En, and not to Epax.

We would like to assemble these two terms to create the collinear operator I¢ for the
process with (N, + 1) partons, which could then be combined with the terms in Eq. (5.2)
to produce an infrared-finite operator I, similar to what we did when describing the NLO
calculation in Section 3. At first glance it appears simple to do that. Indeed, the second
line of Eq. (5.1) contains terms with collinear limits of N, (and not N, + 1) partons, and
the required collinear limit of one additional parton is supplied by the third line of this
equation. However, there seems to be a mismatch between these terms because the final
state collinear operators acting on A(™Y in the second line produce zivnA(m), whereas in
the third line the collinear operator does not act on A and, therefore, cannot produce
such a factor. The resolution of this hypothetical problem boils down to the fact that we
consider a gluon-only final state, which is highly symmetric. The additional factor of z;»
effectively lowers this symmetry, and hence plays the same role as the factor 1/2 in the last
term in Eq. (5.1).2 We can thus write the second and third lines on the right-hand side
of Eq. (5.1) as

Np
Z (ON1LO (1 = SuOumn) Cin A™ iz (m, m))
=1
1
+ §<ONLO A(m)(l - 2Sn@mn)CﬁmFLM(ma t‘l)> (5.3)

= [0u][ {010 A™ (P2 & Fisa(m)) ) + (Onio A™ (Frau(m) @ PE") )|

+ [as] <ONLO [Igp+1(Em) . A(m)FLM(m)D )

20More explicitly, the additional factor z; , produces an additional factor of 1 /2 upon integrating over
the final-state phase space.
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Similar to the (N, + 1) virtual and soft operators, IéVpH(Em) is defined as in Eq. (3.27),
but with N, — N, +1 and setting Fyax — FEn in the definition of I'; r,. We emphasize that
the On1,0 operator does not commute with the collinear operator Iév Pt or the splitting
function Pfgm. Indeed the latter depends on the energy of parton m, which is sensitive to
the action of the soft limit encoded in Oni,0.

The expression for $4Y ; is the sum of Egs. (5.2) and (5.3). We note that this quantity
still contains hard-collinear singularities related to initial state emissions. To remove them,
we need to add the PDF renormalization contribution proportional to the Onpo operator,
ie.

iv g A~ ~
E?V_i_’?df = 27(:2) [<P[§2) ® ONLoA(m)FLM (m)> + <ONLOA(m)FLM(m) ® Pb(l?)>] . (5.4)

In contrast with the observation made below Eq. (5.3), in the expression of E(]i\i,ilfdf we

can exchange the order of the Altarelli-Parisi splitting functions and the Onp,o operator.
In fact, Jf’q(g) is independent of any energy variables, and thus can be moved “inside” the
fully-resolved operator. Given this, we can write Eq. (5.4) as

mpd” = S [0 0™ (B & F(m)) + (OnioA™ (Fu(m) @ 2Y))] . (5.5)

and combine it with E?\}‘jrl. We obtain
S0 = ni, + S
= [as] <ONLO A (IéVerl(Em) : FLM(m))>
+ (] [{Onpo A (PO @ Fg(m)) ) + (Onio A™ (Fiu(m) @ PY©) )|

+ <0NLO A F;;ig(m)> .

(5.6)

As expected, Eq. (5.6) contains a generalized version of the e-finite operator It given in
Eq. (3.36). It reads

NN By = P 4 B (By) + 107 (En) - (5.7)

Note also that, as we mentioned at the beginning of this section, Ef]i\?jr(f') contains almost

exactly the NLO contribution to the (N + 1)-jet production cross section; the only missing
piece is the fully-regulated term with up to N + 2 resolved jets.
In addition to E?\?_s_(f )

state partons that are explicitly e-finite; they appeared in the course of simplifying ¥rRic,

, there are three other contributions with N 4 1 resolved final

discussed in the previous section. We combine all these contributions into a single quantity
that we will refer to as d&%lffo. It is given by

fin,(1) n,(2)
1

25 dGNNTO = £ s | e @) s (5.8)

where Z?\;i(ll) is given in Eq. (4.38) and E?\}ljr(lz) in Eq. (4.55). The final term originates

from the spin-correlated contributions discussed in Appendix F; in particular, it describes
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the Onro piece of the expression given in Eq. (F.18). We can expand these three terms in
€, leading to the following O(e°) result

Y =l (R @ oMo wti os (*5) A Fiau(m)])

+ [as) < [(’)1(\12110 w2m”2n“2 log (WTm)A(m)FLM(m)} ® Aq(g)>

= Z ;] (O8] o Wi T g, og (%‘") A Fipg(m) )

Frmax—Fm
NP
fin,(2 7 7,1 i 5.9
SN = = D] 12 <Ol(\I)LO w10 g< 4(1 —mn-m)> A(m)FLM(m)> B
i=1 v

NP
N L
S0 = lod] ;] 122, gg (ONLo W Aty + g) Fiag s (m) )
=1

NP
[cvs] 22,7 i ini
+Z 5 Tlg—gg <01(\1)Lo w::”: Al )FLM(m)> ;
i=1

where 422 is reported in Eq. (3.20) and 7i2,g—>gg and fyi2gr_>gg in Eq. (A.29).

5.2 Double-unresolved triple color-correlated contributions

Having demonstrated how e-poles in single-unresolved terms disappear, we continue with
the discussion of poles in the double-unresolved contribution ¥y. We begin with the
investigation of e-poles that involve matrix elements of triple correlators of color-charge
operators <./\/lo| fabe 1}“1?T,§]M0>. Such terms vanish for processes with three or fewer
partons at tree level, but are non-zero in general.

As we explained in the previous subsection, triple color-correlated terms arise in two
distinct ways. First, there are two contributions that contain triple color correlators ex-
plicitly. One of these is the Hs (. term of the double-virtual contribution in Eq. (4.86) and

IRV

the other one was denoted by I;} in the integrated soft limit of the real-virtual correction

in Eq. (4.102).

Second, triple correlators of color charges appear in commutators of various I-operators.
Such commutators are present in Eqs. (4.86, 4.102); they arise because we expressed the
double-virtual contribution and the soft limit of the real-virtual corrections through an
operator Iy. All in all, combining the relevant terms, we find?!

Bt = [q)2 < <; [Is(e) , Ti(e) — ﬂ(e)} + I (e )> ' FLM> ’

+ [os]? < <—; 110, TH(e)] + Hage + H;tc> : FLM> .

We find it convenient to rewrite the commutators that appear in Eq. (5.10) as follows

(5.10)

1t - o 1 -
5 [Is, T, —IH = [Il,fﬂ = I I+ 21 + Is, 1] , (5.11)

2In general, there are triple color correlators in e-finite terms present in Xy that are not included in
Eq. (5.10).
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where we introduced two additional I-operators

T =t 7 +t
1 1 1 -1
PN TGRS (CI N (ORI 5.12)
such that
Iv(e) = T1(e) + Ti(e) = 21, (e) . (5.13)
We combine the commutators and the operator Hs ¢, and write
= oo (1 +157) - P ) (5.14)
where It(rcic) is defined as
L) = — [, L) + [2Ly + Is, 1] + Hage + Hb 4, - (5.15)

Eq. (5.14) collects all potentially divergent terms where the triple color-correlated contri-
butions can appear and provides the starting point for their analysis.

To proceed, we need to compute the commutators of the various [-operators that
appear in Eq. (5.15). To do that, we write I1 as (see Eqgs. (3.29) and (3.33))

o1 N 1 Ngjme L
112_2;<e2+e>+2§< T?% >(T Tj) (™9™ e 1), (5.16)
= ij

where L;; = log (;P/sij) with s;; = 2p;-p;, and \;; = 1 if both i and j are either incoming or
outgoing, and A;; = 0 otherwise. Since we are interested in commutators of I-operators, in
general the only non-vanishing contributions come from color-correlated terms. Therefore,
the first term on the right hand side in Eq. (5.16) is irrelevant, and only the term with the
T;-T; product can play a role. Hence, we define

Np

Flee) _ 1 1 i iXijme j€L;j
I, = 2; <62 + T?6> (T;-T;) (e9m e —1) (5.17)
1]

and we can use this operator instead of I; to compute the commutators in Eq. (5.14). To

this end, we compute the color-correlated versions of I+ using Tgcc) and find??

L(fc)—fZTT < ”+5+>+(9(e),

(17)

(5.18)
. Ny 1
T _
(i5)
where 1
2 Vi 242 - i
(5;; = §L7’j —+ sz’? LU — *7T )\” s 6’[] = TZQ Azg + ng )\1] . (519)

22We defined the color-correlated versions of I+ operators ZIiCC) = ﬂcc) + (ﬁ“))f.
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We note that the objects shown in Eq. (5.18) are sufficient to compute the poles in the
triple color-correlated contributions to X .

We can now proceed with the calculation of the commutators in Eq. (5.14). Since they
involve objects such as [Tk-Tl,TZ'-Tj], it is convenient to report the following general
relation: given two operators A and B defined as

Np Np

A:Zaij(Ti'Tj) 5 B:Zbij(Ti'Tj) 5 (520)
(i5) (i5)

where a;; and b;; are symmetric tensors,?? their commutator reads

Np
[A, B] =1 Z (akj + ajk) (bij + bﬂ)F(kZ]) , F (ki) = fabe Tk Tb TC (5.21)
(ijk)

Note that in the above equation, we introduced the handy notation (ijk) to label triplets
with different 4, j and k in the sum.
Eq. (5.21) can be used to compute the commutators in Eq. (5.14), replacing I with
(cc)

their color-correlated analogues I}, as discussed above. We find

|:I(cc) (cc ] Z F (kij) |:2Lk] /\zj n >\ij (6236—1' 5;%) . ij (5Z_JG+ (5]_1)
(igk) (522)

2(5,jj + 6;%) (513 + %)] + O(e) .

The second commutator that we need is [2I; + Ig, I_]. To compute it, we extract the
color-correlated contributions to Is. Proceeding along the same lines as in the derivation

of Ij(fc), we obtain
al log(n;;)
=311, [ B +¢w] +0(e), (5.23)
(i)

with
2Emax 1 .
615 = ~210g 252 ) g5) — 3 o) — Lia1 — ). (5:24)

Considering the expressions in Eq. (5.18) and Eq. (5.23), and following the discussion in
Appendix C, it is easy to show that the equation

Np
21 + I{ =", T, <5Z + %‘) +0(e) (5.25)
(i5)

Z31f one starts with non-symmetric tensors, as is the case for the 5?5- functions, then it is clear that only
their symmetric components will contribute to the sums of the type shown in Eq. (5.20).
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holds. With this representation at hand, we can calculate the second color-correlated
commutator required in Eq. (5.15)

2
[2[(“) + 109 T (CC)] Z Fkig) [ - (6;’] + dnj + 6 + m)
2 () (5.26)

+ (05 + 05 ) (8 + s + 5 + o) ] +0(e) .

It remains to determine a suitable representation for the triple color-correlated part of
the operator Hg, which we denote as Ha .. According to Ref. [72], one can write Hg (. as
a commutator

1
Hote = % r,C| , (5.27)
where the two operators I' and C' are related to the e-expansion of the Tg“’) operator
- Tr
1) = —+CH0(). (5.28)
. —(cc) . .
Since Iy ' = I + I_, we easily obtain
1 . 1 L
= 5 ZTZTJ (Lz'j + ’Lﬂ'/\ij) R C = 5 ZTZT] ((5:]_ + 51]) . (5.29)

Here, in analogy with Eq. (5.21), we have used the shorthand notation (ij) to indicate
that the sum runs over all possible pairs of distinct partons. It is then straightforward to
compute the commutator of these two operators following the preceding discussion. The
result reads

Np
Hoge + My = — % > pti) [ij (6 + 055) + Awj (575 + 5;)} : (5.30)
(i)

We can now combine the three triple color-correlated terms in Egs. (5.22), (5.26) and

(5.30) to obtain the final expression the operator 19 of Eq. (5.15), i.e

tri

t(flc Z F (kij) |:2ij )\z] . 4¢j:>\w + (5; + 5];) <52_] + (5]—’;C — 2¢]k‘> :| ) (531)
(igk)

where we have used ¢;;, = ¢y; and have omitted O(e) terms.

IRV

& up to finite terms in e. Such

The calculation of E'j\rfi requires us to compute
a calculation is non-trivial; we describe it in Appendix H. The result for IF;Y is given
in Eq. (H.15). Once I&Y is computed, it is then possible to show that Eg\r,i is free of

e-poles. To do that, we need to rewrite Eq. (5.31) to make the role of the factors \;;
clear. We recall that \;; are phase factors that distinguish between time-like and space-like
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processes. In fact, \;; = 1 if partons ¢ and j are both either incoming or outgoing, and
zero otherwise. Furthermore, important simplifications in Eq. (5.31) occur because ¢,
and Ly; = log(u?/ skj) are symmetric and FIE i) i antisymmetric with respect to k <> j
exchange. Thus, for a process with only outgoing (or only incoming) partons, we have
Aij = 1 for all 4, j and hence the triple color-correlated poles in Eq. (5.31) vanish. A similar

IRV

analysis shows that e-poles in I}

also vanish if all resolved partons are in the final state.
To understand what happens in processes where both incoming and outgoing partons

are present, it is convenient to write )\;; in the following way
)\z'j =1—06;1 — 90 — (5]'1 — 6j2 + 261 (5j2 + 26;9 (53'1 R (5.32)

where 1 and 2 label the initial state partons. We have already argued that the first term
on the right-hand side provides a vanishing contribution to Eq. (5.31). Terms in Eq. (5.32)
that depend on the index ¢ only also do not contribute since they do not break the k < j
(anti)symmetry. The terms that depend on the index j also vanish. To see this, we write
NP NP
S AMIFFD A Ci MYy = >N (M fae Arj C; TETETY | M)
(ijk) (jk) i3,k
Np
= = (Mlfase Ay G TRTS(T! + THIM) (5.33)
(jk)
iC'y
= <M\Ak] (T Tj—T; Ty) M) =0,
(Gk)

where Aj; stands for Ly; or qﬁkj + ¢jk. Furthermore, we have used color conservation

Z T M) = —(T} + TR)|IM) (5.34)
i#j5,k
to go from the first line to the second in Eq. (5.33), and the SU(3) commutation relations
for color charges in the next step.
Finally, we write Lj;, = log(n/(2E;)) +log(n/(2Ey)) — log(n;x). Using the same argu-
Hzer)lts as above, it is easy to show that the first two of these terms do not contribute to
I cc

tri
Combining all these results, we finally arrive at an expression for the triple color-correlated

2 4E?
= e [ ) o () e 32)
kA1.2 Mk € 1% 2k

+ log® my, — log® moy + 2Li(1 — myy) — 2Li(1 — 772k)>} +O(e") .

The only terms that remain include log(n;;) and the final two terms of Eq. (5.32).

poles

(5.35)

Comparing this result with the expression for I&Y in Eq. (H.15), we find that their poles
are equal and opposite in sign. This establishes the cancellation of e-poles in triple color-

correlated contributions for a generic 1, + 2, — X 4+ N g process.
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5.3 Other color-correlated double-unresolved contributions

We continue with the discussion of divergent contributions to ¥y that contain double
color-correlated matrix elements squared with double-unresolved kinematics. As these
contributions must involve either a loop amplitude or a soft limit, we are interested in
those terms in Eqgs. (4.86, 4.96, 4.102, 4.110, 4.120, 4.125) that contain either Iy or Ig or
both.

The sum of the elastic (i.e. unboosted) terms involving color correlations, which we

(V48),el

denote as Xy , reads

1
Sy [as]27< (12 + IvIs + IsTy + I3 + 21y + 2IcIs] - Fia)

ﬁ(elw_;) <[ [Is(e) + Iv(e)] + Iv(2€) + é(e) fs(26)] 'FLM>

<E[ LA~ @0+ cy <(€) _Ax(9) _ QQHE%CA(E)) (5.36)

€2 €2

+ [O‘S]

< T2 ﬂ FM> (o] ([Tv() + Is(e)] - Ffin) |

where o

A T

Before continuing, we recall that the soft and virtual operators Is and Iy have color-

(CQ(e) +ecs(e) — 22+2665§0(e)) . (5.37)

correlated poles starting at O(e~!), while I does not contain any color-correlated terms
and It is finite. It follows that the combination Iyvygs = Iy + Is = It — I¢ contains
color-correlated contributions starting at O(e?).

Using these properties, it is easy to see that the first and last lines of Eq. (5.36) do not
contain divergent color-correlated contributions. Indeed, the sum of I-operators in the first
line gives I% —1 %, while the final line yields Iy 1g. Further details about this rearrangement
and the origin of each term can be found in Ref. [77].

We continue with the discussion of terms proportional to 8y that appear in the second
line of Eq. (5.36). Here we can reconstruct two different versions of Iyyg. Indeed, the
first two terms in square brackets return Iy yg(€), while the third and fourth terms suggest
that the combination Iy1g(2¢) can be assembled. To do so, we add and subtract the soft
operators Ig(2¢) and Is(2¢) such that

Vel _ [, ]260 Fg;) <[— [Is(e) + Iy (€)] + Iv(2€) + 5(@?8(26)} . FLM>
=le ]2€0F(;wle)<[—fv+s< ) + Ivys(2€) + (&(e) — 1) Is(2e) (5.38)

+ Tg(2¢) — 13(26)} -FLM> .

We now argue that this contribution does not contain divergent color-correlated terms.
First, since I'y;s(2¢) and Iy s(e) must coincide at O(e°), the difference Iy s(2¢) — Ivis(e)
contains color-correlated terms at O(e) only. Second, it is easy to check that

ée) —1=0(e), (5.39)
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and since color-correlated terms in 173(26) appear for the first time at order O(e™!), the
third term in Eq. (5.38) also does not give rise to color-correlated poles. Finally, as we
have mentioned previously (cf. Eq. (4.95)), the difference

I5(2€) — Is(2€) = O(e) | (5.40)

which implies that the combination of the fourth and the fifth term in Eq. (5.38) is also
finite. Hence, we have proved that all terms proportional to Sy in Eq. (5.36) are free of
divergent color-correlated contributions. Finally, for future purposes, it is convenient to
introduce the following decomposition

(V+8)elfo _ 2B (L =€) /7 N T _

9o p IO ([ 4o+ (0 ] )
_|_ Egi\;l?(ﬁ) ,
where BoT(1— o)
fin, (6 0 — € T
56 _ s P2 <[IS(26) - 15(26)} -FLM> . (5.42)
The term in the third line in Eq. (5.36) can be analyzed in a similar manner. We write
A -
K Iyv(2€) + Cy (Cle(;) - 16(2(6) - 22”659@\(6)) Is(2¢) = K Ivys(2¢)

(5.43)

€2 €2

+ |:CA (Cl(e) _Ax(e) 22+265§A(e)> - K] Is(2¢) + K (fs(ze) - IS(26)> :

where we dropped the factor I'(1 —€)/e“'® as it contributes at O(e”) only. We observe that
the first and the third terms on the right-hand side of the above equation do not contain
singular color-correlated terms for the reasons discussed above. The second term on the
right-hand side in Eq. (5.43) also does not contain divergent color-correlated contributions
because

O <016(2€) _ 1416(2(@ _ 22+265§A(6)> — K= 0(6) . (5.44)

This completes the analysis of the unboosted color-correlated contributions.
Additionally, there are boosted terms with color correlations in Eqs. (4.110) and (4.120).

It is straightforward to show that the sum of these terms assumes a particularly simple
form

2
sy et = [az] (Pea" ® [Ivis(€) - Fum] + [Tvys(e) - Fin] @ P") - (5.45)

),boost .
contains color-

Given the properties of Iyvig(e) stated above, it is clear that Eg\\,/+s
correlated divergences at O(e~!). These divergences get canceled upon combining Eq. (5.45)
with similar contributions that arise as the result of the collinear renormalization of parton
distribution functions. We briefly discuss this point at the end of Sec. 5.4, after Eq. (5.60).

Hence, the analysis performed in the current and previous sections proves the cancel-
lation of all color-correlated divergent terms in a generic process 1, + 2, = X + N g. The
remaining divergences in the double-unresolved contribution ¥ are mot color-correlated
and, instead, are proportional to the squares of color charges of the external partons. These

are related to collinear emissions and we continue with their analysis in the next section.
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5.4 Collinear double-unresolved contributions

Having demonstrated the cancellation of poles in the color-correlated contributions to Xy
in the previous two sections, we need to discuss the remaining terms in this quantity. Such
terms are related to collinear emissions and, therefore, are proportional to the squares of
color charges of the external hard partons. In this subsection we manipulate the corre-
sponding contributions to Eq. (4.74) in order to write them in terms of collinear operators
I and splitting functions P%". This will pave the way for demonstrating the cancellation
of the poles, which we undertake in Subsections 5.5.

The first term that we have yet to discuss is the last one in the third line of Eq. (4.74).
We find it convenient to split it into two pieces

N
1 & /— —
5 < n mC]nCimA(m )FLM(m7 n)>
ij=1
Np ) N, (5.46)
— Z <Sn ijnC,mA(m“)FLM(ma n)> + 3 Z <SnSmCmC7,mA(‘““)FLM(m, n)>
i,j=1 i=1
i<j

In the first term on the right-hand side of Eq. (5.46) the unresolved partons m and n become
collinear to two different resolved partons ¢ and j, and we have used the symmetry of the
limits to remove the factor 1/2. In the second term in Eq. (5.46) both m and n become
collinear to the same parton 4. It is straightforward to evaluate the first term since all we
need to do is perform the NLO-like computation twice. The result reads

Np

S (35 n)

z,i]<:j1

[063]2 1 N on gen

= 515 20 (Durlig, - Fua) + (PE" @ Fn @ P™) (5.47)
(i)

N, Ny
+ D (PER @ [Tag Fund) + 3 ([T Fune] 9 PE™) |

i=1 =1
1#£1 1#£2

The last term in Eq. (5.46) requires more care, as it involves a product of two operators
that describe the soft-subtracted collinear limits of gluons m and n relative to the same hard
parton. We would like to relate this contribution to the iteration of two collinear emissions
and write it in terms of the functions P&™ and T; f,, as done in Eq. (5.47). It turns out
that this is nearly possible but that the intertwined phase space of the two collinear gluons
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leads to one additional term when such a rewriting is performed. Indeed, for i = 1 we find

1 /- — ag)?
5 (SmSaCimCraA ™ Fiag(m, n) ) = [261 (Ma - Fum)
[015]2 gen [aS]Q gen S gen (5 48)
+ (P& @ [T1a- Fim]) + 52 ([P @PE"] ® Fim) :
2
a
L ACT I
The “bar”-convolution [f®g] is defined as
1
[f (21, Ei) @ g(22, E) | (2, E;) = /dz1 dzo f(21, Ei)g(22, 21E;)6 (2 — 2122) . (5.49)

0

The first three terms on the right-hand side of Eq. (5.48) represent the “naive” product
of two soft-subtracted collinear limits and the function G; incorporates the modifications
required by the non-trivial dependence of the double-collinear phase space of two unresolved
gluons on their energies. To obtain the results for i = 2 we can use Eq. (5.48) and replace
i = 1 with ¢ = 2 and exchange “left” and “right” convolutions. The functions G; read

Gi(z, Bi) = [Tig, — Tig(2)] PEL(2, Ei) i=1,2, (5.50)

with
—2€lL,.;

s 1—e

[’Yfi +Tf

2zE¢>_2€ (1) (5.51)

Fi2) = ( Iz I

— 2¢) €
In the above equation L,; = log Enax/(2F;). A similar computation for the final-state

parton ¢ yields

[O‘S]z

[O‘S]g
262 2

2¢

<F127fiFLM> +

%<§m§ncimCmA(mn)FLM(m,tl)> = <GiFLM> s (5.52)

where

2B\ 7 T2(1— )] | 2 ™
@ _[ ( 2 > F(l—?e)] ’yzvgﬁgg(e?Li) + ?6

(5.53)
X |:7§,2g—>gg(€> Ll) - ’Yg,zg—mg(ea Ll)] ’

and ¢ = 3,..., Np. Combining Egs. (5.47), (5.48) and (5.52) and summing over the final-

state partons, we find the following result for the last term in the third line of Eq. (4.74)

N,
1 & /— — 1

+ % > (Gi Fuu) + %[<7’§2n ® [Io(e) - Fum]) + ([fo(e) - Fuu] © Pl%lfn>] (5.54)

3
[P & PEM @ Fiu) + (Fuv @ [PE" @ ™))

1 n
(G1® Fim) + (FLm @ G2>} + 5 (Paa” @ Fim @ Py >} :
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As we will show in the next subsection, the above equation is already in a suitable form to
discuss the cancellation of some 1/e collinear contributions to Xy .

We now briefly discuss the terms in the fourth and fifth lines of Eq. (4.74). The term
in the fourth line contains two soft-subtracted collinear operators C;,C;n and a factor
[2(nin/2) %€ — 1]. The two soft-subtracted collinear limits produce an O(e~2) term but the
prefactor is arranged in such a way that the actual singularity is just O(e!). In what
follows we will mostly focus on the cancellation of 1/¢? collinear singularities and for this
reason we do not need to discuss how this term can be rewritten. Furthermore, the term on
the fifth line includes a commutator of the limits C;, and Cj,. Since we consider final-state
gluons only, this contribution is identically zero for the purposes of this paper. However, we
note that this term would no longer vanish when one considers processes with both quarks
and gluons in the final state. The only term in Eq. (4.74) that we have yet to consider is
the one on the penultimate line, which originates from the soft-regulated double collinear
limits in sectors (b) and (d). The first part of the computation proceeds similarly to the
NLO case, and results in

<C’mn [FLM (m,n) — 25,0 FLm(m, n)} >

a 21— e (5.55)
- [68] <2im> ?(il_%;< V2ggg(O)FLu(m))

where 422 . (€) = 722 (€, L; = 0) and we have renamed the clustered parton [mn] —
m.?* To complete the calculation, we need to evaluate the soft-regulated collinear limit
SuCim. Recalling that oij = ni;/(1 —ni5), we find Cimo; =1, and obtain

Np
Z M <§mcim0i_meA(m)Cmn [FLM(m’ n) — QS"Gm“FLM(m’ n)] >

=l yoagm 000 Fuul) 50

2
+ [gles(g’d) <7§,2g—>gg(6) [P(gi)’gen ® Frm + v ® Pﬁﬁ)’gen} > )
where Ié4) and Péi)’gen are defined in Egs. (4.121) and (4.123), respectively, and the nor-
malization constants are collected in Appendix A.1.

This concludes the discussion of the collinear contributions to X ; through O(¢~2)
they are given by the sum of Eqs. (5.54) and (5.56). In addition to these terms, there
are also remnants of virtual and soft contributions that are not color correlated. All these
terms will have to be combined together with the collinear renormalizations of parton
distribution functions to demonstrate the cancellation of singularities.

Before discussing the details of this cancellation, we will write down the term in
Eq. (4.1) that arises from the collinear renormalization of the parton distribution func-

2We are free to do so because both m and n are gluons, and hence the clustered parton [mn] is also a
gluon.
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tions at O(a?). Tt reads

~ pdf s (1) _ A
dO'Ia)b = |:S27T:| zx: |:P1 xa ® dUNLO dO'aNxLO ® leb
o .
+ |: ;: :| ;[Plxa(gdo'my ®P1yb+P2za®dO’ erULO@PQ,mb s
where we have used the following short-hand notation
. P(U) z R P( ) ®P(O) z) — ]5(0) z ]5(1) z
P1ab(2) = “bg( ) , Paa(z) = [Fee ]2(62) foFop ) a”2€( ) (5.58)

We note that at variance with Eq. (3.35), do™© does not include the PDFs renormaliza-
tion. Furthermore, the summation in Eq. (5.57) is performed over all initial-state parton
flavors. However, since we consider processes with ¢q initial states and gluonic final states,
the Altarelli-Parisi splitting functions always have identical indices. We can therefore write
the contribution from the PDFs renormalization as follows

aomt [as(u)] [PCEG) @dod[©  doyOe ngq
@ 2w

SER

50) . 5(0 S0 A1
Pb(b)®Pb(b)_ﬁOPb(b) _Pb(b)

2¢2 2¢

€ €
cha) ® Pag) 50Paa _ ché)
2€2 2

® (Fim) (5.59)

+P(0)®<F ) @ Py }

+ <FLM> & 2

The NLO cross section dc‘r}beO can be obtained from the results of Section 3 and reads

Aoy © = [os](I(e) - FLa) + (Fiv) + [Cf] [<7D§§“ ® Finm) + (Fim © ngnﬂ

(5.60)
+ <ONLO A(m)FLM(m)> .

As mentioned earlier, we do not include the O(as) contribution of the collinear renor-

malization of PDFs in the definition of daNLO

, and therefore this quantity still contains
unsubtracted hard-collinear poles. We also note that we already used the convolution of
the Altarelli-Parisi splitting function with the Onro term in Eq. (5.60) to cancel e-poles in
single-unresolved contributions to dé}%lffo shown in Eq. (5.8).

Before continuing with the discussion of the double-unresolved collinear contributions,
we can use Eq. (5.59) to complete the demonstration of the cancellation of the color-
correlated divergences, see the discussion after Eq. (5.45). We note that terms in the first
line of Eq. (5.59) contain divergent contributions that involve a convolution of a splitting
function and a next-to-leading order cross section. The latter contains the IT operator
which has color-correlated terms at O(e?). These terms are identical to those that appear
in the operator Iyyg in Eq. (5.45). Using the relation between P%" and Pél?) shown in
Eq. (3.38), it is easy to check that the color-correlated contribution to the e-poles cancel
when Eq. (5.45) and the first line of Eq. (5.59) are combined.

~52 -



5.5 DPole cancellation in double-unresolved color-uncorrelated contributions

We are now in the position to discuss the double-unresolved terms that are free of color
correlations. These terms must be collected from Eqgs. (4.86, 4.96, 4.102, 4.110, 4.120,
4.125, 5.54, 5.56) and Eq. (5.59). They include terms with double-boosted kinematics
(db), terms with a single boost from either the right (rb) or the left (Ib), as well as elastic
terms (el). We discuss these contributions separately. We write

Sl =55+ 2N + 2+ 2 (5.61)

where the superscript “c” emphasizes that the first term on the right-hand side originates
from collinear limits. We begin by considering the double-boosted term, which only receives
contributions from the double-collinear limits in Eq. (5.54) and the PDFs renormalization
in Eq. (5.59). Their sum reads

9 2
s en cn S L/p 2
sdb — [0‘2] (PE" @ Fim ® Piy) + [a(”)] S(PY ® Fine By)
€ 27 € (5 62)
+ 1o 1250 (P9 o P PE™) + (PER 0 Fiae 0 £)]
Using the expansion
PEen = PO + e PNLO + O(e?) (5.63)

and the fact that a,(p)/(27) = [as] + O(e?), we can simplify the expression of Y4 and
find
SN = [os)? (Ph© ® FLy @ P0) (5.64)

which is finite in e.

We continue with the single-boosted terms, and demonstrate the pole cancellation up
to O(e~1). Focusing on the left boost, i.e. the boost applied to the initial-state parton with
momentum p;, and combining selected contributions from Egs. (4.110, 4.120, 5.54, 5.56)
and Eq. (5.59), we obtain the following result

Zlb = [Ozs]2 <’P};LLO X [IT(G) . FLM]> + [a5]<7)31\LLO X FE\I}>

1 n S n Oés(ﬂ) ? ® D
+262<{[as]2[7’§2 ®P&"] + [%] [P @ P

o[22 s

[as] en ,gen

+55 (Cahele) (P@#=2 = PiL==) 1 G| @ Fu)
as(1)]* Bo s po) as(1) ] Bo /. pgen

—[ 5 ] 5oz Faa’ ® Fin) = o] | == | 5 (PE" @ Fim)

[a5]2 en
+ TNsSg’d) <’Y§,2g%gg(e)lptgi)’g ® FLM> )

where we have dropped irrelevant O(e) terms in the first line, and we used the bar-
convolution, defined in Eq. (5.49).
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The two terms on the first line of Eq. (5.65) are clearly finite in €. As for the sum of
the second and third lines, we recall that

plkgen — _pO) L ) (5.66)

and hence

[os]? [PE @ PEN] = [au? [P @FPR)] + O(e)

2o [0 [P0 5 P52) = e [PDEEY] v0 .
™
The two convolutions of Altarelli-Parisi splitting functions are related by
2
2| [P 0 PO - o [PRSPD) )
™
(5.68)

1
= [as]Q /dz1 dzo (1 — 21_26) P§2>(z1) ﬁég)(ZQ) 0(z — z122) + O(e) = O(e) .
0

It follows that the O(e2) poles on the second and third lines of Eq. (5.65) vanish.
To discuss the cancellation of the poles in the fourth line on the right-hand side of
Eq. (5.65) we require the functions pi een Péf{)’gen, and G1. These quantities are defined

in Egs. (4.109), (4.123) and (5.50), respectively. Using both Eq. (5.66) and the relation
Paveen = — Pl + O(e) (5.69)
we see that O(e3) poles disappears. Furthermore, using

hel€) (P& (2, Br) — PARE(2, Br) ) = 2elog(2) PLD(2) + O(e?),

‘ (5.70)
€eGi(z,E1) = —2¢ log(z)Pég) (z) + O(é%)

we observe the cancellation of O(e~2) poles in the fourth line of Eq. (5.65). The cancel-
lation of the O(e~2) poles in the last two lines of Eq. (5.65) follows from the expansions
Vg?g_wg(e) =11/6C4+ O(e) and N&D =14 O(e), and recalling that 8y = 11/6 C4 in our
setup. Demonstrating the complete cancellation of the single poles takes more effort. We
comment on this point at the end of this section.

Finally, we discuss the pole cancellation in elastic terms. We begin by summing terms
that arise from hard-collinear limits and that do not involve contributions from virtual
loops. These terms can be found in Eqgs (4.110, 4.120, 5.54) and (5.56). The result reads

S { < [1g2<6> D Ic(ﬁ)} .FLM>

€ eVE

N ;2 < {CAhc(e) (Ig)(e) — 70(26)) + ;:ZZQ] 'FLM> (5.71)

% <Ns(g’d) [73’29%99(6)]&4)(6)} ' FLM> }

o] (Ze(e) - F) -
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In Eq. (5.36) we defined the color-correlated component of the elastic term Zg\\,/JrS)’el, and
in the discussion that followed we demonstrated that the color-correlated poles vanish.

However, this still left color-uncorrelated poles in Eg\\,ﬂrs)’el

c,el

this term with X we find

, starting at O(e2). Combining

S wee — 0 (Ip(e) - FRY) + [as]Z{;u%(e) - Finm) + K (Ip(2€) - Fiap)

+ Pol(1—¢) <<IT(26) - IT(E)) : FLM>

€ eVE

LB F(ew_E J <(5(e) — 1) Ts(2€) - FLM> + xin®

<[CA ( J AKG(G) - 22”6590“(6)) - K} I5(2¢) FLM> (5.72)
< <IS Is(26)> ‘FLM>

12<[0Ah () (1(6) — To(26)) = KeIo(2€) ZG} 'FLM>

+ % < [Ns(gd)ﬁ?g%gg(f)lg)(ﬁ) — 50w10(26)] ' FLM> } '

e€VE

The terms in the first line are manifestly finite. We explained in Section 5.3 that I1(2¢) —
It(e) = O(e); thus the second line is finite as well. The third, fourth, and fifth lines give
rise to O(e~1) poles only; this follows from the fact that the highest pole in Is is O(e72),
but the coefficients of I suppress this singularity as can be seen by using Eqgs. (5.39), (5.40)
and (5.44). Likewise, the fifth line contains poles of O(e™!), since

Cahel(e) (1g4>( ) — Io(2e) ) Z CAT? (— + 32> +0(e) (5.73)
and )
Gi =204 T2 (3; - 7;) +O(e) (5.74)

while €21¢(2¢) = O(e). Finally, using Eq. (4.124) and expansions already employed in this
section, we can easily check that the last line of Eq. (5.72) contains O(e~!) poles only.

At this point, it is useful to review what we have accomplished regarding the double-
unresolved contributions. In Sections 5.2 and 5.3, we have combined contributions of soft
limits of real-emission amplitudes and contributions of loop amplitudes to demonstrate the
cancellation of all e-poles that contain correlators of color-charge operators. We are then
left with e-poles proportional to squares of the color charges of the external partons. In
this section, we combined these remaining divergences with the ones from hard-collinear
limits and showed that all poles multiplying double-boosted matrix elements vanish, and
that poles multiplying single-boosted and elastic contributions vanish up to O(e™1).

We have done this by combining structures that emerge from virtual, soft, and collinear
singularities into finite operators such as It, or, where this has not been possible, we
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have used simple relationships between the e-expansions of the various operators. This
dramatically simplifies the cancellation of the singularities. As a result we are able to
demonstrate the cancellation of poles without resorting to excessive evaluations of multiple
singular terms, which would have been needed had we followed the approach of Refs [1, 60].

In order to investigate how the remaining O(e~!) color-uncorrelated poles cancel, we
need to consider the O(e~1) terms from Egs. (5.65) and (5.72), the triple-collinear and spin-

correlated terms ES\?) and ES\?) in Eq. (4.74), the term in the fourth line in Eq. (4.74), and the

contribution from the NLO Altarelli-Parisi kernel Isq(;) in the collinear renormalization of
parton distribution functions.?® Although it should be possible to organize the cancellation
of the remaining 1/e terms following what has been done for higher poles, it becomes much
more cumbersome to do so. For this reason, we simply note that the cancellation of the
remaining O(e~!) poles has been checked by means of a straightforward, but tedious,
algebraic computation. Everything that is needed to confirm this cancellation is provided
in the main body of this paper and the relevant appendices.

Having cancelled all the poles, we can take the e — 0 limit and obtain a finite result
for the NNLO contribution to the cross section d&%NLO for the process 1, +2; — X + Ng.
We present this result in the following section.

6 Final result

In this section we present a formula for the finite NNLO QCD contribution dc}g}qNLo to the
partonic cross section of the process 1, + 25 — X + Ng. This formula is the main result of
this paper. As explained in the preceding sections, we arrive at this result by considering
double-real, double-virtual, real-virtual and PDF-renormalization contributions to d&};gNLO
and manipulating them to remove all singularities without impacting the fully-differential
nature of the result. An important feature of our approach is the organization of the
subtraction terms into iterations of NLO-like structures, which allows us to ameliorate the
proliferation of subtraction terms that plagues NNLO calculations. As a result, the NNLO
remainder can be written in a very compact form.

We split d&ngLo into contributions with N + 2, N + 1 and N resolved final-state
partons (c.f. Eq. (4.11)) and write

dbgq "0 = doNi50 + donit + doy . (6.1)

The first term on the right-hand side is the finite, fully-regulated contribution given in

Eq. (4.15). The single-unresolved cross section d&%lfio can be found in Eq. (5.8). The

double-unresolved contribution dc}%NLO is obtained by combining the many different terms

calculated in the previous sections. As was explained there, it is convenient to write dc}%NLO

as the sum of double-boosted, single-boosted and elastic leading-order terms

doN"0 = do O + do O + do O (6.2)

25Gince we consider gluonic final states only, we need to remove the contribution of final state quarks
from Pq(;). The resulting expression If’(l)NNS is shown in Eq. (A.20).
a4,
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We now present each contribution separately, using several functions that we collect in
Appendix I. The double-boosted contribution is described by the very simple expression

2
25 dGJNE0 = [a2 (“)] (PO @ Fiam @ P©) (6.3)
™

where P(II\(IILO is the finite remainder of NLO splitting functions, and can be found in Eq. (1.3).
As expected, this contribution is independent of the multiplicity of the final state.

The expression for the single-boosted contribution is slightly more complex and corre-
sponds to

2
25 20300 = [ 5T {(pN0 6 (10 Fin]) 4 ([ i) PE0)
+ (PR S VI Fia) + (V5 Fi] @ P)
+ (P10 @ Fra) + (FLu ® Py 0

+(PMO @A) + (Fy @ 7351“)}} ,

Here, we remind the reader that Iéo) is the ¢ — 0 limit of the finite operator Irt(e).
Its explicit expression is reported in Eq. (A.66). The function WZ Hn’ﬁn, appearing in the
second line of Eq. (6.4), is given in Eq. (G.12), while the NNLO splitting function PgINLO
is reported in Eq. (L.5).

Finally, the elastic contribution reads

2
25 dgNNLO — [QQ(:)] {([Ii“ + 15T+ I - Fin)

N,
s ([P (@) 62 Wi 4 5@ W 4 W] - Fia) } (6.5)
=1

i [a;(:)} (I - F{3) + (SmnOmnFina (m, 1) s + (FE ) + (FIY).
In this equation ;2 = 1 if 7 is the final-state parton (i > 2) and 0 otherwise. In the first line
we have the combination of a double color-correlated contribution, a triple color-correlated
component, and a color-uncorrelated part. They are presented in Eq. (1.8), (1.9), and (I1.12)
respectively. In the second line of Eq. (6.5), the functions v"V, WZ Hn’ﬁn, W;n Infin 2 Wﬁi)
appear. They are given in Eqs (I.15), (G.12), (G.10) and (F.41). The constants 5§0) and
6; are reported in Eq. (I.16). The term <Smn@mnFLM(m,n)>§f; in Eq. (6.5) refers to the
finite remainder of the double-soft integrated subtraction term. It can be extracted from
Ref. [69], and its explicit expression is reported in Eq. (I.17). Finally, FS\I;Q and F% are
the process-dependent finite remainders of virtual amplitudes.

NNLO
qq
implement the finite remainder of NNLO QCD corrections to a process g — X + Ng in a

We claim that the above result for d& can be used, without further ado, to

computer code. In theory, this can be done for arbitrary N, but the practical realization of
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this idea will have to wait until finite remainders for two-loop amplitudes for such processes
become available.

Nevertheless, it is important to emphasize that the form of the final results is well-
suited for numerical implementation, in the sense that the parameter N that controls the
final state multiplicity only appears in relatively few places. Indeed, the splitting functions
that appear in the boosted contributions are universal and are determined only by the
flavor of the external partons and their energies. In the elastic contribution, the final
state multiplicity only affects the upper limit in the sum over partons, see e.g. Eqs (6.5),
(1.8), (I1.9) and (1.12). It follows that implementing the color-uncorrelated elastic terms in a
numerical code is also quite simple for any N. Perhaps the most complicated contributions,

(0)

from this point of view, are those containing color correlations, such as ITO . However, even
in this case a numerical implementation for a given N should be straightforward, using
e.g. the ideas of color ordering.

Results of the general computation reported here can be compared with those obtained
for specific values of N. The N = 0 case corresponds to the Drell-Yan process, and the
N =1 case to the gluonic contribution to the V + jet production. It is well-known that,
in both cases, the correlators of color-charge operators can be expressed through Casimir
operators. For example, in the case of ¢1go — V + g3, we find

Tl'ng%—CF, Tl'T3:T2'T3:—%. (66)
Using such expressions it is straightforward to replace all products of color-charge operators
in Egs. (6.3, 6.4, 6.5) with the corresponding Casimir operators. One can also easily check
that the partition functions defined for generic N turn into structures already used in
earlier computations. It follows from the definition in Eq. (B.10) that A = 1 for the

Drell-Yan process and

Al = DS , (6.7)
PL3+Plm+DPLn

for V + jet partitioning. Similarly, it is easy to see that w-partitions are the same as those
used in Ref. [1, 60] for N = 0 and Ref. [78] for N = 1.

We have reproduced the analytic results for the finite NNLO remainders for Drell-
Yan production that were reported in Ref. [60] starting from Eqs (6.3, 6.4, 6.5), and
setting N = 0. We have also checked that, upon setting N = 1, the general formulas
reproduce the results of a dedicated computation of the NNLO QCD corrections to the
process q@ — V + g that we performed earlier. Although this computation was also based
on the nested soft-collinear subtraction scheme, it was organized very differently, with
an emphasis on separately integrating all the different subtraction terms over unresolved
phase spaces before combining and simplifying them. The two approaches are sufficiently
independent to provide an important check of the general-N formula that we reported in
this section.

7 Conclusions

In this paper, we have shown how to use the nested soft-collinear subtraction scheme to
describe the production of a generic color-singlet state accompanied by an arbitrary number
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of gluons in quark-antiquark annihilation at NNLO QCD. We have identified recurring
structures associated with the sums of single-soft, single-collinear and one-loop virtual
corrections. We have also shown that by organizing the calculation in such a way that
the iterative nature of these finite contributions is fully exposed, much of the complexity
of NNLO computations related to an interplay of soft and collinear singularities can be
ameliorated. This has allowed us to demonstrate the cancellation of all color-correlated
poles, as well as color-uncorrelated poles through O(¢~?), in a straightforward manner.
We have also confirmed the cancellation of the remaining e-poles, and obtained compact
expressions for the finite subtraction terms, which we have checked, where possible, against
previous results and independent calculations. To the best of our knowledge, it is the first
time that such expressions have been presented for the production of an arbitrary number
of gluons at a hadron collider.?%

Although we considered a ¢q initial state in this paper, many of our arguments apply
to gg annihilation as well; the only modifications required for this channel would be the
use of gluon splitting functions in place of the quark ones as well as the necessary changes
in the color charges where appropriate. These modifications are clearly minor and do not
impact the logic of the computation that we report in this paper.

The results of this study provide a necessary step towards the complete generalization
of the nested soft-collinear subtraction scheme to arbitrary initial and final states. Indeed,
on the one hand, the gluonic final state ensures that the maximal number of infrared and
collinear singularities are present, so processes with final state quarks should have a simpler
singularity structure. On the other hand, we relied on the symmetries of the final state and
particular features of the initial state, and this will not be possible if generic processes are
considered. Although nothing will change as a matter of principle, the combinatorics of
collinear limits will become more complicated. We look forward to addressing these issues
in future studies.
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A Constants, angular integrals, splitting functions, anomalous dimen-
sions and fundamental operators

In this section we provide a collection of formulas that are used throughout the main text

of this paper. They include:
(i) various constants in Appendix A.1;
(ii) angular integrals in Appendix A.2;
(iii) the relevant Altarelli-Parisi splitting functions in Appendix A.3;
(iv) generalized splitting functions and anomalous dimensions in Appendix A.4;

(v) operators arising from soft and collinear limits as well as from virtual corrections,
and useful relations between them in Appendix A.5;

A.1 TUseful constants

Here we summarize the various constants that we have introduced throughout the manuscript.
First we discuss the notations related to color. Following Ref. [79], we denote the color-
charge operators with T';; squares of color-charge operators are the Casimir operators of
the corresponding representations of SU(3). They read Tg = T?j =Cp, Tg = Cy4, where
Cr = (N?—-1)/(2N.), Ca = N., and N, = 3 is the number of colors. Quark and gluon
anomalous dimensions read 74 = 3/2CF and vy = 11/6 C4 — 2/3Tgny, where Tp = 1/2
and ny is the number of massless quark flavors.

We renormalize the strong coupling in the MS scheme, i.e.

2 2
2 _ 26,2 |1 — 0‘3(#)@ as () By b1 3 A1
s = g5 Selt [ 5 ¢ T\ o 2 "9 ) TOW@)| (A1)
where S, = (47)“e“’® and
11 2 17 5
Bo = ECA = 3Tans =1 B = ECZ — §CATW — CpTgny . (A.2)

We note that we only consider gluons in the final state, so that ny is set to zero throughout
this paper. Furthermore, it is convenient to define the following coupling

o] = = T o (A.3)
Then, combining Eqgs. (A.1) and (A.3), we find
I'(l—e
a2y = Srlae] = 1+ 0(a)] - (A4)
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In the main text of this paper we encounter a number of angular integrals, for which
we introduce the following normalization constants:

L(1—€)T(1+ 2€) 72
N(b,d) — -1 n o2 3
¢ T(1+e) T +ole),
(14 2¢)T'(1 — 2¢) 1
_ 92¢ _ L2/ 2 2 3
Njn(€) =2 T orl o — 1+ 2¢log2 + e (7* +4log®2) + O(¢’),  (A.5)
Noe) = — (1 —e)T(1 — 2e) N 2%(1—¢) _ 1+ 0.

I'(1 - 3¢) (1 — 2¢)
We note that all the above normalization constants are equal to one to zeroth order in e.
To describe virtual corrections we have used the convention of Ref. [70, 74]

N {—l—l 1 and j are both incoming or outgoing ,
ij =

0 otherwise ,

(A.6)
+1 4 and j are both incoming or outgoing ,
kij = (A — Aim — Ajm) = ,
—1 otherwise .
For double-virtual amplitudes we have used the following constants [70]
2 1
K= (-1 CA—*O RIS
18 6 9 (A7)
e VET(1 — 2¢) w2, T 4 4 '
=2 v oy 24 .
Ce T — o +4e +3C36 + O(€)
To describe integrated double-soft limits (see Eq. (4.90)), we have introduced
7 32 217 137 11¢3
=14 (= )+ (S0 — = log2 —2210g?2 + —2 ) ¢
c1(e) +(6 9>e (27 o o8 og” 2+ 2)6,
2 A8
02(6):1+%62, (4.8)
c3(€) = 4log 2 + 8elog?2 .
We emphasize that c; 23 do not contain powers of € beyond those shown above.
To compute soft and collinear limits of the real-virtual contribution Fry, we used
[3(1+¢6) (1 —¢) 2,
Ak (e) = =1-—&+0(
()= T 120 12(1 = 26) 3¢ T0), (A9)
I2(1—2)0(1 +e) 5 '
e(€) T(1 - 3¢) +0(€)
We also have defined (see Eq. (4.125))
131 72
) = (_72 + 7;) +0(e), %) =1log2+ Ole) . (A.10)
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When combining the unboosted terms involving color correlations (see Section 5.3), we
require the following combinations of some of the above constants

e €YE

RN ()
O <Cl(€) . AK(G) _ 22+265gC’A(6)> _K = 0(6) )

€2 €2

¢

(CQ(E) +ecs(e) — 22+2665§0(e)) =14 0(e?),
(A.11)

A.2 A collection of simple angular integrals

Throughout the manuscript we make use of various integrals over the angles of unresolved
gluons. We summarize some of the useful formulas here. First, we define the normalized
element of the solid angle in (d — 1)- and (d — 2)-dimensions

(d-1) (d—2)
-1y _ 48, (d-2) — 48,
Then, we find
_ _ 1 (4n)°
(d-2)] — (d—2)y_ 1 _4m)°
[Q | = /[dQ ] ST o) (A.13)
Furthermore, we use
/[ngdl)] pij 217 K.
Q2] piapja e M R
S N SR R L ) (A14)
Q@] pia € I(1—2¢)° '
/ [dod=) (&),e 1 272 T(1-T(1 - 2e)
[QE-2)] \ 4 Pia  2€ ['(1 - 3e¢) ’
where K;; is given by (cf. Eq. (3.14))
F2(1 - 6) 1+e€
Ki]’ = —_———— Fl(l,l,lfe,lfnij) . (A15)

T(1—2¢) " 2

Other integrals that we require involve the collinear limits acting on the angular phase
space measure; they can be computed using the phase space parametrization described in
Appendix E. Here we just give two examples that appear frequently

Co-ny L 27l (4n)f
/[Cw e ]pij B € [871'2 NG e)} ’ (A.16)
and
q0@- Loy <My _ 171 (1)
/[Cw de ]Pz‘j @<771] < 2 ) € [87r2 NG e)}pik ’ (A17)
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A.3 Altarelli-Parisi splitting functions

In this section we report the Altarelli-Parisi splitting functions that we use in this paper.
The only leading order splitting function that we require reads

PO(z) = Cp [QDO(Z) —(14+2)+ 25(1 - z)] , (A.18)

where

Dp(z) = [logz(i;'z)] . (A.19)

At NLO, we need the non-singlet splitting function from which the contribution of identical
quarks has been subtracted, which reads

) 2 2 1 2

qq;NS 6 9 18 9 3
2+ 1122 1+ 22 17 11
glogz—ihg(l—z)—ké(l—z) —7+—7T2—3C3
6(1 —2) 1—=z 24 18
1+ 22 1+ 322 (A.20)
+012:[3—2z—21_z log(l—z)logz+2logz+mlog2z
14 22 3 w2
io(1 — — - — — .
+21_ZL12( z)+0(1 z)<8 2+6C3>]

A.4 Generalized splittings and anomalous dimensions
A.4.1 Tree-level
We start by introducing the two tree-level splitting functions needed throughout the paper

1+ 22
Py(z) = CF[l—z e(lz)} ,
) (A.21)
—z z
P (z) = 2Cy [—g’“’ (z t1o z> +2(1 —€)z(1 — 2)&" K" | ,
where x// is a transverse momentum defined as
kM
R = ——, KE = —1. (A.22)
/_ki
We also need the gluon spin-averaged splitting function
z 1—-2
Pyy(2) = 204 [1 — + +2(1—2)| . (A.23)

To describe the spin-correlated component arising from sectors (b) and (d) we have intro-
duced the functions

Po(z) =4Ca(1—€)z (1 —2) , (A.24)
P (2) =2Ca2(1 — 2)(1 — 2€) (A.25)
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1—
P9<3>(z):2CA< 4 Z), (A.26)

1—=z2 z

1—=2 z
+

1—=2

Pyg(z,€) = P (2) + %pg@(z) =20, ( +2(1-2)(1— e)> . (A2

We also require the following integral of the soft-subtracted function Py, over z

1
7?( ),9—>gg /dz _ne(l - Z)_ke f(2) ng(z)]
0 (A.28)
- ekeLi
+ QCATf(l) ,

where S, stands for the soft z — 1 limit and L; = log(Fmax/F;). We also define the
following integrals over z
1 1

PL(2) P5"(2)
22 22,r 99
dz ——— ’ =— [dz ——%- A.29
Tl.g—g9 = 0/ A2 Theoe 0/ -2 (A.29)
as well as integrals over z and the energy of the unresolved parton
2Emax 5
N&D) dE g
G0 =5 Bl [ Eﬂl_/d441a12%ﬂa,
Emax -
2Emax 5
57" (€) = L . Py (2)
g &= max E1+46 z Z ‘e 9 \Z)
P e (A.30)
1 N e dEm 2% pl
5g (6) = 92 Emeax E1+45 dZ[ (1 - z)]i ‘ ng(z) )
Emax 1_§
2Emax

N ba)
bq(e) = 5 o / E1+46 /dz (1—2)] 6(P (z,e)+6Pg§(z)),

max

where we have defined £ = Epax/En.
For the configurations where a final state gluon becomes collinear to an initial state

parton 1,, we require convolutions of the type

1
/wwmammmzjwkvsﬁu—a“mwﬂ
0 (A.31)

where k = 2 at NLO and k£ = 4 at NNLO. It is worth rewriting the above splitting function

as
k

2
PE (2, Br) =T (1 — 2) + PE-een (2, By) (A.32)

() o
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with

NEy

i —2¢ 12 ) —keL
(k) 2F; I'“(1—e) ol—e 1
r) = ( ’ ) TG 39 Yo+ 200 , (A.33)
: 2 2 : g
. 2B\ 2 T2(1 - ¢ . .
e = |(22) g | [FA@ e Bee] s

Here Pég) is the Altarelli-Parisi splitting function given in Eq. (A.18), while Pélé)’ﬁn is an

O(€%) function that can be obtained by comparing Egs. (A.31) and (A.34), namely

Pl = o3 CLE g )y pm va-a] . )
n=1 ’
with
Pres(z) = —[(1+2) +e(1—2)] . (A.36)

If the unresolved final state gluon goes collinear to another final state parton 74, the gen-
eralized gluon final-state anomalous dimension reads

k
—2€ 12 2
%) — 2E; I'“(1—e) ok .
Lig = (,u> m Vzg—sg9(€ Li) i€ [3,Np, (A.37)
where ’yf( ).g—rgq 18 defined in Eq. (3.20) and repeated in Eq. (A.28). Throughout the paper,
we use

pgn = pREn Pl p@E =T (A.38)
to lighten the notation.

A.4.2 One-loop

When computing the real-virtual contributions, one finds a convolution similar to the one
in Eq. (A.31) for the case when a final-state gluon is collinear to initial state parton 1,. It
reads

1

/deéfi)’lL(z,El)g(Z) =

0

o _

a: |- s - 2 riko)
(A.39)
1— e—(2+k)eL1
+ 2172 ECEVREE

The initial-state one-loop splitting function for a ¢ — ¢ splitting is given by [75, 76, 80]

mcot(me)d(1 — z)} g(z) .

Ca |T2(1 = T2(1 +¢) _ > .
1L — 7‘4 o € 2n .
Pui®) =7 |Fa —zora 120 ¢ ) +2nzle Lign (1 — 2)
X (1 —2)"“Pyq(z) + @( ) Pyq(2) Z €"Lip(1— 2) (A.40)
€
n=1
z+€(l—2) .
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k),1L
a

We rewrite PC(L in analogy with Eq. (A.32), getting

k
2B\ " T2(1 - c
< 1) U= pwarg, g = AT 5(1 - 2) I, )] (A1)

w (1 —2e) aa €2 [ le
where
~2€ 12 K —(2+k)eLr
(k),1L 2F, (1 —e) s l—e cos(me)
eIl _ W+ 2T , .
La ( i > I'(1 —2e¢) Yot 2 (24 k) 7rsin(mf) (A.42)
P(k),m,gen( ) = 2B, —2¢ [‘2(1 —€) k [_ ]3(0)( )+ ,P(k),lL,ﬁn( )} (A.43)
p z,by) = p T —20) e (2) + €Pe 2)| . )
In Eq. (A.43), the function P g fnite in € and can be extracted from Refs [75, 76, 80].

For the final state collinear limits, the equivalent of Eq. (A.37) is the generalized gluon
one-loop, final-state anomalous dimension

—2¢ 19 k 9
()AL _ | (2E; I?(1—¢)| € cos(me) spr1)iL .
Fiag o ( m > 1"(1 _ 26) Ca Vz,9—99 (E, Lz) s (S [3, Np] s (A44)
with

1
e ) = [ds (1= 8 [0 = 2) 0o Pk
0

f(2).9—99
(A.45)
1 — e*(2+k’)€Li T
- 204 1).
Ca (24+ k)  €e%sin(me) 1)
The above formula requires the following splitting function
+ b(2) ~ ng—Ca(l—e)
PIL — P CL(Z) phew )
where
a(z)=(1-2)Fi(1-=2),
- 2 (A.47)
b(z) = - + 2Fi(2) ,
€
with
2
Fi(z)= = [ ST = T+ )2 (1 — 2)  — 14 (1 — 2)%Fi(e,e,1 + ¢, z)] . (A48)
and
=~ ew 1—22(1—z)e
ng (Z) = —CA |:1(—6):| . (A49)
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A.5 Definitions of the main operators, commutators, and expansions

Throughout this paper we have used virtual, soft, and collinear operators to encode singu-
larities, and have made use of various relations between them. For the reader’s convenience
we list these definitions and relations here.

We begin with Catani’s operator [70]

Np

sing 2 €
Z Vz 2(6) TZT] o 6271')\7;]'6 , (A50)
G) PPy

1 eF
T 2T(1—¢)

I (e)

where the relevant constants are defined in Subsection A.1. We find it convenient to modify
the normalization slightly, yielding

Np

_ 1 <= VI8(¢) w2\ i
Ii(e) =) T;T; imhije A51
1) 26T} ]<2pi'pj> o (A.51)
1)

from which we define the operators for amplitudes-squared

Ti(e) £T1(e) .

Ii(e) = : . Iv(e)=Ta(e) + 11 (e) = 2L, (e) . (A.52)
The Laurent expansion for Iy (e) reads
Iy(e) = Z e"I\(,n) , (A.53)
where
Ny Ny N,
-2 -1
Y=-512, 1V ="T.TiL; - i (A.54)
i=1 (i5) =1

The soft operator is equal to

N,
(2Ema></ﬁ‘)_2€ - —e
Is(e) = -5 —— > 0 Kij (T - Ty) (A.55)
(i5)
where Kj; is defined in Eq. (3.14). The Laurent expansion of Ig reads
Is(e)= > 1", (A.56)
n=—2

and we require the following terms in the above expansion

NP
(=2) _ 2
Iy =) T,
=1
N,

p NP
IV = T Tjlogniy — 2Limax Y T?
(i) i=1
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NP
1 :
1 = -1, [2Lmax log mi; + 5 log® 5 + Lia(1 — mﬂ]
(i)
7'1'2 N
- [2L3nax — 6] 17, (A.57)
=1
Np 1
Iél) = Z TzT] |:2L?nax log Nij + <Lmax - 5 log(l - 7713)) 10g2 ig
(i)

1 . . .
+5 10g® ij 4 2Lmax Liz(1 — ni;) — Lis(1 — ;) — Ll:%(?h‘j)]

4 2 e
— | Lyax | = L2, — — > T
|: a <3 max 3 ) +3C3:| pa 70

where Lyax = 10g(2Fmax/1t).
The computation of the soft contributions requires a variant of the soft operator,

namely

7 _ (2EmaX/M)74€
Ig(2¢) = T2

NP
>y K (Ti - Ty) (A.58)
(5)
where I?ij is defined in Eq. (4.92). The following property relates Is and Ig

Ig(2€) = Is(2€) + O(e) . (A.59)
We also require an e-expansion for Is. Given Eq. (A.59), the first three coefficients jfs(n)
with n = —2,—1,0 can be directly obtained from those in Eq. (A.57), up to a rescaling by

factors of 1/4,1/2 and 1 respectively. The coefficient at O(e) reads
7 _ ZT.,T. 2L —§10g(1—77--) 10g277"+110g377"
S L max = o ij i Ty i

2
™ .
+ < + 4L12nax - L12(1 - 77”)) log Nij

6 (A.60)
+ 4 Lmax Liz(1 — m;5) — Lis(1 — ni5) — 3Li3(77¢j)}
+ [2 Liax <7r2 — 4L > - 7@“3] %Tz :
3 - i=1 Z
Moving to collinear limits, we define the hard-collinear operator as
N, k
189(e) = i 2F’if) : (A.61)
i=1

where I'") is given in Eq. (A.33) if i = 1,2 and in Eq. (A.37) if i € [3,N,]. To treat the
hard—collinear limits of the real-virtual matrix element we have introduced

- Yo pIL

Io(2e) = 28 (A.62)

< 2€
=1
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where FZH}Z is given in Eq. (A.42) if i = 1,2 and in Eq. (A.44) if i € [3, Np]. We note that
the following relations hold

To(2¢) = Io(2¢) + O(e)

(A.63)
1(6) = Ie(26) + O() .
Furthermore, we have used the e-finite operator It defined as
It(e) = Iv(e) + Is(e) + Ic(e) , (A.64)
to simplify the NLO and NNLO calculations. Its expansion in € reads
oo
=3, (A.65)
n=0
with expansion coefficients given by
p
0 1 1 27,
Ir%) = — ZTz . Tj |: <2Lmax + 5 log 77@') log Nij — §L1J (L” + TQZ>
. w2
+ Lia(1 —m5) + 2)\1'3}
Np 2 2
~ m 2; 67 11~ 27
+2T%[2L?_ T1L2022 (9 3Li_? 0i2 ;
(1) o L3 3 m
IT = ZTZ . Tj |:6 (Lz] + log nij) + 2L max IOg Mij — 7)\”[/1] (A66)

(45)

1 . .
+ (Lmax -3 log(1 — m’j)) 10g” 0j + 2Lmax Liz(1 — m;;) — Lis(ns;)

~Lia(1 =) + g (£~ 7 )|

2 ~ 2 _ 808 134~
—|—ZT2[—L3 % —3@+<2L$—2>%9-+<27 5 Li

~ 4~ 55
+ ?L? + 72 <3Li - 36> - 16C3> 91'2] ;
where 0;5 = 1 if i > 2 and 0 otherwise, and ;5 = 1 — ;9.

While discussing the rearrangement of the single-unresolved terms (cf. Section 5.1),
we have introduced a variant of the virtual, soft and collinear operators, valid in the case
of N + 1 final-state partons. In particular, we have defined

Np+1 =Np+1 N,+1 T
e =1"" 9+ (0" 0) (A.67)
with le\]pH defined as in Eq. (A.51), up to replacing N, — N, + 1. Similarly, we have also
used N
N,+1 2En/1u) "% & _.
I3 (Ey) = —% > ni K (Ti-Ty) (A.68)

€

(49)
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and
Np+1

Icp (Em) = Z sz
i=1

, (A.69)

EmaxHE‘m

where one needs to set Fyax — Fiy in the definition of T'; ¢, see Egs. (3.19, 3.22).
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B Partitions at NLO and NNLO for an arbitrary number of final-state
particles

To treat the infrared singularities of a process with a large number of final state particles, we
require partitions that separate resolved and potentially unresolved partons. To construct
them, we consider a process that involves NN,, partons at leading order and an arbitrary
colorless final state

fi(p1) + fa(p2) — f3(p3) + ...+ fn,(pN,) + X . (B.1)

At next-to-leading order, we need to add another particle to the final state to describe
the real-emission process. We denote the corresponding list of final-state partons in this
case as Y1 = {f3, fa,-, [N, fN,41}, where N = N, — 2 is the number of final-state
partons at leading order.

In principle, any of these final state partons can become unresolved. Suppose we want
to describe a situation when this happens with a parton ¢. We then write the set of N 41

partons as

bnir = {6, (B.2)

where 1/)](\? = t¥n+1/{i} and introduce the function

d® = H Dk, L H (1 —cosby) , (B.3)
ke 1,mep?
l<m
where py, | is the transverse momentum of parton k2" These functions are used to construct
the partitions
4@
S dl)

JEYN+1

A = (B.4)

where i € ¥y11. It follows from their definition that the functions A provide a partition

> oAb =1, (B.5)

1€EYN 11

of unity

It is straightforward to determine the action of soft and collinear operators on the
partition functions. In the soft limit of parton k, described by the operator Sj, we find

S AW =g, . (B.6)

In the limit where partons [ and m become collinear, we have

0, ILm#£1i,
ClmA(Z) =941, l=1, me{l,2}, <B7)
Zi;m l:i')mez/}Nv

2"We note that in the case of only one hard jet, k, d™ reduces to D, L
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where z; , = E;/(E; + Ey,) and we assumed that partons 1 and 2 are in the initial state.
The limits obtained by the interchange of [ and m assignments follow naturally from the
above formulas and are not shown for this reason.

A new element required for NNLO computations is the double-real emission process.
To construct the corresponding partition functions, we consider an extended set of final-
state partons

YNt2 = {f3; fa, s Ny 415 FNp 12} - (B.8)

Two of these final-state partons can become unresolved and we assume that this happens
with partons ¢ and j. We then write ¥n12 = {(3, ), @Z)%J )}, define functions d(*) as follows

() — H DL H (1 —cosby) , (B.9)

key ) z,rréewﬁé”
<m

and use them to construct the NNLO partitions
A7)
Z dim) ’

(lm)G?,DNJrQ

Al — (B.10)

Similar to the NLO case the functions A provide partition of unity

> AW =1, (B.11)

(if) €PN 42

where the sum is over unordered pairs (7).

For the NNLO computation, we require the double-soft (Sj,,), the single-soft (S;), the
collinear (Cj;) and the triple-collinear (Cjy ) limits of the partition functions AU9) | The
double-soft limit reads

St A = 80351 (1my (B.12)

where the Kronecker delta indicates that the unordered pair (ij) should coincide with the
unordered pair (Im) for this limit to be different from zero. The single-soft limit is

0, L#4, L#7,
SEAW) = LAG) =, (B.13)
AD 1=,

where A® and AU in the above formulas are NLO partitions constructed for sets YNyl =

2 T/J%j)} and Yn41 = {1, w%j )}, respectively.
Next, we consider the collinear limits. We find

0, l#14,7, k#14,7,
AU 1e€{1,2}, ke {i,j},
A kY = {4, )
AV I =i k£,

Cie Al = (B.14)
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where [ij] represents the “clustered particle” whose four-momentum is given by Plij) =
(14 Ej/E;)p; and the function A7) is constructed from the set ¢ny1 = {[ij],q/)](éj)}. In
the final line of Eq. (B.14), the A-function is constructed using the transverse momentum
of the clustered particle [kl].

It is instructive to explain how the last formula in Eq. (B.14) is derived, since the other
formulas in that equation can be computed in a similar way. To describe the collinear i||k
limit, where k is a final state particle, we write A a5 follows

A = 4 . (B.15)

d(i3) 4- d(@k) 4 S qim) 4 qki) 4 57 dlkm) 4 5~ g(mn)
m#k,j mi,J m,n#i,k

We now study what happens to the various entries in the above formula when the relevant
limit is taken. First, we note that the numerator d) does not contain 7 but contains k.
We replace py  with p, ;) and write the resulting expression as

B g0 — a0 (B.16)

2 d(d) —
Ca Ej + E;

where d\) is constructed using the list {7, w%QQ(k — [ki])}. The various entries in the
denominator of Eq. (B.15) behave as follows

Cyp d® = gk Cype d*9) = 2, d\9) |
N N . N (B.17)
Cir Y d™ =z, > d™, Cir Y d¥™ =z Y am.
m#k,j m#£k,j m#£i,j m#£i,j
Therefore
g (4) ,
Cip AW = 2 ; d = 2, AU) (B.18)

A a0 + 5, dom

with AU) being a NLO partition where partons i and k that appear in the original list of
partons are clustered together.

Finally, formulas for triple-collinear limits can be derived in a similar way. We find
that the only non-vanishing limits are

(1, ke {12},
Chij A = g 1.2} (B.19)
Zkﬂ‘jA(U) , ke {3,} ,

where zj, ;; = E/(Ey + E; + Ej).

In addition to A-partitions, which allow us to separate resolved and potentially unre-
solved partons, we require angular partition functions w. These functions are supposed to
define possible collinear singular directions between unresolved partons. Below we give an
example of how such functions can be designed.
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We begin with the construction of these angular partition functions at NLO. To this
end, we consider a situation where parton m is potentially unresolved, so that ¥y =
{m, wgl)}. We define the quantities

gkl = Py (B.20)
and use them to write the function w™ as
W™ = nggjm . e, (B.21)
jevly
Since
Z wh =1, Crom W™ = 65 (B.22)

the functions w™ possess the required properties to be used as angular partitions in NLO
computations.

We continue with the discussion of the NNLO case, where partons m and n are poten-
tially unresolved and the remaining N, hard partons are described by the set w(]\lfm). We
proceed as follows. First, we employ the NLO partitions to construct a partition of unity
in the following way

NP
=) W™ + Z 8ij W™ (B.23)
ij=1 ij=1
1#]
The two sums on the right-hand side are almost the right partitions for double- and triple-
collinear limits except for the fact that the collinear m||n singularity is present in both
terms of this formula. However, we would like to move it into the triple-collinear partition.
To achieve this, we introduce yet another partition of unity which involves pun, pim and

pjn only and write
1= Pmn Pim + Pjn

+ ) B.24
dmnij dmnij ( )
where
dmm‘j = Pmn + Pim + Pjn - (B'25)
We now employ these expressions to define the double-collinear partition
WM = (™ Prn_ , I (B.26)
mnij
and the triple-collinear partition
i Pjm w™ oM Pjin W n
wmz,m wmlwm +wm . B27
Z Z (B27)
175% J#z
It is easy to check that the following identity holds
NP NP
L= W™ 4y min (B.28)
i,j=1 i=1
1#]
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The partitions constructed in Eqgs. (B.26) and (B.27) satisfy all the properties that we
need for NNLO QCD computations. In particular, each partition selects a minimal number
of collinear singularities and satisfies the following relations

Cimw™M = M0 = iy W oming _oming g mi,nj
im m||i im0 ) Cinw =Wy = 1_1m w ,
pin—0
Cmnwmz,n] =0y WM iy oM ’
m||n pmnﬂo
i . ming _ s v B.29
Cim Cmnwmz’n] = 6ij Cim Cmn ) CJ“ Cm“w - 51] CJ“ Cm“ ’ ( )
) L VALV A e )
Cim O Wkl — 5, 815 Crmi Caj Cim Cinw = 0ij Cim Cin -

mjnj
Cmn,iw T = 5ij Cmn,i )

We note that these relations are important for simplifying the required subtraction terms.
The partitions in Eqgs (B.26) and (B.27) correspond to those defined in Eq. (B.14) in Ref. [1]
when we restrict them to the case of color-singlet production, i.e. IV, = 2.
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C Details of the NLO calculation

The goal of this appendix is to provide further details about the NLO computation de-
scribed in Section 3. In particular, we would like to show that the operator It (€) introduced
in Eq. (3.2) does not contain poles in €. According to Eq. (3.2), I1(e) is given by a sum of
three terms that describe virtual, soft and hard-collinear contributions.

We begin with the e-expansion of the operator Ig defined in Eq. (3.12). We report its
definition here for convenience

—2¢ Np
Is(e) = —(2E1ma:2/'u) ZW;KU (TZTJ) . (Cl)

()
The function K;; is defined in Egs. (3.14). We note that its expansion in e reads

71_2

Kij=1+KJE+0(@), K2 =Liy(l— ;) - = (C.2)

Although it is straightforward to construct the expansion of Ig, arranging it in a particular
way is helpful for an efficient demonstration of the cancellations of infrared poles.

We note that the [-operators include quantities raised to e-dependent powers. For

example, in the case of Ig, there are factors (2Epax/p) ¢ and 1717. The expansion of such

quantities in e starts with 1 and it is convenient to make this explicit. To this end, we

introduce the function
—ke __ 1

fio(z) = ——. (C.3)

€
such that fy(x) ~ O(?) as e — 0. We then use this function to write Ig as

(Is(e) - Fum) = — ;2 <[1 + efQ(QEmax/:u)}

Np (C.4)
X Z [1 + ef1(nij) + 62Ki(j2)} (T;-Ty)- FLM> ;
(i5)

where O(e) terms have been neglected. Since we only need terms through O(e), we can
simplify the above equation further. We find

(I5(e)- Fuan) = - 12% ([1+ ef2(2Brae/ )] (T T5) - Fiae)
(47)

CSA A0 o
%< W2 (1) FLM> (C.5)

) (gp; < [f1<77ij)f2(2EmaX/M> + K@'(J'Q)] (Ti-Ty)- FLM> '
ij

Next, we note that in the first term on the right-hand side in Eq. (C.5), only the color
charge operators depend on the summation indices ¢ and j. For this reason, the summation
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over one of the indices can be performed using the color conservation condition

> TpM).=0. (C.6)
It follows that
Np
> MIT; - Tj M) = —TF M, (C.7)
J#

and we obtain

(Is(e) - Fiag) = Z < [1 Fefsf 2Emax/,u)} :;2 FLM>

_ zp: <f1(l71]) (Ti . Tj) . FLM> (C.S)
(ij)

_Z<[f1 i) f2(2Emax/ 1) + )] (Ti-Tj): FLM> '
(4)

It is seen from the above equation that the residue of the 1/¢? pole is proportional to the
sum of the Casimir factors T'?. We recall that the infrared poles of the one-loop amplitude
described by Catani’s function exhibit a similar feature. The 1/¢ pole in the second line of
Eq. (C.8) contains color correlations, while the terms in the third line are e-finite.

We turn to the virtual corrections. We have introduced the operator Iy (€) in Eq. (3.31),
and we display it here for convenience

_ T € <t € - c _1 p VSlng(E) :u2 eeiTr)\ije
o =T+ 1@, Ta=3 3 @ 7)) (5 ) @™ ©9

The quantities \;; and V; 8(¢) are defined in Eq. (3.29). Expanding in €, we find

Np sing c 7T2
(Iv(e) - Fom) = Z ViTQ( )<[1 +efi(sig/u?) — ?)\ijez + 0(63)}

(i5) i

x (T; - T;) - FLM> .

(C.10)

In the first term on the right-hand side of Eq. (C.10), we can use color conservation to sum
over the index j. Doing so allows us to write the virtual contributions as follows

Np

(Iv(e)- Fim) =~ [1§+7€l] (Fim) Z<fl calt) Tz"Tj)'FLM>

€
i=1 (i5)

2
+ Zl<[Tz filsij/w?) — 7; )\z‘j} (Tz"Tj)'FLM> :
7,]
G

(C.11)
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where we have dropped all terms beyond O(e"). Since f,,(z) ~ O(e®), poles in the color-
correlated structures appear only at O(e~1), while all terms in the last line are finite.

Comparing Eqs. (C.8) and (C.11), we observe that the O(¢~2) poles cancel among
these two contributions. Furthermore, we note that the function fi(s;;/u?) in Eq. (C.11)
can be written as

fi(sii/i®) = fi(nij) + LQEi/p) + fL(2E;/p) + e gij - (C.12)

The first term on the right-hand side above is the function that appears in the soft con-
tribution Ig, the next two terms depend on one of the two indices ¢ or j, and the last
term

9ij = [L(2Ei/ ) f1(2E; /1) + fL(4EiE;/u®) fi(mij) (C.13)

is O(e"). Thus we can further simplify the expression for Iy by making use of color
conservation. We find

i <f1<2Ei/u> + f1(2E;/n)

6 (T ) Fin ) = =230 00 (RCE/n) Fi) - (C19)
(i) =1

Upon combining soft and virtual I-operators, we obtain the following result

<[Iv(6) + Is(e)] . FLM>

— ]:pl <[1;2 (f2(2Emax/u) - 2f1(2Ei/N)) - ﬂ FLM> +O() (C.15)
__ % <(2L1;2 + Z) FLM> +0(),
=1

where we substituted the expansion of f1 2(x) in € and used L; = log(Emax/E;). The above
equation implies that the e-divergences proportional to correlators of color charges cancel
in the sum of the virtual and soft functions, Iy and Ig.

To understand the cancellation of the remaining poles, we need to combine the above
result with the operator I¢(e) defined in Eq. (3.27). We repeat its definition here for

convenience
NP

Io(e)=> Liti | (C.16)

} €
=1

The generalized collinear anomalous dimension I'; , that appears in the above equation

can be found in Eq. (3.22). Expanding it in powers of €, we find

Lif,=%+2T;Li+0(e), i=1,..,N,, (C.17)
so that I¢(€) becomes

Np T2

Ie(e) =Y <2Liz + D +O(L) . (C.18)

. €
i=1
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Comparing this result with Eq. (C.15), we conclude that the following combination of
I-operators

<IT(6) . FLM> = <[Iv(6) + Is(E) + Ic(e)] . FLM> s (Clg)
is finite, as stated in the main text. Finally, we note that the cancellation between the
initial-state collinear singularities and the PDF's renormalization has been discussed in

detail in Section 3.
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D Partitions and sectors for the NINLO collinear limits

In Section 4 we defined the soft-subtracted double-real contribution YXrg, and we discussed
the extraction of its collinear singularities. To do so, we first split the angular phase space
into partitions using the functions w™ ™ defined in Appendix B, and then further split the

triple-collinear angular partitions into sectors using

0 =0 (< ) 0 = © (nim < 2*) .
() Nim () (D-1)
0 :@<7<77m<7hm) s 0 = 9(7<771m<77m) .
It follows that
0@ + 90 190 4 gd =1 (D.2)

A parametrization of the angular phase space that naturally achieves this sectoring is given
in Ref. [20] and is detailed in Appendix E.1. This procedure ensures that each partition
and sector contains the minimal number of singular collinear limits. We then apply the
appropriate collinear operators and write X gr as the sum of four distinct contributions

ERR—ZE =

where the four quantities €2; provide the partition of unity

<5mns Q; A ©, Frar(m, n)) (D.3)

M’“

d =1 (D.4)
i=1
They read (cf. Refs. [1, 60, 61])
NP
= Z Cimcjn [dpm] [dpn} W™
(i5)
NP
+ > [Cint® + T ® + Cin8) + T [dp][dpa] T 0™, (D.5)
i=1
Np
Qo = Z [aine(a) + 6mn0(b) + 6ime(c) + 6mt19(0l):| [dpm] [dpn] Cmn,i W™t s (D'G)
i=1
NP
— Y CjnCim|dpm] [dpa] 0™ | (D.7)
(i5)
Np

Q= Z [Cim[dpm] + Cjn[dpn]] wmi,nj
(i5)

Np
£ [Cinb @ + Cund® + Cin ) + Ca0)] [ dpa] ™ (D.8)
=1
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where we have introduced the triple-collinear operator Cyn;, which extracts the singular
behavior in the limit pjm ~ pin ~ pmn — 0. We note that in the above definitions of §2;,
[dpm] and [dp,] are phase-space elements for partons m and n, and that they appear to the
right of the single collinear operators (Cim, Cimn, etc.) but to the left of the triple-collinear
operators Cmp ;. Therefore, the single-collinear operators act on the phase-space elements,
while the triple-collinear operators do not [60]. This allows us to use the results of Ref. [81]
for Q.
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E Phase-space parametrization and collinear limits

E.1 Phase-space parametrizations for unresolved partons

In this subsection we describe phase-space parametrizations for two unresolved partons that
naturally achieve the angular sectoring required for NNLO computations [20]. We recall
that there are two distinct kinematic configurations that require different parametrizations.
The first is a triple-collinear configuration which requires a genuine NNLO parametrization
to describe strongly-ordered collinear limits. The second is the case where the two partons
are emitted by different hard legs and can be described by two independent NLO-like
parametrizations.

In both cases, we begin by separating the energy and the angular parts of the phase
space and write

[Apu][dpa] = (B BL2) (AE, EL2)[d05 V] (E.1)
where
(d-1) (d=1)1110(d=1) (-1, _ dof"Y
(A ] = [dQ 7][dQ2% ], [d©2; ]Zw- (E.2)

We first focus on the triple-collinear sectors and assume that the unresolved partons
m and n are emitted by a hard parton i, with ¢ € [1,N,]. It is convenient to choose the
momentum of parton ¢ as the reference direction. We then write

ph = En (t“ + cos O;m eé‘ + sin O;m b“) ,

E.3
Pl = En(t* + cos O €' + sin b (COS dmn b + Sin Pmn ™)) (E:3)

where
t = (1,0) el =(0,7),  pi=E(t"+el). (E.4)

(2

Here 7i; is a unit vector in (d — 1) spatial dimensions and a and b are d-dimensional unit
vectors such that

t-a=e-a=t-b=e-b=a-b=0. (E.5)
We can use this parametrization to express the angular part of the phase space as [20]

Q=)

d—1 _ _
[in(ml )] = 266(27[.)2(1—2 [Th‘m(l - nz‘m)} E[nin(l - 771‘11)] ‘ ( )
E.6
% ’nim - 771'11|1_2E dnim dnin dA
D pa— e
where
D = Nim + Nin — 20im Nin + 2(2)\ - 1)\/77im 77in(1 - nim)(l - 77in> . (E7)
The variable A parametrizes the dependence on the azimuthal angle ¢n, through the rela-
tion )
sin2 Gun = 4A(1 — )\)W . (E.8)
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The phase space can be split into four different sectors that we will refer to as (a), (b),
(¢), (d). The following parametrizations are chosen for each of the four sectors

a) Nim = T3, Nin = T374/2 , (E.9)
b) Nim = 3, Nin = x3(1 — 24/2) , (E.10)
¢) Nim = w3%4/2 Nin = T3 , (E.11)
d) Nim = x3(1 — 24/2) Nin = 23 , (E.12)
with 0 < z34 < 1. We use them to obtain explicit expressions for
[AQ%] = [dQ% V109, i= abed, (E.13)

with ) defined in Eq. (D.1). It turns out that the angular phase spaces for sectors (a)
and (¢) and for sectors (b) and (d) are identical. For sectors (a) and (c¢) we find

1 (4r)¢ r‘ [FQ(I—E)] [ [l
)

(a,e)y L

1 4 L (E.14)
L3 L4 ac)) € (a,c), 2
256F()) ARy “atay
xé+2e 5Uz11+2€ A1 — )\)]%+E ( ) 0 3
where
1—23)(1 — 2324/2)(1 — 24/2)? (a,0) 1—m4/2
PG Fy) = : E.15
¢ 4[N (w3, 74/2, \)]2 ’ 0 2N (z3,74/2,\) (E-15)
For sectors (b) and (d) we obtain
. d—2 d—
a) — [1 (4) ]2 [W(l - e)] Q2] [l
mn | = 2 _ _ d—2 d-3
87Td F(ld €) F(Cli/\ 2€) [Ql(a )] [Q((z )] (5.16)
X ﬁge ﬁée 1 <256Fe(b’d)) 4F[§b7d)x§x42l )
T3 o W[)\(l — )\)]§+€
where
1—xz3)(1 —24/2)(1 — 23(1 — 24/2)) b.d 1
b _ (L= 2 ) = . (BT
€ 4[N (z3,1 — 24/2,\)]2 » 0 AN (23,1 —14/2,)) (E-17)
The function N (z3, x4, A) introduced in the above equations reads
N(x3,24,\) = 1+ 24(1 — 223) — 2(1 — 20)/24(1 — 23) (1 — z324) . (E.18)

To simplify the subtraction terms, we need particular collinear limits of the unresolved
phase space. To obtain those, we note that the following identities hold

_ 1
lim Fe0 — 1293 lim F\* ==

z4—0 € 2 24—0 2 (E 19)
. 1 . b,d) 1 '

lim FOD = lim F*Y =~

o e 64N2 230" 0 167\ (1 — a3)
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The x4 — 0 limit corresponds to the n||i and m||i collinear limits in sectors (a) and (c),
respectively, and to the m|[n limit in sectors (b) and (d). The singular quantities in sectors
(a) and (c) are n;q and 7y, respectively, and they are given in Eqgs (E.9) and (E.11). For
sectors (b) and (d), the limit of the corresponding singular variable is more complex. It

reads
lim lim szi = :ngi
30 ™ = S0 AN (23,1 — 24, A)  16A(1 — 73

= o - (E.20)

The phase-space parametrization is significantly simpler for the double-collinear par-
titions. Consider the case when parton m is collinear to parton ¢ and parton n to parton 7,
with ¢ # j. We parametrize the momenta p, and p, using the momenta of partons i and
j respectively, i.e.

Pl = En(t" + cos O €' + sin 0, bE) |

% o n . " (E21)
ph = Ea(t" + cosOj e +sinbjn by)
and set
Nim = T3 , Njn = T4 . (E.22)
We then write the angular phase space for the double-collinear partition [dQ<] as
[aQde] = [aey Ve, (E.23)
where
(d—2)
(d-1) 1 (4m) 44 [ 7] da3 e
At ] = |:87T2 I'(1—¢) 2 [Qd=2)] plte (1—23) a3,
(d-2) s (E.24)
@1, _[ 1 (4n)° 4-4e (A 7] day o \—e
[dQy ] = [ 2T = o) 2 G a;}fe(l x4) ‘x4 .

E.2 Action of the collinear operators on the phase space

In our definitions of the angular terms Q4 in Egs (D.5)-(D.8), the collinear operators act
on the phase space of the two unresolved partons. As we have seen, it is useful to rewrite
the subtraction terms in such a way that these operators do not act on the phase-space
measure. We have quoted the results in the main text of the paper without deriving them,
see e.g. Eq. (4.30). The goal of this subsection is to provide the omitted details.

We begin by considering the double-collinear partitioning with a collinear operator Cjy;
an example can be found in the first term on the right-hand side of Eq. (4.26). Since in the
double-collinear parametrization of the phase space the collinear limit i||m is controlled by
the variable z3 (see Eq. (E.22)), we find

[AQde ] 1 (4m)° ] g [1AP) i I das
ot S ) SR LTS i BT Cim...
/ w7 [87# r(1—e)} / Q] | ]0/ o Ciml- (E.25)

1 4m)€ | 93—4e dngil—Q)
:_[WFgl—)e)} e / [[md—zn][dg(d Y Cinl-1,
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where [...] stands for generic non-singular contributions whose exact form is not relevant
for the following discussion. If we repeat the above steps without acting with Cj, on the
phase space, we find

/ [d2ge] Ciml]

Pim
1 47r)€ 4 dQ(d 2 1 dzs 3
- [Wrgl—)e)} 2 /[[md 9] LU /é (1~ 25)"Cim [ (E.26)
0
O TX1-e [ 1 (4m)e ] 2370 [dQ,(n )] )
; _F(l - 25) |:87T2 F(l — e):| € / [Q(d—2)] [dQnd ! ]sz [] .

Comparing the two formulas, we conclude that

dc — 9% dc
JE A ) 20

We can use the above relation when rewriting Eq. (4.17) as Eq. (4.19). Since in this case
we have two collinear operators CjCinm, we need to apply it twice, i.e.

[dode] [P —2¢)]7 [ [dod)
/CJnClmpzmpjn 1= [FQ(l—e)] /pzmp]n CinCim -] (E.28)

so that Eq. (4.17) becomes

N,

F(1-201° & = — -

YRR,2c = [pg(l_eﬂ (Z: (SunSnCinCim w™ ™A™ @ Fnp(m,n)) (E.29)
j

We stress that the absence of the phase space [dpm][dpa] in the above equation indicates
that the collinear operators Cj,Cin no longer act on it.

Similar formulas can also be derived for the triple-collinear partitions that involve
sector 0(9. As an example, we discuss the second term on the right-hand side of Eq. (4.26).
In this case, the collinear limit i||m corresponds to the x4 — 0 limit in the phase space
parametrization in Eq. (E.14). We use Eq. (E.19) to compute this limit and find

) | T(1L—2¢) [ [0 ") .

where the integration over the angular variables of parton m on the right hand side of
Eq. (E.30) is not restricted to sector (¢) anymore. It follows from the above discussion that
Eq. (4.26) can be rewritten as

E(Q,C,dc) o F(l - 2
RR,1c F2(1 o

|: Z Cim wmz nj

) (E.31)
+ ) (in/2) " Cim wmi’m] A Fy g (m, ﬂ)> :
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This expression is the starting point to obtain Egs. (4.30) and (4.31).

Finally, we perform similar manipulations for sector (b) where the collinear limit of
interest is m||[n. This limit corresponds to x4 — 0 in the phase space parametrization given
in Eq. (E.16). Using Eq. (E.19) we find

an? 1 (4r) _
[ emdTm ) = | | e [l
Pran 8m2 T'(1 —¢)
) (E.32)
e (1 cqp Mo doa

x ni[mn] ( - m[m“}) [Q(d—3)] x}l+2e mu[---] :

The normalization constants N*% that appear in Eq. (E.32) can be found in Eq. (A.5),
while [dei;f)] is the (exact) angular phase space of the clustered parton [mn], whose
momentum Piyn = Pm + Pn must be computed in the strict collinear limit. Furthermore we

have introduced a new variable A such that

T(1+e)T(1—e) AV2He(1 — \)~1/2=¢

dA =
['(1+2¢)T(1 —2e¢) ™

dA . (E.33)

We note that the action of the operator Cy, on the matrix element squared is non-
trivial because it can lead to integrands that depend on the parameter A and the transverse
vector a*. This phenomenon, known as spin correlations, is discussed in the next appendix.
Here we assume that the action of Cyy in Eq. (4.24) does not lead to such terms. In this
case we can integrate over x4, the directions of a*, and the azimuthal variable A using

/dA =1. (E.34)

Comparing the result with the one that is obtained when the collinear operator Cy,, does
not act on the phase space, we find

[A2%] 1 st DAL +26)0(1 —26) [ [d%n ]
/cmn - [.]=2 F(l—I—e)F(l—e)/ - Conl.-] (E.35)

where the integration over the angular variables of partons on the right-hand side is unre-
stricted. We use this relation in Eq. (4.48) and the analysis that follows.

As we just mentioned, the action of the collinear operator Cp, on matrix elements may
result in a limit that depends on A and a*”. In such cases Eq. (E.35) cannot be used. To
understand how to proceed, we write (see Appendix F)

2
gs,b

Can FLM(m7 n) = m
n+~m Mmn

- QWPg(S) (2) + ngé(z) ’ii(b)”i(b) Fumw([mn]) - (E.36)
where vector £ () is a unit space-like vector which is orthogonal to pm

KvL,(b) *Pm = 0. (E37)
Using the phase space parametrization for sector (b), we can write this vector as

Ry = VI =X+l VA (E.38)
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where vectors a and b were introduced in Eq. (E.3) and T3 is the auxiliary spacelike

vector (7 ) - 75, = —1) defined as

— winf. oH _ _pl
L) = Sin O, €; — cos O b .

(E.39)

The momentum of the clustered parton [mn] is aligned with the momentum py,, which does

not depend on A and a*. Since Fiy([mn]) is independent of A and a*, we can integrate

_3)

over ngd and dA. Specifically, we need to calculate

) 4Ql®3) .,

To compute this integral, we use Eq. (E.34) together with

(d—3) (d—3) pv
/dA dfa” - at =0, /dA dfa ata” = _ I3,

Q(d—3) Q(d—3) d—23

1+2 1-2
/dAA: J;E, /dA(l—)\): 2€,

and find

g
” 91,a-3) | 1+2€ y
(WL lw) == =5 + 5 TipTio

1 ” . ,
2 [gi(d—?ﬂ + rﬁ(b)ri,(b)] + e i

uv
1,(d-2)

2

= —|-€’I“Z(b) TZ(b) )
We then obtain
124 1 v
<’{/j_,(b) ”ﬂ,(b)> Fivw = §FLM +e€ rﬁf(b) 75 b) FLM o
where we used
_gjb_l:(d,Q)FLM,uV = —QW FLM,;LV = FLM )

as allowed by the transversality of scattering amplitudes.

— &7 —

)

(E.40)

(E.41)
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F Spin correlations

In this appendix we discuss the double-real contributions where the so-called spin correla-
tions appear. These effects arise in sectors (b) and (d) in the limits when gluons m and n
become collinear to each other. To make this appendix self-contained, we start by consid-
ering the m||n limit, which is described by the following expression (see also Eq. (E.36))

2
9; ,
Coun Frai(m,n) = 22— P4 (2) Fit o ([mn))
mLm Pmn
g2 (F.1)
s,b »
" BB pun P (2)Fi([mn]) + Pyg(2) K R o) P ([mn]) |

where the splitting functions were introduced in Appendix A.4.1, z = Ey/(Eyw + Ey), and
K1) is defined in Eq. (E.38). The four-momentum of the clustered parton [mn] is equal
to

En+ E,

Phn = (Em + Ey) nly = E
m

P » (F.2)
where the vector ny, is a light-like vector defined as nm = pm/Em. To proceed further,
we assume that the collinear limit m||n occurs in a particular triple-collinear partitioning,
mi,ng

characterized by the partition function w , and to restrict our analysis to sector (b).

The contribution that we are interested in reads (see Eq. (4.24))

Egl){,lqi = <§mn gn Omn Crn o [dpm] [dpn] wmint A(mn) Fi(m, n)>

[as] dE, dE,

Emax

b,d < <q —€ n

== NE( ) <Smn Sh / FF Omn [ (A . A[mn])
0

imi 1 v
X wn"IHf LE. [ng(z, €) Fim([mn]) + ePil(z) réf(b) 5 b) FLM,W([mn])]> ,
(F.3)

where we recall that o;; = 1;;/(1 — ;). To derive Eq. (F.3) we exploited the parametriza-
tion presented in Appendix E, integrated over the angles of parton n and used the relation
displayed in Eq. (E.43). All the splitting functions that appear in Eq. (F.3) can be found
in Appendix A.

We note that the hard matrix element squared appears in Eq. (F.3) in two distinct
ways: once as Fiy([mn]) and once as Fin g ([mn]), where the open spin indices refer to
the clustered parton. In fact, the relation between the two contributions reads

)‘ mn A mnjo
Fra(fmn]) = > epl™e,™ Fon o ([mn]) = — gy Fiatuw([mn]) | (F.4)
Afmn)

where the sum runs over the physical polarizations of the clustered parton [mn] and the
last step follows from the transversality of Fin, .-

In Eq. (F.3) the only term that requires further discussion is the one proportional to
Fiymyw([mn]). In fact, we find it convenient to split these terms in such a way that the
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coefficient of Fin([mn]) in Eq. (F.3) is the spin-averaged g — gg splitting function Py, (c.f.
Eq. (A.23)) and the soft subtraction term associated with it. We will refer to all other
(b)

contributions that appear in the expression for Yyp ., as “spin-correlated”. Hence, we
write

Emax
(b) _ o] byd dEy dE —e i
ERR,lc,i T e Ns( ) < E2e 1 E2e 1 Omn [dQ[mn]] Ti[mn] wfﬁuf

QCA

n

« {1pgg(z>smA<[mD Funa (jmn]) = 2945, A Fyyg(m) (F.5)

En B

E E |:PL( ) ( Z(b) TZ(b) +gMV) _ PgJ:q,T‘(Z) glil/:|§mn A([mn}) FLM,,U,I/([mn])}> ,
where we have used the relation
Pyg(z,€) + € Png(z)} Fiam(mn]) = Pyy(2) Frm(mn]) — e g™ Pé’r(z)FLM,W([mn]) , (F.6)

with P;S}’r defined in Eq. (A.25). The second line in Eq. (F.5) contains “spin-averaged”
and the third line “spin-correlated” contributions. They read

b),sa [as] I dE, dE, ing
Eg%l)%,lc,i:_ 9 Ne(b’d)< 21 et Omn [ [AQfmny] o z[mn] w:Ht?
(F.7)
< | =2 P () S A B ([mn]) — 2S4S A F ()
EnE, % E2 ’
and
[vs] P dB. dE
b),sc Qs i,nd
Z%i%{,lc,i Ty Ne(b’d) < / 2:1 2:1 Om /[dQ[mn]] z[mn} W::n:
Ey " Ey
0 (F.8)

1 v v r v|a
" FuFn [Posl@) (i iy +9™) = P () 9" | S AL FLM,W([mn])> :

We continue with the discussion of the spin-correlated collinear limits. We find that
after adding the contribution of sector (d) to Eg%{’slc ..i» the energy-ordering constraint dis-

appears and we obtain the following expression for the full spin-correlated part

Emax

(bd)se _ [s] v dEy dE, ini
ERR,lc,i - = 2 Ne( )< F2e—1 p2e—1 [dQ[mn}] [mn] w::”:
m n

(F.9)

1 _
E E |:PJ_( ) (rﬁi T;’ +guu) - PgJET(Z) glﬂ’} Smu A([mn]) FLM,/W([mn])> )

where we have relabelled r; ;) as r; for brevity. We note that the energy integration for

each of the two particles m and n extends to Eya.x. As we discussed in Section 4.1, this leads
to a possible contribution of the unphysical region Efmn) > Emax- Since Fmax is chosen in
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such a way that Fim . ([mn]) has no support for Efyn > Emax, only the soft subtraction
term contributes in this case. Hence, in the above formula we can write

an = @[mn],max g[mn} - @max,[mn} S[mn] > (F.l())

where in the first (second) term on the right hand side the energy of the clustered particle is
restricted to be smaller (larger) than Ep,.x, respectively. The integration over the energies
of partons m and n can be rearranged to conform with the above splitting of the soft

operator
Emax
FEmax Emax FEmax 1 2Fmax E[m"]
/ dEn / dE, = / dE[mn} E[mn}/dz—l- / dE[mn] E[mn} / dz . (F.ll)
0 0 0 0 Finax _ Emax
E[mn]
Following this rearrangement, we have (cf. Eq. (4.52))
b,d),sc b,d),sc,I b,d),sc,IT
Z%R,)lc,i = EER,)lc,i + EER,)lc,i ) (F.12)
where
(b,d),sc,] s b,d —2 —¢ ini
YRR 1eqi = B N )< / [dp[mn]]E[mn} Omax, [mn] T fma] Wx]:\\f
1
dz 1 o, v v L,r v
x| T [P(2) (7 4 9) = P (2) 9 (F.13)
, [z(l — z)]
X Sy A FLM,uu([mn])> ,
and
Z(bvd)7scvll _ [O[S] N(b’d) d E—Qe @ —€ mi,ng
RR,1ci — g e [ p[mn]] [mn] ©max,[mn] Uz‘[mn] men
Emax
E[mn] d
< 14 v T 14
[ e ) - R @ ] g
- [2(1 - z)]

Blmn]

where [dppmy] identifies the phase space of the clustered parton [mn]. We first discuss

Zgﬁi )l’ici’], where the integration over z decouples from the rest and can be easily performed.

We find

sc Qg —2¢ —c ing
Eg)ig,)ic,zjl = [ 2 ] Ne(bd) </[dp[mn” E[m?‘l] @max,[mn] Ui[mn] w::”:
(F.15)

X {Vfgﬁgg (rf'ri +9") - 712_2,7gr—>gg 9" | Sy Al F LM,W([m“D> ;
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where the functions v g a0d ’yf;; _ygg AT€ given in Eq. (A.29). Since this contribution
is soft-regulated, the only singularity left there is [mn]||i. To regularize and extract this
collinear divergence, we insert 1 = 6i[mn} + Cmn) into the above formula and obtain

b,d I b,d I,1 1,2
E%R)licz = E%{R)licz + E%R)I(S:Cz ’ (F16)

where

b,d),sc,I a _2 e mini
S = SIN0D ([t B O ot

2
(F.17)
X {’ﬁ%g—mg (riri +9") - Vngr—wg W} S A FLM,W(‘“)> .
and
b,d « —
S = N (OG0 B e i 3 s

22
X [7J2_2,g%gg (Tf T;/ + g;w) Y1 gr—>gg g }A(m) FLM,MV (m)> :

We note that we have relabelled [mn] — m when writing the above equations. The function
Eg}?)licz” is a fully-regulated single-unresolved contribution which is finite in the limit
€ — 0 and can be numerically integrated in four space-time dimensions.

On the other hand, the quantity Egg}l’z?f’l will include a 1/€ pole once we integrate
over the unresolved parton m. To do this, we need to evaluate the soft and collinear
limits of 'Y Fin . ([mn]), which we have not encountered before. Doing so requires us to
revisit the construction of the vectors r;. We recall that, following Eq. (E.3), the angular

parametrization employs the direction of parton i as a reference axis, so that (cf. Eq. (E.4))
pi = Ei(t" +¢ff), (F.19)

where ¢t is a time-like vector with > = 1 and e; is a space-like vector with e? = —1. The
momentum of the clustered particle [mn] is defined as

p’[fm] = Efn] (1 4 €08 Og)i €4 + SIn Oy ') (F.20)
with
bei,=0. (F.21)
The vector r; reads
7y = 80 Opy); € — COS Oy} b (F.22)
from which it follows that
pﬁm] rip=0. (F.23)

This implies that r; is a valid polarization vector for the clustered gluon [mn]. Armed with
this understanding, it is straightforward to write a general expression for the soft limits
Simn) Of spin-correlated amplitudes-squared. We find

Y St Fint o ([mn]) = —g2 Pe-r) (Prrs) op oy F.24
! fmn] ZLM, ([ bk:;l pk’ p[mn] (pl p[mu]) ( g l) M ( )
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One also needs to consider the limit Cjyy) of this expression, which develops singularities
arising from two contributions in the sum: first from k& = 4,1 = 4, and second from k =
i,l£iork#il=1i.

We begin with the first one and write

(pz . rz)(p,b . Ti) _ 1 Sin2 H[mn]i _ 1 (2 B p[mnh)
(i * Pln)) (Pi * Pfun)) Eﬁm} (1 — cos H[mn]i)z E[2mn] Plwnli

(F.25)

where we used the explicit parametrization of momenta p; and pjy,,) and the vector r;. The
collinear limit of the term in Eq. (F.24) with k = 4,1 = i therefore reads

2
5 (pi - i) (pi - 14) =200 o
il (o, * Plmn]) (Pi * Plmn)) ) B oy Plmali (F-26)
Next, we consider terms with k =7 and [ # 4
T
9s,b Z ) (T;-Ty) - Fim - (F.27)

(pi - p[mn (pl p[mn])

Since p; - 7 ~ sin Oyn); and p; - pin) ~ (1 — €08 Ojmp);), and all other factors in the above
expression are regular in the limit 6jy,; — 0, we conclude that this contribution is actually
integrable in the collinear limit [mn] || i. The same conclusion holds for the symmetric k # i
and [ = ¢ terms. Hence, we find the following result

Cifmn) Spon] 7477 Fint o ([m0]) = ——5—"— T7 Fiy - (F.28)

This coincides with the limit without spin correlations, Cjjmy) S FLM([mn]), so that
Cifma] Spmn) (9" + {7]) Fint o ([mn]) = 0. (F.29)

We can use this cancellation to simplify E(RR);CZI "in Eq. (F.17). We write

b,d),sc,1,1 [as] b,d —e

Z%{R,lc(’:i = o Ne( ) </[dp[mn]] E[mn} @max,[mn} M)
X |:7J2_2,g~>gg Ci[mn] (Tét 74;{ + g/u/) - 7J2_27;;;gg ngCi[mn] g[mn} (F'BO)
< Allm) FLMqunD> |

The only limit in the above equation that we have not yet encountered is

Cfoun) ¢ 77 FLna o ([mn]) (F.31)

As we will show later, it evaluates to

2 PP () @ B (2 - [mni]) i <2
v Y b fiflim LM ’ = 4,
Ci[mu] Tf Ty FLM,#V([mnD = i ; ) Spi[n ] ‘ (F.32)
(2
[mn] Pfif[im] (2) Fin P> 2,
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where the splitting functions are given by the following equations

z)? _
spi ) % CF (ll—tz) ’ f’L = f[zm] = {q7Q} ) ( )
Py (?) = F.33
fiftim —2)/z+z(1—2
o 2Cy é_}_%} ) fzzf[zm]:g7

and we have adopted the convention that FS\/)I(z ‘1) = Frm(z- 14,2, ...) /2 and FIE?V)[(Z 2) =

Fiv(la, 2 2p,...)/ 2.
We are now in the position to evaluate the limits of Eq. (F.30) and to integrate over
the angular phase space. For the final-state emissions (i > 2) we find

Qs —2e¢ €
oy [2] NG < / [dps] [P E[mi} O max, [mn] Mifmn]

(b7d)7SC7I71
RR,1c,i

2
22 Ysb spin ,
% [Vlvg—mg m Pog"(2) = Pyq(2)) 2 Fina([mni]) (F.34)

+ Vflaggg Ci [mﬂ}g[mn] zFim ([mn])} > ’

while for i < 2 we find

(b,d),SC,I,l

Qs —2€ —€
RR,lc,i - u Ne(bd) < / [dp [mn]] E[m?l] Omax, mn] "Tifmn]

‘152 2

2
9571, Pspin

% [722
1999 E[mn] Eipi [mn] %

(2) = Pyy(2)) @ F9 (2 - [mni])  (F.35)

8 g Cion St P[] > ’

We can then integrate over the remaining energy and angular variables using the formulas
in Appendix A.2 and obtain

—4e
Z(b,d),scjl,l‘ _ s 2T - T(L = 26) 0 / (25
RR,1ei ;59 4e (1 — 3¢) ¢ 1

22 24 24, spin 22,0 24 )
x [ ~ TL.g—gg [’Vz,g%gg - ’Vz,gﬁgg} Y1 gy Veig—rgg (6 Li) | FLm )

(b,d),sc,1,1
ZRR,lc,i

‘ (e 2*r(1—eT(1 - 26)N(b7d) 2\ % (F.36)
i<e e (1 — 3e¢) € L
1 .
{2y [ @22 [Pl - P @ B )
1 .
B [ PG L) @ FG ).

where we have defined

1
7335%2 = —/0 dz { 2726 (1 — )74 2 PP (2) =2Ca (1~ z)_l_‘ﬂ ) (F.37)
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. .. . . . b,d),sc,1,1
Finally, combining emissions off different legs, we write Z%ﬁ?l’zc’ " as

s(bd)se, 1 _ [s]? 22 T(1 = ¢) T(1 = 2¢) N )
RR,le 4e I'(1 — 3e¢) €
N, _
2F;
() [Py 2 o)
=3

+ Z; < <2f> 2 e 0/1 dz (1 [qu(z) — P;gin(z)] @ F9 (2. z)>} (F.38)

1
[a8]2 22 Na 2 en 7 .
+ ?N(b ) Y1 g—qg Z /dz Péé)’g (2) ® FIEI\)/I(Z )

=1 0

[avs]? (bd) 22,7 (4)
+ ? NSC’ 7L,g—>gg<‘l—c (6) : FLM> )

where we have introduced

2e 73
Nd) - T30 ey (F.39)
T(1— 3031 —¢) ¢

We return to the “unphysical” contribution Egg)licln of Eq. (F.12). Using Eq. (F.24),

we can immediately obtain the soft limit S FLM [mn]. Integrating over By and z, we
find

—4e
b,d),sc,IT Emax 7,0 v v
Z%R,)lc,i = [as] gg,b ( ,U ) </dQ[mn} Z[mn} W::”: [(5;_(7’?711' +g")
(F.40)

~ 3y 9" s (T).-T)) - FLM> ,
kl=1 nk‘ ’ n[“‘“]) (nl ) n[mn])

where 5; and 5; " are given in Eq. (A.30). At this point, we introduce the functions

(4) = [dgfslm]l)] —e , mini
<Wr : FLM> = [Q(d 2)} Ui[mn] wm||n
Np

<Ol Y o M E).

k=1 (nk ’ n[m“]) (nl ’ n[mn])

(d—1) (F.41)

| d ) i
7,|| . % [ [mn] —€ 7,12
<Wi n FLM> =—€2 /[Q(d2)]<gi[mn} wnn;Hl:

S )

Jel=1 (& * n)) (74 * Tn))
)

where we have used the shorthand notation Féﬁ) = (T;-T;) - Fim, and write Eq. (F.40) as

7

—4e —2€
b,d),s Em X ; 2 ;
E%E,)fz,cin = [as]? ( ,ua ) <5;' W - Fiy + 5;’7" Tw?ﬂn ) FLM> : (F.42)
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The function W,(i) is finite in € because the pole arising from the term proportional to rf'r?
cancels with that arising from the g"” term. This can be understood as follows: the most
singular contribution affecting the term proportional to r!'r} stems from the combination
k = 1 = i, since the partition functions damp all other potential collinear configurations.
In this case, the singularity is proportional to 2CY,/ Pmunji> as we already saw in Eq. (F.26).
On the other hand, the singularity proportional to g can only arise when k = i, # ¢ and
k # 1,1 =1, given that n? = n? = 0. We can then isolate the divergent ratio 1/(n; - Nfmn])
(4)

and sum over colors, obtaining precisely —2CY,/pmq;- We conclude that Wr" does not

contribute to the pole content of Zgl’g)l’zci’n
By contrast, the term in Eq. (F.42) containing the function WZ " does contain singu-
larities of O(e~1), which could (in principle) be dependent on the partitions w:ﬁfz. This

would imply that the pole structure of Zgg)liczn would depend on the choice of partition

functions. However, in Appendix G we will show that the sum over all the external legs of
WZ I can be written as

illn 2 dQ SRV - mini (kL)
Z <W M> = —€2 Z Z Oim wm||n FLM

i=1 k=1 Pkm Plm
k£l
Np ..
2% <77i7KijFL<;JA)> (F.43)

ij=1

i

Np '
+y [Nc(e) T2 (Fiy) + €2 <W§”“’ﬁ“ : FLMH ,

=1

where we have relabelled [mn] — m. It is clear from the above equation that the poles

of Zgg)lzczll are in fact independent of the partition functions, whose explicit form only

i||n,fin

affects the finite remainder Wi‘ given in Eq. (G.12). Summing over emissions from all

legs, we find

(b,d),sc, ]I 2¢l,r Emax 2
ERR,lc - 2[045] 55] (6)

7

2Em X
X [— <Is(6) . FLM> + ;6/M ZTQ FLM>]

N (F.44)
+ [015]2 2—255;,7«(6) ( Zax) Z <Wiz||n,ﬁn ) FLM>
=1
E —4e Np ]

Flaog (Fu) Y V0 Fia)

=1

The complete result for spin-correlated contributions is obtained upon combining
Egs. (F.18), (F.38) and (F.44).
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a b c F34(2,€q,€p,€c)
in | in | in | (1=2)/z+2z/(1—2)+2(1—2)

in | out | out z2(1—2)
out | in | out z/(1—z)
out | out | in (1-2)/z

Table 1. The table from Ref. [82], page 160. Note that we use z = 1 — E;/E, at variance with
Ref. [82].

It remains to prove the results for spin-correlated splitting functions introduced in
Eq. (F.32). To this end, we consider the cases where i is the initial-state or the final-state
parton separately. We begin with the discussion of the final-state splitting, in which case i
is a gluon. Since r; can be considered to be the polarization vector of the clustered gluon,
the calculation of the collinear limit in Eq. (F.32) is equivalent to the computation of a
g — gg splitting for polarized gluons. The corresponding results can be found in Ref. [82].
To understand how they can be used, we note that Ref. [82] defines polarization vectors
relative to the decay plane formed by the momenta of the final state particles, there called
b and c. Their momenta define a two-dimensional plane in (d — 1)-dimensional space (we
discard the temporal component for obvious reasons). We need (d —2) polarization vectors
to fully describe the quantum state of a gluon. Hence, for each of the gluons, we choose one
polarization vector to lie in the plane defined by the momenta and (d — 3) to be orthogonal
to that plane. It is clear that we can choose the “out-of-the-plane” polarization vectors to
be the same for the three gluons a, b, c.

The dependence of the g — gg splitting on the polarization of the partons is charac-
terized by the function F34(z) shown in Table F. One can use this function to write the
collinear limit of the scattering amplitude as follows [82]

4g%,Ca
o 5 Fg(2;€a, €0, 6c) [ Ma(a)|” - (F.45)

Mopai(ep, o) ~ —22——
|Mt1(ep, ec)| ool 20

As explained in Ref. [82], this formula implies that the polarizations of the parent and
daughter partons are kept fixed. For our purposes, we identify parton [mn] with parton b
and parton ¢ with ¢. Therefore we need to sum over the polarizations of partons a and
c and keep the polarization of the gluon b fixed and equal to r;. Note that, since this
polarization is composed of vectors e; and b;, it is “in-plane”, according to the language of
Ref. [82]. Hence, for our purposes we require

w,.v 49? b0124 .
Clmn) 5 77 Fit o ([mn]) = WFLMMV([I““ZD
fmn] 7 (F.46)
X {sg(in) e, (in) F34(ain, bin, ¢in) + Z el (out) e (out) Fa¢(aout, bin, cout)} .
out

The “in-plane” polarization for the gluon a in the collinear limit is b. It remains to write
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Aa €y Ac qug(*’«',)\aagba)\c)
+ | in | £ | (1+2)2%/(1-2)
+ |out | + (1-2)

Table 2. The table from Ref. [82], page 160, that can be used to compute ¢ — gg splittings.

the sum for the “out-of-plane” polarizations, which reads

el'e?  bl'bY
g et (out) ey (out) = —g"” 4 tH't" + ﬁ + Zb?Z . (F.47)
out e 1

Thanks to the transversality of Fi . ([mni]) w.r.t. pmg), we find
" Fin g ([mnd]) = —€ FLagyu ([mni]) - (F.48)

This implies that

%
<t“t” + 95 > Fig o ([mni]) = 0. (F.49)
€

Hence, we obtain

C ot F ([mn]) 29?1’ Ca R ([mni])< 00" F34(ain, b )
i 1 v =7 0. v ain’ in» Cin
ifmn] 73 77 FLM,u o B ifmn] LM, t 39
T (=g" + VB Fyy (aout, bin, cout)} (F.50)
_ T (el PG
E [mn] Eip; [mn]
where z = E;/(E; + Ejmy)) and
Pri () = 2C 2 gwy (122 bibY F.51
qg (Z)_ Al 7 7 g+ 7_‘_2( _Z) : ( )

Since we will have to use this result in Eq. (F.34), where the integration over directions of
b decouples from the rest, we will only require the spin-averaged version of Pyg'*"| that is

(Pt (2)) = “”)ngin(z) , (F.52)
where (c.f. Eq. (F.33))
z (1—-2)/z42(1—2)

Pspin —9 F.
s (2) =204 T 2(1—¢) ’ (F.53)
Since the spin-averaging also applies to the standard collinear limit CjnFLm([mn]), we
obtain
921) :
Cimn) (1577 + ") FLM o ([mn]) = # (ngm(z) — Pyy(2)) Frm([mni])
[mn] £ Pi[mn] (F.54)
2 .
1-2  95,Ca  (1—-2)(1+22 ,
= - L (1= 2) )FLM([mm]) .
l—e E[mn}Eipi[mn] z
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To describe the initial-state splitting, we require the ¢ — ¢*¢ splitting. To compute
it, we start from the final state ¢* — ¢g and then perform the parton crossing. Similar to
the gluon case, we need to keep the gluon polarized. The polarization-dependent splitting
functions can again be found in Ref. [82]; they are reproduced in Table 2. We only need
to consider the “in plane” polarization of the gluon and sum over quark polarizations.
Performing the crossing, we find

pevin () Pz i) (F.55)

i 493,17
Cloni™; 75 Finuw ([mn]) = aq p ’

- E[mn] E; p; [mn]

where 2 = 1 — Ejpy/Ej, i = 1,2, and Pje™ is given in Eq. (F.33).
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G Partition-dependent contribution

In this appendix, we discuss two contributions that appear in the computation of double-
unresolved limits. They are required to obtain terms in the final result in the second line
of Eq. (6.4) and in the third line of Eq. (6.5), respectively. They read

W mHn - Fin) ZZ mlln zy)F(w)>
1
Np de 1) i y
2¢ —e ij mknk 7a(i5)
dzz/ 51 (i 2T )

5

B
Il

(G.1)

and

(d— 1
k € (A€ —e Pij konk (i
WA ) = —e2? E / =) < (ke /2) ™ — 1] pim;jm wi FISI\J/[)> . (G2)

where we have used the shorthand notation F&J/I) = (T;-T;) - Fim, which will appear in

this appendix.

Extracting singularities from WmHn

We first investigate Eq. (G.1). We note that the contribution of <W,‘:”" - Fim) to cross
sections will be multiplied by 1/€2 which originates from the integration over gluon ener-
gies. For this reason, we require the expansion of Eq. (G.1) through O(e?). We also note
that, thanks to the partition functions w ” * that appear in Eq. (G.1), the only allowed
collinear singularities correspond to the kinematic configurations where m||k. To isolate
such divergences, we write

N, N,

(d— 1
Z<W}?”" FLM>_—62%ZZ / de - < (1= Chm) (075 — 1)

k=1 (G.3)

+1—Chm (1 - U,;ni)} Pis w::fli’l“k FS\J/I)> .
Pim Pjm

Next, we note that the first term in the above equation is O(e?) already. The second term
allows us to sum over index k using the relation

NP

mk.nk
W = 1 (G.4)

k=1
and the last one can be simplified since the collinear Cj,, limit selects particular contribu-
tions from the sum.
We now consider the second and the third term in more detail. The former reads

de 1 77 7 € 7
e%zz/ O () - Q:%KFw. ©9

k=1 (i7) Pim Pjm
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To compute the contribution of the third term, we note that

—ey  Pij : ey 1
Chm (1= o) ——2— o™ = (1= ) —— (5 + Jx) - (G.6)
Pim Pjm Pkm

Using this expression in Eq. (G.3), it becomes possible to sum either over j or i using the
color conservation condition. We obtain

N Np dQ (d— 1) pis -
2¢ € %) mk,n, (ij 2
zzz/ i { Com (1= 03) > w1 ) — i, zTﬂM
(G.7)
where )
M2(1—¢) T(1—e)(1—2e) .
No(e) = - —1+0(). G.8
(= Ta-29 T(1 — 3¢) +0(€) (G.8)
Combining all the relevant terms, we find
NP Np
STt Ry =23 (5 K B + N ZT2 (Fim)
k=1 (i5)
N, (G.9)
re YOV Fusg).
k=1

where

n oy
i gy Z / (@ Comtog (omm) -4 73]} . (G0

Pim Pjm

Notice that W;”“’ﬁn is finite in €, thus we evaluate it in d = 4 dimensions.

Extracting singularities from )/Vk”rl

We can compute the second contribution <W,1: In. Fiap) shown in Eq. (G.2) in the same way.
As in the previous case, we introduce collinear subtraction operators as

(d— 1
k . dQ
<Wk”n —e2? Z/ [Q0d-2)]

X <(1 - Ckm + Ck:m) [(Ukm/2)_e - 1] Pij w;:”’i’nk Féll\]/[)> .
Pim Pjm

(G.11)

The term with (1 — Ciy) leads to an O(e?) contribution that we express through

(3)
k|[n,fin dQy Mk Pij konk (i)
(whlnin }:/ < (1 — Chu) log ( 2‘“) pm;jm Wit R J> . (Ga2)
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The calculation of the term with Ci, proceeds exactly as already explained in the
previous subsection. We use

Pij 1
Clom W = — (6 + 1) G.13
"k Pim Pjm  Pkm < ! ) ( )

sum over one of the color indices and employ the following integral

/ [y 2 [(%) - 1} 9-2 [2 I2(1—¢) 2°0(1—e)T(1—e)

@] o |2 e [T(1—2¢)  T(1—3¢) (G.14)
= i Ni(e)
to find the final result
W Foa) = W™ B — Ni(e) T3 (Fiow) - (G.15)
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H Triple color-correlated contributions to real-virtual corrections

In this appendix we discuss the computation of the triple color-correlated component arising
from the integrated soft limit of the real-virtual contribution. The relevant factorization
formula in the soft limit is given in Eq. (4.97), and we are interested in the final term

. 4rT(1+e)I3(1 —¢) € o (kij
S:n FRV(m) = _[as] (eF(l — 26 Z Rij Skz pm ( i (pm)> FI(JM]) ) (Hl)
(ijk)

where (ijk) labels triplets with different i, j and k and we have used the notation
rii
FSD = (MO o TETL TS (MO (H.2)

to indicate the triple color-correlated matrix element. The phase factor ;; is reported in
Eq. (A.6), and the eikonal factor S;; in Eq. (4.89). Here we just recall that k;; is completely
symmetric under the exchange i <+ j and (obviously) is independent of k.

We begin by pointing out that the triple color-correlated matrix element gives a non-
zero contribution only when there are at least four colored particles in the Born-level
process. Indeed, with three colored particles one can use color conservation to obtain the
following identity

Fabe TE T TS |MO) = — fope T{ T (T5 + T5) M) = 0., (H.3)

Our goal is to integrate Eq. (H.1) over the phase space of the soft gluon with momentum
Pm. We begin by integrating over the energy Fy, and obtain

: AT 2 T (14 )[4 (1 —€) (4E2, \
Strl F — 2 max
< m RV> [as] €2 P(l _ 26) N2

x > (ki G RN

(ijk)

(H.4)

In Eq. (H.4) we have defined

d—1 €
GHI = / A% " _pi < i ) (H.5)
2(27r)d71 PEmPim \ PimPjim ’

which is a function of the angular variables p;;, p;r and p;r. We note that since x;; is a

symmetric tensor and FIEIKZJ ) is fully anti-symmetric, only the anti-symmetric contribution
G*J — G*7* can contribute to the sum, whereas the symmetric part drops out. We will use
this result when writing intermediate expressions for (St Fry(m)).

To perform the remaining integration over the soft-gluon angle, we employ the Mellin-
Barnes representation of d-dimensional angular integrals presented in Ref. [83], and write
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the integral as

d—1 €
Qi _ / dm ™ pu < Pij >
2(27T)d71 PkmPim \ PimPjm

+i00

dz;; dzig, dz; m2te
= Pki P5j / ”(27:2.)3 - SiTae D(—2i)0(—2ki) D (—2jk)

(H.6)
—100
X F(l +e+ 25+ zm—)l“(—l — 3¢ — Zij — Zki — ij)F(E + zij + ij)
1
['(—4e)T'(e)T'(1 + ¢)

Zij Zki

Mi5" Mk

x (1 + zx; + zjk) n;]ik .

In the above equation we have introduced the three complex Mellin-Barnes variables
Zijs Zkiy Zjk, and M5 = pij /2. The integration contour has to be chosen in such a way
that the poles of I'(... + z) are separated from the poles of I'(... — z), with = being a
generic integration variable. In order to resolve the singularity structure in € we employ
the packages MBresolve [84] and MB [85], which allow us to express our original integral
as a linear combination of integrals that can be safely expanded in € under the integration
sign, and whose integration contours are straight vertical lines in the complex plane. Upon
applying this procedure we find that it is possible to express the function G* up to O(e°)
in terms of classical and generalized polylogarithms (GPLs) [86, 87] up to weight three. It
is convenient to write the final result for the angular integral as follows

d—1 € —€, €
Gkij:/ Ao < Pij > _ € [1‘(2 T I'(1—¢) ]GW, (H.7)

2(2m)4 L prmpPim \ PimPjm C4m? [ T(1 —46)T2(1 +¢)
where
= kij 3 1 111
GV =15t [log (nij) — 3log (nix) — log (njk)] + = [2 log? (11i5)

4
+ log (nij) (= log (i) — log (n;x)) + log (nix) (log (n;x) — 2log (1 — nix))  (H.8)

. 3 1
— 2Ly (nig) + B log? (k) + 5 log? (nj1) + 772] +O(e") .

Note that the e-dependent prefactor in Eq. (H.7) starts at O(e?), so that the whole angular
integral is effectively O(¢71), as expected.

Inserting the result for G*J into Eq. (H.4) we get the following final result for the
triple color-correlated contribution to the real-virtual counterterm

. T5(1 — ) AE2, N\ T —kij (ki
trlF _ 2 T max E . J F( i) . (H.
<Sm RV> [Oﬁs] 1—\(1 — 2€)P(1 o 46)F(1 4 6) ( /’LQ ) = </f’Lj G LM > ( 9)
v

To proceed further it is convenient to split the function G into contributions using its
symmetry properties under the ¢ <> j permutations. We write

G =G g, (H.10)
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with

—kij 31 1 ( ij > 1 [272 Lo of mij 0
G,” ===+ —log + |5 Fglog” ( —— | | +O(e), H.11
s 463 2¢2 0kNik el 3 2 M5kNik () ( )
and
i 1 ; 1
GM = Ogﬁ:’k + - [log2 ik + 2Lia (1 — Uik)} +0() . (H.12)

The function G 7 is symmetric under i <+ j permutations; hence, it does not contribute
to <S§f‘ Fry(m )> and can be dropped. Note also that the function GT Y up to O(e71), is
symmetric under the i <> k£ permutation. It follows that <Sﬁf1 Fry (m)> is free of poles for
processes with a color-singlet initial state, as in this case we have x;; = —1.

For a hadron collider process with two incoming and any number of outgoing partons,
the function k;; reads

Kij = -1+ 2(5,‘15]‘2 -+ 2(5@2(5]'1 , (H.13)

from which it follows that
—kij (kij —kij o (kij
5 (5B HEP) = 3 (g B )
(igk) (igk)

_9 Z << k12 k21) F(k12)> ‘

k#1,2

(H.14)

Using this result together with Eq. (H.12) and Eq. (H.9), we obtain the final formula for
the poles in the triple color-correlated contribution to the soft limit of the real-virtual
corrections. It reads

. 2
(53 i) = of? 3 (A {5 08 2 4 22 [ o
k#1,2 (H.15)

4Er2nax Mk 0
+ 2log 2 log + 2Lio(1 — myg) — 2Lia(1 —mo) | + O(€”) ¢ ) -

M2k

We now present the formula for the O(€®) terms of Eq. (H.8). We exploit once again the
symmetry properties of the triple color-correlated contribution under the exchange of i <> j
indices and therefore only present results for the antisymmetric part. The result reads

~kij Nik ik Nik
G = Lis lo ( > Lis(n;) 1o ( ) + Lis(n;) lo < )
r.fin (mi) log nir (mix) log = (njx) log T

+ log(mir) Liz (—W) + log(mir) Liz < W) + 3Liz(1 — na)
J

ik

1—
— 3L13(1 — njk) + Lig <1

ik

) log(nikmx) + Liz (77

) log(nix njk)
ik

. Njk — Nik . Nik — Nik
— log(n;x)Li2 (—J - > — log(njx)Lia (—J - > + Liz(nix)
Nik 1 —njk

] 1 1 ik — i
e | L e R e ]
J

U
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1 1 1—
1og(r) | ~ 5 108 () + og(1 = ) logy) + 5 log? =% )

2 1 — ik
1 Nik 1372
1 Liog? () +Tog(1 — 156) log(nyi(nse — k) + og? () — ]
2 njk 6
Nij 2 m°
+ log(1 — mjx) { — log(n;) log <) — log™(njx) — *}
Nk — MNik 6
+ log(1 = nik) [log(mk) [log (ﬁ) —log(1 — njk)] + log?(ir,) (H.16)
7 i

log?(nix 2 1
— log(njx) log(njx — mik) — ;]) +5|ts log (i) log® (n;i,)

) 1 i
+ 5 108" (miy) log () — og(1 — 11;5) log(1:5) log(nje) — 5 log” (M>

Njk
1 1—n; ; 1 1—n; ;
— —log <mk> log2 <Thk> — flogz (njk> log (mk>
2 L — ik Nk 2 1 —nik Nk

2 ik ik
— log®(njk) log(njx — mir) + =7 log (n) + log ( i )
3 Nik 1 —nik

2 1
x| & = log(1 = mje) log(nie) | — 5 log™(rar) + 1og(1 = mie) Log ()

log3 " 3 1 ik
1 s mik) log?(1 = nx) log(nyi) + 57 log(ny) — <7 log ( T

+10g(11) [ G s 0t 1) = Glijes w* 1) + G, w7, 1) = Glige,w™, 1)]

- G(’F]ika ’LU+, ﬁ]ka ]-) + G(ﬁjk‘? w+7 ﬁika ]-) + G(ﬁzk, w+7 ]-a 1) - G(f/zk‘v w+7 ﬁika ]-)

- G(ﬁjka ’LU+, 17 1) + G(fljka w+7 ﬁ]kv 1) - G(ﬁlk? wo, fljka 1) + G(f’]kv wo, ﬁilﬁ 1)
+ G(’F]Zka wo, 17 1) - G(ﬁlka wo, ﬁik? 1) - G(’Fljka wo, 17 1) + G(f/jk‘a w_aﬁjkv 1) s

where we defined

+ 2 i — ik — k£ Vv (0ij = nik — k) 2 — 4nienjs(1 — ni5)
2 (Miknjk — ik — Njk + 1)

w

(H.17)

and Tab = 1/(1 - nab)‘
The expression in Eq. (H.16) is well defined in the region 7;, < 7;;. However, this is
sufficient to cover the entire phase space since the other region can be obtained by swapping

indices ¢ and j. Thanks to the antisymmetry of the result under such an exchange, this
only amounts to an overall sign change.
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I Collection of functions used in the final result

In this appendix we collect all the functions that are necessary to write the final result for
the NNLO QCD contribution to the partonic cross section of the process q¢ — X + Ng
given in Section 6. For the reader’s convenience, we attempt to make this appendix as
self-contained as possible.

We use the following notations

log™ (1 —
F=1—2z, Dpnlz)= [Og(z)} : (L1)
1—2 n
T 2E1 Emax 2Emax
L; =log ( ) , L;=log ( ) ,  Lmax = log < > . (1.2)
% E; 1%

To present the double-boosted contribution in Eq. (6.3) we have used the following
splitting function

PNLO(, B)) = O [z +4Dy(2) + [4Do(2) + 35(2)] Li — 2(1 + 2) [L; + log(Z)H . (L3)

The single-boosted contribution in Eq. (6.4) depends on the function WZ Hn’ﬁn, defined in
Eq. (G.12), and an operator I(TO), reported in Eq. (A.66). We have also introduced the
function

1 T2(1—¢) (2FE;
P (2, Ei) = ( )<

C 2 (1 —2) \ p
— Cp [[1 + 2 — 2Dg(2)] Li + 2Dy (2) + 6(2)L2 — (1 + 2) 1og(z)} ,

—4e
b csesgios

where in the second line we have taken the ¢ — 0 limit. Furthermore, we use

Pag 0 (2, B;) = CEPRNYO (2, B;) + CpCaPRN"O™ (2, E;) | (L5)

with
(322 + 1) log(2)

z

P;\(IINLO,a(z, E;) =2L? [81)1(;;) +6Dy(z) — —4(z + 1) log(z)

—z— 5] + Ez [247)2(7;) + 12D, (z) — 87;])0(2;) + 814122(2’) _ (1 + 322) log2(z)

I\

+ 4 (1 + z 4+ 22) lcngz(z) —log(2) <82212c_)g(z) +2(5+ z)) —12(1+ 2) logz(z)

472 ] 872

L
+ ?(Z + 1) +9 -7z + 8D3(Z) — ?Dl(z) + 16C3D0(Z) -2 (5 + 322) !

z

— (5-32%) Li‘”’z(z) + log(2) [ (7—2%) Lis(2) — 6 (1 + 2%) log*(2) + — (1 — 2%)  (L6)

+(7—2:+72%) log(2) + 2 (6 - gz) 4z + 1)210g2(2)] ;. los(z) [ (5 = 92) z
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—2(142%) (Li2(z) 52)%32(@(2) 2”2)+(Z+£ )1 2(2)
+2C3(1;7Z)_1g()[2z_(_32>

} +8z+ - 10g2(z) -9

9  4r?\ ~ 9
Ol (=——— L2+ (1 Zlog?2 —— — —log?2
—1-5(2)[(2 3> ,+<6C3+ 0g> 5 60g }
and
na 1= ~ [ /134 272 44
Li 2 11 1 22
+2(1+22) uz(z) + [3 + 5421+ 2) log(Z)} ng(z) + 5 (24 1)log(2)
272 52 91z] 22 134 272 208 1172
— = _Z|-=p — D 93— ——
T3 9] 32(Z)+<9 3)1() [<3 27 "6
2log 2 (1 + 62 + 1922) Liz(z) = 2log2 (1 + 22) ) o
-3 }Do(z*) - G ——t St [2L13(z) — 8Li3(2)
2+ 1122
— 2(log(2) — 2log(z))Lis(z) — log?(2) log(2) + 4log(z) logQ(Z)] + % log?(2)
11 20 — 57z — 4922 52 173 1
+ g( + 2)log?(2) + 365 log(z) — logz[ 9 + TS — 5(1 —z)log(z) (L.7)
72 1+322] 5 — 422 7212244922 - 35 563 197 , [64
- — — — 4 240628 L
6 =z ] ST z 108 T108° T ){ ma"[9
72 22log2] o~y (w2 227 22 11¢3 2272 383
- - S — %102 ) + Liax T
3773 ]+Z(3 18 Og>+ {2 o "
77 125log 2 263 72 11log?2 224 472
—log?2 - Bt L L ot - —— 2 S [ 22 -2 ) log2
3 8 9 ] + [ 6 ey T3 Tl " g)ls
, 221og> 2 217 251og 2 2117* 1561 10372  log*2
—2Liy(1/2) + —=>~- — - -
W1+ —g—+6 < 4 ) 1440 ~ 36 432 12

1572 284 5 415
log2+ [ =— — == | log?2 ¢ .
+(4 9)0 +<12 36>°g }
It remains to discuss functions that contribute to do;
Ifin collects color-correlated contributions and reads

NNLO “see Eq. (6.5). The quantity

1
(I + K1 + Cy [ (I}” + I 20+ 1)>

o[ [/2r* 131 22 17¢; 1975 11
IV - 20 4 220082 ) Ly — — 2 4 — — 2 L8
s [(3 83 ) : " 108 12" (18

2131 11log?2
—11log?2 — 37 log2}+l()<7r_3+ og >]’

3 36 3

where K is a constant given in Eq. (A.7) and Isn), Isn), I\(/n), L(Fn) are the coefficients of the
n-th power in the e-expansion of the corresponding operators reported in Appendix A.5.
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The finite part of the triple color-correlated operator is given by

I{;? glee)fin 4 Z ”ka Fki) (1.9)

tri r.fin
(ijk)

where FF9) = f., T2 T? T¥. We note that It(rl )-8 " corresponds to the O(e) contributions
of the operator It(ri) in Eq. (5.15) and reads

Np
pletn _ g S pki) (51,; +5;i) (5% + 64 - 2¢jk) : (1.10)
(igk)
where
1 Vi
+_Llro 222
57 = 25 N+ Lij Mij (L.11)

%] T2
1 .
6ij = — 2Lmax log(1ij) — 5 log?(n;;) — Lia (1 — ;) -

Furthermore, the term GT an can be found in Eq. (H.16).

The operator If2 in Eq. (6.5) collects color-uncorrelated contributions. It reads
272 131 22log?2 935¢3 9607
Ifin De( ol |2 - = e —
une Z A{ [ 3 18T 3 max ~ 7y T 394
1172 1433 72 (945 4+ 1997%) 11 (L12)
- —1log2 — — —log®?2 :
[ 6 ' 108 ] ©8 1440 g log’

143 72
== ) log?2
where we have introduced

2 -
De(E;) = CACF{LZ- {9 (3772 — 64 — 661og 2) Li — 163

1
+ = <802 — 3672 log 2 + 3(131 + 331og 2) log 2)]

27

1 _
+3 (?m? — 64— 661og 2) L3+ (9772 64 — 661og 2) L (1.13)
—12¢3 + 36 (802 — 3672 log2 + 3(131 + 331og 2) log 2) }

ifi=1,2, and

1 101 1 ~
DC(EZ-):C,%{[—ZQ’—% (2)70 2210g22—67r2(11+810g2)]Li
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21¢; 1987 2y 2l082 2,
Bt — 2210g22
[ 2 s st T3 T

583 25log2>+47774 40201

(11 + 6log 2)] L;

— 2Lig(1/2) + (3 < o + 1 160~ 643 (I.14)
_ log 2

36
2

+ I [259+ 3610g2(33 + 510g2)} }

[713 n log2<316 +log2(3log2 — 88))}

432

if i € [3, Np).
The function v*Y in Eq. (6.5) is a combination of anomalous dimensions. It is given
by

1T2(1—¢) [(2E;\ ™
)= g (B2) [l Do - B2 (e )
203 11
=Ca [ -y T Li <6+Li>:| )

where in the second line we have taken ¢ — 0. Furthermore, the functions W;

and W are given in Egs (G.10), (G.12) and (F.41), respectively. The quantities (5( ) and
(5gL correspond to

6§O)ZCA<—72++10g > 6;_:CA<36_ § ) (I.16)

(L15)

m||n,fin i||n,fin
Infin_ sl

The finite remainder of the double-soft integrated subtraction term is given by

<Smn@mnFLM (m7 n)>§g =

N,
_[el]’ S (] - Se@) My )
_|: 27 :| (Z;CA 6tan(5”) 3013(26”) 2G*1707071(nl])
ij

7 5 4 ]. 4 ]. 3 57T2
+ §G071,0,1(77ij) ~ 57108 (1) — 13108 (1 +mni5) + 3 log(1 — ;) log® (1) — 5
11 7 2 7.
+35 log(1 — mi5) + 2 log?(1 — ﬁz‘j)] log?(m;;) + 5 log?(1 + mij) — ZLIQ(W)2

1 1 1—7]1“

+ 3Lig(n;;) — 5Lig (1—) — 5Lig(1 — nij —2Li4< >+Li4 <J>
is) ij (=) L+ nij 1+ i

14 272

— Liy <_1+77Z> — §L14 (1 — nij) — Lia(n;j) [log (n35) + G log(nij) + D (L.17)
11log 2 i 2
32|+ Lia(o) [2108(1 = i) o)+ 2Lia(1 ) -

. . . 11
— 2log(1 — n;;)Liz(—mij) + 2Li3(1 — mj)(log(l +nij) — log(m'j)) + Liz (i) [6

11
+ 21log (i) — 2log(nij + 1) — 7log(1 — %)} +log 2 [ -3 log(1 — ni;) log(mis)
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21, 337 —868] 11 7 )
2oy BT =808 T og(1 = i) — “¢slog(1 + miy) + 6L -
+ 4 (3 + 108 :| + B (3 Og( 771j> 4C3 Og( +77Z])_|-6L14 <2>

13772 177* 649

432 160 162

12 6

log2  11log®2 137 + 972
+ g4 — 9g - 367T 10g22}(Ti'Tj)'FLM>-

In the above equation we used d;; = 6;;/2, where 6;; is the opening angle between momenta

+1og() | (72 = 5 ) o1 =) + 260~ | - g6+

of partons ¢ and j. The Clausen functions are defined as

B Li,(€%) + Liy(e~%)

Cln(z) —_ 2 ’ . Lln(e ) _‘Lln(e_ )

Sip(z) = 5 ,

(L18)

and G, as,....a,, () are the standard Goncharov polylogarithms.

The last two functions in Eq. (6.5) are FE\I;Q and FI% which refer to the infrared-finite
components of the one-loop squared amplitude and the two-loop amplitude interfered with
tree level, respectively.
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