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ABSTRACT
Self-interacting dark matter (SIDM) has been proposed to solve small-scale problems in ΛCDM cosmology. In previous work,
constraints on the self-interaction cross-section of dark matter have been derived assuming that the self-interaction cross-section
is independent of velocity. However, a velocity-dependent cross-section is more natural in most theories of SIDM. Using idealized
𝑁-body simulations, we study merging clusters, with velocity-dependent SIDM. In addition to the usual rare scattering in the
isotropic limit, we also simulate these systems with anisotropic, small-angle (frequent) scatterings. We study the qualitative
features of the mergers and we find that the effects of velocity-dependent cross-sections are observed when comparing early-time
and late-time oscillation amplitude of the brightest cluster galaxy (BCG). Finally, we also extend the existing upper bounds on
the velocity-independent, isotropic self-interaction cross-section to the parameter space of rare and frequent velocity-dependent
self-interactions by studying the central densities of dark matter only isolated haloes. For these upper-bound parameters, we find
that the offsets just after the first pericentre to be ≲ 10 kpc. On the other hand, because of BCG oscillations, we speculate that
the distribution of BCG offsets in relaxed cluster to be a statistically viable probe. Therefore, this motivates further studies of
BCG off-centering in cosmological simulations.
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1 INTRODUCTION

Cold dark matter (CDM) is a fundamental component of the stan-
dard ΛCDM cosmology. It plays a vital role in explaining the forma-
tion of the large-scale structure of the universe and the anisotropies
in the cosmic microwave background. While cosmological 𝑁-body
simulations within ΛCDM have successfully reproduced many ob-
servations of the large-scale structure, there seem to be discrepancies
between observations and simulations on small scales (see. Bullock
& Boylan-Kolchin (2017) for a review of the small-scale problems).
A solution to the small-scale problems was proposed by Spergel
& Steinhardt (2000) via a model of DM, where DM particles can
non-gravitationally scatter off each other. Constraints on the self-
interaction cross-section can be obtained by studying different astro-
physical systems. In particular, relaxed galaxy clusters (e.g. Sagunski
et al. 2021; Andrade et al. 2021) have provided the most stringent
constraint on the cross-section. We also have constraints from galaxy
cluster mergers (Randall et al. 2008; Harvey et al. 2015). For a review
on astrophysical constraints on self-interacting dark matter (SIDM)
see Adhikari et al. (2022).

Velocity-dependent anisotropic cross-sections are natural in most
theories of SIDM (for a review of SIDM models see Tulin & Yu
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2018). Examples include light mediator models (Tulin et al. 2013;
Ackerman et al. 2009), atomic DM (Cline et al. 2014), strongly
interacting DM (Boddy et al. 2014). Moreover, velocity-dependent
cross-sections are also well motivated observationally. Most con-
straints on the self-interaction cross-section per unit mass of DM par-
ticle (𝜎/𝑚𝜒) in the literature, have been derived assuming velocity-
independent and isotropic scattering. For example, Sagunski et al.
(2021) quote an upper limit of 𝜎/𝑚𝜒 < 0.35 cm2 g−1 (95%C.L.) at
cluster scales and 𝜎/𝑚𝜒 < 1.1 cm2 g−1 (95%C.L.) at group scales.
On the galactic scales, Ren et al. (2019) find that 𝜎/𝑚𝜒 in the range,
3 − 10 cm2 g−1 is required to explain the observed diversity in the
rotation curves in the SPARC dataset. Similarly, Sankar Ray et al.
(2022) quote an upper-bound of𝜎/𝑚𝜒 < 9.8 cm2 g−1 (95%C.L.). At
the scale of dwarf galaxies, there is no concrete upper bound on the
cross-section. A cross-section with 𝜎/𝑚𝜒 > 30 cm2 g−1 is favoured
by the observed central densities of Milky Way’s dwarf spheroidal
galaxies (Correa 2021). Elbert et al. (2015) find that 𝜎/𝑚𝜒 can be
as large as 50 cm2 g−1 at these scales and still be consistent with ob-
servations. These considerations highlight the viability of velocity-
dependent cross-sections.

Observationally probing the angular dependence is a daunting task.
One reason being that the effects of angular dependence are not strong
enough when studying the evolution of systems that do not have a
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preferred direction. For example, Robertson et al. (2017b); Fischer
et al. (2021) simulated isolated haloes using 𝑁-body simulations and
found that there is no big difference in the evolution of core-sizes be-
tween isotropic and anisotropic cross-sections for a given choice of
parameters. Moreover, simulating differential cross-sections which
peak for tiny scattering angles, using conventional SIDM implemen-
tations (e.g. Rocha et al. 2013) is prohibitively expensive. This type
of interaction will be called frequent self-interactions (as introduced
in Kahlhoefer et al. (2014)) as opposed to rare self-interactions cor-
responding to large-angle scattering. Frequently self-interacting dark
matter (fSIDM) is natural in the massless mediator limit of light me-
diator models. The scattering of DM particles in this regime can be
modelled as a drag force, where the drag force depends not on the
total cross-section but on the momentum transfer cross-section given
by Kahlhoefer et al. (2017); Robertson et al. (2017b)

𝜎T = 2𝜋
∫ 1

−1

d𝜎
dΩcms

(1 − | cos 𝜃cms |) d cos 𝜃cms. (1)

Frequent self-interactions have previously been studied by Kahlhoe-
fer et al. (2014); Kummer et al. (2018, 2019); Fischer et al. (2021,
2022) assuming velocity independence.

Mergers of galaxy clusters are interesting test beds for models
of SIDM since the mass distribution of the system could be mea-
sured through lensing. The gas and galaxies can be probed through
their direct emission in various wavelengths. The existence of offsets
between the DM component and galaxies may hint at DM self-
interactions (Randall et al. 2008). Moreover, mergers are sensitive
to both velocity and angular dependence of the scattering cross-
section. Firstly, as the haloes undergo many pericentre passages, the
collisional velocity changes with time. Scattering velocities are the
largest at the first pericentre passage and, subsequently, the haloes
slow down with every passage. The self-interactions at the pericentre
passages are mainly responsible for an increase in the offset. Thus,
the evolution is sensitive to the parameters of velocity-dependent
cross-section. Secondly, mergers unlike isolated haloes also have a
preferred direction, i.e. the merger axis. Fischer et al. (2022) find
that offsets are larger for frequent self-interactions with a given 𝜎T,
when compared to rare self-interactions of the same 𝜎T. They also
showed that small-angle scattering can produce larger offsets than
the maximal possible offset from isotropic scattering.

There have been earlier studies that have simulated mergers. For
example, studies with velocity-independent isotropic cross-sections
have been done by Kim et al. (2017) who simulated equal-mass
mergers ; Robertson et al. (2017a) simulated a bullet cluster like
system. Fischer et al. (2021, 2022) studied equal and unequal-mass
mergers with, both, isotropic and anisotropic velocity-independent
cross-section. Robertson et al. (2017b) looked at mergers until just
after the first pericentre passage. They used velocity-dependent
isotropic cross-section and a velocity-dependent cross-section that
corresponds to Yukawa scattering under the Born approximation.
It is unknown as to how the merger evolution is affected at late
stages by velocity-dependent self-interactions. Similarly, mergers in
the fSIDM regime with velocity dependence are yet to be studied.

In this work, we aim to (i) study the qualitative differences in
merger simulations between velocity-dependent and independent
cross-sections, (ii) extend the upper bound on constant cross-section
quoted by Sagunski et al. (2021) to the parameter space of velocity-
dependent cross-section, (iii) find the maximum offsets between
DM and the brightest cluster galaxy (BCG) with velocity-dependent
cross-section parameters that are consistent with upper bound pa-
rameters. To this end, we simulate the full evolution of galaxy clus-
ter mergers and isolated haloes with, both, rare and frequent self-

interactions. In a companion paper (Fischer et al. prep), cosmological
simulations are studied with velocity-dependent fSIDM. The paper is
presented as follows. In section 2 we briefly describe our numerical
scheme and the SIDM models that are considered. In section 3 we
present our simulation results, which illustrate the qualitative differ-
ences between velocity-dependent and velocity-independent cross-
section simulations. In section 4, we describe the simulations of
mergers with cross-section parameters that correspond to the 95%
C.L. limits provided in Sagunski et al. (2021). In section 5, we sum-
marize our results and conclude. Additional details are provided in
the appendices A and B.

2 METHODS

In this section, we describe the numerical setup of our simulations
and we discuss our choice for the self-interaction cross-section that
is used in the simulations.

2.1 Numerical method

For our simulations, we use the cosmological 𝑁-body simulation
code gadget-3, adapted for frequent self-interactions using the im-
plementation given in Fischer et al. (2021). In this section, we
briefly describe the implementation of, both, rare and frequent self-
interactions. The numerical scheme for the self-interactions of rarely
self-interacting dark matter (rSIDM) follows Fischer et al. (2021),
which is similar to the method described in Rocha et al. (2013). In
this scheme, the probability that a numerical particle 𝑖 with mass 𝑚𝑖

scatters off another numerical particle 𝑗 with mass 𝑚 𝑗 is given by,

𝑃𝑖 𝑗 =
𝜎

𝑚𝜒
𝑚 𝑗 |Δ𝑣𝑖 𝑗 | Δ𝑡 Λ𝑖 𝑗 , (2)

where Δ𝑣𝑖 𝑗 is the relative velocity between the numerical particles
𝑖, 𝑗 , Δ𝑡 is the time step used in the simulation, Λ𝑖 𝑗 is the kernel
overlap integral, 𝜎/𝑚𝜒 is the total cross-section per unit mass of
DM particle. For more details on the implementation and the choice
for the kernel, see appendix A and B of Fischer et al. (2021). A
collection of kernels used in other modern implementations of SIDM
within 𝑁−body simulations can be found in Adhikari et al. (2022,
eq. 11-15).

The drag force of frequent self-interactions is based on the relation
derived in Kahlhoefer et al. (2014), which describes the deceleration
rate experienced by a particle as it travels through a constant back-
ground density of DM,

𝑅dec =
1
𝑣0

d𝑣 ∥
d𝑡

=
𝜌0𝑣0𝜎T

2𝑚𝜒
, (3)

𝑣0 is the velocity of the particle, 𝜌0 is the background density, 𝜎T is
the momentum transfer cross-section defined in equation (1). We can
also see that the deceleration rate captures the rate of change of the
parallel component of the velocity. Therefore, the above expression
can then be cast into an expression for drag force for the physical
particles. The drag force as experienced by the numerical particles
in the 𝑁-body code is given as (Fischer et al. 2021),

𝐹drag =
1
2
|Δ𝑣𝑖 𝑗 |2

𝜎T
𝑚𝜒

𝑚𝑖𝑚 𝑗Λ𝑖 𝑗 , (4)

which is proportional to the momentum transfer cross-section 𝜎T.
The implementation of the velocity-dependent self-interactions

into the SIDM module has been described in detail by Fischer et al.
(prep). To ensure numerically stable results, a novel time-step crite-
rion has been added. This criterion is based on the velocity at which
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self-interactions are strongest, i.e. on the maximum of 𝜎T (𝑣) 𝑣, in-
stead of the velocity distribution that an individual particle encoun-
tered in the previous time step. In principle, such a scheme guarantees
that the simulation time step is always sufficiently small to account
for 𝜎T (𝑣) for any 𝑣.

2.2 Initial conditions and simulation parameters

In this work, we simulate, both, DM-only isolated haloes and galaxy
cluster merger with two different merger mass ratios (MMR). Firstly
for the isolated DM-only haloes, they have a virial mass of 1015 M⊙
and are initialized with an NFW density profile Navarro et al. (1996),
i.e.

𝜌(𝑟) = 𝛿𝑐𝜌crit
(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2 :=

𝜌0
(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2 . (5)

DM positions are sampled from a probability density function such
that the density profile follows the NFW profile. Given the virial
mass of the halo and the critical density 𝜌crit, of the universe, the
parameters of the NFW profile are determined as follows: (i) the
concentration parameter, 𝑐vir, is determined using the concentration-
mass relation given in Dutton & Macciò (2014), (ii) characteristic
density 𝛿𝑐 is computed using 𝑐vir from the earlier step (using Eq.2 of
Navarro et al. 1996), (iii) scale radius 𝑟𝑠 is computed using its def-
inition 𝑟𝑠 = 𝑟vir/𝑐vir. The NFW parameters thus obtained are given
in Table 1. Using the resulting density profile, the initial velocity
dispersion

〈
𝑣2〉

ini (𝑟) is obtained by integrating the Jeans equation
(Binney & Tremaine 2008). Then, initial velocities in each radial bin
are drawn from a Gaussian distribution with the variance

〈
𝑣2〉

ini (𝑟).
The isolated DM halo simulations use the same NFW parameters as
the main halo of the merger for initial conditions (ICs). We simulate
mergers with MMR ∈ {1, 5}. The barycentre of the clusters are ini-
tially 4000 kpc apart and they are put on course towards each other
with a relative velocity of 1000 km s−1 as summarized in Table 2.

In the galaxy cluster used in the merger simulations, the cluster
has three particle species: DM, galaxy and BCG. Galaxies and BCG
are approximated to be collisionless, while DM is collisional with
self-interaction characterized by its cross-section. An equal number
of DM and galaxy particles is used in the simulation. A sufficient
number of galaxy particles are chosen to ensure that it is easier to
find the peak position of the galaxies. The main halo has a virial
mass of 1015M⊙ and both species initially follow an NFW profile.
The particle masses are as follows: for DM, 𝑚DM = 2 · 109 M⊙ , for
galaxies, 𝑚Gal = 4 · 107 M⊙ . In addition, the brightest cluster galaxy
(BCG) is represented by a single particle at the centre of the halo
with a mass 𝑚BCG = 7 ·1011 M⊙ . As the BCG is approximated to be
a point particle, the effects of gravitational scattering become strong
if the mass is large, therefore the BCG particle is taken to be less
massive than the observed BCGs. This choice is adopted from earlier
studies (e.g. Fischer et al. 2022; Kim et al. 2017). We use a fixed
gravitational softening length of 𝜖 = 1.2 kpc for all particles. For,
both, mergers and isolated haloes we use an adaptive kernel size for
the DM self-interactions, such that the number of neighbours within
each particles’ kernel, 𝑁ngb is equal to 64. This choice follows from
Fischer et al. (2021).

All simulations have been performed with a resolution of O(106)
particles. For certain cross-section parameters, the simulations were
rerun at a higher resolution of O(107) particles to validate the lower
resolution runs (see Appendix A).

Table 1. This table contains the NFW parameters used in generating the ICs
for merger simulations. The first column contains the virial mass, the second
the density parameter 𝜌0 := 𝛿𝑐 𝜌crit, followed by scale radius 𝑟𝑠 and number
of DM and galaxy particles. DM-only isolated haloes have the same NFW
parameters as given in the first row.

Mvir 𝜌0 𝑟𝑠 𝑁DM = 𝑁Gal 𝑁BCG

(M⊙ ) (M⊙kpc−3 ) (kpc)

1015 1.33 · 106 389.3 1009878 1

2 · 1014 1.908 · 106 194.76 181319 1

Table 2. This table contains the initial relative velocity, initial separation
distance between the two clusters

Merger mass ratios 𝑥ini Δ𝑣ini

(M⊙ : M⊙ ) (kpc) (kpc)

1015 : 1015 4000 1000 km s−1

1015 : 2 · 1014 4000 1000 km s−1
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Figure 1. Momentum transfer cross-section for 𝜎0𝑚 = 5 cm2 g−1, the values
of 𝑤 are given in the legend. The vertical coloured dashed lines correspond
to different velocity scales in the system. The left most is the average relative
velocity within 100 kpc of the 1015 M⊙ cluster, the second and third from
the left correspond to the average relative velocity within 100 kpc around
the barycentre at the first pericentre for MMR:5 and MMR:1 respectively.
Finally, the second last and the last to the right is the relative velocity of the
BCGs at the first pericentre passage of the system with MMR:5 and MMR:1
respectively.

2.3 Dark matter cross-section model

We assume a fairly generic form for the self-interaction momentum
transfer cross-section for rare and frequent self-interactions, param-
eterized as follows (Gilman et al. 2021; Yang et al. 2023),

𝜎T
𝑚𝜒

=
𝜎0
𝑚𝜒

(
1 + 𝑣2

𝑤2

)−2
, (6)

where 𝑣 is the relative velocity of the DM particles. We furthermore
assume that the total cross section has the same velocity dependence
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as the momentum transfer cross section, such that

𝜎T (𝑣)
𝜎T (𝑣 = 0) =

𝜎(𝑣)
𝜎(𝑣 = 0) . (7)

This assumption is automatically satisfied if the differential cross-
section is a separable function, i.e. it is of the following form,

d𝜎
d cos 𝜃

= 𝑁
𝜎0
𝑚𝜒

Θ(𝜃)𝑔(𝑤, 𝑣), (8)

where 𝑁 is a normalization constant, Θ(𝜃) captures the angular
dependence and 𝑔(𝑤, 𝑣) = (1 + 𝑣2/𝑤2)−2. However, even for non-
separable cross-sections, such as Rutherford scattering, the assump-
tion in equation (7) gives a useful approximation.

Depending on the choice of 𝑁 and Θ(𝜃), the above cross-section
can correspond to either frequent or rare self-interactions. In this
work, we consider isotropic scattering for the case of rare self-
interactions, such that Θ(𝜃) is simply a number. The total cross-
section to calculate the scattering probability in equation (2) is then
given by 𝜎 = 2𝜎T, see equation (1). For frequent self-interactions,
on the other hand, Θ(𝜃) is strongly peaked for small angles. The
normalization, 𝑁 , is then chosen such that the momentum transfer
cross-section given in equation (6) is recovered, which is used in the
simulations to compute the drag force experienced by the particles,
see equation (4).

For the rest of the paper, the term cross-section will always refer
to the momentum transfer cross-section, 𝜎T, unless specified oth-
erwise. To run the simulations, the parameters 𝜎0𝑚 and 𝑤 must be
chosen, where 𝜎0𝑚 := 𝜎0/𝑚𝜒 . In this paper, we are interested in
studying the qualitative differences in the evolution of galaxy cluster
mergers between the different regions of 𝜎0𝑚−𝑤 parameter space. A
priori, it is conceivable that there are degeneracies in this parameter
space, such that different parameter combinations lead to very simi-
lar merger observables. Such a degeneracy was found by Yang et al.
(2023) (see their figure 8) when analysing the rotation curve of LSB
dwarf galaxy UGC 128 and found a degeneracy. In other words, it
was possible to compensate a change in 𝑤 by an appropriate change
in 𝜎0𝑚. We refer to a prescription to determine the cross section
normalisation 𝜎0𝑚 for a given velocity dependence (determined by
𝑤) as matching. In the following, we will explore different matching
procedures.

The choice for 𝑤 follows from the typical relative velocity scales.
These scales can be estimated by running CDM simulations. The ob-
served values are displayed as dashed lines in Figure 1. The largest ob-
served scales are the relative velocities of the infalling BCGs shown
as the last two lines corresponding to MMR 5,1 respectively. The aver-
age scattering velocity with which DM particles scatter off each other,
within 100 kpc around the barycentre at the first pericentre passage, is
shown in grey (MMR = 5) and pink (MMR = 1) colours. Finally, the
average relative velocity within a particular halo is given in yellow
and it is approximately 1400 km s−1. This implies that for any value
of 𝑤 larger than 1400 km s−1, the self-interactions within the halo
will be in the weakly velocity-dependent regime. Therefore, the fol-
lowing choice for 𝑤 is made, 𝑤 ∈ {1000, 2000, 3000, 4000}km s−1.

We have analysed cluster mergers with 𝜎0𝑚 chosen according to
two matching procedures: The first is to choose the same value of
𝜎0𝑚 for all chosen values of 𝑤, the second is to choose 𝜎0𝑚 such that
the evolution of the central density of the isolated haloes for different
values of 𝑤 is similar. These procedures will be explained further in
the following sections.

Simulation name 𝜎0𝑚 𝑤

[cm2 g−1] [km s−1]

FC5p0 5 ∞

Fw1000s5p0 5 1000

Fw2000s5p0 5 2000

Fw3000s5p0 5 3000

Fw4000s5p0 5 4000

Table 3. Simulation labels and the corresponding cross-section parameters.
The generic form of labels is XwDsNpM, where X is either F(frequent) or
R(rare), D that follows w is the value of the parameter 𝑤 to be read as D
km s−1 and NpM following the s is the value of 𝜎0𝑚 to be read as N.M
cm2 g−1

2.4 Analysis Methods

In order to find the peak position of any component, i.e. DM, or
galaxies, we use the peak finding method based on the gravitational
potential, see Fischer et al. (2022). In the simulations, all particles
have a unique particle ID assigned to them. Using the ID, particles
belonging to a given halo can be identified. Then, the gravitational
potential in each cell in a grid is computed. The cell with the lowest
potential corresponds to the position of the peak. Fischer et al. (2022)
also propose the isodensity-based peak finding algorithm. In this
algorithm, the peaks are identified as the cell in the merger plane with
the highest projected density. This method is closer to observations
where, for example, gravitational shear measurements can be used
to infer mass densities. We find that gravitational potential based
peak finding is more reliable when the simulation is run with low
resolution. Hence, this is our choice for finding peaks. To find the
errors on the peak position, we bootstrap the particle distribution 20
times and determine 20 such peaks. Then we estimate the error, by
finding the standard deviation in the obtained peak positions.

We define offsets as the distance between the peaks of two different
species of the same cluster. For example, 𝑑DM−BCG is the distance
between the DM and BCG peak of a given cluster.

3 VARYING 𝑤 ONLY

In this scheme, the same value of 𝜎0𝑚 is used for different values of
the parameter 𝑤. Even though it is a very simple choice, it is easier to
observe the qualitative difference introduced by velocity-dependent
cross-sections. To make the differences stand out, we use a large value
of 𝜎0𝑚 = 5.0 cm2 g−1. We confirmed the results to be qualitatively
similar but less pronounced for smaller values of 𝜎0𝑚. The names
for the individual runs shown in the plots are tabulated in Table 3.

3.1 DM peak position

The plots of the peak positions of DM against time for equal and
unequal-mass mergers are given in Figure 2. The peaks of the main
halo are marked by dotted lines, while those of subhalo are indicated
by solid lines. Firstly, we observe that for constant cross-sections,
the drag force from self-interaction is strong enough to stop the DM
component in their tracks and they coalesce at the first pericentre
passage. For the same 𝜎0𝑚, the DM peak positions in the velocity-
dependent SIDM runs are closer to the CDM run for smaller values
of 𝑤. This observation matches our expectation that for fixed 𝜎0𝑚,
increasing 𝑤 increases the effective self-interaction strength.

MNRAS 000, 1–12 (2023)
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Figure 2. The dotted and solid lines correspond to the DM peak position of
the main halo and subhalo respectively. Upper panel: DM Peaks in equal-mass
merger, lower panel: Merger with mass ratio 5. Plot labels are described in
Table 3. Simulation results presented in this figure corresponds to varying
values of 𝑤 and a fixed 𝜎0𝑚.

.

The separation of the peaks at the first apocentre is largest for
CDM and decreases with increasing self-interaction strength. This
can be attributed to the fact that DM particles experience a drag force
and thus stay closer to the centre-of-mass of the system.

The first pericentre passage occurs at different times for different
parameter combinations. Albeit being a small effect, self-interactions
tend to increase the time taken to reach the first pericentre passage.
Then the second passage occurs earlier for increasing self-interaction
strength. For example, we see that the first pericentre passage occurs
slightly later for the constant cross-section one. This could be under-
stood as self-interactions generating pressure that resists the infall,
thus slowing the halo down. The difference is large for constant cross-
section because the effective self-interaction strength of the velocity-
dependent ones is much smaller than the constant cross-section one
at early stages, as 𝜎T (𝑣) is small for 𝑣 > 𝑤.

At later stages of the evolution, the scenario changes. For example,
at the third apocentre, we see that the oscillation in the DM peak for
𝑤 = 2000 km s−1 has an amplitude that is greater than that of CDM.
At late stages, the oscillation amplitude is smaller for all the cases
that we have simulated and the dark matter peaks are closer. That

is, at late stages, the dark peaks spend more time within 200 kpc
about the barycentre. During these stages, the central density of the
haloes are lower for SIDM simulations since the average scattering
velocity of DM particles decrease with time. Therefore, the oscilla-
tion within the 200 kpc are less dampened by dynamical friction for
SIDM simulations.

For the unequal-mass mergers, the subhalo dissolves faster, mak-
ing it difficult to identify the DM peaks during later stages of the
evolution. Both, equal and unequal mass mergers have identical ini-
tial separation and initial relative velocity Therefore, in unequal mass
merger, the less massive cluster traverses more distance than the mas-
sive one and this leads to fewer oscillations. For instance, in Figure 2,
we see that within 5 billion years, the subhalo in MMR:5 system has
undergone fewer pericentre passages than the equal-mass merger.

3.2 BCG peak position

The BCG positions for subhaloes are given in Figure 3, the upper
panel corresponds to the equal-mass merger system, while the lower
panel corresponds to the unequal-mass merger. The main feature of
BCG oscillations is that they oscillate for longer periods of time in
simulations with SIDM compared to CDM. This general feature has
already been observed in earlier work (Fischer et al. 2022, 2021;
Kim et al. 2017). This could be explained by noting that the merger
remnants have a cored density distribution at the centre owing to
the self-interactions. On the other hand, merger remnants in CDM
simulations have larger central densities. As a result, the oscillations
dampen out faster in CDM due to dynamical friction.

In the equal-mass merger, we observe that the peak positions of
subhalo BCGs are closer to the CDM for smaller values of 𝑤 at the
early stages of the merger evolution. At later stages, around 5 billion
years, the BCG oscillations in the CDM simulation have dampened
considerably. On the other hand, the oscillations approximately stay
constant for the constant cross-section simulation for the period (1−
8) billion years, as shown in Figure 3. The position of the BCG in
velocity-dependent simulations start deviating from CDM with time.
For example, let’s consider the 𝑤 = 2000 km s−1 simulation, (i) we
see that the curve is initially close to the CDM simulation (ii) during
the period 4 − 7 billion years the oscillations have approximately
a constant amplitude and they have significantly deviated from the
CDM simulation. This can be understood by looking at the typical
velocities of the system at various stages of the evolution. The haloes
have a larger relative velocity initially when compared to later stages.
Therefore, from Figure 1 we see that for 𝑤 = 2000 km s−1 and
𝑣 > 2000 km s−1, the cross-section is less than 1 cm2 g−1, whereas
for 𝑣 < 2000 km s−1 the cross-section is larger than 1 cm2 g−1. Thus,
merger remnants experience larger self-interactions at later stages,
leading to more cored distributions and lesser dynamical friction.
Cumulatively, this leads to steady oscillations at later stages.

The distance travelled by the BCGs at the first apocentre is ob-
served to become smaller with increasing values of 𝑤. This can be
understood by looking at the DM peaks. For example, the DM haloes
coalesce at the first pericentre passage for the constant cross-section
simulation. As a result, the BCG experiences a larger gravitational
force due to the coalesced DM distribution at the barycentre. This
accumulation of DM at the barycentre reduces with decreasing 𝑤

since the average interaction strength reduces with 𝑤. This effec-
tively leads to smaller amplitudes at the first apocentre in, both,
equal and unequal-mass mergers. Immediately after the second peri-
centre passage, the amplitude of the velocity-dependent SIDM and
CDM curves have decreased significantly due to dynamic friction.
While for the constant cross-section, the DM peaks have come to rest
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and the merger remnants start coring. This leads to the persistence
of the BCG oscillation amplitude.

3.3 Morphology

In Figure 4, we show the physical density of DM within the slice
|𝑧 | < 100 kpc is projected on the merger plane. There are three
columns, each correspond to a DM model and each row corresponds
to a particular simulation time. First we look at time 𝑡 = 1.4 Gyr,
before the first pericentre passage. Both haloes in the constant cross-
section simulation (column 2) have lower central densities than in
the CDM (column 1) and velocity-dependent simulations (column
3). The second row shows results at a time 𝑡 = 2.1 Gyr, which is just
after the first pericentre passage. Owing to the large self-interaction
strength, the haloes in the constant cross-section simulation have
coalesced, while for CDM and velocity-dependent self-interactions
the DM haloes pass through each other. At later stages, 𝑡 = 5 Gyr,
the merger remnant in the constant cross-section simulation has a
lower central density. While for the velocity-dependent simulations,
the effects of velocity-dependence slowly becomes relevant as the
system slows down. Thus, this leads to more cored distribution at
the centre of the merger remnant when compared to the one from
CDM simulation. This feature essentially leads to the persistent BCG
oscillations at late stages. In Figure 4 we have a similar plot display-
ing only the subhalo’s projected density for MMR:5. Independent
of the self-interaction cross-section, the subhaloes are observed to
evaporate with time. With self-interactions, the evaporation is more
pronounced. At 𝑡 = 4.5 Gyr, the subhalo experiencing constant cross-
section has its core dissolved significantly and come to rest, for
CDM the core has remained relatively intact. Finally, in the velocity-
dependent simulation the core has dissolved, but the merger remnant
seems to be oscillating even at these stages. In addition, in the CDM
simulation we see shell-like features. These features are missing in
the constant cross-section simulation since the haloes have coalesced.

4 CENTRAL DENSITY MATCHED CROSS-SECTION

In this section, we explore a more refined matching procedure based
on simulations of isolated haloes. In this matching scheme, parame-
ters {𝜎0𝑚, 𝑤} are chosen such that different parameter combinations
lead to similar central density evolution. We will refer to parameters
matched according to this scheme as CD-matched. To avoid perform-
ing multiple simulations to find the matched parameter set, we make
use of the self-similar nature of the gravothermal fluid equations of
an isolated halo (Balberg et al. 2002; Essig et al. 2019). This allows
us to obtain the central density evolution without running a suite
of simulations. In Balberg et al. (2002), they assume that the cross-
section is velocity independent. In order to illustrate the rescaling,
consider two constant cross-section parameters 𝜎𝐴

0𝑚, 𝜎
𝐵
0𝑚. Then, the

central density evolution obeys the following scaling relation:

𝜌𝑐 (𝑡𝐴) = 𝜌𝑐

(
𝑡𝐵 ×

𝜎𝐵
0𝑚

𝜎𝐴
0𝑚

)
, (9)

where 𝑡𝐴, 𝑡𝐵 correspond to the evolution time of the isolated haloes
simulated with parameters 𝜎𝐴

0𝑚, 𝜎
𝐵
0𝑚.

Velocity-dependent cross-sections contain two parameters and it
is not immediately clear how the central densities can be rescaled.
Yang & Yu (2022) propose an effective cross-section 𝜎eff to model
the halo evolution. For a differential cross-section d𝜎/d cos 𝜃, the
effective cross-section is given by
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Figure 3. BCG position of the subhalo vs. time. The upper panel shows peak
positions in the equal-mass merger, while the lower panel corresponds to the
unequal-mass merger. For better visibility, we plot only the position of the
BCG of the subhalo. Plot labels are described in Table 3.

𝜎eff =
1

512(𝜎1D)8

∫
𝑣2d𝑣d cos 𝜃𝑣5 sin2 𝜃

d𝜎
d cos 𝜃

exp

(
− 𝑣2

4𝜎2
1D

)
.

(10)

In the expression given above, 𝑣 is the relative velocity of DM parti-
cles, 𝜎1D is the characteristic velocity dispersion of the halo. Yang &
Yu (2022) show that the evolution of central density in a simulation
with the differential cross-section can be mimicked by a constant
cross-section simulation with the same 𝜎eff . They also note that the
equivalence holds well when the halo is in short-mean-free-path
regime. In the long-mean-free-path regime, 𝜎eff does not capture the
effects of self-scattering accurately. However, it provides a reasonable
approximation to the halo evolution. Therefore, we extend the rescal-
ing procedure given in equation (9) to any differential cross-section
by using the corresponding effective cross-section 𝜎eff .

Integrating the angular part of equation (10), we get

𝜎eff ∝
∫

𝑣2d𝑣𝑣5𝜎V (𝑣, 𝑤) exp

(
− 𝑣2

4𝜎2
1D

)
∝ 𝜎0𝑚 𝑓 (𝑤), (11)
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Figure 4. The density of DM haloes, accounting for the particles within |𝑧 | < 100 kpc. The first column corresponds to CDM simulations, while the second
and the third columns correspond to simulations with the following cross-sections (𝜎0𝑚, 𝑤) : (5,∞) , (5, 2000) . The rows correspond to different times. The
first row being before the pericentre passage, the second, just after the first pericentre passage and the third being at later stages. The time stamps in the images
are in units of Gyr.

where,

𝜎V =

∫
d cos 𝜃 sin2 𝜃

d𝜎
d cos 𝜃

, (12)

is the viscosity cross-section.
Thus, for a given 𝑤, 𝜎𝐴

eff/𝜎
𝐵
eff = 𝜎𝐴

0𝑚/𝜎
𝐵
0𝑚. In other words, rescal-

ing by𝜎eff is equivalent to rescaling by𝜎0𝑚 for the same𝑤. We verify
this method by performing tests with some parameter combinations,
see Appendix B.

In order to find the value 𝜎0𝑚 given a 𝑤, such that the evolution of
the central density matches that of a target simulation with parameter
set, 𝑄 = {𝜎𝑄

0𝑚, 𝑤
𝑄} we follow the procedure given below.

(i) Simulate an isolated halo with the target parameter set. Find
the evolution of the central density 𝜌

𝑄
𝑐 (𝑡𝑄) from the simulation

snapshots.
(ii) Simulate an isolated halo with the parameter set 𝐴 =

{𝜎𝐴
0𝑚, 𝑤}, followed by the estimation of the evolution of central

density, 𝜌𝐴𝑐 (𝑡𝐴) from the simulation data.
(iii) To obtain the evolution 𝜌𝐵𝑐 (𝑡𝐵) corresponding to the param-

eter set 𝐵 = {𝜎𝐵
0𝑚, 𝑤}, rescale the time axis of the simulation A, i.e.,

𝜌𝐵𝑐 (𝑡𝐵) = 𝜌𝐴𝑐

(
𝑡𝐴 ×

𝜎𝐴
0𝑚

𝜎𝐵
0𝑚

)
. (13)

(iv) Repeat the previous step with different values of 𝜎𝐵
0𝑚 until

𝜌𝐵𝑐 (𝑡𝐵) matches 𝜌𝑄𝑐 (𝑡𝑄).

Thus, we have obtained the CD-matched 𝜎𝐵
0𝑚 for the given 𝑤.

To make a guess for the value of 𝜎𝐴
0𝑚 for one of our chosen values

of 𝑤, we solve,

𝜎eff (𝜎𝐴
0𝑚, 𝑤) = 𝜎

𝑄

eff . (14)
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Figure 5. Plot similar to Figure 4, but displaying only the subhalo of MMR:5 simulation.

To this end, we need a value for 𝜎1D. In Yang & Yu (2022), they pro-
pose to use the velocity dispersion in the central region of the halo
at the maximal core expansion stage for the characteristic disper-
sion 𝜎1D. Using semi-analytic modelling, Outmezguine et al. (2023)
show that the 1D velocity dispersion is 0.64𝑉max at the maximal core
expansion phase. Using 𝑉max ≈ 1.65𝑟𝑠

√︁
𝐺𝜌0 for our NFW param-

eters, we find 𝜎1D ≈ 980 km s−1. On the other hand, we observe
𝜎1D ≈ 1000 km s−1 in our simulations. Thus, we find consistency
between our simulations and the semi-analytic result.

We calculate the initial guess 𝜎𝐴
0𝑚 for rare self-interactions and

use the same for frequent self-interactions. For this calculation, we
use the differential cross-section given in subsection 2.3.

We choose the target set 𝑄 to correspond to the values quoted in
Sagunski et al. (2021). They quote a 95% upper bound on the total
cross-section of 0.35 cm2 g−1, assuming isotropy and velocity inde-
pendence. Therefore, this value translates to 𝜎0𝑚 = 0.175 cm2 g−1

for rare self-interactions (because 𝜎 = 2𝜎T). In other words, we
choose the target set 𝑄 = {0.175 cm2 g−1,∞}. In Figure 6, we show
an example for the matching procedure in detail. The black band

corresponds to the target central density of constant cross-section
with 𝜎0𝑚 = 0.175 cm2 g−1. The orange band corresponds to a simu-
lation with {2.72 cm2 g−1, 2000 km s−1}. This value for 𝜎0𝑚 is our
initial guess calculated using equation (14). After rescaling by trial
and error, the desired value of 𝜎0𝑚 is found to be 1.2 cm2 g−1. This
procedure can be extended to all chosen values of 𝑤 and the obtained
results are tabulated in Table 5. The inferred values of 𝜎0𝑚 at dif-
ferent values of 𝑤 can then be used to calculate the corresponding
viscosity cross-section 𝜎𝑉 . This is shown in Figure 7. The orange
triangles, and blue stars represent the values of 𝜎𝑉 , obtained using
the inferred values of 𝜎0𝑚 from 𝑁-body simulations for rare and
frequent self-interactions, respectively. Similarly, the solid line cor-
responds to the 𝜎𝑉 calculated from the values of 𝜎0𝑚 inferred by
solving equation (14). The fact that the results obtained from 𝜎eff ,
𝑁-body simulations are different can be attributed to the fact that the
isolated halo is in the long-mean-free-path regime. This was already
noted in Yang & Yu (2022).

The evolution of an isolated halo has a feature that, as long as it
is in the core expansion phase, at any given time the central density
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corresponds to the simulation with the initial guess for 𝜎0𝑚 = 2.72 cm2 g−1,
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Figure 7. The plot contains viscosity cross-section evaluated at 𝑣 = 0, for
different values of 𝑤. At each 𝑤, the inferred value of 𝜎0𝑚 is used to compute
𝜎𝑉 . The triangles and stars represent 𝜎𝑉 calculated using the 𝜎0𝑚 inferred
from 𝑁 -body simulations for fSIDM and rSIDM respectively. The solid line
corresponds to 𝜎0𝑚 inferred by solving 𝜎eff = 0.35 cm2 g−1.

is monotonically decreasing with 𝜎eff . This implies that for a given
value of 𝑤, and at a given time in the evolution of the halo, core-size
is larger for larger values of 𝜎0𝑚. Sagunski et al. (2021); Andrade
et al. (2021); Eckert et al. (2022) constrain 𝜎0𝑚 using the observed
core-size in clusters. Hence, for every value of 𝑤, there is a value
of 𝜎0𝑚 that produces core sizes, or central densities, similar to the
current upper bound. Increasing 𝜎0𝑚 any further would increase the
core size to values larger than what is observed. Thus, this matching
procedure can be used to extend the bounds from constant cross-
section to different values of 𝑤.

When matched using 𝜎eff or central density evolution, we observe

that the ratio between the 𝜎0𝑚’s of rare and frequent is approximately
0.64 at every chosen values of 𝑤. This can be understood from the
definition of 𝜎eff . From equation (11), we have for any 𝑤, for rare
self-interactions,

𝜎eff = 𝐶𝜎0𝑚

∫
d𝜃 sin3 𝜃

∫
d𝑣𝑣7 exp

(
−𝑣2

4𝜎2
1D

) (
1 + 𝑣2

𝑤2

)−2
(15)

= 𝐶
4
3
𝜎0𝑚 𝑓 (𝑤). (16)

Here, 𝐶 = 1/(512𝜎8
1D). Now from equation (6), for rare self-

interactions we have 𝜎T = 𝜎0𝑚𝑔(𝑤, 𝑣), which implies that

𝜎eff =
4
3
𝜎T𝐶 𝑓 /𝑔. (17)

For frequent self-interactions, we consider a differential cross-section
of the form given in equation (8) with the function Θ(𝜃) having
support only for values of 𝜃 close to 0. A simple choice for Θ(𝜃) is a
step-function that is non-zero in the interval [0, 𝜖], where 𝜖 is some
small number. Therefore, 𝜎eff is given as

𝜎eff = 𝐶𝑁𝜎0𝑚

∫
d𝜃 sin3 𝜃Θ(𝜃)

∫
d𝑣𝑣7 exp

(
−𝑣2

4𝜎2
1D

)
𝑔(𝑤, 𝑣) (18)

≈ 𝐶𝑁𝜎0𝑚

∫
d𝜃𝜃3Θ(𝜃) 𝑓 (𝑤) = 𝐶𝑁𝜎0𝑚 𝑓 (𝑤)𝜖4/4, (19)

where in the second equality we have Taylor-expanded and retained
only the leading order in 𝜃 in the angular integrand. Similarly, for the
momentum transfer cross-section we have

𝜎T = 𝑁𝜎0𝑚𝑔(𝑤, 𝑣)
∫

d𝜃 sin 𝜃 (1 − | cos 𝜃 |)Θ(𝜃) (20)

≈ 𝑁𝜎0𝑚𝑔(𝑤, 𝑣)𝜖4/8. (21)

Thus, for frequent self-interactions, we have

𝜎eff = 2𝜎T𝐶 𝑓 /𝑔. (22)

Now for matching with 𝜎eff or the central density we require
𝜎eff (Rare) = 𝜎eff (Freq.). Upon using equation (17) and equation
(22), this requirement leads to the matching condition 𝜎T (Freq.) =
2/3𝜎T (Rare) =⇒ 𝜎0𝑚 (Freq.) = 2/3𝜎0𝑚 (Rare) as seen in Table 5.

4.1 Central density matched simulations – qualitative features

In this subsection, we look at the qualitative differences in mergers
when parameters are chosen according to the central density match-
ing procedure. Again, as in section 3, we only simulate frequent self-
interactions. We choose the target set to be𝑄 = {1.0 cm2 g−1,∞}, the
matched parameters are given in Table 4. For brevity, we show only
the BCG oscillations in Figure 8. We see that the BCG oscillations of
velocity-dependent simulations all have similar amplitudes at early
stages. Only at a later stages they start to deviate. This similarity stems
from the fact that the parameters are CD-matched. Similar to what
was explained in subsection 3.2, at early times the DM particles have
a large relative velocity. As a result, most of the velocity-dependent
cross-sections have a small effective self-interaction strength. At
later stages, the system slows down and 𝑣 ≲ 𝑤 and the effective
self-interaction strength increases. In addition, the internal evolution
around a DM peak is similar for all the cross-section parameters cho-
sen, since they are CD-matched. See appendix C for the evolution of
the central density of the main halo.
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Figure 8. BCG positions of the subhalo against time. The upper panel cor-
responds to equal mass merger, while the lower one corresponds to unequal
mass merger.

𝑤 𝜎0𝑚 Label
[km s−1 ] [cm2 g−1 ]

1000 70.0 Fw1000s70p0

2000 8.67 Fw2000s8p67

3000 2.33 Fw3000s2p33

4000 3.67 Fw4000s3p67

∞ 1.0 FC1p0

Table 4. This table contains labels and cross-section parameters matched
to constant cross-section, 𝜎0𝑚 = 1.0 cm2 g−1 of frequent self-interactions
using central density matching scheme.

4.2 Central density matched upper bound simulations

In the previous subsection, the conservative upper bounds were ob-
tained using the central density matching scheme. Values are tabu-
lated in Table 5. We run merger simulations for this set of param-
eters and estimate the offsets 𝑑DM−BCG. For velocity-independent
cross-sections up to 0.5 cm2 g−1, Fischer et al. (2021) found that the
DM-BCG and DM-Galaxy offsets increase with increasing values of
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Figure 9. DM – BCG offsets in the equal-mass merger. Upper panel corre-
sponds to fSIDM, while bottom panel to rSIDM. The plot labels are described
in Table 5. The vertical dashed lines correspond to the time of the first peri-
centre passage.

𝜎0𝑚. By running merger simulations at the upper bound values of
the cross-section parameters, we estimate the order of magnitude of
the largest possible offsets allowed by current bounds.

In Figure 9, we show the DM-BCG offset at the first pericentre
passage for the equal mass merger. The offset is O(1)kpc, while the
offsets after the third pericentre passage (𝑡 ∼ 4 billion years) start
increasing. The effective self-interaction strength is not large enough
to produce an observable offset at the first pericentre. Hence, it might
be difficult to find such an offset in real observations. We do not show
the offsets for unequal mass merger because, the offsets just after the
first pericentre are smaller than the ones of equal mass merger. In
addition, at later stages due to the evaporation of halo, we do not
have reliable peak positions. We can also see from Figure 9 that the
offsets produced by fSIDM are larger than that of rSIDM, and this is
due to the fact that mergers are sensitive to the angular dependence.
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𝑤 Frequent Rare

𝜎0𝑚 Label 𝜎0𝑚 Label

[km s−1 ] [cm2 g−1 ] [cm2 g−1 ]

1000 5.6 Fw1000s5p6 9.0 Rw1000s9p0

2000 0.78 Fw2000s0p78 1.25 Rw2000s1p25

3000 0.36 Fw3000s0p36 0.57 Rw3000s0p57

4000 0.25 Fw4000s0p25 0.39 Rw4000s0p39

∞ 0.11 FC0p11 0.175 RC0p175

Table 5. This table contains the conservative upper bound on 𝜎0𝑚 for different values of 𝑤 given in the first column. The second column contains 𝜎0𝑚 the
value for frequent self-interactions, and the third for rare self-interactions.

5 CONCLUSIONS

In this section, we first discuss the assumptions made in the paper
before we conclude.

The first assumption that we make is that we use idealised initial
conditions. Still, it is informative to study them to find the appropri-
ate features to look out for in more realistic simulations and observa-
tions. One example is the amplitude of BCG oscillation at late stages,
which is seen to depend on the velocity-dependent cross-section pa-
rameters. Therefore, it is instructive to simulate cosmological boxes
with velocity-dependent cross-section at higher resolution in order
to estimate the distribution of DM-BCG offsets. Later, this could
be compared to observations (e.g. Cross et al. 2023; Lauer et al.
2014). For example, Harvey et al. (2019) studied the DM-BCG off-
sets in the BAHAMAS–SIDM suite of cosmological simulations and
placed constraints on𝜎/𝑚𝜒 assuming velocity-independent isotropic
SIDM.

In addition, we have modelled the BCG and galaxies as collision-
less point particles. A more realistic treatment of BCG’s could change
the oscillation pattern. Furthermore, we neglect the effect of galaxies
having their own DM halo (Kummer et al. 2018). In reality, approx-
imately 10% of the mass of clusters is made up by the intracluster
medium (ICM), which is not included in our simulations. Merger
studies that include the ICM, such as Robertson et al. (2017a), find
that the DM-galaxy offset is not significantly affected by the presence
of the ICM. Fischer et al. (2023) also finds similar results. Therefore,
we argue that the absence of an ICM component does not affect most
of our conclusions.

As mentioned in subsection 2.3, we have assumed that the angular
and velocity dependence of the differential cross-sections can be
separated into two functions. This assumption has to be dropped
when dealing with realistic SIDM models (Tulin et al. 2013; Feng
et al. 2009). There are other SIDM models leading to different effects
that are not included in our studies. For example, in addition to elastic
scattering, inelastic scattering could be included (O’Neil et al. 2023).
We leave the study of such models to future work.

On the observation side, all observed DM-BCG offsets are inferred
to be just after pericentre passage and have uncertainties that make
them consistent with zero (Bradač et al. 2008; Dawson et al. 2012;
Dawson 2013; Jee et al. 2014, 2015). Similarly, estimating DM-
galaxy offsets are difficult due to shot noise arising from the smaller
galaxy count. In our simulations we had 106 galaxy particles, but
in reality we observe at most ∼ 103 of them. On the other hand,
Lauer et al. (2014) find a median offset of ∼ 10 kpc, with the offset
measured between BCG and cluster centre, the latter being identi-
fied by X-ray observations. Their sample comprised 433 BCGs that
are located in Abell galaxy clusters. The DM-BCG offset distribu-

tion could be compared to predictions of cosmological simulations.
Overall, the situation with observations is expected to improve with
forthcoming surveys, such as SuperBIT (Romualdez et al. 2016) and
Euclid (Laureĳs et al. 2011).

In this paper, we have simulated idealized, isolated haloes and
galaxy cluster mergers with equal and unequal merger mass ratios
with velocity-dependent, frequent and rare self-interactions. Mergers
are interesting astrophysical probes since the system is sensitive to
self-interaction cross-sections with, both, angular and velocity de-
pendencies. Therefore, we focused on understanding the qualitative
effects that arise from velocity dependence in mergers. On the quan-
titative side, we also investigate the maximum offsets that can be
observed given the current bounds on 𝜎/𝑚𝜒 .

• Independent of the matching procedure used in the paper, the ef-
fects of velocity-dependent cross-sections can be observed on galaxy
cluster mergers by comparing the early time and late time oscillations
of BCG. In particular, the degeneracy in the cross-section parameters
when studying the evolution of central density in isolated haloes is
broken when studying mergers. This is due to the fact that the relative
velocities of the merging clusters change with time.

• The evolution of central densities of isolated haloes are simi-
lar between rare and frequent self-interaction, when the momentum
transfer cross-section 𝜎T (𝑣) of fSIDM is chosen to be 2/3𝜎T (𝑣) of
rSIDM. The factor 2/3 follows from matching the angular depen-
dence of fSIDM and rSIDM with viscosity cross-section, as seen in
Figure 7.

• We extend the existing upper bounds on the constant cross-
section 𝜎0𝑚 to the parameter space {𝜎0𝑚, 𝑤} of velocity-dependent,
rare and frequent self-interactions.

• In the equal-mass merger simulations with upper-bound cross-
section parameters, we find that the offsets after the first pericentre
is approximately O(1)kpc. In particular, the offsets are the largest in
the constant cross-section simulation. As the system evolves further,
offsets grow. After the third pericentre passage, due to the oscillations
of BCG, and the galactic component the offsets are O(10)kpc. Thus,
mergers in their late stages are interesting to test and constrain SIDM.
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APPENDIX A: VALIDATING LOWER RESOLUTION
SIMULATIONS

In this section, we compare the peak positions of DM, galaxy and
BCG components between low resolution and high resolution sim-
ulations. The low- and the high-resolution simulation use the NFW
parameters given in Table 1 for generating the haloes. The only dif-
ference being that the DM and galaxy particles in the high-resolution
simulation have a resolution of 107 particles instead of 106 particles.
Both of them also use the same initial conditions as given in Table 2.
The DM component is simulated with and without self-interactions.
For the SIDM case, we simulate with frequent self-interactions with
a velocity-independent cross-section. The momentum transfer cross-
section used in the simulations is 𝜎T/𝑚 = 0.5 cm2 g−1. We observe
that the peak positions evolve almost identically independent of the
resolution up until 5 billion years. See Figure A1 and A2.

APPENDIX B: TESTING RESCALING

We test the rescaling by 𝜎0𝑚 for a given 𝑤 with rare self-interactions.
Figure B1 shows the evolution of central density of an isolated halo
for two values of 𝑤, 2000 km s−1, 3000 km s−1 in the left and right
panel, respectively. For example, in the left panel, after rescaling 𝑡 of
20 cm2 g−1 simulation by a factor 20/13, the evolution is similar to
the simulation with 𝜎0𝑚 = 13 cm2 g−1.

APPENDIX C: CENTRAL DENSITY EVOLUTION IN
MERGER

In Figure C1, we show the evolution of the central density around
the DM peak of the main halo. The curves correspond to simulations
where the cross-section parameters are CD-Matched. Similarly, in
Figure C2 we show the central densities for cases when the cross-
section parameters have the same 𝜎0𝑚, but with varying 𝑤.
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Figure A1. Comparison of peaks positions of different components between
low and high resolutions for, both, CDM and SIDM simulations in the equal
mass merger. Top, middle and bottom panels correspond DM, galaxy and BCG
components. The dashed lines correspond to low resolution and solid lines
correspond to high resolution. The SIDM case corresponds to the frequent
self-interactions with 𝜎0𝑚 = 0.5 m2 g−1.
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Figure A2. Comparison of peaks positions of different components between
low and high resolutions for, both, CDM and SIDM simulations in the unequal
mass merger. Top, middle and bottom panels correspond DM, galaxy and BCG
components. The dashed lines correspond to low resolution and solid lines
correspond to high resolution. The SIDM case corresponds to the frequent
self-interactions with 𝜎0𝑚 = 0.5 m2 g−1.
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Figure B1. Evolution of central density for two values of 𝑤, 2000 km s−1 and
3000 km s−1 in the top and bottom panel, respectively.
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Figure C1. Evolution of the central density measured within 100 kpc around
the DM peak of main halo. The parameters are CD-matched and the labels
are explained in Table 4.
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