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1. Introduction

At this conference many results for multi-loop calculations have been reported. Often the
internal particles are all massless which often also holds for most of the external lines [1]. However,
there are also processes where it is important to keep the mass of the internal particles. A prime
example is Higgs boson pair production in gluon fusion but also processes like 𝑔𝑔 → 𝑍𝑍 , 𝑔𝑔 → 𝑍𝐻

or Higgs plus jet production. Furthermore, once electroweak corrections are considered the gauge
and Higgs boson masses occur in internal lines.

In general analytic results for massive 2 → 2 processes are rare and, if available (see, e.g.,
Refs. [2, 3]), they have a complicated analytic structure which makes them often difficult to handle
and the numerical evaluation is not straightforward.

On the other hand, there are purely numerical approaches, which are often computationally
expensive. Furthermore, numerical results are significantly less flexible, e.g., in connection to
changes of renormalization schemes.

In this contribution we discuss analytic approximations. Individual results are valid in certain
limits. However, their combination can cover the whole phase space. The approximations which
are discussed in the following consist either of analytic expansions, which are composed of simple
functions, or of power-log expansions with precise numerical coefficients. In either case, a fast
numerical evaluation is guaranteed. Needless to say, analytic approximations allow for a flexible
use, in particular in connection to renormalization scheme changes.

In this proceedings contribution we discuss several recent results for massive 2 → 2 processes
at two and three loops. We concentrate on 𝑔𝑔 → 𝐻𝐻. The techniques can also be applied to other
processes such as gauge and Higgs boson production in gluon fusion or Higgs plus jet production.
We will not discuss the large-𝑚𝑡 expansion which for 𝑔𝑔 → 𝐻𝐻 is available up to NNLO [4–6].
Recently also the full electroweak corrections have been computed in this limit [7]. Exact NLO
QCD results for 𝑔𝑔 → 𝐻𝐻 are available from Refs. [8–10].

2. High-energy limit

In Refs. [11, 12] analytic results for the NLO QCD corrections for 𝑔𝑔 → 𝐻𝐻 have been
obtained in the limit 𝑠, 𝑡, 𝑢 ≫ 𝑚2

𝑡 ≫ 𝑚2
𝐻

. The second inequality sign leads to a simple Taylor
expansion, which can be performed at the integrand level. This effectively eliminates the scale 𝑚𝐻 .
The remaining integrals depend on 𝑠, 𝑡 and 𝑚2

𝑡 (with 𝑢 = −𝑠 − 𝑡). An expansion for small top quark
mass at the amplitude level is tedious. It is more convenient to perform a reduction and implement
𝑠, 𝑡 ≫ 𝑚2

𝑡 at the level of the two-loop master integrals.
The results of Refs. [11, 12] have been used in Ref. [13] to combine the high-energy expansion

with the exact numerical calculations of Refs. [8, 9] such that the latter has to be used only in a
restricted region of phase space. This significantly reduces the required CPU time. For this analysis
an expansion up to 𝑚32

𝑡 was available.
In Ref. [15] the high-energy expansion has been refined and deep expansions in 𝑚2

𝑡 /{𝑠, 𝑡, 𝑢}
could be obtained. This leads to a significant qualitative improvement, in particular in combination
with the use of Padé approximation which is applied to the 𝑚𝑡 expansion. Using more then 100
expansion terms in 𝑚𝑡 we can construct a large number of different Padé approximants together
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Figure 1: Comparison of Padé-based approximations constructed from different expansion depths
(𝑁low, 𝑁high) with numerical results obtained using FIESTA, for a non-trivial non-planar master integral,
see Ref. [14] for details.

with an estimate of the uncertainty [16]. The latter can be validated by comparing Padé results of
selected scalar integrals to numerical results obtained with FIESTA [17] or pySecDec [18]. An
example is shown in Fig. 1. The left panel shows in green high-energy results based on 32 expansion
terms and in orange results where 112 expansion terms are incorporated. In both cases the central
values and the uncertainties are shown. Numerical results obtained with FIESTA are shown as
circles. The magnification on the right panel shows the impressive accuracy of the Padé method,
even close to the two top quark threshold. A deep high-energy expansion accompanied with Padé
approximation can thus be viewed as a precision tool for massive 2 → 2 Feynman integrals.

In Ref. [15] a first step towards the electroweak corrections has been taken and the high-energy
expansion has been applied to the two-loop box diagrams where a Higgs boson is exchanged between
the top quarks.This introduces an additional scale 𝑚int

𝐻
, the mass of the internal Higgs boson. Exact

analytic calculations are again most likely not possible or at least quite involved. On the other hand,
one may consider in addition to the high-energy limit either of the two cases:

(A) 𝑚2
𝑡 ≫ (𝑚int

𝐻
)2 = (𝑚ext

𝐻
)2,

(B) 𝑚2
𝑡 ≈ (𝑚int

𝐻
)2 ≫ (𝑚ext

𝐻
)2.

Here “𝑚2
𝑡 ≈ (𝑚int

𝐻
)2” means a Taylor expansion in the mass difference. In (A) “≫” requires

the application of an asymptotic expansion in the large mass limit, which involves non-trivial
subdiagrams. On the other hand, in (B) “≫” leads to a Taylor expansion as above. It has been
shown in Ref. [15] that both cases lead to good results as can be seen from Figs. 2(a) and (b) where
results for the real part of 𝐹box1 are shown for 𝑝𝑇 = 500 GeV and 𝑝𝑇 = 200 GeV, respectively. The
colours correspond to approach (B) and the results from approach (A) are shown in gray and black.
One observes a nice convergence when including higher order expansion terms and, furthermore,
the results for the two approaches agree well at or even below the percent level.
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Figure 2: Real part of 𝐹box1 for different values of 𝑝𝑇 and various expansion terms in𝑚ext
𝐻

and 𝛿 = 1−𝑚int
𝐻
/𝑚𝑡 .

3. 𝑡 → 0 expansion

In this section we still consider two-loop corrections to 𝑔𝑔 → 𝐻𝐻. However instead of high-
energy expansions we discuss expansions around the forward scattering limit. This idea has been
applied for the first time to 𝑔𝑔 → 𝐻𝐻 in Ref. [19] under the name “𝑝𝑇 expansion”. Later the
method has been refined in Refs. [20–22].

In our approach [14] we Taylor-expand in the Mandelstam variable 𝑡 and in the final-state
masses independently, whereas the 𝑝𝑇 expansion provides a combination of both expansions. The
two prescriptions are equivalent in the sense that once the final result is expressed in terms of the
same variables and potential higher order terms are discarded one obtains identical expressions.

In Ref. [14] we have shown that the expansion in 𝑡 converges very quickly for 𝑝𝑇 ≲ 200 GeV.
Instead of order 100 terms, as for the high-energy expansion, only a few (we have computed six
terms) are sufficient. An expansion up to order 𝑚4

𝐻
is sufficient to obtain results which show

perfect agreement with the exact expressions and deviate at most at the percent level for small
values of

√
𝑠. Furthermore, in Ref. [14] we have shown that the combination of the high-energy and

𝑡 → 0 expansion covers the whole phase-space and thus no purely numerical approach is necessary
(see also Ref. [21] where a similar approach has been proposed, though with less input from the
high-energy and around the forward limit).

In Fig. 3 we show the results for the 𝐶𝐹 part of one of the form factors for 𝑝𝑇 = 170 GeV as
a function of

√
𝑠. For the small-𝑡 expansion (red and orange colour) terms up to 𝑡5 are taken into

account and the high-energy expansion (light and dark blue) includes Padé approximations with at
least (𝑚2

𝑡 )49 and at most (𝑚2
𝑡 )56 terms. In all cases quartic terms in 𝑚𝐻 are included. For this value

of 𝑝𝑇 we observe perfect agreement of the two expansions which can be seen in the black and gray
curves and the scale on the right side of the plot. For smaller values of 𝑝𝑇 the small-𝑡 expansion is
even more reliable, and for larger values of 𝑝𝑇 the high-energy expansion. This and similar plots
for different values of 𝑝𝑇 (see Ref. [14]) demonstrate that the combination of the two expansions
cover the whole phase space.
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Figure 3: Real (red and light blue) and imaginary (orange and dark blue) parts of the 𝐶𝐹 contribution to
the two-loop form factor 𝐹 (1)

box1 (see Ref. [12] for a precise definition) as a function of
√
𝑠 for 𝑝𝑇 = 170 GeV.

The red and orange curves correspond to the expansion for 𝑡 → 0 and the light and dark blue curves to the
high-energy expansion. The relative differences (see scale on the right side) are shown as black (real part)
and gray (imaginary part) curves.

4. First steps to three loops: Fermionic contribution for 𝑡 = 0

We have seen in the previous Section that the 𝑡 expansion covers a large part of the phase space.
For this reason, in Ref. [23] the limits 𝑡 = 0 and 𝑚𝐻 = 0 has been applied to three-loop 𝑔𝑔 → 𝐻𝐻

diagrams which contain a closed loop with massless fermions. Even for the leading expansion term
the reduction problem is quite involved such that further improvements are necessary in order to
obtain the complete result. Subleading expansion terms will be even significantly more involved.

The first step taken in Ref. [23] can be viewed as exploratory study which shows that it is in
principle possible to apply the 𝑡 expansion at three loops. For 𝑡 = 0 and 𝑚𝐻 = 0 we have performed
the reduction [24] to master integrals and have established the corresponding differential equation.
Using boundary conditions from the large-𝑚𝑡 limit, which can be computed analytically, we apply
the "expand and match" approach to obtain semi-analytic results, which are valid for all values
of 𝑠/𝑚2

𝑡 . In Fig. 4 we show results for the 𝑛𝑙 part of the form factor 𝐹box1 (see Ref. [23] for a
precise definition) as a function of

√
𝑠. We stress that the plotted expressions are stepwise defined
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Figure 4: Real (red) and imaginary (green) parts of the 𝑛𝑙 part of 𝐹box1 at three loops.

functions where in each region we have a power-log expansion with precise numerical coefficients.
The choice for the expansion variable depends on the respective region. For example, at threshold
we have 𝑣 =

√︃
1 − 4𝑚2

𝑡 /𝑠 and at high energies we have 𝑥 = 𝑚2
𝑡 /𝑠.

Although 𝑡 = 0 and 𝑚𝐻 = 0 is a very crude approximation, from considerations at one- and
two-loop order it can be expected that for 𝑝𝑇 in the vicinity of 100 GeV the (unknown) exact result
is approximated at the level of 30%. This is confirmed by a comparison at three-loop order in the
large-𝑚𝑡 limit, where the complete 𝑛𝑙 terms are available [5].

At two loops the 𝑡 = 0 calculation provided the initial condition for the differential equations
which could then be used to obtain higher order expansion terms in 𝑡. At three loops this will not
be possible since the reduction to master integrals of the box diagrams, which depend on 𝑠, 𝑡 and
𝑚2

𝑡 , is currently out of reach. Thus, we have to expand at the integrand level.

5. Conclusions

In this proceedings contribution we discuss several analytic approximations for two- and three-
loop corrections to 𝑔𝑔 → 𝐻𝐻, which is used as a template for a wider range of processes like
𝑔𝑔 → 𝑍𝑍 , 𝑔𝑔 → 𝑍𝐻 but also H plus jet production in gluon fusion. The analytic results in the
high-energy region and the semi-analytic expression obtained for 𝑡 → 0 are sufficiently simple such
that the fast numerical evaluation is possible. Furthermore, in the combination of both limits the
whole phase space can be covered — at least for 𝑔𝑔 → 𝐻𝐻 at two loops.
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