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In these proceedings, we summarise our recent calculations of next-to-leading order electroweak
corrections to Higgs boson pair and Higgs boson plus jet production [1, 2]. The calculations
are divided into different regions. In the high-energy region, we analytically calculate the Higgs
boson contribution to the leading two-loop Yukawa corrections for 𝑔𝑔 → 𝐻𝐻. These corrections
are generated by a single virtual Higgs boson exchange within the top quark loop. Our high-
energy expansion yields precise predictions for the region where the Higgs boson transverse
momenta 𝑝𝑇 > 120 GeV. In the low-energy region, we compute the complete two-loop electroweak
corrections to 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻. We obtain analytic results through the large top quark
mass expansion, covering all sectors of the Standard Model.
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1. Introduction

The precise study of spontaneously electroweak (EW) symmetry breaking mechanism of the
Standard Model (SM) is one of the primary targets of the Large Hadron Collider (LHC) programme
at CERN. In this context, Higgs boson pair and Higgs boson plus jet production are two key
processes at the LHC, which have the further potential to reveal new physics effects beyond the SM
(BSM). One important feature of the 2 → 2 Higgs boson production processes is the access to the
Higgs boson transverse momenta (𝑝𝑇 ) spectrum, which is known to be sensitive to new physics
effects [3]. Moreover, Higgs boson pair production enjoys an additional feature in probing the Higgs
self-coupling, which controls the shape of the Higgs potential for the EW symmetry breaking. The
determination of the Higgs self-coupling is one of the most important tasks in the upcoming high-
luminosity (HL) phase of the LHC. Precise predictions for Higgs boson pair production within the
SM is the crucial ingredient for the examination of the EW symmetry breaking mechanism and the
detection of subtle effects from BSM scenarios [4, 5].

For Higgs boson pair production at the LHC, the gluon-fusion 𝑔𝑔 → 𝐻𝐻 process represents
the major production channel. For this process, the next-to-leading order (NLO) QCD corrections
with full top quark mass 𝑚𝑡 dependence have been calculated in [6–10]. These QCD calculations
involving virtual top quarks are difficult. The successful approaches for tackling this problem
are numerical approaches [6–8] and analytic approximations in complementary regions [9–14].
However, the calculations of NLO EW corrections are even more involved due to more internal
mass scales appearing in the loop integrals, the Higgs self-coupling corrections have been computed
in [15], leading Yukawa-top corrections have been computed in high energy expansion [1] and
large-𝑚𝑡 limit [16], and recently we have computed the first full EW corrections in the large-𝑚𝑡

expansion [2].
For Higgs boson plus jet production at the LHC, we consider the dominant gluon-fusion

𝑔𝑔 → 𝑔𝐻 process. For this process, the NLO QCD corrections with full 𝑚𝑡 dependence are known
in [17–20]. The NLO electroweak corrections via massless bottom quark loops have been computed
in [21], the corrections induced by a trilinear Higgs coupling in the large-𝑚𝑡 expansion have been
calculated in [22], and we have computed the first full EW corrections in the large-𝑚𝑡 expansion [2].

In these proceedings, we summarise our progress towards the full NLO EW calculations for
𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻 [1, 2].

2. Form factors for 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻

The amplitude for the process 𝑔(𝑞1)𝑔(𝑞2) → 𝐻 (𝑞3)𝐻 (𝑞4) can be decomposed into two
Lorentz structures

𝐴
𝜇𝜈

1 = 𝑔𝜇𝜈 − 1
𝑞12

𝑞𝜈1𝑞
𝜇

2 , 𝐴
𝜇𝜈

2 = 𝑔𝜇𝜈 + 1
𝑝2
𝑇
𝑞12

(
𝑞33𝑞

𝜈
1𝑞

𝜇

2 − 2𝑞23𝑞
𝜈
1𝑞

𝜇

3 − 2𝑞13𝑞
𝜈
3𝑞

𝜇

2 + 2𝑞12𝑞
𝜇

3 𝑞
𝜈
3

)
,

where 𝑞𝑖 𝑗 = 𝑞𝑖 ·𝑞 𝑗 with 𝑞2
1 = 𝑞2

2 = 0 and 𝑞2
3 = 𝑞2

4 = 𝑚2
𝐻

, and 𝑝𝑇 =

√︃
(𝑢 𝑡 − 𝑚4

𝐻
)/𝑠 is the Higgs boson

transverse momentum. The Mandelstam variables are 𝑠 = (𝑞1+𝑞2)2 , 𝑡 = (𝑞1+𝑞3)2 , 𝑢 = (𝑞1+𝑞4)2 .

We introduce the form factors 𝐹1 and 𝐹2 as

M𝑎𝑏 = 𝜀1,𝜇𝜀2,𝜈M𝜇𝜈,𝑎𝑏 = 𝜀1,𝜇𝜀2,𝜈𝛿
𝑎𝑏𝑋

ggHH
0 𝑠

(
𝐹1𝐴

𝜇𝜈

1 + 𝐹2𝐴
𝜇𝜈

2
)
, (1)
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where 𝑎, 𝑏 are adjoint colour indices, 𝑋ggHH
0 = 𝐺𝐹𝛼𝑠 (𝜇)𝑇𝐹/(2

√
2𝜋), 𝑇𝐹 = 1/2, 𝐺𝐹 is Fermi’s

constant and 𝛼𝑠 (𝜇) is the strong coupling constant evaluated at the renormalization scale 𝜇. In
Fig. 1 we show sample two-loop diagrams contributing to 𝑔𝑔 → 𝐻𝐻.

(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (b-3) (b-4) (b-5)

(c-1) (c-2) (c-3) (c-4) (c-5)

Figure 1: Two-loop Feynman diagrams contributing to 𝑔𝑔 → 𝐻𝐻. Dashed, solid, wavy and curly lines
correspond to scalar particles, fermions, electroweak gauge bosons and gluons, respectively.

The amplitude for the process 𝑔(𝑞1)𝑔(𝑞2) → 𝑔(𝑞3)𝐻 (𝑞4) can be decomposed into four
physical Lorentz structures

𝐴
𝜇𝜈𝜌

1 = 𝑔𝜇𝜈𝑞
𝜌

2 , 𝐴
𝜇𝜈𝜌

2 = 𝑔𝜇𝜌𝑞𝜈1 , 𝐴
𝜇𝜈𝜌

3 = 𝑔𝜈𝜌𝑞
𝜇

3 , 𝐴
𝜇𝜈𝜌

4 =
1
𝑠
𝑞
𝜇

3 𝑞
𝜈
1𝑞

𝜌

2 .

The corresponding four form factors are defined through

M𝑎𝑏𝑐 = 𝑓 𝑎𝑏𝑐𝑋
gggH
0 𝜀1,𝜇𝜀2,𝜈𝜀3,𝜌

4∑︁
𝑖=1

𝐹𝑖𝐴
𝜇𝜈𝜌

𝑖
, (2)

where 𝑋
gggH
0 = 21/4√︁4𝜋𝛼𝑠 (𝜇)𝐺𝐹

𝛼𝑠 (𝜇)
4𝜋 , and 𝑐 is the adjoint colour index of the final-state gluon.

The Mandelstam variables are defined as in 𝑔𝑔 → 𝐻𝐻, apart from here we have 𝑞2
3 = 0 and

𝑝𝑇 =
√︁
𝑢 𝑡/𝑠. Sample Feynman diagrams for 𝑔𝑔 → 𝑔𝐻 are given in Fig. 2.

We define the perturbative expansion of the form factors as

𝐹 = 𝐹 (0) + 𝛼𝑠 (𝜇)
𝜋

𝐹 (1,0) + 𝛼

𝜋
𝐹 (0,1) + · · · , (3)

where𝛼 is the fine structure constant and the ellipses indicate higher-order QCD and EW corrections.

3. Leading Yukawa corrections to 𝑔𝑔 → 𝐻𝐻 in high energy expansion

As a concrete example, we present the details for the calculation of the leading Yukawa
corrections to the Higgs-exchange two-loop box diagram (b-4) shown in Fig. 1. For this diagram,
we consider two expansion approaches with the following hierarchies:

(A) 𝑠, 𝑡 ≫ 𝑚2
𝑡 ≫ (𝑚int

𝐻 )2, (𝑚ext
𝐻 )2 and (B) 𝑠, 𝑡 ≫ 𝑚2

𝑡 ≈ (𝑚int
𝐻 )2 ≫ (𝑚ext

𝐻 )2 , (4)
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(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (b-3) (b-4) (b-5)

(c-1) (c-2) (c-3) (c-4) (c-5)

Figure 2: Two-loop Feynman diagrams contributing to 𝑔𝑔 → 𝑔𝐻. Dashed, solid, wavy and curly lines
correspond to scalar particles, fermions, electroweak gauge bosons and gluons, respectively.

where 𝑚int
𝐻

and 𝑚ext
𝐻

are internal and external Higgs masses respectively. In approach (A) we first
treat the hierarchy 𝑚2

𝑡 ≫ (𝑚int
𝐻
)2 at the level of the integrand by applying the hard-mass expansion

procedure using exp [23, 24], and further perform a Taylor expansion in the 𝑚ext
𝐻

→ 0 limit. For
approach (B) we perform simple Taylor expansions for the hierarchy 𝑚2

𝑡 ≈ (𝑚int
𝐻
)2 ≫ (𝑚ext

𝐻
)2. At

this stage, the problem is reduced to simpler massive two-loop four-point integrals with massless
external lines that only depend on the variables 𝑠, 𝑡 and 𝑚𝑡 . We then perform integration-by-parts
reductions and derive the system of differential equations for master integrals. To treat the final
hierarchy 𝑠, 𝑡 ≫ 𝑚2

𝑡 , we construct the asymptotic expansion at the level of the master integrals by
inserting a power-log ansatz

𝐼𝑛 =

𝑖𝑚𝑎𝑥∑︁
𝑖=−3

𝑗+∑︁
𝑗=−4

𝑖+4∑︁
𝑘=0

𝑐
(𝑛)
𝑖 𝑗𝑘

(𝑠, 𝑡) 𝜖 𝑖 𝑚2 𝑗
𝑡 log𝑘 (𝑚2

𝑡 ) , (5)

into the system of differential equations w.r.t. 𝑚𝑡 . We then solve the expanded differential equations
to a high order in 𝑚𝑡 in terms of unknown boundary conditions. The boundary conditions need
to be calculated analytically from the corresponding master integrals in the limit 𝑚𝑡 → 0. We
employ the asymptotic expansion method [25] using asy.m [26] to obtain integral representations
for the required boundary conditions. These integrals are subsequently solved using Mellin-Barnes
techniques together with our in-house package AsyInt. Finally we obtain analytic results for the
amplitudes expanded up to order 𝑚120

𝑡 . For the numerical evaluation, we employ the Padé improved
approximation to enlarge the radius of convergence of our results.

Here we show results for the real part of box-type form factor of 𝐹1 for fixed transverse
momentum 𝑝𝑇 and fixed scattering angle in Fig. 3. For the fixed scattering angle plot, the solid
curves represent Padé results with uncertainty bands1 and the dashed curves show naive expansions.
We observe that the naive expansions start to diverge for

√
𝑠 ≈ 800 GeV for approach (A) and for√

𝑠 ≈ 1000 GeV for approach (B), while the central value of Padé results agree between both

1We employ the so-called pole-distance re-weighted Padé approximants and the corresponding uncertainties [27].
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Figure 3: Real part of 𝐹box1 for fixed scattering angle 𝜃 = 𝜋/2 (left) and different fixed 𝑝𝑇 values (right).
For the fixed 𝑝𝑇 plot, an offset is applied such that the curves for the different 𝑝𝑇 values are separated. No
offset is used for the lowest 𝑝𝑇 value. For 𝑝𝑇 ≥ 120 GeV the central values of approach (A) and (B) agree.

approaches down to
√
𝑠 ≈ 400 GeV. For the fixed 𝑝𝑇 plot, the coloured curves correspond to the

results from approach (B), and the results from approach (A) are only shown as faint uncertainty
bands. These curves show that both expansion approaches yield equivalent physical results.

4. Full EW corrections to 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻 in large-𝑚𝑡 expansion

We perform calculations for the full EW corrections to 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻 through the
large-𝑚𝑡 expansion. To this end, we assume the following hierarchy

𝑚2
𝑡 ≫ 𝜉𝑊𝑚2

𝑊 , 𝜉𝑍𝑚
2
𝑍 ≫ 𝑠, 𝑡, 𝑚2

𝑊 , 𝑚2
𝑍 , 𝑚

2
𝐻 , (6)

where 𝜉𝑍 , 𝜉𝑊 are the general gauge parameters for the 𝑍 and 𝑊 bosons, and perform the large-𝑚𝑡

expansion with exp. Through this procedure, we obtain analytic results for the bare two-loop
amplitudes up to order 1/𝑚4

𝑡 in the 𝑅𝜉 gauge and order 1/𝑚10
𝑡 (1/𝑚8

𝑡 ) in the Feynman gauge
for 𝑔𝑔 → 𝐻𝐻 (𝑔𝑔 → 𝑔𝐻). For the renormalisation, we express our one-loop amplitudes in
terms of independent parameters {𝑒, 𝑚𝑊 , 𝑚𝑍 , 𝑚𝑡 , 𝑚𝐻 } with 𝑒 =

√
4𝜋𝛼, and introduce one-loop

on-shell counterterms. We also renormalise the wave function of the external Higgs boson in the
on-shell scheme. Note that tadpole contributions are included in all parts of our calculations. After
renormalisation, 𝜉𝑊 and 𝜉𝑍 drop out for both 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻 amplitudes.

For the numerical evaluation, we adopt the 𝐺𝜇 scheme and use the input values 𝑚𝑡 =

172 GeV , 𝑚𝐻 = 125 GeV , 𝑚𝑊 = 80 GeV , 𝑚𝑍 = 91 GeV , and introduce the ratio parame-
ter 𝜌𝑝𝑇 =

𝑝𝑇√
𝑠
. In the following we choose 𝜌𝑝𝑇 = 0.1 and consider the squared matrix el-

ement UggHH = 1
82
∑

col
1
22
∑

pol |M𝑎𝑏 |2 = 1
16
(
𝑋

ggHH
0 𝑠

)2ŨggHH for 𝑔𝑔 → 𝐻𝐻 and UgggH =

1
82
∑

col
1
22
∑

pol |M𝑎𝑏𝑐 |2 = 3
32
(
𝑋

gggH
0

)2
𝑠 ŨgggH for 𝑔𝑔 → 𝑔𝐻. The LO and NLO EW numeri-

cal results are shown in Fig. 4 for 𝑔𝑔 → 𝐻𝐻 and Fig. 5 for 𝑔𝑔 → 𝑔𝐻 with different expansion
order in 𝑚𝑡 . For both processes, our large-𝑚𝑡 expansions yield reasonable predictions for the√
𝑠 ∼< 290 GeV region. We observe that the NLO EW corrections for 𝑔𝑔 → 𝐻𝐻 can be sizeable,

potentially reaching O(10%) compared to the LO, while they are small for 𝑔𝑔 → 𝑔𝐻. The analytic
NLO QCD results for 𝑔𝑔 → 𝑔𝐻 are also available in [2].
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Figure 4: LO Ũ (0)
ggHH (left) and NLO EW Ũ (0,1)

ggHH (right) matrix elements plotted as a function of
√
𝑠 for

𝑔𝑔 → 𝐻𝐻. Results are shown up to order 1/𝑚10
𝑡 .

150 200 250 300 350 400
s (GeV)

0

50

100

150

200

250

300

350

(0
)

gg
gH

1/m0
t

1/m2
t

1/m4
t

1/m6
t

1/m8
t

150 200 250 300 350 400
s (GeV)

0

50

100

150

200

250

300

350

400

(0
,1

)
gg

gH

m2
t

1/m0
t

1/m2
t

1/m4
t

1/m6
t

1/m8
t

Figure 5: LO Ũ (0)
gggH (left) and NLO EW Ũ (0,1)

gggH (right) matrix elements plotted as a function of
√
𝑠 for

𝑔𝑔 → 𝑔𝐻. Results are shown up to order 1/𝑚8
𝑡 .

5. Conclusion

In these proceedings, we have summarised our recent analytic calculations of two-loop EW
corrections to 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻. We have presented the first NLO leading Yukawa
corrections to 𝑔𝑔 → 𝐻𝐻 in the high energy limit. We have proposed two different expansion
approaches to tackle this problem and shown that they yield physically equivalent and precise
predictions even for Higgs boson 𝑝𝑇 as small as 120 GeV. We have also presented the first full NLO
EW corrections to both 𝑔𝑔 → 𝐻𝐻 and 𝑔𝑔 → 𝑔𝐻 in the large-𝑚𝑡 expansion, including all sectors
of the SM. Our results also shown that the NLO EW corrections to the 𝑔𝑔 → 𝐻𝐻 can potentially
be sizeable.
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